-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprune.py
164 lines (156 loc) · 5.83 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import argparse
import time
import torch
import torch.distributed as dist
from transformers import AutoModelForCausalLM, AutoTokenizer
from src import dist_utils
from src.data_utils import get_data
from src.model_utils import get_hidden_size
from src.pruner import FastOBCPruner
def parse_args():
parser = argparse.ArgumentParser(description="One-shot pruning with parallel OBC.")
# Model params
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="The name or path to the model being pruned",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="The name or path to the tokenizer. By default use model tokenizer.",
)
parser.add_argument(
"--prunable_modules",
type=str,
required=True,
help="Regex for modules to prune",
)
parser.add_argument(
"--pre_block_modules",
nargs="+",
type=str,
required=True,
help="Names of modules before transformer blocks",
)
parser.add_argument(
"--block_modules",
type=str,
required=True,
help="Name of transformer modules",
)
# Data params
parser.add_argument(
"--calibration_data",
type=str,
required=True,
help="The name or dataset or path used for calibration.",
)
parser.add_argument("--calibration_tokens", default=int(2**23), type=int, help="Number of tokens for calibration.")
parser.add_argument(
"--calibration_sequence_length", default=None, type=int, help="Length of calibration sequences."
)
# Sparsification params
parser.add_argument("--sparsity", required=True, type=float)
parser.add_argument("--weights_diff", default=None, type=int)
parser.add_argument("--num_levels", default=8, type=int)
parser.add_argument("--rel_damp", type=float, default=1e-2)
parser.add_argument("--block_size", type=int, default=128)
# Save params
parser.add_argument("--save_dir", type=str, required=True, help="where to save sparse model.")
# Misc params
parser.add_argument(
"--dtype",
type=str,
default="auto",
choices=["auto", "float16", "float32", "bfloat16"],
help="dtype to load the model.",
)
parser.add_argument("--seed", default=0, type=int, help="random seed.")
parser.add_argument(
"--low_cpu_mem_usage", action="store_true", help="whether to load model with the use of `low_cpu_mem_usage`"
)
parser.add_argument(
"--attn_implementation",
type=str,
default=None,
choices=["eager", "sdpa", "flash_attention_2"],
help="Attention implementation: eager, sdpa, or flash_attention_2",
)
parser.add_argument("--cpu_offload_modules", action="store_true", help="whether to offload modules to CPU.")
parser.add_argument("--cpu_offload_activations", action="store_true", help="whether to offload activations to CPU.")
parser.add_argument("--verbose", action="store_true", help="whether to log progress.")
args = parser.parse_args()
return args
def main():
args = parse_args()
# Distributed init
if dist.is_available():
dist.init_process_group(backend="nccl", init_method="env://")
world_size = dist_utils.get_world_size()
rank = dist_utils.get_rank()
# init device
device = f"cuda:{rank}"
if args.dtype != "auto":
args.dtype = getattr(torch, args.dtype)
# Model
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
torch_dtype=args.dtype,
low_cpu_mem_usage=args.low_cpu_mem_usage,
attn_implementation=args.attn_implementation,
)
if not args.cpu_offload_modules:
model = model.to(device)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name or args.model_name_or_path, use_fast=False)
# Load calibration data
args.calibration_sequence_length = args.calibration_sequence_length or min(
model.config.max_position_embeddings, 8192
)
calibration_data = get_data(
args.calibration_data, args.calibration_tokens, args.calibration_sequence_length, tokenizer, train=True
)
# take slice (if running on multiple workers)
if dist_utils.is_dist_available_and_initialized():
num_seq_per_rank = len(calibration_data) // world_size
calibration_data = calibration_data[rank * num_seq_per_rank : (rank + 1) * num_seq_per_rank]
calibration_data = [([], {"input_ids": input_ids}) for input_ids in calibration_data]
dist.barrier()
# Pruner
pruner = FastOBCPruner(
model,
calibration_data,
prunable_modules=args.prunable_modules,
pre_block_modules=args.pre_block_modules,
block_modules=args.block_modules,
save_dir=args.save_dir,
rel_damp=args.rel_damp,
block_size=args.block_size,
device=device,
cpu_offload_modules=args.cpu_offload_modules,
cpu_offload_activations=args.cpu_offload_activations,
verbose=args.verbose,
)
# Prepare weight diff (if not defined)
if not args.weights_diff:
hidden_size = get_hidden_size(model)
args.weights_diff = int(0.5 * min(args.sparsity, 1 - args.sparsity) / args.num_levels * hidden_size**2)
# Prepare save dir
if dist_utils.is_main():
os.makedirs(args.save_dir, exist_ok=True)
torch.save(
{"sparsity": args.sparsity, "weights_diff": args.weights_diff, "num_levels": args.num_levels},
os.path.join(args.save_dir, "metadata.pth"),
)
dist.barrier()
t1 = time.perf_counter()
pruner.prune(args.sparsity, args.weights_diff, args.num_levels)
t2 = time.perf_counter()
dist_utils.print_on_main(f"Pruning took {(t2 - t1)} s.")
if __name__ == "__main__":
main()