forked from lhoyer/DAFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdacs.py
370 lines (328 loc) · 15.2 KB
/
dacs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# The ema model and the domain-mixing are based on:
# https://github.com/vikolss/DACS
import math
import os
import random
from copy import deepcopy
import mmcv
import numpy as np
import torch
from matplotlib import pyplot as plt
from timm.models.layers import DropPath
from torch.nn.modules.dropout import _DropoutNd
from mmseg.core import add_prefix
from mmseg.models import UDA, build_segmentor
from mmseg.models.uda.uda_decorator import UDADecorator, get_module
from mmseg.models.utils.dacs_transforms import (denorm, get_class_masks,
get_mean_std, strong_transform)
from mmseg.models.utils.visualization import subplotimg
from mmseg.utils.utils import downscale_label_ratio
def _params_equal(ema_model, model):
for ema_param, param in zip(ema_model.named_parameters(),
model.named_parameters()):
if not torch.equal(ema_param[1].data, param[1].data):
# print("Difference in", ema_param[0])
return False
return True
def calc_grad_magnitude(grads, norm_type=2.0):
norm_type = float(norm_type)
if norm_type == math.inf:
norm = max(p.abs().max() for p in grads)
else:
norm = torch.norm(
torch.stack([torch.norm(p, norm_type) for p in grads]), norm_type)
return norm
@UDA.register_module()
class DACS(UDADecorator):
def __init__(self, **cfg):
super(DACS, self).__init__(**cfg)
self.local_iter = 0
self.max_iters = cfg['max_iters']
self.alpha = cfg['alpha']
self.pseudo_threshold = cfg['pseudo_threshold']
self.psweight_ignore_top = cfg['pseudo_weight_ignore_top']
self.psweight_ignore_bottom = cfg['pseudo_weight_ignore_bottom']
self.fdist_lambda = cfg['imnet_feature_dist_lambda']
self.fdist_classes = cfg['imnet_feature_dist_classes']
self.fdist_scale_min_ratio = cfg['imnet_feature_dist_scale_min_ratio']
self.enable_fdist = self.fdist_lambda > 0
self.mix = cfg['mix']
self.blur = cfg['blur']
self.color_jitter_s = cfg['color_jitter_strength']
self.color_jitter_p = cfg['color_jitter_probability']
self.debug_img_interval = cfg['debug_img_interval']
self.print_grad_magnitude = cfg['print_grad_magnitude']
assert self.mix == 'class'
self.debug_fdist_mask = None
self.debug_gt_rescale = None
self.class_probs = {}
ema_cfg = deepcopy(cfg['model'])
self.ema_model = build_segmentor(ema_cfg)
if self.enable_fdist:
self.imnet_model = build_segmentor(deepcopy(cfg['model']))
else:
self.imnet_model = None
def get_ema_model(self):
return get_module(self.ema_model)
def get_imnet_model(self):
return get_module(self.imnet_model)
def _init_ema_weights(self):
for param in self.get_ema_model().parameters():
param.detach_()
mp = list(self.get_model().parameters())
mcp = list(self.get_ema_model().parameters())
for i in range(0, len(mp)):
if not mcp[i].data.shape: # scalar tensor
mcp[i].data = mp[i].data.clone()
else:
mcp[i].data[:] = mp[i].data[:].clone()
def _update_ema(self, iter):
alpha_teacher = min(1 - 1 / (iter + 1), self.alpha)
for ema_param, param in zip(self.get_ema_model().parameters(),
self.get_model().parameters()):
if not param.data.shape: # scalar tensor
ema_param.data = \
alpha_teacher * ema_param.data + \
(1 - alpha_teacher) * param.data
else:
ema_param.data[:] = \
alpha_teacher * ema_param[:].data[:] + \
(1 - alpha_teacher) * param[:].data[:]
def train_step(self, data_batch, optimizer, **kwargs):
"""The iteration step during training.
This method defines an iteration step during training, except for the
back propagation and optimizer updating, which are done in an optimizer
hook. Note that in some complicated cases or models, the whole process
including back propagation and optimizer updating is also defined in
this method, such as GAN.
Args:
data (dict): The output of dataloader.
optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
runner is passed to ``train_step()``. This argument is unused
and reserved.
Returns:
dict: It should contain at least 3 keys: ``loss``, ``log_vars``,
``num_samples``.
``loss`` is a tensor for back propagation, which can be a
weighted sum of multiple losses.
``log_vars`` contains all the variables to be sent to the
logger.
``num_samples`` indicates the batch size (when the model is
DDP, it means the batch size on each GPU), which is used for
averaging the logs.
"""
optimizer.zero_grad()
log_vars = self(**data_batch)
optimizer.step()
log_vars.pop('loss', None) # remove the unnecessary 'loss'
outputs = dict(
log_vars=log_vars, num_samples=len(data_batch['img_metas']))
return outputs
def masked_feat_dist(self, f1, f2, mask=None):
feat_diff = f1 - f2
# mmcv.print_log(f'fdiff: {feat_diff.shape}', 'mmseg')
pw_feat_dist = torch.norm(feat_diff, dim=1, p=2)
# mmcv.print_log(f'pw_fdist: {pw_feat_dist.shape}', 'mmseg')
if mask is not None:
# mmcv.print_log(f'fd mask: {mask.shape}', 'mmseg')
pw_feat_dist = pw_feat_dist[mask.squeeze(1)]
# mmcv.print_log(f'fd masked: {pw_feat_dist.shape}', 'mmseg')
return torch.mean(pw_feat_dist)
def calc_feat_dist(self, img, gt, feat=None):
assert self.enable_fdist
with torch.no_grad():
self.get_imnet_model().eval()
feat_imnet = self.get_imnet_model().extract_feat(img)
feat_imnet = [f.detach() for f in feat_imnet]
lay = -1
if self.fdist_classes is not None:
fdclasses = torch.tensor(self.fdist_classes, device=gt.device)
scale_factor = gt.shape[-1] // feat[lay].shape[-1]
gt_rescaled = downscale_label_ratio(gt, scale_factor,
self.fdist_scale_min_ratio,
self.num_classes,
255).long().detach()
fdist_mask = torch.any(gt_rescaled[..., None] == fdclasses, -1)
feat_dist = self.masked_feat_dist(feat[lay], feat_imnet[lay],
fdist_mask)
self.debug_fdist_mask = fdist_mask
self.debug_gt_rescale = gt_rescaled
else:
feat_dist = self.masked_feat_dist(feat[lay], feat_imnet[lay])
feat_dist = self.fdist_lambda * feat_dist
feat_loss, feat_log = self._parse_losses(
{'loss_imnet_feat_dist': feat_dist})
feat_log.pop('loss', None)
return feat_loss, feat_log
def forward_train(self, img, img_metas, gt_semantic_seg, target_img,
target_img_metas):
"""Forward function for training.
Args:
img (Tensor): Input images.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:Collect`.
gt_semantic_seg (Tensor): Semantic segmentation masks
used if the architecture supports semantic segmentation task.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
log_vars = {}
batch_size = img.shape[0]
dev = img.device
# Init/update ema model
if self.local_iter == 0:
self._init_ema_weights()
# assert _params_equal(self.get_ema_model(), self.get_model())
if self.local_iter > 0:
self._update_ema(self.local_iter)
# assert not _params_equal(self.get_ema_model(), self.get_model())
# assert self.get_ema_model().training
means, stds = get_mean_std(img_metas, dev)
strong_parameters = {
'mix': None,
'color_jitter': random.uniform(0, 1),
'color_jitter_s': self.color_jitter_s,
'color_jitter_p': self.color_jitter_p,
'blur': random.uniform(0, 1) if self.blur else 0,
'mean': means[0].unsqueeze(0), # assume same normalization
'std': stds[0].unsqueeze(0)
}
# Train on source images
clean_losses = self.get_model().forward_train(
img, img_metas, gt_semantic_seg, return_feat=True)
src_feat = clean_losses.pop('features')
clean_loss, clean_log_vars = self._parse_losses(clean_losses)
log_vars.update(clean_log_vars)
clean_loss.backward(retain_graph=self.enable_fdist)
if self.print_grad_magnitude:
params = self.get_model().backbone.parameters()
seg_grads = [
p.grad.detach().clone() for p in params if p.grad is not None
]
grad_mag = calc_grad_magnitude(seg_grads)
mmcv.print_log(f'Seg. Grad.: {grad_mag}', 'mmseg')
# ImageNet feature distance
if self.enable_fdist:
feat_loss, feat_log = self.calc_feat_dist(img, gt_semantic_seg,
src_feat)
feat_loss.backward()
log_vars.update(add_prefix(feat_log, 'src'))
if self.print_grad_magnitude:
params = self.get_model().backbone.parameters()
fd_grads = [
p.grad.detach() for p in params if p.grad is not None
]
fd_grads = [g2 - g1 for g1, g2 in zip(seg_grads, fd_grads)]
grad_mag = calc_grad_magnitude(fd_grads)
mmcv.print_log(f'Fdist Grad.: {grad_mag}', 'mmseg')
# Generate pseudo-label
for m in self.get_ema_model().modules():
if isinstance(m, _DropoutNd):
m.training = False
if isinstance(m, DropPath):
m.training = False
ema_logits = self.get_ema_model().encode_decode(
target_img, target_img_metas)
ema_softmax = torch.softmax(ema_logits.detach(), dim=1)
pseudo_prob, pseudo_label = torch.max(ema_softmax, dim=1)
ps_large_p = pseudo_prob.ge(self.pseudo_threshold).long() == 1
ps_size = np.size(np.array(pseudo_label.cpu()))
pseudo_weight = torch.sum(ps_large_p).item() / ps_size
pseudo_weight = pseudo_weight * torch.ones(
pseudo_prob.shape, device=dev)
if self.psweight_ignore_top > 0:
# Don't trust pseudo-labels in regions with potential
# rectification artifacts. This can lead to a pseudo-label
# drift from sky towards building or traffic light.
pseudo_weight[:, :self.psweight_ignore_top, :] = 0
if self.psweight_ignore_bottom > 0:
pseudo_weight[:, -self.psweight_ignore_bottom:, :] = 0
gt_pixel_weight = torch.ones((pseudo_weight.shape), device=dev)
# Apply mixing
mixed_img, mixed_lbl = [None] * batch_size, [None] * batch_size
mix_masks = get_class_masks(gt_semantic_seg)
for i in range(batch_size):
strong_parameters['mix'] = mix_masks[i]
mixed_img[i], mixed_lbl[i] = strong_transform(
strong_parameters,
data=torch.stack((img[i], target_img[i])),
target=torch.stack((gt_semantic_seg[i][0], pseudo_label[i])))
_, pseudo_weight[i] = strong_transform(
strong_parameters,
target=torch.stack((gt_pixel_weight[i], pseudo_weight[i])))
mixed_img = torch.cat(mixed_img)
mixed_lbl = torch.cat(mixed_lbl)
# Train on mixed images
mix_losses = self.get_model().forward_train(
mixed_img, img_metas, mixed_lbl, pseudo_weight, return_feat=True)
mix_losses.pop('features')
mix_losses = add_prefix(mix_losses, 'mix')
mix_loss, mix_log_vars = self._parse_losses(mix_losses)
log_vars.update(mix_log_vars)
mix_loss.backward()
if self.local_iter % self.debug_img_interval == 0:
out_dir = os.path.join(self.train_cfg['work_dir'],
'class_mix_debug')
os.makedirs(out_dir, exist_ok=True)
vis_img = torch.clamp(denorm(img, means, stds), 0, 1)
vis_trg_img = torch.clamp(denorm(target_img, means, stds), 0, 1)
vis_mixed_img = torch.clamp(denorm(mixed_img, means, stds), 0, 1)
for j in range(batch_size):
rows, cols = 2, 5
fig, axs = plt.subplots(
rows,
cols,
figsize=(3 * cols, 3 * rows),
gridspec_kw={
'hspace': 0.1,
'wspace': 0,
'top': 0.95,
'bottom': 0,
'right': 1,
'left': 0
},
)
subplotimg(axs[0][0], vis_img[j], 'Source Image')
subplotimg(axs[1][0], vis_trg_img[j], 'Target Image')
subplotimg(
axs[0][1],
gt_semantic_seg[j],
'Source Seg GT',
cmap='cityscapes')
subplotimg(
axs[1][1],
pseudo_label[j],
'Target Seg (Pseudo) GT',
cmap='cityscapes')
subplotimg(axs[0][2], vis_mixed_img[j], 'Mixed Image')
subplotimg(
axs[1][2], mix_masks[j][0], 'Domain Mask', cmap='gray')
# subplotimg(axs[0][3], pred_u_s[j], "Seg Pred",
# cmap="cityscapes")
subplotimg(
axs[1][3], mixed_lbl[j], 'Seg Targ', cmap='cityscapes')
subplotimg(
axs[0][3], pseudo_weight[j], 'Pseudo W.', vmin=0, vmax=1)
if self.debug_fdist_mask is not None:
subplotimg(
axs[0][4],
self.debug_fdist_mask[j][0],
'FDist Mask',
cmap='gray')
if self.debug_gt_rescale is not None:
subplotimg(
axs[1][4],
self.debug_gt_rescale[j],
'Scaled GT',
cmap='cityscapes')
for ax in axs.flat:
ax.axis('off')
plt.savefig(
os.path.join(out_dir,
f'{(self.local_iter + 1):06d}_{j}.png'))
plt.close()
self.local_iter += 1
return log_vars