-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdimensional-analysis.html
929 lines (903 loc) · 42.7 KB
/
dimensional-analysis.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
<!DOCTYPE html>
<html>
<head>
<link rel="canonical" href="https://hardmath123.github.io/dimensional-analysis.html"/>
<link rel="stylesheet" type="text/css" href="/static/base.css"/>
<title>Dimensional Analysis: a worksheet - Comfortably Numbered</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
<link rel="alternate" type="application/rss+xml" title="Comfortably Numbered" href="/feed.xml" />
<!--
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script>
MathJax.Hub.Config({
tex2jax: {inlineMath: [['$','$']]}
});
</script>
-->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-Um5gpz1odJg5Z4HAmzPtgZKdTBHZdw8S29IecapCSB31ligYPhHQZMIlWLYQGVoc" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-YNHdsYkH6gMx9y3mRkmcJ2mFUjTd0qNQQvY9VYZgQd7DcN7env35GzlmFaZ23JGp" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-vZTG03m+2yp6N6BNi5iM4rW4oIwk5DfcNdFfxkk9ZWpDriOkXX8voJBFrAO7MpVl" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
renderMathInElement(document.body, {
// customised options
// • auto-render specific keys, e.g.:
delimiters: [
{left: '$$', right: '$$', display: true},
{left: '$', right: '$', display: false},
{left: '\\begin{align}', right: '\\end{align}', display: true},
{left: '\\(', right: '\\)', display: false},
{left: '\\[', right: '\\]', display: true}
],
// • rendering keys, e.g.:
throwOnError : false
});
});
</script>
</head>
<body>
<header id="header">
<script src="static/main.js"></script>
<div>
<a href="/"><span class="left-word">Comfortably</span> <span class="right-word">Numbered</span></a>
</div>
</header>
<article id="postcontent" class="centered">
<section>
<h1>Dimensional Analysis: a worksheet</h1>
<center><em><p>An article with absolute significance</p>
</em></center>
<h4>Tuesday, October 11, 2016 · 18 min read</h4>
<p><em><strong>Editor's note:</strong> This post was automatically converted
from a LaTeX document. While some attempts have been made to preserve the
original layout, it is impossible to faithfully reproduce the original
formatting. If you would like a copy of the PDF version, please contact
me.</em>
<br/>
<!--l. 32--><p class="indent" > In school, many of us learn about dimensional analysis as a way to
convert between various units. There is, however, far more to this humble
technique. In this paper, I would like to present a smörgåsbord of
dimensional analysis pearls that I have found over the past few months.
</p>
<h3 class="likesectionHead"><a
id="x1-1000"></a>Introduction</h3>
<!--l. 41--><p class="noindent" >Many people argue that the metric system is better than the imperial system. This
argument, however, is usually predicated on the relationship <em>between</em> various
units—powers of ten are more easy to manipulate because we are taught arithmetic in
base ten; additionally, the uniformity makes it easier to remember how to convert from
centimeters to meters than from inches to furlongs. If we only consider units in absolutes,
however, then is a meter really ‘better’ than a yard?
</p><!--l. 49--><p class="indent" > The theme of this paper is that there is no obvious quantity to use as a fundamental
unit of length, mass or even time. In fact, this poses problems in certain domains where
we cannot appeal to convention to establish units. For example: on the <em>Voyager 1</em> probe,
NASA placed a golden record designed to be found by extraterrestial life. Inscribed on
this record, NASA provided Sagan-esque instructions for playback. The time taken for
one rotation of the record is specified in terms of the period associated with the
fundamental transition of the hydrogen atom <span class="cite"> [<a
href="#Xvoyager">10</a>]</span>.
</p><!--l. 58--><p class="indent" > “The fundamental transition of the hydrogen atom” is certainly more reasonable to explain to
intelligent life than, say, a second (which would force the extraterrestial life forms to somehow
measure the time Earth takes to complete its orbit). However, this choice still seems a little
arbitrary<span class="footnote-mark"><a
href="#fn1x0" id="fn1x0-bk"><sup class="textsuperscript">∗</sup></a></span><a
id="x1-1001f1"></a>.
</p><!--l. 66--><p class="indent" > Why aren’t there obvious fundamental units? We can answer this question with a
philosophical observation: nobody knows the <em>absolute</em> size of anything. For all we know,
the universe could be really small, and us smaller still. All is not lost, however. Clearly,
some properties of the world remain constant regardless of how we choose
to measure them. I cannot become richer by measuring my income in cents
rather than dollars. Percy Bridgman, a physicist who studied the properties of
materials under extremely high pressure, stated this property eloquently in his 1931
treatise <span class="cite"> [<a
href="#Xbridgman">3</a>]</span>:
</p><div class="quote">
<!--l. 74--><p class="noindent" >[T]he ratio of the numbers measuring any two concrete examples of a
secondary quantity shall be independent of the size of the fundamental
units used in making the required primary measurements.</p></div>
<!--l. 76--><p class="noindent" >This statement, known as <em>Bridgman’s Principle of absolute significance of relative magnitude</em>, is
really just an expression of humility: nature is indifferent to our choice of units <span class="cite"> [<a
href="#Xsonin">11</a>, <a
href="#Xmeditation">8</a>]</span>.
That is, the period associated with the fundamental transition of the hydrogen atom will
always be <!--l. 80--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>2</mn><mo
class="MathClass-punc">.</mo><mn>2</mn><mn>3</mn><mo
class="MathClass-bin">×</mo><mn>1</mn><msup><mrow
><mn>0</mn></mrow><mrow
><mo
class="MathClass-bin">−</mo><mn>1</mn><mn>7</mn></mrow></msup
></math>
times the period taken by Sol 3 to orbit the sun, regardless of which system
of units are used to measure the two quantities. Units are arbitrary; ratios are
invariant.
</p><!--l. 85--><p class="noindent" >
</p>
<h3 class="likesectionHead"><a
id="x1-2000"></a>Exercises</h3>
<!--l. 88--><p class="noindent" >
</p><dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
1. </dt><dd
class="enumerate-enumitem">
<dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem">According to Bridgman’s Principle, the ratio of a circle’s circumference
to its diameter should be constant regardless of the units used to measure
it (this constant, of course, is <!--l. 92--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>π</mi></math>).
Is the ratio of a circle’s <em>area</em> to its radius independent of the units used?
Does this violate Bridgman’s Principle?
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem">By citing Bridgman’s Principle, explain why (for the purposes of this
paper) Kelvins are a unit, but degrees Celsius are not.
</dd></dl>
</dd><dt class="enumerate-enumitem">
2. </dt><dd
class="enumerate-enumitem">In Europe, <strong>fuel efficiency</strong> is measured in liters per kilometer. Note that both
liters and kilometers can be expressed in terms of centimeters. Simplify
‘liters per kilometer’, and give a physical interpretation of the resulting
units <span class="cite"> [<a
href="#Xxkcd">7</a>]</span>.
</dd><dt class="enumerate-enumitem">
3. </dt><dd
class="enumerate-enumitem">The <strong>Pythagorean theorem</strong> that states that the square of the length of the longest
side of a right triangle is the sum of squares of the two shorter sides. Draw a right
trangle, and draw a line from the right angle, perpendicular to the longest side
(known as the hypotenuse). You now have three triangles: two small ones
contained in one large one.
<!--l. 113--><p class="indent" >
</p><dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem">Show that all three triangles are similar, that is, they have the same
angles.
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem">Convince yourself that the area of a triangle can be expressed as a
function of one of the acute angles and the length of the hypotenuse.
</dd><dt class="enumerate-enumitem">
(c) </dt><dd
class="enumerate-enumitem">Consider the relationship between the areas of the three triangles, then
<em>use dimensional analysis to derive the Pythagorean Theorem</em> <span class="cite"> [<a
href="#Xpythagoras">14</a>]</span>.
Why is this not a valid proof?
</dd></dl>
</dd><dt class="enumerate-enumitem">
4. </dt><dd
class="enumerate-enumitem">
<dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem">The <em>derivative</em> of a variable with respect to another is the rate of change
of the former with respect to the latter. For example, the derivative of
the position of an object with respect to time is its velocity. What are
the units of position, time, and velocity? Arguing by analogy, construct
rules for dimensional analysis of derivatives.
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem"><em>Integration</em> is the opposite process of derivation: for example, the
integral of the velocity of an object with respect to time is its
position. Arguing by analogy, construct rules for dimensional analysis
of integrals.
</dd><dt class="enumerate-enumitem">
(c) </dt><dd
class="enumerate-enumitem">According to the <strong>Fundamental Theorem of Calculus</strong>, another way to
think about integration is that it corresponds to a measurement of the
area under a curve (i.e. between the curve and the <!--l. 142--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>x</mi></math>
axis). For example, with the equation <!--l. 142--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>y</mi> <mo
class="MathClass-rel">=</mo> <mn>1</mn><mo
class="MathClass-bin">−</mo><mi
>x</mi></math>,
the integral of <!--l. 143--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>y</mi></math>
with respect to <!--l. 143--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>x</mi></math>
from <!--l. 143--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>0</mn></math>
to <!--l. 143--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>1</mn></math>
is <!--l. 143--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>0</mn><mo
class="MathClass-punc">.</mo><mn>5</mn></math>—verify
this by drawing a picture.
<!--l. 146--><p class="noindent" >Recall the formula for measuring the area of a rectangle. Assuming that
the <!--l. 147--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>x</mi></math>
and <!--l. 147--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>y</mi></math>
axes represent values with units, do the units of area in this system
correspond to the units of integration you found in the previous question?
<em>To you, does this feel like compelling evidence that the Fundamental
Theorem of Calculus is true?</em>
</p></dd><dt class="enumerate-enumitem">
(d) </dt><dd
class="enumerate-enumitem">Consider the functions <!--l. 152--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>f</mi> <mo
class="MathClass-punc">:</mo> <mi
>𝔹</mi> <mo
class="MathClass-rel">→</mo> <mi
>ℂ</mi></math>
and <!--l. 153--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>g</mi> <mo
class="MathClass-punc">:</mo> <mi
>𝔸</mi> <mo
class="MathClass-rel">→</mo> <mi
>𝔹</mi></math>
where <!--l. 153--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>𝔸</mi></math>,
<!--l. 154--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>𝔹</mi></math>,
and <!--l. 154--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>ℂ</mi></math>
are all units. What are the units of <!--l. 155--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><msup><mrow
><mi
>f</mi></mrow><mrow
><mi
>′</mi></mrow></msup
></math>
and <!--l. 155--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><msup><mrow
><mi
>g</mi></mrow><mrow
><mi
>′</mi></mrow></msup
></math>?
(Here, <!--l. 155--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><msup><mrow
><mi
>f</mi></mrow><mrow
><mi
>′</mi></mrow></msup
></math>
means the derivative of <!--l. 156--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>f</mi></math>
with respect to <!--l. 156--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>x</mi></math>.)
Now, let <!--l. 156--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>h</mi><mrow ><mo
class="MathClass-open">(</mo><mrow><mi
>x</mi></mrow><mo
class="MathClass-close">)</mo></mrow> <mo
class="MathClass-rel">=</mo> <mi
>f</mi><mrow ><mo
class="MathClass-open">(</mo><mrow><mi
>g</mi><mrow ><mo
class="MathClass-open">(</mo><mrow><mi
>x</mi></mrow><mo
class="MathClass-close">)</mo></mrow></mrow><mo
class="MathClass-close">)</mo></mrow></math>.
Convince yourself that <!--l. 157--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>h</mi> <mo
class="MathClass-punc">:</mo> <mi
>𝔸</mi> <mo
class="MathClass-rel">→</mo> <mi
>ℂ</mi></math>.
Then, use dimensional analysis to derive an equation for <!--l. 158--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><msup><mrow
><mi
>h</mi></mrow><mrow
><mi
>′</mi></mrow></msup
><mrow ><mo
class="MathClass-open">(</mo><mrow><mi
>x</mi></mrow><mo
class="MathClass-close">)</mo></mrow></math>
in terms of <!--l. 158--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>f</mi></math>,
<!--l. 158--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>g</mi></math>,
and <!--l. 159--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>x</mi></math>.
This expression is called the <strong>chain rule</strong><span class="footnote-mark"><a
href="#fn2x0" id="fn2x0-bk"><sup class="textsuperscript">†</sup></a></span><a
id="x1-2014f2"></a>.
</dd></dl>
</dd><dt class="enumerate-enumitem">
5. </dt><dd
class="enumerate-enumitem">In 1999, the <strong>Mars Climate Orbiter</strong> passed Mars on a trajectory that was too close to
the planet, causing it to pass through the upper atmosphere and disintegrate. The cause
of the MCO failure was determined <span class="cite"> [<a
href="#Xmars">1</a>]</span> to be a software error: a mission-critical
piece of software produced output in non-SI units, in pound-seconds rather than
Newton-seconds<span class="footnote-mark"><a
href="#fn3x0" id="fn3x0-bk"><sup class="textsuperscript">‡</sup></a></span><a
id="x1-2016f3"></a>.
<!--l. 176--><p class="noindent" >It seems obvious that representing a number in a different set of units leads to a
different answer. An interesting question to ask, however, is: are there meaningful
calculations whose results do not change when evaluated with different
units?
</p><!--l. 182--><p class="indent" >
</p><dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem">Suppose we were trying to discover the period <!--l. 182--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>T</mi> </math>
of a pendulum. It seems like the important parameters we would need to
know are the pendulum’s length <!--l. 184--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>l</mi></math>,
and mass <!--l. 184--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>m</mi></math>.
We also know that on Earth, the acceleration due to gravity is <!--l. 185--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>g</mi></math>.
Using dimensional analysis, discover a formula <!--l. 186--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>f</mi></math>
for <!--l. 186--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>T</mi> </math>
in terms of <!--l. 186--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>l</mi></math>
and <!--l. 186--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>g</mi></math>.
Check this formula by running an experiment with a washer and a piece
of string. You should discover that in reality, the period is approximately
<!--l. 188--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>T</mi> <mo
class="MathClass-rel">=</mo> <mn>6</mn><mo
class="MathClass-punc">.</mo><mn>2</mn><mn>8</mn><mo
class="MathClass-bin">×</mo><mi
>f</mi></math><span class="footnote-mark"><a
href="#fn4x0" id="fn4x0-bk"><sup class="textsuperscript">§</sup></a></span><a
id="x1-2018f4"></a>.
Has dimensional analysis failed?
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem">The idea that you can discover dimensionless constants like <!--l. 194--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>6</mn><mo
class="MathClass-punc">.</mo><mn>2</mn><mn>8</mn></math>
above by using dimensional analysis to create formulas, and then running
experiments to solve for the constant, is formalized by <strong>Buckingham’s
<!--l. 196--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>Π</mi></math>
Theorem</strong><span class="footnote-mark"><a
href="#fn5x0" id="fn5x0-bk"><sup class="textsuperscript">¶</sup></a></span><a
id="x1-2020f5"></a> <span class="cite">
[<a
href="#Xbuckingham">4</a>]</span>. It states that with <!--l. 203--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>n</mi></math>
physical variables, <!--l. 204--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>r</mi></math>
of which are independent, you can derive <!--l. 204--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>n</mi><mo
class="MathClass-bin">−</mo><mi
>r</mi></math>
fundamental dimensionless quantities. Explain what is meant by ‘independent’.
Using what you know about solving systems of linear equations, explain
why the theorem makes sense intuitively.
</dd><dt class="enumerate-enumitem">
(c) </dt><dd
class="enumerate-enumitem">If you plan on testing a <!--l. 209--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>1</mn> <mo
class="MathClass-punc">:</mo> <mn>1</mn><mn>0</mn></math>
scale model of an aircraft wing in a wind tunnel, it may not be immediately
obvious to you whether you also need to correspondingly scale factors
such as wind speed, air pressure, or temperature. Explain how to use
Buckingham’s <!--l. 212--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>Π</mi></math>
Theorem to figure out which factors must be scaled, and in which
direction, in order for the scale model to be an accurate representation
of the real version<span class="footnote-mark"><a
href="#fn6x0" id="fn6x0-bk"><sup class="textsuperscript">∥</sup></a></span><a
id="x1-2022f6"></a>.
</dd></dl>
<!--l. 220--><p class="noindent" >Surprisingly, Buckingham’s <!--l. 220--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>Π</mi></math>
Theorem can be used to deduce the <strong>fine structure constant</strong>. This constant is approximately
<!--l. 222--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>1</mn><mo
class="MathClass-bin">∕</mo><mn>1</mn><mn>3</mn><mn>7</mn><mo
class="MathClass-punc">.</mo><mn>0</mn><mn>3</mn><mn>6</mn></math>, and has no
units (like <!--l. 222--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>π</mi></math>).
It can be computed using a formula involving the charge of an electron, the speed
of light, Planck’s constant, and the capability of vacuum to permit electric field
lines. Surprisingly, the calculation works <em>regardless of which units are used</em>.
Richard Feynman called it <span class="cite"> [<a
href="#Xfeynman">6</a>]</span> “one of the greatest damn mysteries
of physics: a magic number that comes to us with no understanding by
man.”
</p></dd><dt class="enumerate-enumitem">
6. </dt><dd
class="enumerate-enumitem">The first explosion of an atomic bomb was at the <strong>Trinity test</strong> in New Mexico,
1945. G. I. Taylor, a fluid mechanician at Cambridge University, asked his
colleagues at Los Alamos what the energy of the blast was—Los Alamos declared
that it was classified information. Taylor then resorted to dimensional
analysis <span class="cite"> [<a
href="#Xtaylor">13</a>]</span>. His estimate (20kt of TNT) was remarkably close to the highly
classified value (22kt of TNT). This caused a great deal of embarrassment and as a
result Taylor was “mildly admonished by the US Army for publishing his
deductions” <span class="cite"> [<a
href="#Xbatchelor">2</a>]</span>.
<!--l. 240--><p class="noindent" >To make his estimate, Taylor used two photographs of the explosion, which he
anecdotally took from the cover of <em>LIFE</em> magazine. Taylor asked, how does
the radius of the blast grow with time? The other relevant factors are
energy and the density of the surrounding medium (i.e. air). Find images of
the Trinity blast that have timestamps (in milliseconds!) and a scale in
meters<span class="footnote-mark"><a
href="#fn7x0" id="fn7x0-bk"><sup class="textsuperscript">∗∗</sup></a></span><a
id="x1-2024f7"></a>. Using
the Buckingham <!--l. 254--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>Π</mi></math>
Theorem, <em>estimate the amount of energy released by Trinity</em>. Even getting this
value right to within an order of magnitude is quite impressive.
</p></dd><dt class="enumerate-enumitem">
7. </dt><dd
class="enumerate-enumitem">In the year 1215, the <strong>Magna Carta</strong> declared <span class="cite"> [<a
href="#Xmagnacarta">12</a>]</span> that:
<div class="quote">
<!--l. 259--><p class="noindent" >…there is to be one measure of wine throughout our kingdom, and
one measure of ale, and one measure of corn, namely the quarter
of London, and one breadth of dyed, russet and haberget cloths,
that is, two ells within the borders; and let weights be dealt with
as with measures.</p></div>
<!--l. 263--><p class="noindent" >One of the reasons for this clause was that due to the proliferation of too many
systems of units, merchants could cheat their customers into paying more money
for less goods.
</p><!--l. 267--><p class="noindent" >Consider the following fictitious system, consisting of the units <em>wizard</em> and <em>elf </em>,
with the conversion factor
</p>
<div class="math-display"><!--l. 269--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="block" ><mrow
>
<mfrac><mrow
><mn>2</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
></mrow>
<mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow></mfrac>
</mrow></math></div>
<!--l. 271--><p class="nopar" >
</p><!--l. 273--><p class="noindent" >A merchant announces that for convenience, he will introduce the unit <em>hobbit</em>. He
provides the following conversion factors to his customers:
</p>
<div class="math-display"><!--l. 276--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="block" ><mrow
>
<mfrac><mrow
><mn>3</mn><mspace width="0.3em" class="thinspace"/><mstyle
class="text"><mtext >hobbit</mtext></mstyle><mspace width="0.3em" class="thinspace"/><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow>
<mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow></mfrac> <mo
class="MathClass-punc">,</mo> <mfrac><mrow
><mn>4</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>3</mn></mrow></msup
><mspace width="0.3em" class="thinspace"/><mstyle
class="text"><mtext >hobbit</mtext></mstyle></mrow>
<mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow></mfrac>
</mrow></math></div>
<!--l. 279--><p class="nopar" >
</p><!--l. 281--><p class="noindent" >You want to trade your eight <!--l. 281--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>8</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>4</mn></mrow></msup
></math>
for some <!--l. 281--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><msup><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
></math>
in exchange. You perform the following calculation to determine the
conversion:
</p>
<div class="math-display"><!--l. 284--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="block" ><mrow
>
<mfrac><mrow
><mn>8</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>4</mn></mrow></msup
></mrow>
<mrow
><mn>1</mn></mrow></mfrac> <mo
class="MathClass-bin">×</mo> <mfrac><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow>
<mrow
><mn>4</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>3</mn></mrow></msup
><mspace width="0.3em" class="thinspace"/><mstyle
class="text"><mtext >hobbit</mtext></mstyle></mrow></mfrac> <mo
class="MathClass-bin">×</mo><mfrac><mrow
><mn>3</mn><mspace width="0.3em" class="thinspace"/><mstyle
class="text"><mtext >hobbit</mtext></mstyle><mspace width="0.3em" class="thinspace"/><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow>
<mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow></mfrac> <mo
class="MathClass-rel">=</mo> <mn>6</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
>
</mrow></math></div>
<!--l. 289--><p class="nopar" > The merchant disagrees, presenting his own calculation:
</p>
<div class="math-display"><!--l. 291--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="block" ><mrow
>
<mfrac><mrow
><mn>8</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>4</mn></mrow></msup
></mrow>
<mrow
><mn>1</mn></mrow></mfrac> <mo
class="MathClass-bin">×</mo> <mfrac><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow>
<mrow
><mn>2</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
></mrow></mfrac> <mo
class="MathClass-bin">×</mo> <mfrac><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow>
<mrow
><mn>2</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >wizard</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
></mrow></mfrac> <mo
class="MathClass-rel">=</mo> <mn>2</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
>
</mrow></math></div>
<!--l. 296--><p class="nopar" >
</p><!--l. 299--><p class="indent" >
</p><dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem">Has dimensional analysis failed? If not, explain what has gone wrong.
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem">Using the premise <!--l. 302--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>6</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
> <mo
class="MathClass-rel">=</mo> <mn>2</mn><mspace width="0.3em" class="thinspace"/><msup><mrow
><mstyle
class="text"><mtext >elf</mtext></mstyle></mrow><mrow
><mn>2</mn></mrow></msup
></math>,
prove that <!--l. 303--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>0</mn> <mo
class="MathClass-rel">=</mo> <mn>1</mn></math>.
</dd><dt class="enumerate-enumitem">
(c) </dt><dd
class="enumerate-enumitem">Using what you know about solving linear equations, as well as Buckingham’s
<!--l. 306--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>Π</mi></math>
Theorem, propose a method by which a set of conversion factors can
be ‘audited’ to ensure that <em>no</em> such contradictions can arise.
</dd><dt class="enumerate-enumitem">
(d) </dt><dd
class="enumerate-enumitem">Use your method to prove that the SI system is consistent. This should
be reassuring.
</dd></dl>
</dd><dt class="enumerate-enumitem">
8. </dt><dd
class="enumerate-enumitem"><strong>Ammonium nitrite</strong> is known to be highly unstable in its pure form.
I propose that it decomposes according to the following equation:
<!--l. 319--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mstyle
class="text"><mtext >NH</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >4</mtext></mstyle><mstyle
class="text"><mtext >NO</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >2</mtext></mstyle></math><!--l. 319--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mo
class="MathClass-rel"> →</mo></math><!--l. 319--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mstyle
class="text"><mtext >NO</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >3</mtext></mstyle></math><!--l. 319--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" > <mo
class="MathClass-bin">+</mo></math><!--l. 319--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mstyle
class="text"><mtext >H</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >2</mtext></mstyle><mstyle
class="text"><mtext >O</mtext></mstyle></math>.
<!--l. 322--><p class="indent" >
</p><dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem">Using techniques from this paper, give a <em>purely mathematical</em> argument
that this reaction does not occur in nature. Is it surprising that you can
predict the non-existence of a reaction without knowing anything about
the compounds involved?
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem">Dilute <strong>acetic acid</strong>, <!--l. 327--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mstyle
class="text"><mtext >CH</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >3</mtext></mstyle><mstyle
class="text"><mtext >COOH</mtext></mstyle></math>,
is the main ingredient in vinegar. Your friend is convinced that he
has found a catalyst that lets him synthesize acetic acid from water,
<!--l. 329--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mstyle
class="text"><mtext >H</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >2</mtext></mstyle><mstyle
class="text"><mtext >O</mtext></mstyle></math>,
and methane, <!--l. 330--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mstyle
class="text"><mtext >CH</mtext></mstyle> <mstyle
class="text"><mtext ></mtext></mstyle> <mstyle
class="text"><mtext >4</mtext></mstyle></math>,
without producing any byproducts. You do not believe him. He insists
that it must be possible because ‘all the atoms are there’. What is wrong
with his argument?
</dd><dt class="enumerate-enumitem">
(c) </dt><dd
class="enumerate-enumitem"><em>Derive and explain a process by which you can balance any (possible)
chemical equation without any ‘guess and check’. If you know how,
write a program to do it.</em>
</dd></dl>
</dd></dl>
<!--l. 1--><p class="noindent" >
</p>
<h3 class="likesectionHead"><a
id="x1-3000"></a>References</h3>
<!--l. 1--><p class="noindent" >
</p><div class="thebibliography">
<p class="bibitem" ><span class="biblabel">
[1]<span class="bibsp"> </span></span><a
id="Xmars"></a>Mars climate orbiter mishap investigation board phase I report, 1999.
</p>
<p class="bibitem" ><span class="biblabel">
[2]<span class="bibsp"> </span></span><a
id="Xbatchelor"></a>Batchelor, G. The Life and Legacy of G. I. Taylor. 1996.
</p>
<p class="bibitem" ><span class="biblabel">
[3]<span class="bibsp"> </span></span><a
id="Xbridgman"></a>Bridgman, P. Dimensional Analysis. 1931.
</p>
<p class="bibitem" ><span class="biblabel">
[4]<span class="bibsp"> </span></span><a
id="Xbuckingham"></a>Buckingham, E. On physically similar systems; illustrations of the use
of dimensional equations. Phys. Rev. 4 (Oct 1914), 345–376.
</p>
<p class="bibitem" ><span class="biblabel">
[5]<span class="bibsp"> </span></span><a
id="Xfrink"></a>Eliasen, A. Frink.
</p>
<p class="bibitem" ><span class="biblabel">
[6]<span class="bibsp"> </span></span><a
id="Xfeynman"></a>Feynman, R. QED: The Strange Theory of Light and Matter. 1985.
</p>
<p class="bibitem" ><span class="biblabel">
[7]<span class="bibsp"> </span></span><a
id="Xxkcd"></a>Munroe, R. What If? 2014.
</p>
<p class="bibitem" ><span class="biblabel">
[8]<span class="bibsp"> </span></span><a
id="Xmeditation"></a>Pienaar, J. A meditation on physical units, 2016.
</p>
<p class="bibitem" ><span class="biblabel">
[9]<span class="bibsp"> </span></span><a
id="Xrayleigh"></a>Rayleigh, J. W. S. On the question of the stability of the flow of fluids.
Philosophical Magazine 4 (1892), 59–70.
</p>
<p class="bibitem" ><span class="biblabel">
[10]<span class="bibsp"> </span></span><a
id="Xvoyager"></a>Sagan, C. Murmurs of Earth. 1978.
</p>
<p class="bibitem" ><span class="biblabel">
[11]<span class="bibsp"> </span></span><a
id="Xsonin"></a>Sonin, A. A. The Physical Basis of Dimensional Analysis. 2001.
</p>
<p class="bibitem" ><span class="biblabel">
[12]<span class="bibsp"> </span></span><a
id="Xmagnacarta"></a>Summerson, H. The 1215 magna carta: Clause 35.
</p>
<p class="bibitem" ><span class="biblabel">
[13]<span class="bibsp"> </span></span><a
id="Xtaylor"></a>Taylor, G. I. The formation of a blast wave by a very intense
explosion. II. the atomic explosion of 1945. Proceedings of the Royal Society
of London 201, 1065 (1950), 175–186.
</p>
<p class="bibitem" ><span class="biblabel">
[14]<span class="bibsp"> </span></span><a
id="Xpythagoras"></a>Torczynski, J. R. Dimensional analysis and calculus identities. The
American Mathematical Monthly 95, 8 (1988), 746–754.
</p>
</div>
<div class="footnotes"><!--l. 64--><p class="indent" > <span class="footnote-mark"><a
href="#fn1x0-bk" id="fn1x0"><sup class="textsuperscript">∗</sup></a></span>There have in fact been efforts to standardize units based on fundamental physical constants like
the speed of light in vacuum: such units are called ‘natural units’.</p>
<!--l. 160--><p class="noindent" ><span class="footnote-mark"><a
href="#fn2x0-bk" id="fn2x0"><sup class="textsuperscript">†</sup></a></span>This problem was suggested by my friend David.</p>
<!--l. 174--><p class="noindent" ><span class="footnote-mark"><a
href="#fn3x0-bk" id="fn3x0"><sup class="textsuperscript">‡</sup></a></span>To prevent such software errors, programming languages such as <span class="cite"> [<a
href="#Xfrink">5</a>]</span> ‘remember’ the units associated
with a number and enforce that certain operations only happen on commensurable values. This generalizes
to non-unit-like data types as well (for example, preventing you from dividing a number by an image, which
makes no sense).</p>
<!--l. 191--><p class="noindent" ><span class="footnote-mark"><a
href="#fn4x0-bk" id="fn4x0"><sup class="textsuperscript">§</sup></a></span>You might have noticed that the number 6.28 is roughly <!--l. 191--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mn>2</mn><mo
class="MathClass-bin">×</mo><mi
>π</mi></math>.
Using some basic physics, we can explain why <!--l. 191--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>π</mi></math>
is involved.</p>
<!--l. 203--><p class="noindent" ><span class="footnote-mark"><a
href="#fn5x0-bk" id="fn5x0"><sup class="textsuperscript">¶</sup></a></span>The idea had actually been around for almost 50 years before Buckingham published his
1914 paper about it. In particular, Rayleigh’s use of dimensional analysis to calculate the
Reynolds number—an important constant used to study the motion of fluid in a pipe—was
published in 1892 <span class="cite"> [<a
href="#Xrayleigh">9</a>]</span> and is now a classic textbook example. Buckingham’s use of the
<!--l. 203--><math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" ><mi
>Π</mi></math>
symbol in this paper is what gives the theorem its name.</p>
<!--l. 216--><p class="noindent" ><span class="footnote-mark"><a
href="#fn6x0-bk" id="fn6x0"><sup class="textsuperscript">∥</sup></a></span>Such a model is said to have <em>similitude</em> with the real version.</p>
<!--l. 254--><p class="noindent" ><span class="footnote-mark"><a
href="#fn7x0-bk" id="fn7x0"><sup class="textsuperscript">∗∗</sup></a></span>Hunting for pictures is part of the fun, but if you get stuck, here are two hints:
</p><dl class="enumerate-enumitem"><dt class="enumerate-enumitem">
(a) </dt><dd
class="enumerate-enumitem"><a
href="https://commons.wikimedia.org/wiki/Category:Trinity_test" class="url" >https://commons.wikimedia.org/wiki/Category:Trinity_test</a>and
</dd><dt class="enumerate-enumitem">
(b) </dt><dd
class="enumerate-enumitem"><a
href="http://blog.nuclearsecrecy.com/wp-content/uploads/2012/03/TR-NN-11.jpg" class="url" >http://blog.nuclearsecrecy.com/wp-content/uploads/2012/03/TR-NN-11.jpg</a></dd></dl>
<!--l. 254--><p class="noindent" >All these images are in the public domain since they were taken as part of a federal government
program.</p> </div>
</section>
<div id="comment-breaker">◊ ◊ ◊</div>
</article>
<footer id="footer">
<div>
<ul>
<li><a href="https://github.com/kach">
Github</a></li>
<li><a href="feed.xml">
Subscribe (RSS feed)</a></li>
<li><a href="https://twitter.com/hardmath123">
Twitter</a></li>
<li><a href="https://creativecommons.org/licenses/by-nc/3.0/deed.en_US">
CC BY-NC 3.0</a></li>
</ul>
</div>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-46120535-1', 'hardmath123.github.io');
ga('require', 'displayfeatures');
ga('send', 'pageview');
</script>
</footer>
</body>
</html>