-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller.py
136 lines (114 loc) · 7.35 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Uses the same dynamics as the 6Dof (just a reduced state) and different model to compute Force and Torque because there are only 3 blades
# Receive user input for the objective position and attitude (later on will be received from a subscriber to pose of aruco pkg)
# Computes the necessary rotations per second on each of ACROBAT's blades to reach that position and attitude
# Based on 2 papers:
# - "A multi-objective optimization approach to the design of a free-flyer space robot for in-orbit manufacturing and assembly" by Vale, Rocha, Leite and Ventura
# - "Towards an autonomous free-flying robot fleet for intra-vehicular trasnportation of loads in unmanned space stations" by Ventura, Roque and Ekal
#!python2
import numpy as np # Import Numpy library
import math
import sys
def get_rotation_matrix_from_euler_angles(euler_angles):
x = euler_angles[0]
y = euler_angles[1]
z = euler_angles[2]
return np.array([
[np.cos(y)*np.cos(x) , -np.cos(z)*np.sin(x)+np.sin(z)*np.cos(x)*np.sin(y) , np.sin(z)*np.sin(x)+np.cos(z)*np.sin(y)*np.cos(x)], #TODO(): Double check if it's correct
[np.cos(y)*np.sin(x) , np.cos(z)*np.cos(x)+np.sin(z)*np.sin(y)*np.sin(x) , -np.sin(z)*np.cos(x)+np.cos(z)*np.sin(y)*np.sin(x)],
[-np.sin(y) , np.sin(z)*np.cos(y) , np.cos(z)*np.cos(y)]
])
# Calculates rotation matrix to euler angles
def get_euler_anles_from_rotation_matrix(R) :
sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
singular = sy < 1e-6
if not singular :
x = math.atan2(R[2,1] , R[2,2])
y = math.atan2(-R[2,0], sy)
z = math.atan2(R[1,0], R[0,0])
else :
x = math.atan2(-R[1,2], R[1,1])
y = math.atan2(-R[2,0], sy)
z = 0
return np.array([x, y, z])
FREE_FLYER_MASS = 0.340 # Kg, Random testing value... Still have to search for the exact mass of the ACROBAT
FREE_FLYER_MOMENT_OF_INERTIA = np.array((0.1348056, 0.1902704, 0.1435024)) # Kg.m^2 ... Still have to search for exact moment of inertia vector of the ACROBAT
FREE_FLYER_BLADE_MAX_RPS = 568 # ACROBAT propellers rotations per second
# The aruco library estimates the position of the tag relative to the camera, where the tag's coordinate system has z pointing towards us and Y up, X right
# Meaning we want the robot to be 30cm in front of the tag == 30cm in the Z axis of tag
DESIRED_POSITION = np.array((0, 0, 0.2)) # To be 10cm in front of the AR tag
DESIRED_LINEAR_VELOCITY = np.array((0, 0, 0)) # We want the robot to be stopped in the end
DESIRED_ATTITUDE = np.array((0, 0, 0)) # To be aligned with the AR tag TODO: This might have be confirmed... don't known if this will make the front of the robot face backwards
DESIRED_ROTATION_MATRIX = get_rotation_matrix_from_euler_angles(DESIRED_ATTITUDE)
DESIRED_ANGULAR_VELOCITY = np.array((0, 0, 0)) # We want the robot to be stopped in the end
DESIRED_ANGULAR_ACCELERATION = np.array((0, 0, 0))
# Controller Gains TODO: Need to be calibrated
K_x = 4 # Controller Proportional Gain (Translational part)
K_v = 0.1 # Controller Derivative Gain (Translational part)
K_r = 2 # Controller Porportional Gains (Rotational part)
K_w = 0.1 # Controller Derivative Gain (Rotational part)
# Check with the real ACROBAT what are the blade indexes that exist
# a1 = np.array((-0.02219657522, 0.01859006027, 0.01279597757, -0.01859006027, -0.03499255279, 0.01859006027)).T
# a2 = np.array((0.00023789747, 0.01859006027, 0.01279597757, 0.0191789862, 0.0004043464, -0.00083633887)).T
# a3 = np.array((0.01079543949, 0.9998789634, 0.01079611706, 0.9979681394, -0.00933602561, -0.1332524502)).T
# a4 = np.array((0.7653778177, 0.01913843278, 0.9996875163, -0.03321824755, -0.0134563338, 0.02569007069)).T
# a5 = np.array((-0.001067244345, 0.01896885746, -0.05617408802, 0.05638539532, -0.00126732433, -0.00128318081)).T
# a6 = np.array((.9982558165, 0.05796384873, 0.9983184715, -0.01714869459, 0.07147917464, 0.01299743049)).T
#Considering 2 degrees of freedom x, y and rotation z
a1 = np.array((0.2588, -0.9659, 0.8528812)).T
a2 = np.array((-0.9659, 0.2588, -0.85289255)).T
a3 = np.array((0.7071, 0.7071, -0.85290402)).T
A = np.column_stack((a1, a2, a3))
A_inverse = np.linalg.inv(A)
def compute_force_and_torque(current_position, current_attitude):
# ************* Testing values, will be erased later ************* Should be received from IMU (?)
current_linear_velocity = np.array((0, 0, 0))
current_angular_velocity = np.array((0, 0, 0))
# ****************************************************************
attitude_rotation_matrix = get_rotation_matrix_from_euler_angles(current_attitude)
# Translational Part
error_x = current_position - DESIRED_POSITION
error_v = current_linear_velocity - DESIRED_LINEAR_VELOCITY # current_velocity has to be somehow received by the ACROBAT sensors (subscribe to topic)
acceleration = -K_x * error_x - K_v * error_v # K_x and K_v are the proportionate and derivative gains (constants) and error_x and error_v the position and velocity errors
force = np.dot( (FREE_FLYER_MASS * attitude_rotation_matrix), acceleration)
# Rotational Part
inverse_of_S_w = get_inverse_S_w( (np.dot(DESIRED_ROTATION_MATRIX.T, attitude_rotation_matrix) - np.dot(attitude_rotation_matrix.T, DESIRED_ROTATION_MATRIX)) )
error_r = ( 1 / (2*np.sqrt(1 + np.trace( np.dot(DESIRED_ROTATION_MATRIX.T, attitude_rotation_matrix ))) )) * inverse_of_S_w
error_w = current_angular_velocity - np.dot(np.dot( attitude_rotation_matrix.T, DESIRED_ROTATION_MATRIX), DESIRED_ANGULAR_VELOCITY)
S_w_matrix = get_S_w( np.dot( np.dot(attitude_rotation_matrix.T, DESIRED_ROTATION_MATRIX), DESIRED_ANGULAR_VELOCITY ) )
torque = -K_r * error_r - K_w * error_w + np.dot(np.dot(np.dot(np.dot(S_w_matrix, FREE_FLYER_MOMENT_OF_INERTIA), attitude_rotation_matrix.T), DESIRED_ROTATION_MATRIX), DESIRED_ANGULAR_VELOCITY) + np.dot(np.dot(np.dot(FREE_FLYER_MOMENT_OF_INERTIA, attitude_rotation_matrix.T), DESIRED_ROTATION_MATRIX), DESIRED_ANGULAR_ACCELERATION)
force = np.array((force[0], force[2]))
torque = np.array((torque[1]))
return force, torque
# Matrix operations that recovers angular velocity vector from a skew-symmetrix matrix (Check paper)
# S(w) = [0, -w_z, w_y; w_z, 0, -w_x; -w_y, w_x, 0]
def get_inverse_S_w(matrix):
angular_velocity = (matrix[2][1], matrix[0][2], matrix[1][0])
return np.array(angular_velocity)
def get_S_w(vect):
s_matrix = np.array([[0, -vect[2], vect[1]], [vect[2], 0, -vect[0]], [-vect[1], vect[0], 0]])
return s_matrix
# Converts from force and torque to pwm signals to each of the propellers
def compute_pwm_control(force, torque):
input_vect = force
input_vect = np.append(input_vect, torque)
q = np.dot(A_inverse, input_vect)
rpm = forces_to_rpm(q)
q = map_rpm_to_pulsewidth(rpm)
return np.array(q)
# The ACROBAT papers says that F_max = 2 and M_Max = 2
# Pulse = 0 ==> OFF; Pulse = 1000 ==> Safe anti-clockwise
# Pulse = 1500 ==> Centre; Pulse = 2000 ==> Safe clockwise
def map_rpm_to_pulsewidth(rpm_vector):
rpm_vector = rpm_vector
difference = 1000.0
for idx in range(len(rpm_vector)):
rpm_vector[idx] = 1500 + rpm_vector[idx] * difference / 2.0
return rpm_vector
def forces_to_rpm(forces_vector):
rpm_vector = []
for force in forces_vector:
if force < 0:
rpm_vector.append(0.0 - math.sqrt(-force))
else:
rpm_vector.append(math.sqrt(force))
return rpm_vector