Skip to content

Latest commit

 

History

History
68 lines (57 loc) · 2.69 KB

File metadata and controls

68 lines (57 loc) · 2.69 KB

Finetuning RoBERTa on RACE tasks

1) Download the data from RACE website (http://www.cs.cmu.edu/~glai1/data/race/)

2) Preprocess RACE data:

python ./examples/roberta/preprocess_RACE.py --input-dir <input-dir> --output-dir <extracted-data-dir>
./examples/roberta/preprocess_RACE.sh <extracted-data-dir> <output-dir>

3) Fine-tuning on RACE:

MAX_EPOCH=5           # Number of training epochs.
LR=1e-05              # Peak LR for fixed LR scheduler.
NUM_CLASSES=4
MAX_SENTENCES=1       # Batch size per GPU.
UPDATE_FREQ=8         # Accumulate gradients to simulate training on 8 GPUs.
DATA_DIR=/path/to/race-output-dir
ROBERTA_PATH=/path/to/roberta/model.pt

CUDA_VISIBLE_DEVICES=0,1 fairseq-train $DATA_DIR --ddp-backend=legacy_ddp \
    --restore-file $ROBERTA_PATH \
    --reset-optimizer --reset-dataloader --reset-meters \
    --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
    --task sentence_ranking \
    --num-classes $NUM_CLASSES \
    --init-token 0 --separator-token 2 \
    --max-option-length 128 \
    --max-positions 512 \
    --shorten-method "truncate" \
    --arch roberta_large \
    --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
    --criterion sentence_ranking \
    --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \
    --clip-norm 0.0 \
    --lr-scheduler fixed --lr $LR \
    --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
    --batch-size $MAX_SENTENCES \
    --required-batch-size-multiple 1 \
    --update-freq $UPDATE_FREQ \
    --max-epoch $MAX_EPOCH

Note:

a) As contexts in RACE are relatively long, we are using smaller batch size per GPU while increasing update-freq to achieve larger effective batch size.

b) Above cmd-args and hyperparams are tested on one Nvidia V100 GPU with 32gb of memory for each task. Depending on the GPU memory resources available to you, you can use increase --update-freq and reduce --batch-size.

c) The setting in above command is based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search.

4) Evaluation:

DATA_DIR=/path/to/race-output-dir       # data directory used during training
MODEL_PATH=/path/to/checkpoint_best.pt  # path to the finetuned model checkpoint
PREDS_OUT=preds.tsv                     # output file path to save prediction
TEST_SPLIT=test                         # can be test (Middle) or test1 (High)
fairseq-validate \
    $DATA_DIR \
    --valid-subset $TEST_SPLIT \
    --path $MODEL_PATH \
    --batch-size 1 \
    --task sentence_ranking \
    --criterion sentence_ranking \
    --save-predictions $PREDS_OUT