-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevo_drop_search.py
513 lines (447 loc) · 19.5 KB
/
evo_drop_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import argparse
import random
import os
import copy
import numpy as np
from tqdm import trange
from typing import List, Optional
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
try:
import wandb
has_wandb = True
except ModuleNotFoundError:
has_wandb = False
from src.data_utils import get_data
from src.common_utils import fix_seed
from src.model_utils import (
get_layers,
get_attn_layer_name,
get_mlp_layer_name,
make_dummy_forward,
dummy_initialize,
restore_forward,
)
from src.metrics import compute_perplexity, compute_kl_div
def get_layer_drop_config(removed_state) -> List[str]:
num_blocks = len(removed_state["attn"])
drop_config = ["none"] * num_blocks
for i in range(num_blocks):
if removed_state["attn"][i] and removed_state["mlp"][i]:
drop_config[i] = "attn+mlp"
elif removed_state["attn"][i]:
drop_config[i] = "attn"
elif removed_state["mlp"][i]:
drop_config[i] = "mlp"
return drop_config
def get_legal_mask(legal_to_drop_path, num_blocks):
if legal_to_drop_path is None:
legal_to_drop = {"attn": [True] * num_blocks, "mlp": [True] * num_blocks}
return legal_to_drop
with open(legal_to_drop_path, "r") as file:
lines = file.readlines()
lines = [line.strip() for line in lines]
assert (
len(lines) == num_blocks
), "Number of blocks in model and legal_to_drop file do not match (If two_consecutive is set, number of blocks should be half of the model)"
legal_to_drop = {"attn": [False] * len(lines), "mlp": [False] * len(lines)}
for i in range(len(lines)):
if lines[i] == "attn+mlp":
legal_to_drop["attn"][i] = True
legal_to_drop["mlp"][i] = True
elif lines[i] == "attn":
legal_to_drop["attn"][i] = True
elif lines[i] == "mlp":
legal_to_drop["mlp"][i] = True
return legal_to_drop
# check if only blocks are dropped that are allowed to be dropped
def is_valid_state(removed_state, legal_to_drop):
for subblock_type in ["attn", "mlp"]:
for i in range(len(legal_to_drop[subblock_type])):
if not legal_to_drop[subblock_type][i] and removed_state[subblock_type][i]:
return False
return True
def load_states(model, layers, removed_state, drop_two_consecutive):
removed_state = copy.deepcopy(removed_state)
if drop_two_consecutive: # decompress: duplicate every entry
removed_state["attn"] = [removed_state["attn"][i // 2] for i in range(2 * len(removed_state["attn"]))]
removed_state["mlp"] = [removed_state["mlp"][i // 2] for i in range(2 * len(removed_state["mlp"]))]
for subblock_type in ["attn", "mlp"]:
for j in range(len(removed_state[subblock_type])):
if subblock_type == "attn":
subblock = getattr(layers[j], get_attn_layer_name(model))
else:
subblock = getattr(layers[j], get_mlp_layer_name(model))
if removed_state[subblock_type][j]:
make_dummy_forward(subblock, subblock_type)
else:
restore_forward(subblock)
def compute_fitness(model, data, fitness_fn, invert_fitness, target_logits: Optional[torch.Tensor] = None) -> float:
sign = 1
if invert_fitness:
sign = -1
if fitness_fn == "ppl":
return sign * compute_perplexity(model, data)
else:
return sign * compute_kl_div(model, data, target_logits)
def selection(
model,
layers,
candidates,
num_survive: int,
calibration_data,
num_tokens: int,
drop_two_consecutive: bool,
invert_fitness: bool,
fitness_fn: str = "ppl",
target_logits: Optional[List[torch.Tensor]] = None,
):
calibration_minibatch = []
minibatch_ids = []
target_logits_minibatch = []
tokens_used = 0
while tokens_used < num_tokens: # generate minibatch with exactly num_tokens tokens
minibatch_id = random.randint(0, len(calibration_data) - 1)
if minibatch_id in minibatch_ids: # avoid duplicates
continue
minibatch_ids.append(minibatch_id)
if tokens_used + calibration_data[minibatch_id].shape[1] > num_tokens:
calibration_minibatch.append(calibration_data[minibatch_id][:, : num_tokens - tokens_used])
if fitness_fn == "kl":
target_logits_minibatch.append(target_logits[minibatch_id][:, : num_tokens - tokens_used])
tokens_used = num_tokens
else:
calibration_minibatch.append(calibration_data[minibatch_id])
if fitness_fn == "kl":
target_logits_minibatch.append(target_logits[minibatch_id])
tokens_used += calibration_data[minibatch_id].shape[1]
if len(target_logits_minibatch) == 0:
target_logits_minibatch = None
fitnesses = []
for candidate in candidates:
load_states(model, layers, candidate, drop_two_consecutive)
fitness = compute_fitness(model, calibration_minibatch, fitness_fn, invert_fitness, target_logits_minibatch)
fitnesses.append(fitness)
# Keep only best
best_ids = np.argsort(fitnesses)[:num_survive]
return [candidates[i] for i in best_ids], [fitnesses[i] for i in best_ids]
def parse_args():
parser = argparse.ArgumentParser()
# Model params
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="The name or path to the model being pruned",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="The name or path to the tokenizer. By default use model tokenizer.",
)
# Data params
parser.add_argument(
"--calibration_data",
type=str,
required=True,
help="The name or dataset or path used for calibration.",
)
parser.add_argument("--calibration_tokens", type=int, required=True, help="Number of tokens for calibration.")
parser.add_argument(
"--calibration_sequence_length", type=int, required=True, help="Length of calibration sequences."
)
parser.add_argument(
"--eval_datasets",
nargs="+",
type=str,
default=["fineweb_edu", "wikitext2", "c4"],
help="Datasets used for evaluation",
)
parser.add_argument("--no_eval", action="store_true", help="Whether to skip evaluation")
parser.add_argument("--eval_every", default=1, type=int, help="Eval every # generations.")
parser.add_argument("--eval_tokens", default=524288, type=int, help="Number of tokens for evaluation.")
parser.add_argument("--eval_sequence_length", default=None, type=int, help="Length of evaluation sequences.")
# Sparsification params
parser.add_argument("--sparsity", type=float, required=True, help="Fraction of layers to drop.")
# Logging params
parser.add_argument("--log_wandb", default=False, action="store_true", help="Whether to log to W&B")
# Evolutionary Search params
parser.add_argument("--fitness_fn", choices=["ppl", "kl"], default="kl", help="Fitness function.")
parser.add_argument("--generations", required=True, type=int, help="Number of generations in evolutionary search")
parser.add_argument("--offspring", type=int, required=True, help="Number of offspring generated in each generation")
parser.add_argument("--population_size", type=int, default=1, help="Population size in evolutionary search")
parser.add_argument(
"--initially_generated",
type=int,
required=True,
help="Number of search points generated in the beginning; fittest are selected for the initial population",
)
parser.add_argument(
"--initial_tokens",
type=int,
required=True,
help="Number of calibration tokens used for the initial generation",
)
parser.add_argument(
"--survivors_per_selection",
type=int,
nargs="+",
required=True,
help="Number of survivors after each stage of selection",
)
parser.add_argument(
"--tokens_per_selection",
type=int,
nargs="+",
required=True,
help="Number of calibration tokens at each stage of selection",
)
# Evolutionary Search ablation params
parser.add_argument(
"--invert_fitness", action="store_true", help="Whether to invert the fitness function (search for worst)"
)
parser.add_argument("--max_mutations", type=int, default=3, help="Maximum number of mutations in offspring")
parser.add_argument(
"--legal_to_drop_path",
type=str,
default=None,
help="Path to legal_to_drop file. A block can only be dropped if it is dropped in legal_to_drop configuration.",
)
parser.add_argument("--drop_entire_block", action="store_true", help="Whether to drop entire block (attn+mlp).")
parser.add_argument(
"--drop_two_consecutive",
action="store_true",
help="Only drop pairs of consecutive blocks (first and second, third and fourth,...). Can only be set when entire blocks are dropped.",
)
# Misc params
parser.add_argument(
"--dtype",
type=str,
default="float16",
choices=["float16", "float32", "bfloat16"],
help="dtype to load the model.",
)
parser.add_argument(
"--attn_implementation",
type=str,
default=None,
choices=["eager", "sdpa", "flash_attention_2"],
help="Attention implementation: eager, sdpa, or flash_attention_2",
)
parser.add_argument("--use_fast_tokenizer", action="store_true", help="Whether to use fast tokenizer.")
parser.add_argument("--seed", default=0, type=int, help="Random seed.")
# Save params
parser.add_argument("--save_dir", type=str, help="Where to save sparse model.")
parser.add_argument("--drop_config_dir", type=str, help="Where to save layer drop config.")
args = parser.parse_args()
return args
def main():
args = parse_args()
# Sanity checks
assert len(args.survivors_per_selection) == len(
args.tokens_per_selection
), "Lists for selection survivors and tokens must have same length"
assert args.survivors_per_selection[-1] == args.population_size, "Last stage should have population_size survivor"
if args.drop_two_consecutive:
assert args.drop_entire_block, "Can't drop two consecutive without dropping entire block"
assert args.legal_to_drop_path == None, "Not implemented"
# Get device and dtype
assert torch.cuda.is_available()
print(args.generations)
device = f"cuda"
dtype = getattr(torch, args.dtype)
# Fix seed
fix_seed(args.seed)
# Init W&B logger
if args.log_wandb:
assert has_wandb, "`wandb` not installed, try pip install `wandb`"
wandb.init(config=args)
# Load model
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
device_map="auto",
low_cpu_mem_usage=True,
torch_dtype=dtype,
attn_implementation=args.attn_implementation,
trust_remote_code=True,
)
print(model.config.model_type)
print(model)
model.config.use_cache = False # do not use cache
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name or args.model_name_or_path, use_fast=args.use_fast_tokenizer
)
# Load calibration data
args.calibration_sequence_length = args.calibration_sequence_length or model.config.max_position_embeddings
calibration_data = get_data(
args.calibration_data,
args.calibration_tokens,
args.calibration_sequence_length,
tokenizer,
train=True,
)
# Load evaluation data
args.sequence_length = args.eval_sequence_length or model.config.max_position_embeddings
eval_datasets = []
for eval_dataset_name in args.eval_datasets:
eval_datasets.append(
get_data(
eval_dataset_name,
args.eval_tokens, # ignored for WikiText2 and C4
args.eval_sequence_length,
tokenizer,
train=False,
)
)
target_logits = []
if args.fitness_fn == "kl":
# Compute target logits (calibration)
for i in trange(0, len(calibration_data), desc="Computing target logits (calib)", leave=False):
with torch.no_grad():
target_logits.append(model(calibration_data[i].to(device)).logits.cpu())
layers = get_layers(model)
blocks_to_remove = int(args.sparsity * len(layers))
print(f"Removing {blocks_to_remove} blocks")
total_blocks = len(layers)
if args.drop_two_consecutive:
assert total_blocks % 2 == 0 and blocks_to_remove % 2 == 0, "Number of total and removed blocks must be even"
total_blocks = total_blocks // 2 # view two consecutive blocks as one block
blocks_to_remove = blocks_to_remove // 2
for layer in layers:
dummy_initialize(getattr(layer, get_attn_layer_name(model)))
dummy_initialize(getattr(layer, get_mlp_layer_name(model)))
legal_mask = get_legal_mask(
args.legal_to_drop_path, total_blocks
) # mask of blocks that can be dropped (all blocks by default)
initial_population_candidates = (
[]
) # store initially generated search points (only take fittest for first population)
while len(initial_population_candidates) < args.initially_generated:
removed_state = {"attn": [False] * total_blocks, "mlp": [False] * total_blocks}
attn_legal_ind = [i for i in range(total_blocks) if legal_mask["attn"][i]]
attn_remove_ind = random.sample(attn_legal_ind, blocks_to_remove)
for ind in attn_remove_ind:
removed_state["attn"][ind] = True
mlp_legal_ind = [i for i in range(total_blocks) if legal_mask["mlp"][i]]
mlp_remove_ind = random.sample(mlp_legal_ind, blocks_to_remove)
for ind in mlp_remove_ind:
removed_state["mlp"][ind] = True
if args.drop_entire_block:
removed_state["mlp"] = copy.deepcopy(removed_state["attn"])
if removed_state in initial_population_candidates: # avoid duplicates
continue
if not is_valid_state(removed_state, legal_mask):
continue
initial_population_candidates.append(removed_state)
population, train_fitnesses = selection(
model=model,
layers=layers,
candidates=initial_population_candidates,
num_survive=args.population_size,
calibration_data=calibration_data,
invert_fitness=args.invert_fitness,
drop_two_consecutive=args.drop_two_consecutive,
num_tokens=args.initial_tokens,
fitness_fn=args.fitness_fn,
target_logits=target_logits,
)
log_dict = {}
for gen_id in range(args.generations):
print(f"Generation {gen_id + 1}/{args.generations}")
print(f"Train fitness {train_fitnesses[0]:.2e}")
for parent in population:
print(f"Parent: attn: {[int(ele) for ele in parent['attn']]} mlp: {[int(ele) for ele in parent['mlp']]}")
load_states(model, layers, population[0], args.drop_two_consecutive)
log_dict["train_fitness"] = train_fitnesses[0]
# Evaluate current search point
if gen_id % args.eval_every == 0 and not args.no_eval:
for eval_dataset_name, eval_dataset in zip(args.eval_datasets, eval_datasets):
ppl_eval = compute_perplexity(model, eval_dataset)
print(f"{eval_dataset_name}: {ppl_eval:.2f}")
log_dict[f"ppl_eval/{eval_dataset_name}"] = ppl_eval
full_train_ppl = compute_perplexity(model, calibration_data)
print(f"full train ppl: {full_train_ppl:.2e}")
log_dict["full_train_ppl"] = full_train_ppl
if args.log_wandb:
wandb.log(log_dict)
offspring_list = []
# Generate offspring by Mutation
while len(offspring_list) < args.offspring:
offspring = copy.deepcopy(random.choice(population))
# Mutation
num_flips = min(
random.randint(1, args.max_mutations), random.randint(1, args.max_mutations)
) # bias towards lower values
for _ in range(num_flips):
remove_type = random.randint(0, 1) # 0 remove attention, 1 remove mlp
if remove_type == 0:
subblock_type = "attn"
else:
subblock_type = "mlp"
remove_ind = random.randint(0, total_blocks - 1)
while offspring[subblock_type][remove_ind]:
remove_ind = random.randint(0, total_blocks - 1)
add_ind = random.randint(0, total_blocks - 1)
while not offspring[subblock_type][add_ind]:
add_ind = random.randint(0, total_blocks - 1)
offspring[subblock_type][remove_ind] = True
offspring[subblock_type][add_ind] = False
if args.drop_entire_block:
offspring["mlp"] = copy.deepcopy(offspring["attn"])
if offspring in offspring_list or offspring in population: # avoid duplicates
continue
if not is_valid_state(offspring, legal_mask):
continue
offspring_list.append(offspring)
# Selection in multiple steps
for num_survive, num_tokens in zip(args.survivors_per_selection, args.tokens_per_selection):
if num_survive == args.survivors_per_selection[-1]:
for i in range(
len(population)
): # Elitist EA: Add search points in current generation to final selection step
if population[i] not in offspring_list:
offspring_list.append(population[i])
offspring_list, train_fitnesses = selection(
model=model,
layers=layers,
candidates=offspring_list,
num_survive=num_survive,
calibration_data=calibration_data,
drop_two_consecutive=args.drop_two_consecutive,
invert_fitness=args.invert_fitness,
num_tokens=num_tokens,
fitness_fn=args.fitness_fn,
target_logits=target_logits,
)
population = offspring_list
layer_drop_config = get_layer_drop_config(population[0])
if args.drop_config_dir:
os.makedirs(args.drop_config_dir, exist_ok=True)
with open(os.path.join(args.drop_config_dir, "layer_drop_config.txt"), "w") as f:
for line in layer_drop_config:
f.write(line + "\n")
if args.save_dir:
os.makedirs(args.save_dir, exist_ok=True)
# Save model
torch.save(model, os.path.join(args.save_dir, "final_model.pth"))
# Save layer drop config
with open(os.path.join(args.save_dir, "layer_drop_config.txt"), "w") as f:
for line in layer_drop_config:
f.write(line + "\n")
print("Final configuration:")
for line in layer_drop_config:
print(line)
# Final evaluation
for eval_dataset_name, eval_dataset in zip(args.eval_datasets, eval_datasets):
ppl_eval = compute_perplexity(model, eval_dataset)
print(f"{eval_dataset_name}: {ppl_eval:.2f}")
log_dict[f"ppl_eval/{eval_dataset_name}"] = ppl_eval
full_train_ppl = compute_perplexity(model, calibration_data)
print(f"full train ppl: {full_train_ppl:.2e}")
log_dict["full_train_ppl"] = full_train_ppl
if args.log_wandb:
wandb.log(log_dict)
if __name__ == "__main__":
main()