forked from mxxgkz/IKPCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ini_options.m
46 lines (43 loc) · 1.74 KB
/
ini_options.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function [options] = ini_options()
%%
% Initialize parameters in the run_alg.m
% options.N: sample size
% options.p: dimension of variation sources
% options.dd: the translation of text besides a data point in scatter plot
% options.psize: the size of marker in scatter plot
% options.sigma_alg: the sigma in algorithm (Gaussian Kernel)
% options.sigma_nois: the sigma of nois in algorithm when projecting kernel
% matrix
% options.pct: the threshold percentage of variation in PCA on observations
% X
% options.pc1,pc2,pc3: the index of three principle components
% options.az: azthmuthal angle of the view
% options.el: elevation angle of the view
% options.sigma_data: the sigma used to generate data set (images of
% Gaussian profiles)
% options.l: length of images
% options.esp: the tolerance of norm of difference in Z between two
% consecutive iteration
% options.max_iter: maximum iteration number
%%
% Parameters for generating data
options.N = 200; %Number of data points
options.l = 8;
options.p = 2; %Dimension of variation sources
options.sigma_data = 10;
options.sigma_nois = 0.0; %Standard Variation of noise
% Parameters for running the algorithm
options.sigma_alg = 0.25;
options.max_iter = 50;
options.esp = 1e-4; %Tolerance for convergence
% Parameters for storing and plotting data
options.cwd = '/Users/kungangzhang/Documents/OneDrive/Northwestern/Study/Courses/Independent Study/20160907-Implement-5-step-alg/figures/';
options.pct = 0.9999; %the percentage of threhold eigen-values
options.pc1 = 1; %The index of the first component to be plotted
options.pc2 = 2;
options.pc3 = 3;
options.az = 30;
options.el = 25;
options.dd = 0.02;
options.psize = 30;
end