-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
60 lines (50 loc) · 2.62 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from dataset import *
from utils import *
from train import *
from test import test_score_acc, predict_image_mask_scoreacc
import argparse
import random
from sklearn.model_selection import train_test_split
from model import UnetResnet34
from torch.utils.data import DataLoader
parser = argparse.ArgumentParser()
config = load_train_config('./config.yaml')
parser.add_argument('--EPOCH', type=int, default=30)
args = parser.parse_args()
globals().update(config)
if __name__ == "__main__":
# test
#split data
df = create_df(DATASET["IMAGE_PATH"])
X_trainval, X_test = train_test_split(df['id'].values, test_size=0.1, random_state=19)
#datasets
test_set = DroneDataset(DATASET["IMAGE_PATH"], DATASET["MASK_PATH"], X_test, datasetType='TEST', transform=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_loader = DataLoader(test_set, batch_size=PARAM["BATCH_SIZE"], shuffle=True)
model = UnetResnet34(num_classes=PARAM["NUM_CLASSES"]).to(device)
min_val_loss = np.Inf
init_lr = PARAM['INITIAL_LR']
optimizer = torch.optim.AdamW(model.parameters(), lr=init_lr, weight_decay=PARAM['WEIGHT_DECAY'])
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, init_lr, epochs=args.EPOCH, steps_per_epoch=len(test_loader))
bestmodel, optimizer, scheduler, min_val_loss = load_checkpoint(f'{DATASET["MODEL_PATH"]}/best.pth', f'{DATASET["MODEL_PATH"]}/checkpoint.pth', model, optimizer, scheduler, best_checkpoint=True)
test_score, test_iou = test_score_acc(bestmodel, device, test_set, mean=PREPROCESS["MEAN"], std=PREPROCESS["STD"])
print(f'Test score: {test_score}, Test IOU: {test_iou}')
rand_selected_img = random.sample(range(len(test_set)), 4)
test_score=[]
rand_selected_img.sort()
print(f'random selected image num: {rand_selected_img}')
for i in rand_selected_img:
image, mask = test_set[i]
masked, score, acc = predict_image_mask_scoreacc(device, model, image, mask, mean=PREPROCESS["MEAN"], std=PREPROCESS["STD"])
image.save(f"{DATASET['PREDICT_PATH']}image_{i}.png")
torch.save(mask,f"{DATASET['PREDICT_PATH']}gt_mask_{i}.pt")
torch.save(masked,f"{DATASET['PREDICT_PATH']}pred_mask_{i}.pt")
test_score.append(score)
for i, num in enumerate(rand_selected_img):
plt.show(block=False)
visualize(
image=Image.open(f'{DATASET["PREDICT_PATH"]}image_{num}.png'),
mask=torch.load(f'{DATASET["PREDICT_PATH"]}gt_mask_{num}.pt'),
pred_mask=torch.load(f'{DATASET["PREDICT_PATH"]}pred_mask_{num}.pt'),
score=test_score[i])
time.sleep(1)