-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
86 lines (69 loc) · 3.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!python2
from __future__ import print_function # Python 2/3 compatibility
import cv2 # Import the OpenCV library
import numpy as np # Import Numpy library
import aruco_tracker as my_aruco
#import motor_control as motor_control # Can only be run on an RPi due to the need for the RPi.GPIO library
import controller as controller
import sys
print(sys.version)
def main():
#motor_control.setup_motors()
# Check that we have a valid ArUco marker
my_aruco.check_aruco_validity()
# Load the ArUco dictionary
this_aruco_dictionary, this_aruco_parameters = my_aruco.load_aruco_dictionary()
# Load camera calibration parameters
npzfile = np.load('cali_values.npz')
camera_matrix = npzfile['mtx']
distortion = npzfile['dist']
ret = npzfile['ret']
#rvecs = npzfile['rvecs']
#tvecs = npzfile['tvecs']
rvecs = None
tvecs = None
_objPoints = None
# Create a VideoCapture object
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
# This method returns True/False as well
# as the video frame.
ret, frame = cap.read()
img = cv2.undistort(frame, camera_matrix, distortion)
# Detect ArUco markers in the video frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(img, this_aruco_dictionary, parameters=this_aruco_parameters)
rvec, tvec, markerPoints = cv2.aruco.estimatePoseSingleMarkers(corners, my_aruco.ARUCO_SIZE, camera_matrix, distortion)
# Check that at least one ArUco marker was detected
if len(corners) > 0:
cv2.aruco.drawDetectedMarkers(img, corners, ids)
rvec, tvec, markerPoints = cv2.aruco.estimatePoseSingleMarkers(corners, my_aruco.ARUCO_SIZE, camera_matrix, distortion)
# rvecs is a compact Rodrigues rotation vector so I need to convert it to euler angles form
rotation_matrix, _ = cv2.Rodrigues(rvec)
rotation_matrix = np.asmatrix(rotation_matrix)
#Changing coordinates frame from ar tag to camera frame by rotating X axis of ar tag frame by pi rads
rot_x = np.array([
[1, 0, 0],
[0, np.cos(np.pi), -np.sin(np.pi)],
[0, np.sin(np.pi), np.cos(np.pi)]
])
rotation_matrix = np.dot(rot_x, rotation_matrix)
current_attitude = controller.get_euler_anles_from_rotation_matrix(rotation_matrix)
#for i in range(len(ids)):
# img = cv2.aruco.drawAxis(img, camera_matrix, distortion, rvec[i], tvec[i], 0.05)
# Display the resulting frame
#cv2.imshow('img',img)
# Computing control values of the feedback chain (Only if one aruco marker was found)
force, torque = controller.compute_force_and_torque(tvec[0][0], current_attitude)
pwm_control = controller.compute_pwm_control(force, torque)
#motor_control.write_pwm(pwm_control)
# If "q" is pressed on the keyboard,
# exit this loop
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Close down the video stream
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
print(__doc__)
main()