-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodels_jt.py
749 lines (631 loc) · 28.4 KB
/
models_jt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
import torch
import numpy as np
import torch.nn as torch_nn
from torch.nn import Parameter
import torch.nn.functional as F
from collections import OrderedDict
from scipy.spatial.transform import Rotation as R
import platform
# torch.set_default_tensor_type('torch.cuda.FloatTensor')
import jittor as jt
from jittor import Module
from jittor import nn
class Sine(Module):
def __init(self, w0=30.):
super().__init__()
self.w0 = w0
def forward(self, input):
return jt.sin(self.w0 * input)
act_dict = {'relu': nn.ReLU, 'sigmoid': nn.Sigmoid, 'elu': nn.ELU, 'tanh': nn.Tanh, 'sine': Sine}
class Embedder(Module):
def __init__(self, input_dim, max_freq_log2, N_freqs,
log_sampling=True, include_input=True,
periodic_fns=(jt.sin, jt.cos)):
'''
:param input_dim: dimension of input to be embedded
:param max_freq_log2: log2 of max freq; min freq is 1 by default
:param N_freqs: number of frequency bands
:param log_sampling: if True, frequency bands are linerly sampled in log-space
:param include_input: if True, raw input is included in the embedding
:param periodic_fns: periodic functions used to embed input
'''
super().__init__()
self.input_dim = input_dim
self.include_input = include_input
self.periodic_fns = periodic_fns
self.out_dim = 0
if self.include_input:
self.out_dim += self.input_dim
self.out_dim += self.input_dim * N_freqs * len(self.periodic_fns)
if log_sampling:
self.freq_bands = 2. ** np.linspace(0., max_freq_log2, N_freqs)
else:
self.freq_bands = np.linspace(2. ** 0., 2. ** max_freq_log2, N_freqs)
self.freq_bands = self.freq_bands.tolist()
def execute(self, x):
'''
:param x: tensor of shape [..., self.input_dim]
:return: tensor of shape [..., self.out_dim]
'''
assert (x.shape[-1] == self.input_dim)
out = []
if self.include_input:
out.append(x)
for i in range(len(self.freq_bands)):
freq = self.freq_bands[i]
for p_fn in self.periodic_fns:
out.append(p_fn(x * freq))
out = jt.concat(out, dim=-1)
assert (out.shape[-1] == self.out_dim)
return out
class MLP(Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_viewdirs=3, skips=[4], act_func=nn.ReLU, use_viewdir=True,
sigma_mul=0.):
'''
:param D: network depth
:param W: network width
:param input_ch: input channels for encodings of (x, y, z)
:param input_ch_viewdirs: input channels for encodings of view directions
:param skips: skip connection in network
'''
super().__init__()
self.input_ch = input_ch
self.input_ch_viewdirs = input_ch_viewdirs
self.skips = skips
self.use_viewdir = use_viewdir
self.sigma_mul = sigma_mul
# base
self.base_layers = []
dim = self.input_ch
for i in range(D):
self.base_layers.append(nn.Linear(in_features=dim, out_features=W, bias=True))
dim = W
if i in self.skips and i != (D - 1): # skip connection after i^th layer
dim += input_ch
self.base_layers = nn.ModuleList(self.base_layers)
self.act = act_func()
# sigma
sigma_layer = nn.Linear(dim, 1) # sigma must be positive
self.sigma_layer = sigma_layer
# remap
base_remap_layer = nn.Linear(dim, 256)
self.base_remap_layer = base_remap_layer
# rgb
self.rgb_layers = []
dim = 256 + self.input_ch_viewdirs if self.use_viewdir else 256
self.rgb_layers.append(nn.Linear(dim, W // 2))
self.rgb_layers.append(nn.Linear(W // 2, 3))
self.rgb_layers = nn.ModuleList(self.rgb_layers)
self.layers = [*self.base_layers, self.sigma_layer, self.base_remap_layer, *self.rgb_layers]
def execute(self, pts, dirs):
'''
:param input: [..., input_ch+input_ch_viewdirs]
:return [..., 4]
'''
base = self.base_layers[0](pts)
for i in range(len(self.base_layers) - 1):
if i in self.skips:
base = torch.cat((pts, base), dim=-1)
base = self.act(self.base_layers[i + 1](base))
sigma = self.sigma_layer(base)
sigma = sigma + nn.relu(sigma) * self.sigma_mul
base_remap = self.act(self.base_remap_layer(base))
if self.use_viewdir:
rgb_fea = self.act(self.rgb_layers[0](torch.cat((base_remap, dirs), dim=-1)))
else:
rgb_fea = self.act(self.rgb_layers[0](base_remap))
rgb = jt.sigmoid(self.rgb_layers[1](rgb_fea))
ret = OrderedDict([('rgb', rgb),
('sigma', sigma.squeeze(-1))])
return ret
def get_grads(self, only_last=False):
if only_last:
layers = [self.layers[-1], self.layers[-4]]
else:
layers = self.layers
grads = None
for layer in layers:
grad = layer.get_grads()
grads = grad if grads is None else np.concatenate([grads, grad], axis=-1)
return grads
class MLP_style(Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_viewdirs=3, skips=[4], act_func=nn.ReLU(), use_viewdir=True,
sigma_mul=0., enable_style=False):
'''
:param D: network depth
:param W: network width
:param input_ch: input channels for encodings of (x, y, z)
:param input_ch_viewdirs: input channels for encodings of view directions
:param skips: skip connection in network
'''
super().__init__()
self.input_ch = input_ch
self.input_ch_viewdirs = input_ch_viewdirs
self.skips = skips
self.use_viewdir = use_viewdir
self.sigma_mul = sigma_mul
self.enable_style = enable_style
self.act = act_func()
# base
self.base_layers = []
dim = self.input_ch
for i in range(D):
self.base_layers.append(nn.Linear(in_features=dim, out_features=W))
dim = W
if i in self.skips and i != (D - 1): # skip connection after i^th layer
dim += input_ch
self.base_layers = nn.ModuleList(self.base_layers)
# sigma
sigma_layer = nn.Linear(dim, 1) # sigma must be positive
self.sigma_layer = sigma_layer
# remap
base_remap_layer = nn.Linear(dim, 256)
self.base_remap_layer = base_remap_layer
# rgb
self.rgb_layers = []
dim = 256 + self.input_ch_viewdirs if self.use_viewdir else 256
self.rgb_layers.append(nn.Linear(dim, W // 2))
self.rgb_layers.append(nn.Linear(W // 2, 3))
self.rgb_layers = nn.ModuleList(self.rgb_layers)
self.layers = [*self.base_layers, self.sigma_layer, self.base_remap_layer, *self.rgb_layers]
def execute(self, **kwargs):
pts, dirs = kwargs['pts'], kwargs['dirs']
base = self.act(self.base_layers[0](pts))
for i in range(len(self.base_layers) - 1):
if i in self.skips:
base = jt.concat((pts, base), dim=-1)
base = self.act(self.base_layers[i + 1](base))
sigma = self.sigma_layer(base)
sigma = sigma + jt.nn.relu(sigma) * self.sigma_mul
base_remap = self.act(self.base_remap_layer(base))
if self.use_viewdir:
rgb_fea = self.act(self.rgb_layers[0](jt.concat((base_remap, dirs), dim=-1)))
else:
rgb_fea = self.act(self.rgb_layers[0](base_remap))
rgb = jt.sigmoid(self.rgb_layers[1](rgb_fea))
if self.enable_style:
ret = OrderedDict([('rgb', rgb),
# ('base', base), # for base input style nerf
('pts', pts),
('sigma', sigma.squeeze(-1))])
return ret
else:
ret = OrderedDict([('rgb', rgb),
('sigma', sigma.squeeze(-1))])
return ret
class Nerf(Module):
def __init__(self, args, mode='coarse'):
super().__init__()
self.use_viewdir = args.use_viewdir
"""Activation Function"""
act_func = act_dict[args.act_type]
self.is_siren = (args.act_type == 'sine')
"""Embedding"""
if not self.is_siren:
self.embedder_coor = Embedder(input_dim=3, max_freq_log2=args.embed_freq_coor - 1,
N_freqs=args.embed_freq_coor)
self.embedder_dir = Embedder(input_dim=3, max_freq_log2=args.embed_freq_dir - 1,
N_freqs=args.embed_freq_dir)
input_ch, input_ch_viewdirs = self.embedder_coor.out_dim, self.embedder_dir.out_dim
skips = [4]
self.sigma_mul = 0.
else:
input_ch, input_ch_viewdirs = 3, 3
skips = []
self.sigma_mul = args.siren_sigma_mul
"""Neural Network"""
if mode == 'coarse':
net_depth, net_width = args.netdepth, args.netwidth
else:
net_depth, net_width = args.netdepth_fine, args.netwidth_fine
self.net = MLP(D=net_depth, W=net_width, input_ch=input_ch, input_ch_viewdirs=input_ch_viewdirs,
skips=skips, use_viewdir=self.use_viewdir, act_func=act_func, sigma_mul=self.sigma_mul)
def execute(self, pts, dirs):
if not self.is_siren:
pts = self.embedder_coor(pts)
dirs = self.embedder_dir(dirs)
ret = self.net(pts, dirs)
return ret
class StyleMLP(Module):
def __init__(self, args):
super().__init__()
self.D = args.style_D
self.input_ch = args.embed_freq_coor * 3 * 2 + 3 + args.vae_latent
self.layers = []
self.skips = [4]
dim = self.input_ch
for i in range(self.D-1):
if i in self.skips:
dim += self.input_ch
self.layers.append(nn.Linear(dim, args.netwidth))
dim = args.netwidth
self.layers.append(nn.Linear(args.netwidth, 3))
self.layers = nn.ModuleList(self.layers)
def execute(self, **kwargs):
x = kwargs['x']
h = x
for i in range(len(self.layers)-1):
if i in self.skips:
h = jt.concat([h, x], dim=-1)
h = self.layers[i](h)
h = nn.relu(h)
h = self.layers[-1](h)
h = jt.sigmoid(h)
return {'rgb': h}
class StyleMLP_Wild_multilayers(Module):
def __init__(self, args):
super().__init__()
self.D = args.style_D
self.input_ch = args.embed_freq_coor * 3 * 2 + 3 + args.vae_latent
self.layers = []
self.skips = [4]
dim = self.input_ch
for i in range(self.D-1):
if i in self.skips:
dim += (args.embed_freq_coor * 3 * 2 + 3)
self.layers.append(nn.Linear(dim, args.netwidth))
dim = args.netwidth + args.vae_latent
self.layers.append(nn.Linear(args.netwidth + args.vae_latent, 3))
self.layers = nn.ModuleList(self.layers)
def execute(self, **kwargs):
x = kwargs['x']
l = kwargs['latent']
h = x
for i in range(len(self.layers)-1):
h = jt.concat([h, l], dim=-1)
if i in self.skips:
h = jt.concat([h, x], dim=-1)
h = self.layers[i](h)
h = nn.relu(h)
h = jt.concat([h, l], dim=-1)
h = self.layers[-1](h)
h = jt.sigmoid(h)
return {'rgb': h}
class StyleNerf(Module):
def __init__(self, args, mode='coarse', enable_style=False):
super().__init__()
self.use_viewdir = args.use_viewdir
"""Activation Function"""
act_func = act_dict[args.act_type]
self.is_siren = (args.act_type == 'sine')
"""Embedding"""
if not self.is_siren:
self.embedder_coor = Embedder(input_dim=3, max_freq_log2=args.embed_freq_coor - 1,
N_freqs=args.embed_freq_coor)
self.embedder_dir = Embedder(input_dim=3, max_freq_log2=args.embed_freq_dir - 1,
N_freqs=args.embed_freq_dir)
input_ch, input_ch_viewdirs = self.embedder_coor.out_dim, self.embedder_dir.out_dim
skips = [4]
self.sigma_mul = 0.
else:
input_ch, input_ch_viewdirs = 3, 3
skips = []
self.sigma_mul = args.siren_sigma_mul
"""Neural Network"""
if mode == 'coarse':
net_depth, net_width = args.netdepth, args.netwidth
else:
net_depth, net_width = args.netdepth_fine, args.netwidth_fine
self.net = MLP_style(D=net_depth, W=net_width, input_ch=input_ch, input_ch_viewdirs=input_ch_viewdirs,
skips=skips, use_viewdir=self.use_viewdir, act_func=act_func, sigma_mul=self.sigma_mul, enable_style=enable_style)
self.enable_style = enable_style
def set_enable_style(self, enable_style=False):
self.enable_style = enable_style
self.net.enable_style = enable_style
def execute(self, **kwargs):
# mode consistency
self.net.enable_style = self.enable_style
if not self.is_siren:
kwargs['pts'] = self.embedder_coor(kwargs['pts'])
kwargs['dirs'] = self.embedder_dir(kwargs['dirs'])
ret = self.net(**kwargs)
ret['dirs'] = kwargs['dirs']
return ret
def vec2skew(v):
"""
:param v: (N, 3, ) torch tensor
:return: (N, 3, 3)
"""
zero = jt.zeros([v.shape[0], 1], dtype=jt.float32, device=v.device)
skew_v0 = jt.concat([zero, -v[:, 2:3], v[:, 1:2]], dim=-1) # (N, 3)
skew_v1 = jt.concat([v[:, 2:3], zero, -v[:, 0:1]], dim=-1)
skew_v2 = jt.concat([-v[:, 1:2], v[:, 0:1], zero], dim=-1)
skew_v = jt.stack([skew_v0, skew_v1, skew_v2], dim=-1) # (N, 3, 3)
return skew_v
def Exp(r):
"""so(3) vector to SO(3) matrix
:param r: (N, 3) axis-angle, torch tensor
:return: (N, 3, 3)
"""
skew_r = vec2skew(r) # (N, 3, 3)
norm_r = r.norm(dim=1, keepdim=True).unsqueeze(-1) + 1e-15 # (N, 1, 1)
eye = jt.init.eye(3).unsqueeze(0) # (1, 3, 3)
R = eye + (jt.sin(norm_r) / norm_r) * skew_r + ((1 - jt.cos(norm_r)) / norm_r ** 2) * jt.matmul(skew_r, skew_r)
return R
def make_c2w(r, t):
"""
:param r: (N, 3, ) axis-angle torch tensor
:param t: (N, 3, ) translation vector torch tensor
:return: (N, 4, 4)
"""
R = Exp(r) # (N, 3, 3)
c2w = jt.concat([R, t.unsqueeze(-1)], dim=-1) # (N, 3, 4)
c2w = jt.concat([c2w, jt.zeros_like(c2w[:, :1])], dim=1) # (N, 4, 4)
c2w[:, 3, 3] = 1.
return c2w
def idx2img(idx, fea, pad=0):
batch_size, h, w, z = idx.shape
batch_size_p, point_num, dim = fea.shape
assert batch_size == batch_size_p, 'Batch Size Do Not Match'
idx_img = idx.reshape([batch_size, h*w*z, 1]).expand([batch_size, h*w*z, dim]).long()
idx_lst = point_num * torch.ones_like(idx_img)
idx_img = torch.where(idx_img >= 0, idx_img, idx_lst)
fea_pad = fea.reshape([1, batch_size*point_num, dim]).expand([batch_size, batch_size*point_num, dim])
fea_pad = torch.cat([fea_pad, pad * torch.ones([batch_size, 1, dim]).to(idx.device)], dim=1)
fea_img = torch.gather(fea_pad, 1, idx_img).reshape([batch_size, h, w, z, dim])
return fea_img
class Camera:
def __init__(self, projectionMatrix=None, cameraPose=None, device=torch.device("cpu")):
super().__init__()
self.device = device
self.tensor_list = ['projectionMatrix', 'cameraPose', 'w2c_matrix']
for attr in self.tensor_list:
setattr(self, attr, None)
self.set(projectionMatrix=projectionMatrix, cameraPose=cameraPose)
def set(self, **kwargs):
keys = kwargs.keys()
func_map = {'projectionMatrix': self.set_project, 'cameraPose': self.set_pose}
for name in keys:
try:
if name in func_map.keys():
func_map[name](kwargs[name])
else:
raise ValueError(name + f'is not in{keys}')
except ValueError as e:
print(repr(e))
def set_pose(self, cameraPose):
if cameraPose is None:
self.cameraPose = self.w2c_matrix = None
return
elif type(cameraPose) is np.ndarray:
cameraPose = torch.from_numpy(cameraPose)
self.cameraPose = cameraPose.float()
self.w2c_matrix = torch.inverse(self.cameraPose).float()
self.to(self.device)
def set_project(self, projectionMatrix):
if projectionMatrix is None:
self.projectionMatrix = None
return
elif type(projectionMatrix) is np.ndarray:
projectionMatrix = torch.from_numpy(projectionMatrix)
self.projectionMatrix = projectionMatrix.float()
self.to(self.device)
def to(self, device):
if type(device) is str:
device = torch.device(device)
self.device = device
for tensor in self.tensor_list:
if getattr(self, tensor) is not None:
setattr(self, tensor, getattr(self, tensor).to(self.device))
return self
def WorldtoCamera(self, coor_world):
coor_world = coor_world.clone()
if len(coor_world.shape) == 2:
coor_world = torch.cat([coor_world, torch.ones([coor_world.shape[0], 1]).to(self.device)], -1)
coor_camera = torch.einsum('bcw,nw->bnc', self.w2c_matrix, coor_world)
else:
coor_world = self.homogeneous(coor_world)
coor_camera = torch.einsum('bcw,bnw->bnc', self.w2c_matrix, coor_world)
return coor_camera
def CameratoWorld(self, coor_camera):
coor_camera = coor_camera.clone()
coor_camera = self.homogeneous(coor_camera)
coor_world = torch.einsum('bwc,bnc->bnw', self.cameraPose, coor_camera)[:, :, :3]
return coor_world
def WorldtoCVV(self, coor_world):
coor_camera = self.WorldtoCamera(coor_world)
coor_cvv = torch.einsum('vc,bnc->bnv', self.projectionMatrix, coor_camera)
coor_cvv = coor_cvv[..., :-1] / coor_cvv[..., -1:]
return coor_cvv
def homogeneous(self, coor3d, force=False):
if coor3d.shape[-1] == 3 or force:
coor3d = torch.cat([coor3d, torch.ones_like(coor3d[..., :1]).to(self.device)], -1)
return coor3d
def rasterize(self, coor_world, rgb, h=192, w=256, k=1.5, z=1):
from pytorch3d.structures import Pointclouds
from pytorch3d.renderer import compositing
from pytorch3d.renderer.points import rasterize_points
def PixeltoCvv(h, w, hid=0, wid=0):
cvv = torch.tensor([[[1., 0., 0.], [-1., 0., 0.], [0., 1., 0.]]]).float()
pts = Pointclouds(points=cvv, features=cvv)
idx, _, dist2 = rasterize_points(pts, [h, w], 1e10, 3)
a2, b2, c2 = (dist2.cpu().numpy())[0, hid, wid]
x2 = (a2 + b2) / 2 - 1
cosa = (x2 + 1 - a2) / (2 * x2**0.5)
sina_abs = (1 - cosa**2)**0.5
u = (x2 ** 0.5) * cosa
v = (x2 ** 0.5) * sina_abs
if np.abs((u**2 + (v-1)**2)**0.5 - c2**0.5) > 1e-5:
v = - (x2 ** 0.5) * sina_abs
if(np.abs((u**2 + (v-1)**2)**0.5 - c2**0.5) > 1e-5):
print(np.abs((u**2 + (v-1)**2)**0.5 - c2**0.5), ' is too large...')
print(f"Found pixel {[hid, wid]} has uv: {(u, v)} But something wrong !!!")
print(f"a: {a2**0.5}, b: {b2**0.5}, c: {c2**0.5}, idx: {idx[0, 0, 0]}, dist2: {dist2[0, 0, 0]}")
os.exit(-1)
return u, v
batch_size = self.cameraPose.shape[0]
point_num = rgb.shape[-2]
coor_cvv = self.WorldtoCVV(coor_world).reshape([batch_size, point_num, 3]) # (batch_size, point, 3)
umax, vmax = PixeltoCvv(h=h, w=w, hid=0, wid=0)
umin, vmin = PixeltoCvv(h=h, w=w, hid=h-1, wid=w-1)
cvv_backup = coor_cvv.clone()
coor_cvv[..., 0] = (coor_cvv[..., 0] + 1) / 2 * (umax - umin) + umin
coor_cvv[..., 1] = (coor_cvv[..., 1] + 1) / 2 * (vmax - vmin) + vmin
rgb = rgb.reshape([1, point_num, rgb.shape[-1]]) # (1, point, 3)
rgb_coor = torch.cat([rgb, coor_world.unsqueeze(0)], dim=-1).expand([batch_size, point_num, 6]) # (1, point, 6)
if platform.system() == 'Windows':
# Bug of pytorch3D on windows
hw = np.array([h, w])
mindim, maxdim = np.argmin(hw), np.argmax(hw)
aspect_ration = hw[maxdim] / hw[mindim]
coor_cvv[:, :, mindim] *= aspect_ration
pts3D = Pointclouds(points=coor_cvv, features=rgb_coor)
radius = float(2. / max(w, h) * k)
idx, _, _ = rasterize_points(pts3D, [h, w], radius, z)
alphas = torch.ones_like(idx.float())
img = compositing.alpha_composite(
idx.permute(0, 3, 1, 2).long(),
alphas.permute(0, 3, 1, 2),
pts3D.features_packed().permute(1, 0),
)
img = img.permute([0, 2, 3, 1]).contiguous() # (batch, h, w, 6)
rgb_map, coor_map = img[..., :3], img[..., 3:] # (batch, h, w, 3)
msk = (idx[:, :, :, :1] != -1).float() # (batch, h, w, 1)
return rgb_map, coor_map, msk
def rasterize_pyramid(self, coor_world, rgb, density=None, h=192, w=256, k=np.array([0.7, 1.2, 1.7, 2.2])):
if density is None:
density = torch.ones(coor_world.shape[0], 1).to(coor_world.device)
mask = None
image = None
for ksize in k:
img, _, msk = self.rasterize(coor_world, rgb, h, w, ksize, 10)
mask = msk if mask is None else mask * msk
image = img if image is None else image + img * mask.unsqueeze(-1).expand(img.shape)
return image, mask
class VAE_encoder(torch_nn.Module):
def __init__(self, data_dim, latent_dim, W=512, D=4):
super().__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
self.W = W
self.D = D
"""Fully Connected Layers"""
self.fc_layers = []
current_dim = self.data_dim
for i in range(self.D - 1):
self.fc_layers.append(torch_nn.Linear(current_dim, self.W))
current_dim = self.W
self.fc_layers = torch_nn.ModuleList(self.fc_layers)
self.fc_layer_mu = torch_nn.Linear(current_dim, self.latent_dim)
self.fc_layer_log_var = torch_nn.Linear(current_dim, self.latent_dim)
def forward(self, x):
for layer in self.fc_layers:
x = torch.relu(layer(x))
mu = self.fc_layer_mu(x)
log_var = self.fc_layer_log_var(x)
return mu, log_var
class VAE_decoder(torch_nn.Module):
def __init__(self, data_dim, latent_dim, W=512, D=4):
super().__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
self.W = W
self.D = D
"""Fully Connected Layers"""
self.fc_layers = []
current_dim = self.latent_dim
for i in range(self.D - 1):
self.fc_layers.append(torch_nn.Linear(current_dim, self.W))
current_dim = self.W
self.fc_layers = torch_nn.ModuleList(self.fc_layers)
self.output_layer = torch_nn.Linear(current_dim, self.data_dim)
def forward(self, x):
for layer in self.fc_layers:
x = torch.relu(layer(x))
x = self.output_layer(x)
return x
def reparameterize(mu, log_var, factor=1.):
std = torch.exp(0.5 * log_var) * factor
eps = torch.randn_like(std)
return eps * std + mu
def reparameterize_jt(mu, log_var, factor=1.):
std = jt.exp(0.5 * log_var) * factor
eps = jt.randn_like(std)
return eps * std + mu
class VAE(torch_nn.Module):
def __init__(self, data_dim, latent_dim, W=512, D=4, kl_lambda=0.1):
super().__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
self.W = W
self.D = D
self.kl_lambda = kl_lambda
self.encoder = VAE_encoder(data_dim=data_dim, latent_dim=latent_dim, W=W, D=D)
self.decoder = VAE_decoder(data_dim=data_dim, latent_dim=latent_dim, W=W, D=D)
def forward(self, x, various=True):
"""Forward Function"""
z, mu, log_var = self.encode(x, various)
y = self.decode(z)
return y, z, mu, log_var
def recon(self, x, various=False):
"""Reconstruction shapes"""
z, _, _ = self.encode(x, various)
y = self.decode(z)
return y
def encode(self, x, various=True):
mu, log_var = self.encoder(x)
z = reparameterize(mu, log_var) if various else mu
return z, mu, log_var
def decode(self, z):
y = self.decoder(z)
return y
def loss(self, x, y, mu, log_var, return_losses=False):
kl_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim=1), dim=0)
recon_loss = torch.sum(torch.mean(torch.square(x - y), dim=0))
loss = recon_loss + self.kl_lambda * kl_loss
if return_losses:
return loss, recon_loss, self.kl_lambda * kl_loss
else:
return loss
def sample(self, num_samples, current_device):
z = torch.randn(num_samples,
self.latent_dim)
z = z.to(current_device)
samples = self.decode(z)
return samples
class StyleLatents_variational(Module):
def __init__(self, **kwargs):
super().__init__()
style_num, frame_num, latent_dim = kwargs['style_num'], kwargs['frame_num'], kwargs['latent_dim']
self.style_num = style_num
self.frame_num = frame_num
self.latent_dim = latent_dim
self.latents = jt.Var(jt.randn(self.style_num, self.frame_num, self.latent_dim))
self.style_latents_mu = jt.Var(jt.randn(self.style_num, self.latent_dim))
self.style_latents_logvar = jt.Var(jt.randn(self.style_num, self.latent_dim))
self.sigma_scale = 1.
self.set_requires_grad()
self.latent_optimizer = None
def set_requires_grad(self):
self.latents.requires_grad = True
self.style_latents_mu.requires_grad = False
self.style_latents_logvar.requires_grad = False
def rescale_sigma(self, sigma_scale=1.):
self.sigma_scale = sigma_scale
def execute(self, **kwargs):
# style_ids, frame_ids of shape [batch]
style_ids, frame_ids = kwargs['style_ids'], kwargs['frame_ids']
flat_ids = style_ids * self.frame_num + frame_ids # [batch]
latents = self.latents.reshape([-1, self.latent_dim])[flat_ids] # [batch, latent_dim]
mu = self.style_latents_mu[style_ids]
latents = mu + self.sigma_scale * (latents - mu)
return latents
def minus_logp(self, **kwargs):
epsilon = 1e-3
style_ids, frame_ids = kwargs['style_ids'], kwargs['frame_ids']
latents = self(style_ids=style_ids, frame_ids=frame_ids)
mu = self.style_latents_mu[style_ids]
logvar = self.style_latents_logvar[style_ids]
loss_logp = jt.sum((latents - mu.detach()) ** 2 / (jt.exp(0.5 * logvar.detach()) + epsilon), -1).mean()
return loss_logp
def set_latents(self):
all_style_latents_mu, all_style_latents_logvar = self.style_latents_mu.unsqueeze(1).expand(list(self.latents.shape)),\
self.style_latents_logvar.unsqueeze(1).expand(list(self.latents.shape))
latents = reparameterize_jt(all_style_latents_mu, all_style_latents_logvar, factor=1.)
self.latents = jt.Var(latents)
self.set_requires_grad()
def set_optimizer(self):
self.latent_optimizer = jt.nn.Adam([self.latents], lr=1e-3)
def optimize(self, loss):
if self.latent_optimizer is not None:
self.latent_optimizer.step(loss)