-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_metaphor_detection.py
793 lines (697 loc) · 35.5 KB
/
run_metaphor_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
"""
Train & Evaluate RoBERTa-Based Metaphor Detection Model
"""
import argparse
import glob
import logging
import os
import random
import sys
import numpy as np
import torch
import pickle
from sklearn.metrics import precision_score, recall_score, f1_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from data_utils import InputExample, InputFeatures, read_pos_tags
from vua_data_helper import read_vua_examples_from_file, convert_vua_examples_to_features
from toefl_data_helper import read_toefl_examples_from_file, convert_toefl_examples_to_features
from modeling_roberta_metaphor import RobertaForMetaphorDetection
from transformers import (
WEIGHTS_NAME,
AdamW,
BertConfig,
BertForTokenClassification,
BertTokenizer,
CamembertConfig,
CamembertForTokenClassification,
CamembertTokenizer,
DistilBertConfig,
DistilBertForTokenClassification,
DistilBertTokenizer,
RobertaConfig,
RobertaForTokenClassification,
RobertaTokenizer,
XLMRobertaConfig,
XLMRobertaForTokenClassification,
XLMRobertaTokenizer,
get_linear_schedule_with_warmup,
)
logger = logging.getLogger(__name__)
ALL_MODELS = sum(
(
tuple(conf.pretrained_config_archive_map.keys())
for conf in (BertConfig, RobertaConfig, DistilBertConfig, CamembertConfig, XLMRobertaConfig)
),
(),
)
MODEL_CLASSES = {
"bert": (BertConfig, BertForTokenClassification, BertTokenizer),
"roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer),
"distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer),
"camembert": (CamembertConfig, CamembertForTokenClassification, CamembertTokenizer),
"xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, dev_dataset, model, class_weights,
tokenizer, pad_token_label_id):
""" Train the model """
#if args.local_rank in [-1, 0]:
# tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight", "classifier"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Weighted cross-entropy class weights: {}".format(class_weights))
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to gobal_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
weights = torch.FloatTensor(class_weights).to(args.device)
best_score, tr_loss, logging_loss = 0.0, 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "pos_ids": batch[3], \
"biasdown_vectors": batch[4], "biasup_vectors": batch[5], "biasupdown_vectors": batch[6], \
"corp_vectors": batch[7], "topic_vectors": batch[8], "verbnet_vectors": batch[9], \
"wordnet_vectors": batch[10], "labels": batch[11], "class_weights": weights}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results, _ = evaluate(args, model, dev_dataset, pad_token_label_id,
class_weights, mode="dev")
if results['f1'] > best_score:
best_score = results['f1']
logger.info("Best dev f1 score: {}".format(best_score))
# remove previous model
try:
os.system("rm "+output_dir+"/*")
logger.info("Success to delete old model.")
except:
flag = False
logger.info("Fail to delete old model.")
"""
# save threshold
with open(args.output_dir+"/dev_results.pkl", "wb") as handle:
pickle.dump(results, handle)
"""
# save model
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
)
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
#for key, value in results.items():
# tb_writer.add_scalar("eval_{}".format(key), value, global_step)
#tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
#tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
# Save model peoriodically
if False and args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
return global_step, tr_loss / global_step
def evaluate(args, model, eval_dataset, pad_token_label_id, class_weights, mode):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
if mode == "test":
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "pos_ids": batch[3], \
"biasdown_vectors": batch[4], "biasup_vectors": batch[5], "biasupdown_vectors": batch[6], \
"corp_vectors": batch[7], "topic_vectors": batch[8], "verbnet_vectors": batch[9], \
"wordnet_vectors": batch[10], "labels": None}
else:
weights = torch.FloatTensor(class_weights).to(args.device)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "pos_ids": batch[3], \
"biasdown_vectors": batch[4], "biasup_vectors": batch[5], "biasupdown_vectors": batch[6], \
"corp_vectors": batch[7], "topic_vectors": batch[8], "verbnet_vectors": batch[9], \
"wordnet_vectors": batch[10], "labels": batch[11], "class_weights": weights}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
if mode == "test":
logits = outputs[0]
else:
tmp_eval_loss, logits = outputs[:2]
#probs = torch.nn.functional.softmax(logits, dim=-1)
if args.n_gpu > 1 and mode != "test" :
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
#preds = probs.detach().cpu().numpy()
if inputs["labels"] is not None:
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
out_label_ids = batch[11].detach().cpu().numpy()
else:
#preds = np.append(preds, probs.detach().cpu().numpy(), axis=0)
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
if inputs["labels"] is not None:
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
else:
out_label_ids = np.append(out_label_ids, batch[11].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
# pred_labels: (batch_size, max_seq_len)
pred_labels = np.argmax(preds, axis=2)
out_label_list = []
flat_preds_list = []
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
# flat
out_label_list.append(out_label_ids[i][j])
flat_preds_list.append(pred_labels[i][j])
# nested
preds_list[i].append(pred_labels[i][j])
results = None
if mode != "test":
results = {
"loss": eval_loss,
"precision": precision_score(out_label_list, flat_preds_list, average="binary", pos_label=1),
"recall": recall_score(out_label_list, flat_preds_list, average="binary", pos_label=1),
"f1": f1_score(out_label_list, flat_preds_list, average="binary", pos_label=1)
}
logger.info("***** Eval results *****")
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results, preds_list
def convert_features_to_dataset(features):
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_pos_ids = torch.tensor([f.pos_ids for f in features], dtype=torch.long)
# external features
all_biasdown_vectors = torch.FloatTensor([f.biasdown_vectors for f in features])
all_biasup_vectors = torch.FloatTensor([f.biasup_vectors for f in features])
all_biasupdown_vectors = torch.FloatTensor([f.biasupdown_vectors for f in features])
all_corp_vectors = torch.FloatTensor([f.corp_vectors for f in features])
all_topic_vectors = torch.FloatTensor([f.topic_vectors for f in features])
all_verbnet_vectors = torch.FloatTensor([f.verbnet_vectors for f in features])
all_wordnet_vectors = torch.FloatTensor([f.wordnet_vectors for f in features])
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_pos_ids,
all_biasdown_vectors, all_biasup_vectors, all_biasupdown_vectors,
all_corp_vectors, all_topic_vectors, all_verbnet_vectors, all_wordnet_vectors,
all_label_ids)
return dataset
def get_class_weights(features):
class_sizes = [0.0, 0.0]
for feature in features:
labels = feature.label_ids
for label in labels:
if label in [0, 1]:
class_sizes[label] += 1
# weight = total_size/size
total_size = np.sum(class_sizes)
class_weights = [float(total_size) / (5.0 * size) for size in class_sizes]
print("class 0: {}, class 1: {}".format(class_sizes[0], class_sizes[1]))
print("weights: {}".format(class_weights))
return class_weights
def load_and_cache_examples(args, tokenizer, pad_token_label_id, mode):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}".format(
mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
# create pos vocab
pos_vocab = read_pos_tags(args.data_dir)
if args.dataset.lower() == "vua":
examples = read_vua_examples_from_file(args.data_dir, mode)
features = convert_vua_examples_to_features(
examples,
args.max_seq_length,
tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences,
pad_on_left=bool(args.model_type in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
pos_vocab=pos_vocab,
pad_pos_id=0,
pad_token_label_id=pad_token_label_id,
pad_feature_val=0,
mode=mode
)
elif args.dataset.lower() == "toefl":
examples = read_toefl_examples_from_file(args.data_dir, mode)
features = convert_toefl_examples_to_features(
examples,
args.max_seq_length,
tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences,
pad_on_left=bool(args.model_type in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
pos_vocab=pos_vocab,
pad_pos_id=0,
pad_token_label_id=pad_token_label_id,
pad_feature_val=0,
mode=mode
)
else:
logger.info("Unrecognized dataset: {}".format(args.dataset))
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# mode: train, split into train & dev
if mode == "train":
total_size = len(features)
train_ratio = 0.8
train_inds = np.random.choice(range(total_size), size=int(total_size*train_ratio), replace=False)
train_features = [features[ind] for ind in train_inds]
train_dataset = convert_features_to_dataset(train_features)
dev_features = [features[ind] for ind in range(total_size) if ind not in set(train_inds)]
dev_dataset = convert_features_to_dataset(dev_features)
class_weights = get_class_weights(features)
print("train size: {}, dev_size: {}".format(len(train_features), len(dev_features)))
return train_dataset, dev_dataset, class_weights
elif mode == "test":
dataset = convert_features_to_dataset(features)
return dataset
else:
print("INVALID mode: {}".format(mode))
sys.exit(0)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--dataset",
default=None,
type=str,
required=True,
help="The dataset, VUA or TOEFL"
)
# Other parameters
parser.add_argument(
"--labels",
default="",
type=str,
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
#parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
parser.add_argument(
"--evaluate_during_training",
action="store_true",
help="Whether to run evaluation during training at each logging step.",
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
# feature parameters
#parser.add_argument("--use_init_embed", action="store_true", help="classifier compares initial and contextualized embedding")
parser.add_argument("--use_pos", action="store_true", help="classifier uses pos embedding")
parser.add_argument("--pos_vocab_size", type=int, default=43, help="Num of POS tags")
parser.add_argument("--pos_dim", type=int, default=8, help="Dimension of POS embedding")
parser.add_argument("--use_features", action="store_true", help="classifier uses external features")
parser.add_argument("--feature_dim", type=int, default=128, help="Dimension of external features")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
pad_token_label_id = CrossEntropyLoss().ignore_index
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=2,
cache_dir=args.cache_dir if args.cache_dir else None)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = RobertaForMetaphorDetection.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
use_pos=args.use_pos,
pos_vocab_size=args.pos_vocab_size,
pos_dim=args.pos_dim,
use_features=args.use_features,
feature_dim=args.feature_dim)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
train_dataset, dev_dataset, class_weights = load_and_cache_examples(args, tokenizer,
pad_token_label_id, mode="train")
global_step, tr_loss = train(args, train_dataset, dev_dataset, model,
class_weights, tokenizer, pad_token_label_id)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Predict/Test (without ground truth labels)
if args.do_predict and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model = RobertaForMetaphorDetection.from_pretrained(args.output_dir,
#use_init_embed=args.use_init_embed,
use_pos=args.use_pos,
pos_vocab_size=args.pos_vocab_size,
pos_dim=args.pos_dim,
use_features=args.use_features,
feature_dim=args.feature_dim)
model.to(args.device)
test_dataset = load_and_cache_examples(args, tokenizer, pad_token_label_id, mode="test")
result, predictions = evaluate(args, model, test_dataset, pad_token_label_id,
class_weights=None, mode="test")
# Save predictions
output_test_predictions_file = os.path.join(args.output_dir, "test_labels.txt")
with open(output_test_predictions_file, "w") as writer:
for eid in range(len(predictions)):
line = " ".join([str(label) for label in predictions[eid]])
writer.write(line+"\n")
logger.info("Saving predictions to {}".format(output_test_predictions_file))
if __name__=="__main__":
main()