-
Notifications
You must be signed in to change notification settings - Fork 17
/
pad_packed_demo.py
228 lines (192 loc) · 12.9 KB
/
pad_packed_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
from torch import LongTensor
from torch.nn import Embedding, LSTM
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
## We want to run LSTM on a batch of 3 character sequences ['long_str', 'tiny', 'medium']
#
# Step 1: Construct Vocabulary
# Step 2: Load indexed data (list of instances, where each instance is list of character indices)
# Step 3: Make Model
# * Step 4: Pad instances with 0s till max length sequence
# * Step 5: Sort instances by sequence length in descending order
# * Step 6: Embed the instances
# * Step 7: Call pack_padded_sequence with embeded instances and sequence lengths
# * Step 8: Forward with LSTM
# * Step 9: Call unpack_padded_sequences if required / or just pick last hidden vector
# * Summary of Shape Transformations
# We want to run LSTM on a batch following 3 character sequences
seqs = ['long_str', # len = 8
'tiny', # len = 4
'medium'] # len = 6
## Step 1: Construct Vocabulary ##
##------------------------------##
# make sure <pad> idx is 0
vocab = ['<pad>'] + sorted(set([char for seq in seqs for char in seq]))
# => ['<pad>', '_', 'd', 'e', 'g', 'i', 'l', 'm', 'n', 'o', 'r', 's', 't', 'u', 'y']
## Step 2: Load indexed data (list of instances, where each instance is list of character indices) ##
##-------------------------------------------------------------------------------------------------##
vectorized_seqs = [[vocab.index(tok) for tok in seq]for seq in seqs]
# vectorized_seqs => [[6, 9, 8, 4, 1, 11, 12, 10],
# [12, 5, 8, 14],
# [7, 3, 2, 5, 13, 7]]
## Step 3: Make Model ##
##--------------------##
embed = Embedding(len(vocab), 4) # embedding_dim = 4
lstm = LSTM(input_size=4, hidden_size=5, batch_first=True) # input_dim = 4, hidden_dim = 5
## Step 4: Pad instances with 0s till max length sequence ##
##--------------------------------------------------------##
# get the length of each seq in your batch
seq_lengths = LongTensor(list(map(len, vectorized_seqs)))
# seq_lengths => [ 8, 4, 6]
# batch_sum_seq_len: 8 + 4 + 6 = 18
# max_seq_len: 8
seq_tensor = Variable(torch.zeros((len(vectorized_seqs), seq_lengths.max()))).long()
# seq_tensor => [[0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0]]
for idx, (seq, seqlen) in enumerate(zip(vectorized_seqs, seq_lengths)):
seq_tensor[idx, :seqlen] = LongTensor(seq)
# seq_tensor => [[ 6 9 8 4 1 11 12 10] # long_str
# [12 5 8 14 0 0 0 0] # tiny
# [ 7 3 2 5 13 7 0 0]] # medium
# seq_tensor.shape : (batch_size X max_seq_len) = (3 X 8)
## Step 5: Sort instances by sequence length in descending order ##
##---------------------------------------------------------------##
seq_lengths, perm_idx = seq_lengths.sort(0, descending=True)
seq_tensor = seq_tensor[perm_idx]
# seq_tensor => [[ 6 9 8 4 1 11 12 10] # long_str
# [ 7 3 2 5 13 7 0 0] # medium
# [12 5 8 14 0 0 0 0]] # tiny
# seq_tensor.shape : (batch_size X max_seq_len) = (3 X 8)
## Step 6: Embed the instances ##
##-----------------------------##
embedded_seq_tensor = embed(seq_tensor)
# embedded_seq_tensor =>
# [[[-0.77578706 -1.8080667 -1.1168439 1.1059115 ] l
# [-0.23622951 2.0361056 0.15435742 -0.04513785] o
# [-0.6000342 1.1732816 0.19938554 -1.5976517 ] n
# [ 0.40524676 0.98665565 -0.08621677 -1.1728264 ] g
# [-1.6334635 -0.6100042 1.7509955 -1.931793 ] _
# [-0.6470658 -0.6266589 -1.7463604 1.2675372 ] s
# [ 0.64004815 0.45813003 0.3476034 -0.03451729] t
# [-0.22739866 -0.45782727 -0.6643252 0.25129375]] r
# [[ 0.16031227 -0.08209462 -0.16297023 0.48121014] m
# [-0.7303265 -0.857339 0.58913064 -1.1068314 ] e
# [ 0.48159844 -1.4886451 0.92639893 0.76906884] d
# [ 0.27616557 -1.224429 -1.342848 -0.7495876 ] i
# [ 0.01795524 -0.59048957 -0.53800726 -0.6611691 ] u
# [ 0.16031227 -0.08209462 -0.16297023 0.48121014] m
# [ 0.2691206 -0.43435425 0.87935454 -2.2269666 ] <pad>
# [ 0.2691206 -0.43435425 0.87935454 -2.2269666 ]] <pad>
# [[ 0.64004815 0.45813003 0.3476034 -0.03451729] t
# [ 0.27616557 -1.224429 -1.342848 -0.7495876 ] i
# [-0.6000342 1.1732816 0.19938554 -1.5976517 ] n
# [-1.284392 0.68294704 1.4064184 -0.42879772] y
# [ 0.2691206 -0.43435425 0.87935454 -2.2269666 ] <pad>
# [ 0.2691206 -0.43435425 0.87935454 -2.2269666 ] <pad>
# [ 0.2691206 -0.43435425 0.87935454 -2.2269666 ] <pad>
# [ 0.2691206 -0.43435425 0.87935454 -2.2269666 ]]] <pad>
# embedded_seq_tensor.shape : (batch_size X max_seq_len X embedding_dim) = (3 X 8 X 4)
## Step 7: Call pack_padded_sequence with embeded instances and sequence lengths ##
##-------------------------------------------------------------------------------##
packed_input = pack_padded_sequence(embedded_seq_tensor, seq_lengths.cpu().numpy(), batch_first=True)
# packed_input (PackedSequence is NamedTuple with 2 attributes: data and batch_sizes
#
# packed_input.data =>
# [[-0.77578706 -1.8080667 -1.1168439 1.1059115 ] l
# [ 0.01795524 -0.59048957 -0.53800726 -0.6611691 ] m
# [-0.6470658 -0.6266589 -1.7463604 1.2675372 ] t
# [ 0.16031227 -0.08209462 -0.16297023 0.48121014] o
# [ 0.40524676 0.98665565 -0.08621677 -1.1728264 ] e
# [-1.284392 0.68294704 1.4064184 -0.42879772] i
# [ 0.64004815 0.45813003 0.3476034 -0.03451729] n
# [ 0.27616557 -1.224429 -1.342848 -0.7495876 ] d
# [ 0.64004815 0.45813003 0.3476034 -0.03451729] n
# [-0.23622951 2.0361056 0.15435742 -0.04513785] g
# [ 0.16031227 -0.08209462 -0.16297023 0.48121014] i
# [-0.22739866 -0.45782727 -0.6643252 0.25129375]] y
# [-0.7303265 -0.857339 0.58913064 -1.1068314 ] _
# [-1.6334635 -0.6100042 1.7509955 -1.931793 ] u
# [ 0.27616557 -1.224429 -1.342848 -0.7495876 ] s
# [-0.6000342 1.1732816 0.19938554 -1.5976517 ] m
# [-0.6000342 1.1732816 0.19938554 -1.5976517 ] t
# [ 0.48159844 -1.4886451 0.92639893 0.76906884] r
# packed_input.data.shape : (batch_sum_seq_len X embedding_dim) = (18 X 4)
#
# packed_input.batch_sizes => [ 3, 3, 3, 3, 2, 2, 1, 1]
# visualization :
# l o n g _ s t r #(long_str)
# m e d i u m #(medium)
# t i n y #(tiny)
# 3 3 3 3 2 2 1 1 (sum = 18 [batch_sum_seq_len])
## Step 8: Forward with LSTM ##
##---------------------------##
packed_output, (ht, ct) = lstm(packed_input)
# packed_output (PackedSequence is NamedTuple with 2 attributes: data and batch_sizes
#
# packed_output.data :
# [[-0.00947162 0.07743231 0.20343193 0.29611713 0.07992904] l
# [ 0.08596145 0.09205993 0.20892891 0.21788561 0.00624391] o
# [ 0.16861682 0.07807446 0.18812777 -0.01148055 -0.01091915] n
# [ 0.20994528 0.17932937 0.17748171 0.05025435 0.15717036] g
# [ 0.01364102 0.11060348 0.14704391 0.24145307 0.12879576] _
# [ 0.02610307 0.00965587 0.31438383 0.246354 0.08276576] s
# [ 0.09527554 0.14521319 0.1923058 -0.05925677 0.18633027] t
# [ 0.09872741 0.13324396 0.19446367 0.4307988 -0.05149471] r
# [ 0.03895474 0.08449443 0.18839942 0.02205326 0.23149511] m
# [ 0.14620507 0.07822411 0.2849248 -0.22616537 0.15480657] e
# [ 0.00884941 0.05762182 0.30557525 0.373712 0.08834908] d
# [ 0.12460691 0.21189159 0.04823487 0.06384943 0.28563985] i
# [ 0.01368293 0.15872964 0.03759198 -0.13403234 0.23890573] u
# [ 0.00377969 0.05943518 0.2961751 0.35107893 0.15148178] m
# [ 0.00737647 0.17101538 0.28344846 0.18878219 0.20339936] t
# [ 0.0864429 0.11173367 0.3158251 0.37537992 0.11876849] i
# [ 0.17885767 0.12713005 0.28287745 0.05562563 0.10871304] n
# [ 0.09486895 0.12772645 0.34048414 0.25930756 0.12044918]] y
# packed_output.data.shape : (batch_sum_seq_len X hidden_dim) = (18 X 5)
# packed_output.batch_sizes => [ 3, 3, 3, 3, 2, 2, 1, 1] (same as packed_input.batch_sizes)
# visualization :
# l o n g _ s t r #(long_str)
# m e d i u m #(medium)
# t i n y #(tiny)
# 3 3 3 3 2 2 1 1 (sum = 18 [batch_sum_seq_len])
## Step 9: Call unpack_padded_sequences if required / or just pick last hidden vector ##
##------------------------------------------------------------------------------------##
# unpack your output if required
output, input_sizes = pad_packed_sequence(packed_output, batch_first=True)
# output:
# output =>
# [[[-0.00947162 0.07743231 0.20343193 0.29611713 0.07992904] l
# [ 0.20994528 0.17932937 0.17748171 0.05025435 0.15717036] o
# [ 0.09527554 0.14521319 0.1923058 -0.05925677 0.18633027] n
# [ 0.14620507 0.07822411 0.2849248 -0.22616537 0.15480657] g
# [ 0.01368293 0.15872964 0.03759198 -0.13403234 0.23890573] _
# [ 0.00737647 0.17101538 0.28344846 0.18878219 0.20339936] s
# [ 0.17885767 0.12713005 0.28287745 0.05562563 0.10871304] t
# [ 0.09486895 0.12772645 0.34048414 0.25930756 0.12044918]] r
# [[ 0.08596145 0.09205993 0.20892891 0.21788561 0.00624391] m
# [ 0.01364102 0.11060348 0.14704391 0.24145307 0.12879576] e
# [ 0.09872741 0.13324396 0.19446367 0.4307988 -0.05149471] d
# [ 0.00884941 0.05762182 0.30557525 0.373712 0.08834908] i
# [ 0.00377969 0.05943518 0.2961751 0.35107893 0.15148178] u
# [ 0.0864429 0.11173367 0.3158251 0.37537992 0.11876849] m
# [ 0. 0. 0. 0. 0. ] <pad>
# [ 0. 0. 0. 0. 0. ]] <pad>
# [[ 0.16861682 0.07807446 0.18812777 -0.01148055 -0.01091915] t
# [ 0.02610307 0.00965587 0.31438383 0.246354 0.08276576] i
# [ 0.03895474 0.08449443 0.18839942 0.02205326 0.23149511] n
# [ 0.12460691 0.21189159 0.04823487 0.06384943 0.28563985] y
# [ 0. 0. 0. 0. 0. ] <pad>
# [ 0. 0. 0. 0. 0. ] <pad>
# [ 0. 0. 0. 0. 0. ] <pad>
# [ 0. 0. 0. 0. 0. ]]] <pad>
# output.shape : ( batch_size X max_seq_len X hidden_dim) = (3 X 8 X 5)
# Or if you just want the final hidden state?
print(ht[-1])
## Summary of Shape Transformations ##
##----------------------------------##
# (batch_size X max_seq_len X embedding_dim) --> Sort by seqlen ---> (batch_size X max_seq_len X embedding_dim)
# (batch_size X max_seq_len X embedding_dim) ---> Pack ---> (batch_sum_seq_len X embedding_dim)
# (batch_sum_seq_len X embedding_dim) ---> LSTM ---> (batch_sum_seq_len X hidden_dim)
# (batch_sum_seq_len X hidden_dim) ---> UnPack ---> (batch_size X max_seq_len X hidden_dim)