diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 7d1c7d01c..6cecc9fea 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -46,11 +46,11 @@ jobs: - name: pylint check run: | - python -m pylint src/gstools/ + python -m pylint src/gstools_cython/ - name: cython-lint check run: | - cython-lint src/gstools/ + cython-lint src/gstools_cython/ build_wheels: name: wheels for ${{ matrix.os }} @@ -76,7 +76,7 @@ jobs: path: ./dist/*.whl build_sdist: - name: sdist on ${{ matrix.os }} with py ${{ matrix.ver.py }} numpy${{ matrix.ver.np }} scipy${{ matrix.ver.sp }} + name: sdist on ${{ matrix.os }} with py ${{ matrix.ver.py }} numpy${{ matrix.ver.np }} runs-on: ${{ matrix.os }} strategy: fail-fast: false @@ -84,19 +84,19 @@ jobs: os: [ubuntu-latest, windows-latest, macos-13, macos-14] # https://github.com/scipy/oldest-supported-numpy/blob/main/setup.cfg ver: - - {py: '3.8', np: '==1.20.0', sp: '==1.5.4'} - - {py: '3.9', np: '==1.20.0', sp: '==1.5.4'} - - {py: '3.10', np: '==1.21.6', sp: '==1.7.2'} - - {py: '3.11', np: '==1.23.2', sp: '==1.9.2'} - - {py: '3.12', np: '==1.26.2', sp: '==1.11.2'} - - {py: '3.12', np: '>=2.0.0rc1', sp: '>=1.13.0'} + - {py: '3.8', np: '==1.20.0'} + - {py: '3.9', np: '==1.20.0'} + - {py: '3.10', np: '==1.21.6'} + - {py: '3.11', np: '==1.23.2'} + - {py: '3.12', np: '==1.26.2'} + - {py: '3.12', np: '>=2.0.0rc1'} exclude: - os: macos-14 - ver: {py: '3.8', np: '==1.20.0', sp: '==1.5.4'} + ver: {py: '3.8', np: '==1.20.0'} - os: macos-14 - ver: {py: '3.9', np: '==1.20.0', sp: '==1.5.4'} + ver: {py: '3.9', np: '==1.20.0'} - os: macos-14 - ver: {py: '3.10', np: '==1.21.6', sp: '==1.7.2'} + ver: {py: '3.10', np: '==1.21.6'} steps: - uses: actions/checkout@v4 with: @@ -110,21 +110,18 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install build "coveralls>=3.0.0" + pip install build - - name: Install GSTools + - name: Install GSTools-Cython env: GSTOOLS_BUILD_PARALLEL: 1 run: | pip install -v --editable .[test] - name: Run tests - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} run: | - pip install "numpy${{ matrix.ver.np }}" "scipy${{ matrix.ver.sp }}" - python -m pytest --cov gstools --cov-report term-missing -v tests/ - python -m coveralls --service=github + pip install "numpy${{ matrix.ver.np }}" + python -m pytest -v tests/ - name: Build sdist run: | @@ -136,6 +133,39 @@ jobs: with: path: dist/*.tar.gz + coverage: + name: coverage + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v4 + with: + fetch-depth: '0' + + - name: Set up Python 3.9 + uses: actions/setup-python@v5 + with: + python-version: 3.9 + + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install "coveralls>=3.0.0" + + - name: Install GSTools-Cython + env: + GSTOOLS_CY_COV: 1 + run: | + pip install -v --editable .[test] + + - name: Run tests + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} + run: | + pip install "numpy${{ matrix.ver.np }}" + python -m pytest --cov gstools_cython --cov-report term-missing -v tests/ + python -m coveralls --service=github + upload_to_pypi: needs: [build_wheels, build_sdist] runs-on: ubuntu-latest diff --git a/.gitignore b/.gitignore index bcdc980be..5334b8efb 100644 --- a/.gitignore +++ b/.gitignore @@ -112,7 +112,7 @@ info/ *.cpp # generated version file -src/gstools/_version.py +src/gstools_cython/_version.py # generated docs docs/source/examples/ diff --git a/.zenodo.json b/.zenodo.json index ad72d74be..bb6c631c0 100755 --- a/.zenodo.json +++ b/.zenodo.json @@ -1,10 +1,6 @@ { - "license": "LGPL-3.0+", + "license": "LGPL-3.0-or-later", "contributors": [ - { - "type": "Other", - "name": "Bane Sullivan" - }, { "orcid": "0000-0002-2547-8102", "affiliation": "Helmholtz Centre for Environmental Research - UFZ", diff --git a/CHANGELOG.md b/CHANGELOG.md index 20fb771b2..b1c868b82 100755 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,462 +1,14 @@ # Changelog -All notable changes to **GSTools** will be documented in this file. +All notable changes to **GSTools-Cython** will be documented in this file. -## [1.5.2] - Nifty Neon - 2024-05 +## [1.0.0] - 2024-07 -### Enhancements - -- added global variable `config.NUM_THREADS` to select number of threads for parallel computation ([#336](https://github.com/GeoStat-Framework/GSTools/pull/336)) -- speed up sampling with emcee by setting `vectorize=True` in `EnsembleSampler` ([#346](https://github.com/GeoStat-Framework/GSTools/pull/346)) -- prepare numpy 2 support ([#340](https://github.com/GeoStat-Framework/GSTools/pull/340)) - - at least numpy 2.0.0rc1 for building extensions (for Python 3.9 and above) - - check multiple numpy and scipy versions in CI - - fixed minimal versions for numpy - - use `np.asarray` everywhere with `np.atleast_(n)d` - - fix long/longlong integer issue in cython on windows by always using 64bit integers - -### Bugfixes -- build docs with latest sphinx version ([#340](https://github.com/GeoStat-Framework/GSTools/pull/340)) -- fixed zero division error in spectral density of Integral model ([#347](https://github.com/GeoStat-Framework/GSTools/pull/347)) -- minor pylint fixes for used-before-assignment issues ([#350](https://github.com/GeoStat-Framework/GSTools/pull/350)) - -### Changes -- require pyvista 0.40 at least ([#340](https://github.com/GeoStat-Framework/GSTools/pull/340)) -- require matplotlib 3.7 at least ([#350](https://github.com/GeoStat-Framework/GSTools/pull/350)) -- remove universal2 wheels for macos (we already provide separate intel and arm64 wheels) ([#350](https://github.com/GeoStat-Framework/GSTools/pull/350)) - - -## [1.5.1] - Nifty Neon - 2023-11 - -### Enhancements - -see [#317](https://github.com/GeoStat-Framework/GSTools/pull/317) - -- added wheels for Python 3.12 -- dropped support for Python 3.7 (EOL) -- linted Cython files with cython-lint -- use Cython 3 to build extensions - - -## [1.5.0] - Nifty Neon - 2023-06 - -### Enhancements -- added `temporal` flag to `CovModel` to explicitly specify spatio-temporal models [#308](https://github.com/GeoStat-Framework/GSTools/pull/308) - - rotation between spatial and temporal dimension will be ignored - - added `spatial_dim` to `CovModel` to explicitly set spatial dimension for spatio-temporal models - - if not using `spatial_dim`, the provided `dim` needs to include the possible temporal dimension - - `spatial_dim` is always one less than `field_dim` for spatio-temporal models - - also works with `latlon=True` to have a spatio-temporal model with geographic coordinates - - all plotting routines respect this - - the `Field` class now has a `temporal` attribute which forwards the model attribute - - automatic variogram fitting in kriging classes for `temporal=True` and `latlon=True` will raise an error -- added `geo_scale` to `CovModel` to have a more consistent way to set the units of the model length scale for geographic coordinates [#308](https://github.com/GeoStat-Framework/GSTools/pull/308) - - no need to use `rescale` for this anymore (was rather a hack) - - added `gs.KM_SCALE` which is the same as `gs.EARTH_RADIUS` for kilometer scaling - - added `gs.DEGREE_SCALE` for great circle distance in degrees - - added `gs.RADIAN_SCALE` for great circle distance in radians (default and previous behavior) - - yadrenko variogram respects this and assumes the great circle distances is given in the respective unit - - `vario_estimate` also has `geo_scale` now to control the units of the bins -- `vario_estimate` now forwards additional kwargs to `standard_bins` (`bin_no`, `max_dist`) [#308](https://github.com/GeoStat-Framework/GSTools/pull/308) -- added `low` and `high` arguments to `uniform` transformation [#310](https://github.com/GeoStat-Framework/GSTools/pull/310) - -### Changes -- `CovModel`s expect special arguments by keyword now [#308](https://github.com/GeoStat-Framework/GSTools/pull/308) -- always use f-strings internally [#283](https://github.com/GeoStat-Framework/GSTools/pull/283) -- removed `verbose` attribute from `RandMeth` classes [#309](https://github.com/GeoStat-Framework/GSTools/pull/309) -- all arguments for `RandMeth` classes key-word-only now except `model` [#309](https://github.com/GeoStat-Framework/GSTools/pull/309) -- rename "package" to "api" in doc structure [#290](https://github.com/GeoStat-Framework/GSTools/pull/290) - -### Bugfixes -- latex equations were not rendered correctly in docs [#290](https://github.com/GeoStat-Framework/GSTools/pull/290) - - -## [1.4.1] - Sassy Sapphire - 2022-11 - -### Enhancements -- new (Exponential-) Integral model added [#243](https://github.com/GeoStat-Framework/GSTools/pull/243) -- added wheels for Python 3.11 [#272](https://github.com/GeoStat-Framework/GSTools/pull/272) - -### Changes -- API documentation is polished and fully auto-generated now [#271](https://github.com/GeoStat-Framework/GSTools/pull/271) - -### Bugfixes -- fixed approximation of `Matern.spectrum` for big `nu` [#243](https://github.com/GeoStat-Framework/GSTools/pull/243) -- GSTools had wrong version when installed from git archive [#272](https://github.com/GeoStat-Framework/GSTools/pull/272) -- Field.plot: solve long-standing mpl slider bug [#273](https://github.com/GeoStat-Framework/GSTools/pull/273) - - -## [1.4.0] - Sassy Sapphire - 2022-08 - -### Enhancements -- added Youtube tutorial to documentation [#239](https://github.com/GeoStat-Framework/GSTools/pull/239) -- better support for custom generators [#250](https://github.com/GeoStat-Framework/GSTools/pull/250) [#259](https://github.com/GeoStat-Framework/GSTools/pull/259) -- add `valid_value_types` class variable to all field classes [#250](https://github.com/GeoStat-Framework/GSTools/pull/250) -- PyKrige: fix passed variogram in case of latlon models [#254](https://github.com/GeoStat-Framework/GSTools/pull/254) -- add bounds checks for optional arguments of `CovModel` when resetting by class attribute [#255](https://github.com/GeoStat-Framework/GSTools/pull/255) -- minor coverage improvements [#255](https://github.com/GeoStat-Framework/GSTools/pull/255) -- documentation: readability improvements [#257](https://github.com/GeoStat-Framework/GSTools/pull/257) - -### Changes -- drop Python 3.6 support (setuptools>60 needs py>3.7) [#241](https://github.com/GeoStat-Framework/GSTools/pull/241) -- move `setup.cfg` content to `pyproject.toml` ([PEP 621](https://peps.python.org/pep-0621/)) [#241](https://github.com/GeoStat-Framework/GSTools/pull/241) -- move to `src/` based package structure (better testing, building and structure) [#241](https://github.com/GeoStat-Framework/GSTools/pull/241) -- use [extension-helpers](https://pypi.org/project/extension-helpers/) for openmp support in `setup.py` [#241](https://github.com/GeoStat-Framework/GSTools/pull/241) -- increase minimal version of meshio to v5.1 [#241](https://github.com/GeoStat-Framework/GSTools/pull/241) - -### Bugfixes -- Pyvista v0.32 deprecation warning: use point_data instead of point_arrays [#237](https://github.com/GeoStat-Framework/GSTools/pull/237) -- remove deprecated scipy (v1.9) method pinv2 [#247](https://github.com/GeoStat-Framework/GSTools/pull/247) -- change float comparison in tests [#248](https://github.com/GeoStat-Framework/GSTools/pull/248) -- Cython: solve `-Wsometimes-uninitialized` warning [#255](https://github.com/GeoStat-Framework/GSTools/pull/255) - - -## [1.3.5] - Pure Pink - 2022-01 - -### Changes -- remove caps for dependencies [#229](https://github.com/GeoStat-Framework/GSTools/pull/229) -- build linux wheels with manylinux2014 for all versions ([CIBW v2.3.1](https://github.com/pypa/cibuildwheel/releases/tag/v2.3.1)) [#227](https://github.com/GeoStat-Framework/GSTools/pull/227) - -### Bugfixes -- `Field.mesh` was not compatible with [meshio](https://github.com/nschloe/meshio) v5.1+ [#227](https://github.com/GeoStat-Framework/GSTools/pull/227) - - -## [1.3.4] - Pure Pink - 2021-11 - -### Enhancements -- add GStools-Core as optional dependency [#215](https://github.com/GeoStat-Framework/GSTools/pull/215) -- provide wheels for Python 3.10 [#211](https://github.com/GeoStat-Framework/GSTools/pull/211) -- provide macOS wheels for Apple Silicon [#211](https://github.com/GeoStat-Framework/GSTools/pull/211) - -### Changes -- remove unnecessary `dim` argument in Cython code [#216](https://github.com/GeoStat-Framework/GSTools/issues/216) - - -## [1.3.3] - Pure Pink - 2021-08 - -### Enhancements -See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197) -- `gstools.transform`: - - add keywords `field`, `store`, `process` and `keep_mean` to all transformations to control storage and respect `normalizer` - - added `apply_function` transformation - - added `apply` as wrapper for all transformations - - added `transform` method to all `Field` (sub)classes as interface to `transform.apply` - - added checks for normal fields to work smoothly with recently added `normalizer` submodule -- `Field`: - - allow naming fields when generating and control storage with `store` keyword - - all subclasses now have the `post_process` keyword (apply mean, normalizer, trend) - - added subscription to access fields by name (`Field["field"]`) - - added `set_pos` method to set position tuple - - allow reusing present `pos` tuple - - added `pos`, `mesh_type`, `field_names`, `field_shape`, `all_fields` properties -- `CondSRF`: - - memory optimization by forwarding `pos` from underlying `krige` instance - - only recalculate kriging field if `pos` tuple changed (optimized ensemble generation) -- performance improvement by using `np.asarray` instead of `np.array` where possible -- updated examples to use new features -- added incomplete lower gamma function `inc_gamma_low` (for TPLGaussian spectral density) -- filter `nan` values from `cond_val` array in all kriging routines [#201](https://github.com/GeoStat-Framework/GSTools/issues/201) - -### Bugfixes -- `inc_gamma` was defined wrong for integer `s < 0` - - -## [1.3.2] - Pure Pink - 2021-07 - -### Bugfixes -- `vario_estimate` was altering the input field under certain circumstances [#180](https://github.com/GeoStat-Framework/GSTools/issues/180) -- `emcee` v3.1 now requires `nsteps` in `run_mcmc()` to be integer (called in `RNG.sample_ln_pdf`) [#184](https://github.com/GeoStat-Framework/GSTools/pull/184) - - -## [1.3.1] - Pure Pink - 2021-06 - -### Enhancements -- Standalone use of Field class [#166](https://github.com/GeoStat-Framework/GSTools/issues/166) -- add social badges in README [#169](https://github.com/GeoStat-Framework/GSTools/issues/169), [#170](https://github.com/GeoStat-Framework/GSTools/issues/170) - -### Bugfixes -- use `oldest-supported-numpy` to build cython extensions [#165](https://github.com/GeoStat-Framework/GSTools/pull/165) - - -## [1.3.0] - Pure Pink - 2021-04 - -### Topics - -#### Geographical Coordinates Support ([#113](https://github.com/GeoStat-Framework/GSTools/issues/113)) -- added boolean init parameter `latlon` to indicate a geographic model. When given, spatial dimension is fixed to `dim=3`, `anis` and `angles` will be ignored, since anisotropy is not well-defined on a sphere. -- add property `field_dim` to indicate the dimension of the resulting field. Will be 2 if `latlon=True` -- added yadrenko variogram, covariance and correlation method, since the geographic models are derived from standard models in 3D by plugging in the chordal distance of two points on a sphere derived from there great-circle distance `zeta`: - - `vario_yadrenko`: given by `variogram(2 * np.sin(zeta / 2))` - - `cov_yadrenko`: given by `covariance(2 * np.sin(zeta / 2))` - - `cor_yadrenko`: given by `correlation(2 * np.sin(zeta / 2))` -- added plotting routines for yadrenko methods described above -- the `isometrize` and `anisometrize` methods will convert `latlon` tuples (given in degree) to points on the unit-sphere in 3D and vice versa -- representation of geographical models don't display the `dim`, `anis` and `angles` parameters, but `latlon=True` -- `fit_variogram` will expect an estimated variogram with great-circle distances given in radians -- **Variogram estimation** - - `latlon` switch implemented in `estimate_vario` routine - - will return a variogram estimated by the great-circle distance (haversine formula) given in radians -- **Field** - - added plotting routines for latlon fields - - no vector fields possible on latlon fields - - corretly handle pos tuple for latlon fields - -#### Krige Unification ([#97](https://github.com/GeoStat-Framework/GSTools/issues/97)) -- Swiss Army Knife for kriging: The `Krige` class now provides everything in one place -- "Kriging the mean" is now possible with the switch `only_mean` in the call routine -- `Simple`/`Ordinary`/`Universal`/`ExtDrift`/`Detrended` are only shortcuts to `Krige` with limited input parameter list -- We now use the `covariance` function to build up the kriging matrix (instead of variogram) -- An `unbiased` switch was added to enable simple kriging (where the unbiased condition is not given) -- An `exact` switch was added to allow smother results, if a `nugget` is present in the model -- An `cond_err` parameter was added, where measurement error variances can be given for each conditional point -- pseudo-inverse matrix is now used to solve the kriging system (can be disabled by the new switch `pseudo_inv`), this is equal to solving the system with least-squares and prevents numerical errors -- added options `fit_normalizer` and `fit_variogram` to automatically fit normalizer and variogram to given data - -#### Directional Variograms and Auto-binning ([#87](https://github.com/GeoStat-Framework/GSTools/issues/87), [#106](https://github.com/GeoStat-Framework/GSTools/issues/106), [#131](https://github.com/GeoStat-Framework/GSTools/issues/131)) -- new routine name `vario_estimate` instead of `vario_estimate_unstructured` (old kept for legacy code) for simplicity -- new routine name `vario_estimate_axis` instead of `vario_estimate_structured` (old kept for legacy code) for simplicity -- **vario_estimate** - - added simple automatic binning routine to determine bins from given data (one third of box diameter as max bin distance, sturges rule for number of bins) - - allow to pass multiple fields for joint variogram estimation (e.g. for daily precipitation) on same mesh - - `no_data` option added to allow missing values - - **masked fields** - - user can now pass a masked array (or a list of masked arrays) to deselect data points. - - in addition, a `mask` keyword was added to provide an external mask - - **directional variograms** - - diretional variograms can now be estimated - - either provide a list of direction vectors or angles for directions (spherical coordinates) - - can be controlled by given angle tolerance and (optional) bandwidth - - prepared for nD - - structured fields (pos tuple describes axes) can now be passed to estimate an isotropic or directional variogram - - distance calculation in cython routines in now independent of dimension -- **vario_estimate_axis** - - estimation along array axis now possible in arbitrary dimensions - - `no_data` option added to allow missing values (sovles [#83](https://github.com/GeoStat-Framework/GSTools/issues/83)) - - axis can be given by name (`"x"`, `"y"`, `"z"`) or axis number (`0`, `1`, `2`, `3`, ...) - -#### Better Variogram fitting ([#78](https://github.com/GeoStat-Framework/GSTools/issues/78), [#145](https://github.com/GeoStat-Framework/GSTools/pull/145)) -- fixing sill possible now -- `loss` is now selectable for smoother handling of outliers -- r2 score can now be returned to get an impression of the goodness of fitting -- weights can be passed -- instead of deselecting parameters, one can also give fix values for each parameter -- default init guess for `len_scale` is now mean of given bin-centers -- default init guess for `var` and `nugget` is now mean of given variogram values - -#### CovModel update ([#109](https://github.com/GeoStat-Framework/GSTools/issues/109), [#122](https://github.com/GeoStat-Framework/GSTools/issues/122), [#157](https://github.com/GeoStat-Framework/GSTools/pull/157)) -- add new `rescale` argument and attribute to the `CovModel` class to be able to rescale the `len_scale` (usefull for unit conversion or rescaling `len_scale` to coincide with the `integral_scale` like it's the case with the Gaussian model) - See: [#90](https://github.com/GeoStat-Framework/GSTools/issues/90), [GeoStat-Framework/PyKrige#119](https://github.com/GeoStat-Framework/PyKrige/issues/119) -- added new `len_rescaled` attribute to the `CovModel` class, which is the rescaled `len_scale`: `len_rescaled = len_scale / rescale` -- new method `default_rescale` to provide default rescale factor (can be overridden) -- remove `doctest` calls -- docstring updates in `CovModel` and derived models -- updated all models to use the `cor` routine and make use of the `rescale` argument (See: [#90](https://github.com/GeoStat-Framework/GSTools/issues/90)) -- TPL models got a separate base class to not repeat code -- added **new models** (See: [#88](https://github.com/GeoStat-Framework/GSTools/issues/88)): - - `HyperSpherical`: (Replaces the old `Intersection` model) Derived from the intersection of hyper-spheres in arbitrary dimensions. Coincides with the linear model in 1D, the circular model in 2D and the classical spherical model in 3D - - `SuperSpherical`: like the HyperSpherical, but the shape parameter derived from dimension can be set by the user. Coincides with the HyperSpherical model by default - - `JBessel`: a hole model valid in all dimensions. The shape parameter controls the dimension it was derived from. For `nu=0.5` this model coincides with the well known `wave` hole model. - - `TPLSimple`: a simple truncated power law controlled by a shape parameter `nu`. Coincides with the truncated linear model for `nu=1` - - `Cubic`: to be compatible with scikit-gstat in the future -- all arguments are now stored as float internally ([#157](https://github.com/GeoStat-Framework/GSTools/pull/157)) -- string representation of the `CovModel` class is now using a float precision (`CovModel._prec=3`) to truncate longish output -- string representation of the `CovModel` class now only shows `anis` and `angles` if model is anisotropic resp. rotated -- dimension validity check: raise a warning, if given model is not valid in the desired dimension (See: [#86](https://github.com/GeoStat-Framework/GSTools/issues/86)) - -#### Normalizer, Trend and Mean ([#124](https://github.com/GeoStat-Framework/GSTools/issues/124)) - -- new `normalize` submodule containing power-transforms for data to gain normality -- Base-Class: `Normalizer` providing basic functionality including maximum likelihood fitting -- added: `LogNormal`, `BoxCox`, `BoxCoxShift`, `YeoJohnson`, `Modulus` and `Manly` -- normalizer, trend and mean can be passed to SRF, Krige and variogram estimation routines - - A trend can be a callable function, that represents a trend in input data. For example a linear decrease of temperature with height. - - The normalizer will be applied after the data was detrended, i.e. the trend was substracted from the data, in order to gain normality. - - The mean is now interpreted as the mean of the normalized data. The user could also provide a callable mean, but it is mostly meant to be constant. - -#### Arbitrary dimensions ([#112](https://github.com/GeoStat-Framework/GSTools/issues/112)) -- allow arbitrary dimensions in all routines (CovModel, Krige, SRF, variogram) -- anisotropy and rotation following a generalization of tait-bryan angles -- `CovModel` provides `isometrize` and `anisometrize` routines to convert points - -#### New Class for Conditioned Random Fields ([#130](https://github.com/GeoStat-Framework/GSTools/issues/130)) -- **THIS BREAKS BACKWARD COMPATIBILITY** -- `CondSRF` replaces the conditioning feature of the SRF class, which was cumbersome and limited to Ordinary and Simple kriging -- `CondSRF` behaves similar to the `SRF` class, but instead of a covariance model, it takes a kriging class as input. With this kriging class, all conditioning related settings are defined. - -### Enhancements -- Python 3.9 Support [#107](https://github.com/GeoStat-Framework/GSTools/issues/107) -- add routines to format struct. pos tuple by given `dim` or `shape` -- add routine to format struct. pos tuple by given `shape` (variogram helper) -- remove `field.tools` subpackage -- support `meshio>=4.0` and add as dependency -- PyVista mesh support [#59](https://github.com/GeoStat-Framework/GSTools/issues/59) -- added `EARTH_RADIUS` as constant providing earths radius in km (can be used to rescale models) -- add routines `latlon2pos` and `pos2latlon` to convert lat-lon coordinates to points on unit-sphere and vice versa -- a lot of new examples and tutorials -- `RandMeth` class got a switch to select the sampling strategy -- plotter for n-D fields added [#141](https://github.com/GeoStat-Framework/GSTools/issues/141) -- antialias for contour plots of 2D fields [#141](https://github.com/GeoStat-Framework/GSTools/issues/141) -- building from source is now configured with `pyproject.toml` to care about build dependencies, see [#154](https://github.com/GeoStat-Framework/GSTools/issues/154) +First release of GSTools-Cython ### Changes -- drop support for Python 3.5 [#146](https://github.com/GeoStat-Framework/GSTools/pull/146) -- added a finit limit for shape-parameters in some `CovModel`s [#147](https://github.com/GeoStat-Framework/GSTools/pull/147) -- drop usage of `pos2xyz` and `xyz2pos` -- remove structured option from generators (structured pos need to be converted first) -- explicitly assert dim=2,3 when generating vector fields -- simplify `pre_pos` routine to save pos tuple and reformat it an unstructured tuple -- simplify field shaping -- simplify plotting routines -- only the `"unstructured"` keyword is recognized everywhere, everything else is interpreted as `"structured"` (e.g. `"rectilinear"`) -- use GitHub-Actions instead of TravisCI -- parallel build now controlled by env-var `GSTOOLS_BUILD_PARALLEL=1`, see [#154](https://github.com/GeoStat-Framework/GSTools/issues/154) -- install extra target for `[dev]` dropped, can be reproduced by `pip install gstools[test, doc]`, see [#154](https://github.com/GeoStat-Framework/GSTools/issues/154) - -### Bugfixes -- typo in keyword argument for vario_estimate_structured [#80](https://github.com/GeoStat-Framework/GSTools/issues/80) -- isotropic rotation of SRF was not possible [#100](https://github.com/GeoStat-Framework/GSTools/issues/100) -- `CovModel.opt_arg` now sorted [#103](https://github.com/GeoStat-Framework/GSTools/issues/103) -- `CovModel.fit`: check if weights are given as a string (numpy comparison error) [#111](https://github.com/GeoStat-Framework/GSTools/issues/111) -- several pylint fixes ([#159](https://github.com/GeoStat-Framework/GSTools/pull/159)) - - -## [1.2.1] - Volatile Violet - 2020-04-14 - -### Bugfixes -- `ModuleNotFoundError` is not present in py35 -- Fixing Cressie-Bug #76 -- Adding analytical formula for integral scales of rational and stable model -- remove prange from IncomprRandMeth summators to prevent errors on Win and macOS - - -## [1.2.0] - Volatile Violet - 2020-03-20 - -### Enhancements -- different variogram estimator functions can now be used #51 -- the TPLGaussian and TPLExponential now have analytical spectra #67 -- added property `is_isotropic` to `CovModel` #67 -- reworked the whole krige sub-module to provide multiple kriging methods #67 - - Simple - - Ordinary - - Universal - - External Drift Kriging - - Detrended Kriging -- a new transformation function for discrete fields has been added #70 -- reworked tutorial section in the documentation #63 -- pyvista interface #29 - -### Changes -- Python versions 2.7 and 3.4 are no longer supported #40 #43 -- `CovModel`: in 3D the input of anisotropy is now treated slightly different: #67 - - single given anisotropy value [e] is converted to [1, e] (it was [e, e] before) - - two given length-scales [l_1, l_2] are converted to [l_1, l_2, l_2] (it was [l_1, l_2, l_1] before) - -### Bugfixes -- a race condition in the structured variogram estimation has been fixed #51 - - -## [1.1.1] - Reverberating Red - 2019-11-08 - -### Enhancements -- added a changelog. See: [commit fbea883](https://github.com/GeoStat-Framework/GSTools/commit/fbea88300d0862393e52f4b7c3d2b15c2039498b) - -### Changes -- deprecation warnings are now printed if Python versions 2.7 or 3.4 are used #40 #41 - -### Bugfixes -- define spectral_density instead of spectrum in covariance models since Cov-base derives spectrum. See: [commit 00f2747](https://github.com/GeoStat-Framework/GSTools/commit/00f2747fd0503ff8806f2eebfba36acff813416b) -- better boundaries for `CovModel` parameters. See: https://github.com/GeoStat-Framework/GSTools/issues/37 - - -## [1.1.0] - Reverberating Red - 2019-10-01 - -### Enhancements -- by using Cython for all the heavy computations, we could achieve quite some speed ups and reduce the memory consumption significantly #16 -- parallel computation in Cython is now supported with the help of OpenMP and the performance increase is nearly linear with increasing cores #16 -- new submodule `krige` providing simple (known mean) and ordinary (estimated mean) kriging working analogous to the srf class -- interface to pykrige to use the gstools `CovModel` with the pykrige routines (https://github.com/bsmurphy/PyKrige/issues/124) -- the srf class now provides a `plot` and a `vtk_export` routine -- incompressible flow fields can now be generated #14 -- new submodule providing several field transformations like: Zinn&Harvey, log-normal, bimodal, ... #13 -- Python 3.4 and 3.7 wheel support #19 -- field can now be generated directly on meshes from [meshio](https://github.com/nschloe/meshio) and [ogs5py](https://github.com/GeoStat-Framework/ogs5py), see: [commit f4a3439](https://github.com/GeoStat-Framework/GSTools/commit/f4a3439400b81d8d9db81a5f7fbf6435f603cf05) -- the srf and kriging classes now store the last `pos`, `mesh_type` and `field` values to keep them accessible, see: [commit 29f7f1b](https://github.com/GeoStat-Framework/GSTools/commit/29f7f1b029866379ce881f44765f72534d757fae) -- tutorials on all important features of GSTools have been written for you guys #20 -- a new interface to pyvista is provided to export fields to python vtk representation, which can be used for plotting, exploring and exporting fields #29 - -### Changes -- the license was changed from GPL to LGPL in order to promote the use of this library #25 -- the rotation angles are now interpreted in positive direction (counter clock wise) -- the `force_moments` keyword was removed from the SRF call method, it is now in provided as a field transformation #13 -- drop support of python implementations of the variogram estimators #18 -- the `variogram_normed` method was removed from the `CovModel` class due to redundance [commit 25b1647](https://github.com/GeoStat-Framework/GSTools/commit/25b164722ac6744ebc7e03f3c0bf1c30be1eba89) -- the position vector of 1D fields does not have to be provided in a list-like object with length 1 [commit a6f5be8](https://github.com/GeoStat-Framework/GSTools/commit/a6f5be8bfd2db1f002e7889ecb8e9a037ea08886) - -### Bugfixes -- several minor bugfixes - - -## [1.0.1] - Bouncy Blue - 2019-01-18 - -### Bugfixes -- fixed Numpy and Cython version during build process - - -## [1.0.0] - Bouncy Blue - 2019-01-16 - -### Enhancements -- added a new covariance class, which allows the easy usage of arbitrary covariance models -- added many predefined covariance models, including truncated power law models -- added [tutorials](https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorials.html) and examples, showing and explaining the main features of GSTools -- variogram models can be fitted to data -- prebuilt binaries for many Linux distributions, Mac OS and Windows, making the installation, especially of the Cython code, much easier -- the generated fields can now easily be exported to vtk files -- variance scaling is supported for coarser grids -- added pure Python versions of the variogram estimators, in case somebody has problems compiling Cython code -- the [documentation](https://geostat-framework.readthedocs.io/projects/gstools/en/latest/) is now a lot cleaner and easier to use -- the code is a lot cleaner and more consistent now -- unit tests are now automatically tested when new code is pushed -- test coverage of code is shown -- GeoStat Framework now has a website, visit us: https://geostat-framework.github.io/ - -### Changes -- release is not downwards compatible with release v0.4.0 -- SRF creation has been adapted for the `CovModel` -- a tuple `pos` is now used instead of `x`, `y`, and `z` for the axes -- renamed `estimate_unstructured` and `estimate_structured` to `vario_estimate_unstructured` and `vario_estimate_structured` for less ambiguity - -### Bugfixes -- several minor bugfixes - - -## [0.4.0] - Glorious Green - 2018-07-17 - -### Bugfixes -- import of cython functions put into a try-block - - -## [0.3.6] - Original Orange - 2018-07-17 - -First release of GSTools. +- moved Cython files into this separate package -[Unreleased]: https://github.com/GeoStat-Framework/gstools/compare/v1.5.2...HEAD -[1.5.2]: https://github.com/GeoStat-Framework/gstools/compare/v1.5.1...v1.5.2 -[1.5.1]: https://github.com/GeoStat-Framework/gstools/compare/v1.5.0...v1.5.1 -[1.5.0]: https://github.com/GeoStat-Framework/gstools/compare/v1.4.1...v1.5.0 -[1.4.1]: https://github.com/GeoStat-Framework/gstools/compare/v1.4.0...v1.4.1 -[1.4.0]: https://github.com/GeoStat-Framework/gstools/compare/v1.3.5...v1.4.0 -[1.3.5]: https://github.com/GeoStat-Framework/gstools/compare/v1.3.4...v1.3.5 -[1.3.4]: https://github.com/GeoStat-Framework/gstools/compare/v1.3.3...v1.3.4 -[1.3.3]: https://github.com/GeoStat-Framework/gstools/compare/v1.3.2...v1.3.3 -[1.3.2]: https://github.com/GeoStat-Framework/gstools/compare/v1.3.1...v1.3.2 -[1.3.1]: https://github.com/GeoStat-Framework/gstools/compare/v1.3.0...v1.3.1 -[1.3.0]: https://github.com/GeoStat-Framework/gstools/compare/v1.2.1...v1.3.0 -[1.2.1]: https://github.com/GeoStat-Framework/gstools/compare/v1.2.0...v1.2.1 -[1.2.0]: https://github.com/GeoStat-Framework/gstools/compare/v1.1.1...v1.2.0 -[1.1.1]: https://github.com/GeoStat-Framework/gstools/compare/v1.1.0...v1.1.1 -[1.1.0]: https://github.com/GeoStat-Framework/gstools/compare/v1.0.1...v1.1.0 -[1.0.1]: https://github.com/GeoStat-Framework/gstools/compare/v1.0.0...v1.0.1 -[1.0.0]: https://github.com/GeoStat-Framework/gstools/compare/0.4.0...v1.0.0 -[0.4.0]: https://github.com/GeoStat-Framework/gstools/compare/0.3.6...0.4.0 -[0.3.6]: https://github.com/GeoStat-Framework/gstools/releases/tag/0.3.6 +[Unreleased]: https://github.com/GeoStat-Framework/gstools-cython/compare/v1.0.0...HEAD +[1.0.0]: https://github.com/GeoStat-Framework/gstools-cython/releases/tag/v1.0.0 diff --git a/MANIFEST.in b/MANIFEST.in index 24184482a..5778d3fa3 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,4 @@ prune ** recursive-include tests *.py -recursive-include src/gstools *.py *.pyx +recursive-include src/gstools_cython *.py *.pyx include AUTHORS.md LICENSE README.md pyproject.toml setup.py diff --git a/README.md b/README.md index 6cb699019..fcc9ed143 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,8 @@ -# Welcome to GSTools +# Welcome to GSTools-Cython [![GMD](https://img.shields.io/badge/GMD-10.5194%2Fgmd--15--3161--2022-orange)](https://doi.org/10.5194/gmd-15-3161-2022) -[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1313628.svg)](https://doi.org/10.5281/zenodo.1313628) -[![PyPI version](https://badge.fury.io/py/gstools.svg)](https://badge.fury.io/py/gstools) -[![Conda Version](https://img.shields.io/conda/vn/conda-forge/gstools.svg)](https://anaconda.org/conda-forge/gstools) -[![Build Status](https://github.com/GeoStat-Framework/GSTools/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/GSTools/actions) -[![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/GSTools/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/GSTools?branch=main) -[![Documentation Status](https://readthedocs.org/projects/gstools/badge/?version=latest)](https://geostat-framework.readthedocs.io/projects/gstools/en/stable/?badge=stable) +[![Build Status](https://github.com/GeoStat-Framework/GSTools-Cython/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/GSTools-Cython/actions) +[![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/GSTools-Cython/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/GSTools-Cython?branch=main) +[![Documentation Status](https://readthedocs.org/projects/gstools-cython/badge/?version=latest)](https://geostat-framework.readthedocs.io/projects/gstools-cython/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

@@ -15,36 +12,10 @@

Get in Touch!

GH-Discussions -Slack-Swung -Gitter-GSTools Email Twitter Follow

-

Youtube Tutorial on GSTools

- -

- -GSTools Transform 22 tutorial - -

- -## Purpose - - - -GeoStatTools provides geostatistical tools for various purposes: -- random field generation -- simple, ordinary, universal and external drift kriging -- conditioned field generation -- incompressible random vector field generation -- (automated) variogram estimation and fitting -- directional variogram estimation and modelling -- data normalization and transformation -- many readily provided and even user-defined covariance models -- metric spatio-temporal modelling -- plotting and exporting routines - ## Installation @@ -88,275 +59,19 @@ You can cite the Zenodo code publication of GSTools by: If you want to cite a specific version, have a look at the [Zenodo site](https://doi.org/10.5281/zenodo.1313628). -## Documentation for GSTools - -You can find the documentation under [geostat-framework.readthedocs.io][doc_link]. - - -### Tutorials and Examples - -The documentation also includes some [tutorials][tut_link], showing the most important use cases of GSTools, which are - -- [Random Field Generation][tut1_link] -- [The Covariance Model][tut2_link] -- [Variogram Estimation][tut3_link] -- [Random Vector Field Generation][tut4_link] -- [Kriging][tut5_link] -- [Conditioned random field generation][tut6_link] -- [Field transformations][tut7_link] -- [Geographic Coordinates][tut8_link] -- [Spatio-Temporal Modelling][tut9_link] -- [Normalizing Data][tut10_link] -- [Miscellaneous examples][tut0_link] - -The associated python scripts are provided in the `examples` folder. - - -## Spatial Random Field Generation - -The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by [Heße et al. 2014][rand_link]. - -[rand_link]: https://doi.org/10.1016/j.envsoft.2014.01.013 - - -### Examples - -#### Gaussian Covariance Model - -This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model. +## Documentation -```python -import gstools as gs -# structured field with a size 100x100 and a grid-size of 1x1 -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model) -srf((x, y), mesh_type='structured') -srf.plot() -``` -

-Random field -

- -GSTools also provides support for [geographic coordinates](https://en.wikipedia.org/wiki/Geographic_coordinate_system). -This works perfectly well with [cartopy](https://scitools.org.uk/cartopy/docs/latest/index.html). - -```python -import matplotlib.pyplot as plt -import cartopy.crs as ccrs -import gstools as gs -# define a structured field by latitude and longitude -lat = lon = range(-80, 81) -model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE) -srf = gs.SRF(model, seed=12345) -field = srf.structured((lat, lon)) -# Orthographic plotting with cartopy -ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) -cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) -ax.coastlines() -ax.set_global() -plt.colorbar(cont) -``` - -

-lat-lon random field -

+- GSTools: https://https://gstools.readthedocs.io/ +- GSTools-Cython: https://https://gstools-cython.readthedocs.io/ -A similar example but for a three dimensional field is exported to a [VTK](https://vtk.org/) file, which can be visualized with [ParaView](https://www.paraview.org/) or [PyVista](https://docs.pyvista.org) in Python: - -```python -import gstools as gs -# structured field with a size 100x100x100 and a grid-size of 1x1x1 -x = y = z = range(100) -model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) -srf = gs.SRF(model) -srf((x, y, z), mesh_type='structured') -srf.vtk_export('3d_field') # Save to a VTK file for ParaView - -mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python -mesh.contour(isosurfaces=8).plot() -``` - -

-3d Random field -

+## Cython backend +This package is the cython backend implementation for GSTools. -## Estimating and Fitting Variograms - -The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. - -All covariance models can be used to fit given variogram data by a simple interface. - -### Example - -This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance -model again. - -```python -import numpy as np -import gstools as gs -# generate a synthetic field with an exponential model -x = np.random.RandomState(19970221).rand(1000) * 100. -y = np.random.RandomState(20011012).rand(1000) * 100. -model = gs.Exponential(dim=2, var=2, len_scale=8) -srf = gs.SRF(model, mean=0, seed=19970221) -field = srf((x, y)) -# estimate the variogram of the field -bin_center, gamma = gs.vario_estimate((x, y), field) -# fit the variogram with a stable model. (no nugget fitted) -fit_model = gs.Stable(dim=2) -fit_model.fit_variogram(bin_center, gamma, nugget=False) -# output -ax = fit_model.plot(x_max=max(bin_center)) -ax.scatter(bin_center, gamma) -print(fit_model) -``` - -Which gives: - -```python -Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) -``` - -

-Variogram -

- -## Kriging and Conditioned Random Fields - -An important part of geostatistics is Kriging and conditioning spatial random -fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated. - -### Example -For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them: - -```python -import numpy as np -import matplotlib.pyplot as plt -import gstools as gs - -# conditions -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] - -# conditioned spatial random field class -model = gs.Gaussian(dim=1, var=0.5, len_scale=2) -krige = gs.krige.Ordinary(model, cond_pos, cond_val) -cond_srf = gs.CondSRF(krige) -# same output positions for all ensemble members -grid_pos = np.linspace(0.0, 15.0, 151) -cond_srf.set_pos(grid_pos) - -# seeded ensemble generation -seed = gs.random.MasterRNG(20170519) -for i in range(100): - field = cond_srf(seed=seed(), store=f"field_{i}") - plt.plot(grid_pos, field, color="k", alpha=0.1) -plt.scatter(cond_pos, cond_val, color="k") -plt.show() -``` - -

-Conditioned -

- -## User Defined Covariance Models - -One of the core-features of GSTools is the powerful -[CovModel][cov_link] -class, which allows to easy define covariance models by the user. - -### Example - -Here we re-implement the Gaussian covariance model by defining just a -[correlation][cor_link] function, which takes a non-dimensional distance ``h = r/l``: - -```python -import numpy as np -import gstools as gs -# use CovModel as the base-class -class Gau(gs.CovModel): - def cor(self, h): - return np.exp(-h**2) -``` - -And that's it! With ``Gau`` you now have a fully working covariance model, -which you could use for field generation or variogram fitting as shown above. - -Have a look at the [documentation ][doc_link] for further information on incorporating -optional parameters and optimizations. - - -## Incompressible Vector Field Generation - -Using the original [Kraichnan method][kraichnan_link], incompressible random -spatial vector fields can be generated. - - -### Example - -```python -import numpy as np -import gstools as gs -x = np.arange(100) -y = np.arange(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, generator='VectorField', seed=19841203) -srf((x, y), mesh_type='structured') -srf.plot() -``` - -yielding - -

-vector field -

- - -[kraichnan_link]: https://doi.org/10.1063/1.1692799 - - -## VTK/PyVista Export - -After you have created a field, you may want to save it to file, so we provide -a handy [VTK][vtk_link] export routine using the `.vtk_export()` or you could -create a VTK/PyVista dataset for use in Python with to `.to_pyvista()` method: - -```python -import gstools as gs -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model) -srf((x, y), mesh_type='structured') -srf.vtk_export("field") # Saves to a VTK file -mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory -mesh.plot() -``` - -Which gives a RectilinearGrid VTK file ``field.vtr`` or creates a PyVista mesh -in memory for immediate 3D plotting in Python. - -

-pyvista export -

- - -## Requirements: +## Requirements - [NumPy >= 1.20.0](https://www.numpy.org) -- [SciPy >= 1.1.0](https://www.scipy.org/scipylib) -- [hankel >= 1.0.0](https://github.com/steven-murray/hankel) -- [emcee >= 3.0.0](https://github.com/dfm/emcee) -- [pyevtk >= 1.1.1](https://github.com/pyscience-projects/pyevtk) -- [meshio >= 5.1.0](https://github.com/nschloe/meshio) - -### Optional - -- [GSTools-Core >= 0.2.0](https://github.com/GeoStat-Framework/GSTools-Core) -- [matplotlib](https://matplotlib.org) -- [pyvista](https://docs.pyvista.org/) ## Contact @@ -368,28 +83,4 @@ You can contact us via . [LGPLv3][license_link] © 2018-2024 -[pip_link]: https://pypi.org/project/gstools -[conda_link]: https://docs.conda.io/en/latest/miniconda.html -[conda_forge_link]: https://github.com/conda-forge/gstools-feedstock#installing-gstools -[conda_pip]: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html#installing-non-conda-packages -[pipiflag]: https://pip-python3.readthedocs.io/en/latest/reference/pip_install.html?highlight=i#cmdoption-i -[winpy_link]: https://winpython.github.io/ -[license_link]: https://github.com/GeoStat-Framework/GSTools/blob/main/LICENSE -[cov_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/generated/gstools.covmodel.CovModel.html#gstools.covmodel.CovModel -[stable_link]: https://en.wikipedia.org/wiki/Stable_distribution -[doc_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/ -[doc_install_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/#pip -[tut_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/tutorials.html -[tut1_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/01_random_field/index.html -[tut2_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/02_cov_model/index.html -[tut3_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/03_variogram/index.html -[tut4_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/04_vector_field/index.html -[tut5_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/05_kriging/index.html -[tut6_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/06_conditioned_fields/index.html -[tut7_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/07_transformations/index.html -[tut8_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/08_geo_coordinates/index.html -[tut9_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/09_spatio_temporal/index.html -[tut10_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/10_normalizer/index.html -[tut0_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/00_misc/index.html -[cor_link]: https://en.wikipedia.org/wiki/Autocovariance#Normalization -[vtk_link]: https://www.vtk.org/ +[license_link]: https://github.com/GeoStat-Framework/GSTools-Cython/blob/main/LICENSE diff --git a/docs/source/api.rst b/docs/source/api.rst index fe12233b0..8364cf371 100644 --- a/docs/source/api.rst +++ b/docs/source/api.rst @@ -1,8 +1,8 @@ -=========== -GSTools API -=========== +================== +GSTools-Cython API +================== -.. automodule:: gstools +.. automodule:: gstools_cython .. raw:: latex diff --git a/docs/source/conf.py b/docs/source/conf.py index e89928fc9..7d98e0c30 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -33,7 +33,7 @@ # local module should not be added to sys path if it's installed on RTFD # see: https://stackoverflow.com/a/31882049/6696397 # sys.path.insert(0, os.path.abspath("../../")) -from gstools import __version__ as ver +from gstools_cython import __version__ as ver def skip(app, what, name, obj, skip, options): @@ -66,9 +66,7 @@ def setup(app): "sphinx.ext.autosummary", "sphinx.ext.napoleon", # parameters look better than with numpydoc only "numpydoc", - "sphinx_gallery.gen_gallery", "m2r2", - "sphinxcontrib.youtube", ] # autosummaries from source-files @@ -109,7 +107,7 @@ def setup(app): # General information about the project. curr_year = datetime.datetime.now().year -project = "GSTools" +project = "GSTools-Cython" copyright = f"2018 - {curr_year}, Sebastian Müller, Lennart Schüler" author = "Sebastian Müller, Lennart Schüler" @@ -217,8 +215,8 @@ def setup(app): latex_documents = [ ( master_doc, - "GeoStatTools.tex", - "GeoStatTools Documentation", + "GeoStatTools-Cython.tex", + "GeoStatTools-Cython Documentation", "Sebastian Müller, Lennart Schüler", "manual", ) @@ -230,7 +228,13 @@ def setup(app): # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ - (master_doc, "geostattools", "GeoStatTools Documentation", [author], 1) + ( + master_doc, + "geostattools-cython", + "GeoStatTools-Cython Documentation", + [author], + 1, + ) ] @@ -242,11 +246,11 @@ def setup(app): texinfo_documents = [ ( master_doc, - "GeoStatTools", - "GeoStatTools Documentation", + "GeoStatTools-Cython", + "GeoStatTools-Cython Documentation", author, - "GeoStatTools", - "Geo-statistical toolbox.", + "GeoStatTools-Cython", + "Cython backend for GSTools.", "Miscellaneous", ) ] @@ -260,73 +264,4 @@ def setup(app): intersphinx_mapping = { "Python": ("https://docs.python.org/", None), "NumPy": ("https://numpy.org/doc/stable/", None), - "SciPy": ("https://docs.scipy.org/doc/scipy/", None), - "matplotlib": ("https://matplotlib.org/stable/", None), - "hankel": ("https://hankel.readthedocs.io/en/latest/", None), - "emcee": ("https://emcee.readthedocs.io/en/latest/", None), -} - -# -- Sphinx Gallery Options -from sphinx_gallery.sorting import FileNameSortKey - -# Use pyvista's image scraper for example gallery -# import pyvista -# https://github.com/tkoyama010/pyvista-doc-translations/blob/85c835a3ada3a2adefac06ba70e15a101ffa9162/conf.py#L21 -# https://github.com/simpeg/discretize/blob/f414dd7ee7c5ba9a141cb2c37d4b71fdc531eae8/docs/conf.py#L334 -# Make sure off screen is set to true when building locally -# pyvista.OFF_SCREEN = True -# # necessary when building the sphinx gallery -# pyvista.BUILDING_GALLERY = True -# # Optional - set parameters like theme or window size -# pyvista.set_plot_theme("document") - -sphinx_gallery_conf = { - # "image_scrapers": ("pyvista", "matplotlib"), - "remove_config_comments": True, - # only show "print" output as output - "capture_repr": (), - # path to your examples scripts - "examples_dirs": [ - "../../examples/00_misc/", - "../../examples/01_random_field/", - "../../examples/02_cov_model/", - "../../examples/03_variogram/", - "../../examples/04_vector_field/", - "../../examples/05_kriging/", - "../../examples/06_conditioned_fields/", - "../../examples/07_transformations/", - "../../examples/08_geo_coordinates/", - "../../examples/09_spatio_temporal/", - "../../examples/10_normalizer/", - ], - # path where to save gallery generated examples - "gallery_dirs": [ - "examples/00_misc/", - "examples/01_random_field/", - "examples/02_cov_model/", - "examples/03_variogram/", - "examples/04_vector_field/", - "examples/05_kriging/", - "examples/06_conditioned_fields/", - "examples/07_transformations/", - "examples/08_geo_coordinates/", - "examples/09_spatio_temporal/", - "examples/10_normalizer/", - ], - # Pattern to search for example files - "filename_pattern": r"\.py", - # Remove the "Download all examples" button from the top level gallery - "download_all_examples": False, - # Sort gallery example by file name instead of number of lines (default) - "within_subsection_order": FileNameSortKey, - # directory where function granular galleries are stored - "backreferences_dir": None, - # Modules for which function level galleries are created. In - "doc_module": "gstools", - # "first_notebook_cell": ( - # "%matplotlib inline\n" - # "from pyvista import set_plot_theme\n" - # "set_plot_theme('document')" - # ), - "matplotlib_animations": True, } diff --git a/docs/source/contents.rst b/docs/source/contents.rst index 3224356ee..402d48908 100644 --- a/docs/source/contents.rst +++ b/docs/source/contents.rst @@ -7,6 +7,5 @@ Contents :maxdepth: 3 index - tutorials api changelog diff --git a/docs/source/index.rst b/docs/source/index.rst index ecad05830..3bd447c43 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -1,459 +1 @@ -================== -GSTools Quickstart -================== - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/gstools.png - :width: 150px - :align: center - -.. only:: html - - **Get in Touch!** - - |GH-Discussions| |Slack-Swung| |Gitter-GSTools| |Email| |Twitter| - - **Youtube Tutorial on GSTools** - - .. youtube:: qZBJ-AZXq6Q - :width: 100% - - | - -Purpose -======= - -GeoStatTools provides geostatistical tools for various purposes: - -- random field generation -- simple, ordinary, universal and external drift kriging -- conditioned field generation -- incompressible random vector field generation -- (automated) variogram estimation and fitting -- directional variogram estimation and modelling -- data normalization and transformation -- many readily provided and even user-defined covariance models -- metric spatio-temporal modelling -- plotting and exporting routines - - -Installation -============ - -conda ------ - -GSTools can be installed via -`conda `_ on Linux, Mac, and -Windows. -Install the package by typing the following command in a command terminal: - -.. code-block:: none - - conda install gstools - -In case conda forge is not set up for your system yet, see the easy to follow -instructions on `conda forge `_. -Using conda, the parallelized version of GSTools should be installed. - - -pip ---- - -GSTools can be installed via `pip `_ -on Linux, Mac, and Windows. -On Windows you can install `WinPython `_ to get -Python and pip running. -Install the package by typing the following into command in a command terminal: - -.. code-block:: none - - pip install gstools - -To get the latest development version you can install it directly from GitHub: - -.. code-block:: none - - pip install git+git://github.com/GeoStat-Framework/GSTools.git@main - -If something went wrong during installation, try the :code:`-I` `flag from pip `_. - -**Speeding up GSTools by parallelization** - -To enable the OpenMP support, you have to provide a C compiler and OpenMP. -Parallel support is controlled by an environment variable ``GSTOOLS_BUILD_PARALLEL``, -that can be ``0`` or ``1`` (interpreted as ``0`` if not present). -GSTools then needs to be installed from source: - -.. code-block:: none - - export GSTOOLS_BUILD_PARALLEL=1 - pip install --no-binary=gstools gstools - -Note, that the ``--no-binary=gstools`` option forces pip to not use a wheel for GSTools. - -For the development version, you can do almost the same: - -.. code-block:: none - - export GSTOOLS_BUILD_PARALLEL=1 - pip install git+git://github.com/GeoStat-Framework/GSTools.git@main - -The number of parallel threads can be set with the global variable `config.NUM_THREADS`. - -**Using experimental GSTools-Core for even more speed** - -You can install the optional dependency `GSTools-Core `_, -which is a re-implementation of the main algorithms used in GSTools. The new -package uses the language Rust and it should be faster (in some cases by orders -of magnitude), safer, and it will potentially completely replace the current -standard implementation in Cython. Once the package GSTools-Core is available -on your machine, it will be used by default. In case you want to switch back to -the Cython implementation, you can set :code:`gstools.config.USE_RUST=False` in -your code. This also works at runtime. You can install the optional dependency -e.g. by - -.. code-block:: none - - pip install gstools[rust] - -or by manually installing the package - -.. code-block:: none - - pip install gstools-core - -GSTools-Core will automatically use all your cores in parallel, without having -to use OpenMP or a local C compiler. -In case you want to restrict the number of threads used, you can use the -global variable `config.NUM_THREADS` to the desired number. - - -Citation -======== - -If you are using GSTools in your publication please cite our paper: - - Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022. - -You can cite the Zenodo code publication of GSTools by: - - Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628 - -If you want to cite a specific version, have a look at the `Zenodo site `__. - - -Tutorials and Examples -====================== - -The documentation also includes some `tutorials `__, -showing the most important use cases of GSTools, which are - -- `Random Field Generation `__ -- `The Covariance Model `__ -- `Variogram Estimation `__ -- `Random Vector Field Generation `__ -- `Kriging `__ -- `Conditioned random field generation `__ -- `Field transformations `__ -- `Geographic Coordinates `__ -- `Spatio-Temporal Modelling `__ -- `Normalizing Data `__ -- `Miscellaneous examples `__ - - -Spatial Random Field Generation -=============================== - -The core of this library is the generation of spatial random fields. -These fields are generated using the randomisation method, described by -`Heße et al. 2014 `_. - - -Examples --------- - -Gaussian Covariance Model -^^^^^^^^^^^^^^^^^^^^^^^^^ - -This is an example of how to generate a 2 dimensional spatial random field (:any:`SRF`) -with a :any:`Gaussian` covariance model. - -.. code-block:: python - - import gstools as gs - # structured field with a size 100x100 and a grid-size of 1x1 - x = y = range(100) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF(model) - srf((x, y), mesh_type='structured') - srf.plot() - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/gau_field.png - :width: 400px - :align: center - -GSTools also provides support for `geographic coordinates `_. -This works perfectly well with `cartopy `_. - -.. code-block:: python - - import matplotlib.pyplot as plt - import cartopy.crs as ccrs - import gstools as gs - # define a structured field by latitude and longitude - lat = lon = range(-80, 81) - model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE) - srf = gs.SRF(model, seed=12345) - field = srf.structured((lat, lon)) - # Orthographic plotting with cartopy - ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) - cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) - ax.coastlines() - ax.set_global() - plt.colorbar(cont) - -.. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_globe.png - :width: 400px - :align: center - -A similar example but for a three dimensional field is exported to a -`VTK `__ file, which can be visualized with -`ParaView `_ or -`PyVista `__ in Python: - -.. code-block:: python - - import gstools as gs - # structured field with a size 100x100x100 and a grid-size of 1x1x1 - x = y = z = range(100) - model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) - srf = gs.SRF(model) - srf((x, y, z), mesh_type='structured') - srf.vtk_export('3d_field') # Save to a VTK file for ParaView - - mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python - mesh.contour(isosurfaces=8).plot() - -.. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_pyvista.png - :width: 400px - :align: center - - -Estimating and fitting variograms -================================= - -The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. - -All covariance models can be used to fit given variogram data by a simple interface. - - -Examples --------- - -This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance -model again. - -.. code-block:: python - - import numpy as np - import gstools as gs - # generate a synthetic field with an exponential model - x = np.random.RandomState(19970221).rand(1000) * 100. - y = np.random.RandomState(20011012).rand(1000) * 100. - model = gs.Exponential(dim=2, var=2, len_scale=8) - srf = gs.SRF(model, mean=0, seed=19970221) - field = srf((x, y)) - # estimate the variogram of the field - bin_center, gamma = gs.vario_estimate((x, y), field) - # fit the variogram with a stable model. (no nugget fitted) - fit_model = gs.Stable(dim=2) - fit_model.fit_variogram(bin_center, gamma, nugget=False) - # output - ax = fit_model.plot(x_max=max(bin_center)) - ax.scatter(bin_center, gamma) - print(fit_model) - -Which gives: - -.. code-block:: python - - Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GeoStat-Framework.github.io/master/img/GS_vario_est.png - :width: 400px - :align: center - - -Kriging and Conditioned Random Fields -===================================== - -An important part of geostatistics is Kriging and conditioning spatial random -fields to measurements. With conditioned random fields, an ensemble of field realizations -with their variability depending on the proximity of the measurements can be generated. - - -Example -------- - -For better visualization, we will condition a 1d field to a few "measurements", -generate 100 realizations and plot them: - -.. code-block:: python - - import numpy as np - import matplotlib.pyplot as plt - import gstools as gs - - # conditions - cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] - cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] - - # conditioned spatial random field class - model = gs.Gaussian(dim=1, var=0.5, len_scale=2) - krige = gs.krige.Ordinary(model, cond_pos, cond_val) - cond_srf = gs.CondSRF(krige) - # same output positions for all ensemble members - grid_pos = np.linspace(0.0, 15.0, 151) - cond_srf.set_pos(grid_pos) - - # seeded ensemble generation - seed = gs.random.MasterRNG(20170519) - for i in range(100): - field = cond_srf(seed=seed(), store=f"field_{i}") - plt.plot(grid_pos, field, color="k", alpha=0.1) - plt.scatter(cond_pos, cond_val, color="k") - plt.show() - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/cond_ens.png - :width: 600px - :align: center - - -User defined covariance models -============================== - -One of the core-features of GSTools is the powerful -:any:`CovModel` -class, which allows to easy define covariance models by the user. - - -Example -------- - -Here we re-implement the Gaussian covariance model by defining just the -`correlation `_ function, -which takes a non-dimensional distance :class:`h = r/l` - -.. code-block:: python - - import numpy as np - import gstools as gs - # use CovModel as the base-class - class Gau(gs.CovModel): - def cor(self, h): - return np.exp(-h**2) - -And that's it! With :class:`Gau` you now have a fully working covariance model, -which you could use for field generation or variogram fitting as shown above. - - -Incompressible Vector Field Generation -====================================== - -Using the original `Kraichnan method `_, incompressible random -spatial vector fields can be generated. - - -Example -------- - -.. code-block:: python - - import numpy as np - import gstools as gs - x = np.arange(100) - y = np.arange(100) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF(model, generator='VectorField', seed=19841203) - srf((x, y), mesh_type='structured') - srf.plot() - -yielding - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/vec_srf_tut_gau.png - :width: 600px - :align: center - - -VTK/PyVista Export -================== - -After you have created a field, you may want to save it to file, so we provide -a handy `VTK `_ export routine using the :class:`.vtk_export()` or you could -create a VTK/PyVista dataset for use in Python with to :class:`.to_pyvista()` method: - -.. code-block:: python - - import gstools as gs - x = y = range(100) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF(model) - srf((x, y), mesh_type='structured') - srf.vtk_export("field") # Saves to a VTK file - mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory - mesh.plot() - -Which gives a RectilinearGrid VTK file :file:`field.vtr` or creates a PyVista mesh -in memory for immediate 3D plotting in Python. - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/pyvista_export.png - :width: 600px - :align: center - - -Requirements -============ - -- `NumPy >= 1.20.0 `_ -- `SciPy >= 1.1.0 `_ -- `hankel >= 1.0.0 `_ -- `emcee >= 3.0.0 `_ -- `pyevtk >= 1.1.1 `_ -- `meshio >= 5.1.0 `_ - - -Optional --------- - -- `GSTools-Core >= 0.2.0 `_ -- `matplotlib `_ -- `pyvista `_ - - -Contact -------- - -You can contact us via `info@geostat-framework.org `_. - - -License -======= - -`LGPLv3 `_ - - -.. |GH-Discussions| image:: https://img.shields.io/badge/GitHub-Discussions-f6f8fa?logo=github&style=flat - :alt: GH-Discussions - :target: https://github.com/GeoStat-Framework/GSTools/discussions -.. |Slack-Swung| image:: https://img.shields.io/badge/Swung-Slack-4A154B?style=flat&logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABmJLR0QA%2FwD%2FAP%2BgvaeTAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAAB3RJTUUH5AYaFSENGSa5qgAABmZJREFUSMeFlltsVNcVhr%2B1z5m7Zzy%2BxaBwcQrGQOpgCAkKtSBQIqJepKhPBULpQ6sKBVWVKqXtSy%2BR0qYXqa2qRmlDCzjBEZGKUCK1TWqlNiGIEKDQBtf4Fki4OIxnxrex53LOXn2YwbjEtOvlHG3tvX%2Btf%2B21%2Fl%2BYJ1QVEbn1vwLYBWwCVgG1lW0ZoA%2FoAQ6LSP%2BdZ%2BeGzAMiIqK%2Bem0GpxNYVeBj3j2b4NCfM2QnfAAaa11al4fZuCZK24owQJ9v%2BbLryIVbd9wVSNUaEWNVtQPYfXHmAD0T32ZJeBM1Q8d0zzMDUpMwAFgLJU%2BxClURw9NfqedLWxMAHSKyR1WNiNhPAM0B6c%2FbdPORTLuOeUMSNkmMBHgyeo32bwwRDMh8bDM%2BZVl0j6uvPrdYknFnSESWzwUzt%2BkyVlUHx7zh5j%2BmPkXBjosjLkWdominiMQ%2BoiEZxuq8OFRXGXJ5K5%2Fde5nha8VlqjooIlZVBcBUiqeqemjGppd1ptfhSpS8pmmN7GVf4whPNY4Di9m%2BMcR03nK3sBbCQeFbv7gBsExVOyp3l6nz1VtjcM4fTK3Uok5IXtPsrHuPevcBXk8d4dWPX6I%2BsIB9wf1s%2B2Y%2FVbFynUIBIeDeplIECiXl5Iv3kbLogogRgbWukfNumT%2FnlYszBxj3hwXg0cQvqXcfYNu5tVyYPE%2B1G8dXn%2BfW72fH49U8sSlOPGr4SccoF4cKs3WzFrY%2BFCMUNmz%2Ba0aeWR1l15JwJ7DaVPpk1YnJ7xIxtQRNjDXRvTx%2F9ef0Tl0g6SYQhAlvmkH%2Fgv74qUaiTSG8ewJ0%2FGgRK5aG8Cts5ouWDa1RxoDRovK9i9MAq1S12QA7b5ROUdBxBIeQ1ACG49m%2FEXPis7Qk3ChHbx6Qw1dgXVeWB7uyDOctP%2Fx6w2zdrIVIyFCyiq8wXlJOZzyAXQbY%2FGGhC8EAilJ%2BVg7ufxU6IAHeSvewfQEadiDuCr%2B6NE1LU4hwUFAF1xFGRkvEjVDlgiPwVqoEsNkAq0ZKp3EIYrFM2xGm7Uc8u%2FzXjHkTmHIHoCiDM73E3IIsDCtRV3gn7QHQ0hTCt0ooKLw%2FWCAM1AcNISOcHSsBrDRAbc7eQMQBFFciHM18kaZIMz3r%2F0HO5mazytsiw%2FmTtCYiGGCkQlltwkEVjMDVmyUA6oIGR%2BDGjAWoM3f2giHAhH%2BFI5nPsDrWxqWNE9S4tUz5k1S7cQ5df4k9S6qY9JRipXtr4w5WQYH0eHkWrqxy8FTn3AvpmFmIqj%2B76EiQjNfHH1JNWFKc3vABj9V9npw%2FRXfmBNsaoTRnRAQDAgqqMJr1KBWUtUmHaR8WRgzAqAH6FgYexqd4R2Yuns5wcLSFK4U36bj%2FdbbUbGdoZoCi3uS%2Bqtt73TlNWygpqXGfZTGXnKesrwkA9BmgZ0noMZT5R0tQ4hzLfo4rhS46W%2F%2BCAn3T7%2BhDySiWMl2RkHArP8dAesKjPixYVbbUBwB6DHB4QWADIamuHPtkhE0t3ZP7ANhe9zgvXP2dfK0pymRJmQLiEYNW6mEVljYGuDzlkwwaHq51AQ4bERkAetvjP2XCT6H480AJeZsB4N7QYt7OnuSROtRXJV2wNNS4qIJvlbUtERJxhxcv5%2FlNWwygV0QGyzKBv%2FP%2ByFfZXf%2ButoR3UuXcS95mKNgxSjpN3qZZFHwUgFPjx5n2c9wo9ktrtcOZtMeWB2NEw4b2thivPLuIS1M%2BAzmrTy4O4ys7Zv1B5fsnVdWCr7PxYf7vej73ex2YeU1VVY9nu7ShG63vRo%2Fe%2FK1%2B518FbXkjo3OjO1XU2LFRzRZ9VdWDczFQ1VsCOHgpd1G%2FcG6jHrj2vPbn%2BjVdHNfr%2BRH92eXva2MPuvxEQpe%2BHdEnzm%2FQf4%2BrRo%2BldMUbGd393oS2dWU0cDSlw1OequrALVG9Q8rLsquqg2OlzLL2Myu1N5eShgB4CjEnSMSJYrX8Oj0t8UH7NMnX0iSDwmhBWRl3tKs9IcmgGRSRZqtqzFwpL4uWWKvWiMjyZKC24%2F1HbsrLn95Pwk3gCpS0yIw%2Fg6clPC2RLc3QmzvJupoARQsvrItxZmtSkkFz6E6Q%2F2m3PFta44jbCaw%2BO3GK7uybnJs8xfXC1fLYCdTz9NIfsCS0mYVhAHp9ZYdr5J%2F%2F127dxUA2AzuBzRUDWVfZlq4YyG6gs9ImdzWQ%2FwFNRlgCFdG5bAAAAABJRU5ErkJggg%3D%3D - :alt: Slack-Swung - :target: https://swung.slack.com/messages/gstools -.. |Gitter-GSTools| image:: https://img.shields.io/badge/Gitter-GeoStat--Framework-ed1965?logo=gitter&style=flat - :alt: Gitter-GSTools - :target: https://gitter.im/GeoStat-Framework/GSTools -.. |Email| image:: https://img.shields.io/badge/Email-GeoStat--Framework-468a88?style=flat&logo= - :alt: Email - :target: mailto:info@geostat-framework.org -.. |Twitter| image:: https://img.shields.io/twitter/follow/GSFramework?style=social - :alt: Twitter Follow - :target: https://twitter.com/GSFramework +.. mdinclude:: ../../README.md diff --git a/docs/source/pics/05_ordinary.png b/docs/source/pics/05_ordinary.png deleted file mode 100644 index 8a529968b..000000000 Binary files a/docs/source/pics/05_ordinary.png and /dev/null differ diff --git a/docs/source/pics/05_simple.png b/docs/source/pics/05_simple.png deleted file mode 100644 index fad8c8beb..000000000 Binary files a/docs/source/pics/05_simple.png and /dev/null differ diff --git a/docs/source/pics/06_ensemble.png b/docs/source/pics/06_ensemble.png deleted file mode 100644 index d63139678..000000000 Binary files a/docs/source/pics/06_ensemble.png and /dev/null differ diff --git a/docs/source/pics/07_00_std.png b/docs/source/pics/07_00_std.png deleted file mode 100644 index 3128e018e..000000000 Binary files a/docs/source/pics/07_00_std.png and /dev/null differ diff --git a/docs/source/pics/07_01_lognormal.png b/docs/source/pics/07_01_lognormal.png deleted file mode 100644 index 430327ace..000000000 Binary files a/docs/source/pics/07_01_lognormal.png and /dev/null differ diff --git a/docs/source/pics/07_02_binary.png b/docs/source/pics/07_02_binary.png deleted file mode 100644 index 7d720f175..000000000 Binary files a/docs/source/pics/07_02_binary.png and /dev/null differ diff --git a/docs/source/pics/07_03_zinnharvey.png b/docs/source/pics/07_03_zinnharvey.png deleted file mode 100644 index 949994de1..000000000 Binary files a/docs/source/pics/07_03_zinnharvey.png and /dev/null differ diff --git a/docs/source/pics/07_04_arcsin.png b/docs/source/pics/07_04_arcsin.png deleted file mode 100644 index 772ae3f84..000000000 Binary files a/docs/source/pics/07_04_arcsin.png and /dev/null differ diff --git a/docs/source/pics/07_05_combine.png b/docs/source/pics/07_05_combine.png deleted file mode 100644 index bcd9222e6..000000000 Binary files a/docs/source/pics/07_05_combine.png and /dev/null differ diff --git a/docs/source/pics/09_cond_ens.png b/docs/source/pics/09_cond_ens.png deleted file mode 100644 index ed9a5d5a9..000000000 Binary files a/docs/source/pics/09_cond_ens.png and /dev/null differ diff --git a/docs/source/pics/20_gstools.png b/docs/source/pics/20_gstools.png deleted file mode 100644 index 6f2091027..000000000 Binary files a/docs/source/pics/20_gstools.png and /dev/null differ diff --git a/docs/source/pics/20_pykrige.png b/docs/source/pics/20_pykrige.png deleted file mode 100644 index fa5451463..000000000 Binary files a/docs/source/pics/20_pykrige.png and /dev/null differ diff --git a/docs/source/pics/3d_gau_field.png b/docs/source/pics/3d_gau_field.png deleted file mode 100644 index 862f8cf85..000000000 Binary files a/docs/source/pics/3d_gau_field.png and /dev/null differ diff --git a/docs/source/pics/GS_3d_vector_field.png b/docs/source/pics/GS_3d_vector_field.png deleted file mode 100644 index f1cf0883d..000000000 Binary files a/docs/source/pics/GS_3d_vector_field.png and /dev/null differ diff --git a/docs/source/pics/GS_pyvista_cut.png b/docs/source/pics/GS_pyvista_cut.png deleted file mode 100644 index bad73abc6..000000000 Binary files a/docs/source/pics/GS_pyvista_cut.png and /dev/null differ diff --git a/docs/source/pics/cond_ens.png b/docs/source/pics/cond_ens.png deleted file mode 100644 index 6c0d5211c..000000000 Binary files a/docs/source/pics/cond_ens.png and /dev/null differ diff --git a/docs/source/pics/cov_model_vario.png b/docs/source/pics/cov_model_vario.png deleted file mode 100644 index 7dbbe9ec1..000000000 Binary files a/docs/source/pics/cov_model_vario.png and /dev/null differ diff --git a/docs/source/pics/demonstrator.png b/docs/source/pics/demonstrator.png deleted file mode 100644 index 395a317e2..000000000 Binary files a/docs/source/pics/demonstrator.png and /dev/null differ diff --git a/docs/source/pics/exp_vario_fit.png b/docs/source/pics/exp_vario_fit.png deleted file mode 100644 index 24ec17996..000000000 Binary files a/docs/source/pics/exp_vario_fit.png and /dev/null differ diff --git a/docs/source/pics/gau_field.png b/docs/source/pics/gau_field.png deleted file mode 100644 index 602d095c7..000000000 Binary files a/docs/source/pics/gau_field.png and /dev/null differ diff --git a/docs/source/pics/gstools.png b/docs/source/pics/gstools.png deleted file mode 100644 index 5f4be62ce..000000000 Binary files a/docs/source/pics/gstools.png and /dev/null differ diff --git a/docs/source/pics/paraview.png b/docs/source/pics/paraview.png deleted file mode 100644 index 7c2a94947..000000000 Binary files a/docs/source/pics/paraview.png and /dev/null differ diff --git a/docs/source/pics/pyvista_export.png b/docs/source/pics/pyvista_export.png deleted file mode 100644 index dc5d0a256..000000000 Binary files a/docs/source/pics/pyvista_export.png and /dev/null differ diff --git a/docs/source/pics/srf_tut_exp_ani_rot.png b/docs/source/pics/srf_tut_exp_ani_rot.png deleted file mode 100644 index d5e348d14..000000000 Binary files a/docs/source/pics/srf_tut_exp_ani_rot.png and /dev/null differ diff --git a/docs/source/pics/srf_tut_gau_field.png b/docs/source/pics/srf_tut_gau_field.png deleted file mode 100644 index 8153a45a9..000000000 Binary files a/docs/source/pics/srf_tut_gau_field.png and /dev/null differ diff --git a/docs/source/pics/srf_tut_gau_field_ens.png b/docs/source/pics/srf_tut_gau_field_ens.png deleted file mode 100644 index 7a8ab35e3..000000000 Binary files a/docs/source/pics/srf_tut_gau_field_ens.png and /dev/null differ diff --git a/docs/source/pics/srf_tut_merge.png b/docs/source/pics/srf_tut_merge.png deleted file mode 100644 index 57474e514..000000000 Binary files a/docs/source/pics/srf_tut_merge.png and /dev/null differ diff --git a/docs/source/pics/srf_tut_unstr.png b/docs/source/pics/srf_tut_unstr.png deleted file mode 100644 index c095e3719..000000000 Binary files a/docs/source/pics/srf_tut_unstr.png and /dev/null differ diff --git a/docs/source/pics/srf_vector_field.png b/docs/source/pics/srf_vector_field.png deleted file mode 100644 index 59d1bad21..000000000 Binary files a/docs/source/pics/srf_vector_field.png and /dev/null differ diff --git a/docs/source/pics/stab_vario_fit.png b/docs/source/pics/stab_vario_fit.png deleted file mode 100644 index 2b3c6e3c5..000000000 Binary files a/docs/source/pics/stab_vario_fit.png and /dev/null differ diff --git a/docs/source/pics/tplstable_field.png b/docs/source/pics/tplstable_field.png deleted file mode 100644 index 9d1790832..000000000 Binary files a/docs/source/pics/tplstable_field.png and /dev/null differ diff --git a/docs/source/pics/vario_tut_aniso_fit_exp.png b/docs/source/pics/vario_tut_aniso_fit_exp.png deleted file mode 100644 index 8344e93bc..000000000 Binary files a/docs/source/pics/vario_tut_aniso_fit_exp.png and /dev/null differ diff --git a/docs/source/pics/vario_tut_fit_exp.png b/docs/source/pics/vario_tut_fit_exp.png deleted file mode 100644 index 06fc66dbe..000000000 Binary files a/docs/source/pics/vario_tut_fit_exp.png and /dev/null differ diff --git a/docs/source/pics/vario_tut_herten.png b/docs/source/pics/vario_tut_herten.png deleted file mode 100644 index 84303b8fa..000000000 Binary files a/docs/source/pics/vario_tut_herten.png and /dev/null differ diff --git a/docs/source/pics/vario_tut_new_herten.png b/docs/source/pics/vario_tut_new_herten.png deleted file mode 100644 index 7080a2520..000000000 Binary files a/docs/source/pics/vario_tut_new_herten.png and /dev/null differ diff --git a/docs/source/pics/vec_srf_tut_exp.png b/docs/source/pics/vec_srf_tut_exp.png deleted file mode 100644 index 492036465..000000000 Binary files a/docs/source/pics/vec_srf_tut_exp.png and /dev/null differ diff --git a/docs/source/pics/vec_srf_tut_gau.png b/docs/source/pics/vec_srf_tut_gau.png deleted file mode 100644 index beafa4128..000000000 Binary files a/docs/source/pics/vec_srf_tut_gau.png and /dev/null differ diff --git a/docs/source/tutorials.rst b/docs/source/tutorials.rst deleted file mode 100644 index 3c25f597a..000000000 --- a/docs/source/tutorials.rst +++ /dev/null @@ -1,32 +0,0 @@ -.. _tutorials: - -================= -GSTools Tutorials -================= - -In the following you will find several Tutorials on how to use GSTools to -explore its whole beauty and power. - - -.. toctree:: - :includehidden: - :maxdepth: 1 - - examples/01_random_field/index - examples/02_cov_model/index - examples/03_variogram/index - examples/04_vector_field/index - examples/05_kriging/index - examples/06_conditioned_fields/index - examples/07_transformations/index - examples/08_geo_coordinates/index - examples/09_spatio_temporal/index - examples/10_normalizer/index - examples/00_misc/index - -.. only:: html - - **Youtube Tutorial on GSTools** - - .. youtube:: qZBJ-AZXq6Q - :width: 100% diff --git a/examples/00_misc/00_tpl_stable.py b/examples/00_misc/00_tpl_stable.py deleted file mode 100644 index 474b0f558..000000000 --- a/examples/00_misc/00_tpl_stable.py +++ /dev/null @@ -1,62 +0,0 @@ -r""" -Truncated Power Law Variograms ------------------------------- - -GSTools also implements truncated power law variograms, -which can be represented as a superposition of scale dependant modes -in form of standard variograms, which are truncated by -a lower- :math:`\ell_{\mathrm{low}}` and -an upper length-scale :math:`\ell_{\mathrm{up}}`. - -This example shows the truncated power law (:any:`TPLStable`) based on the -:any:`Stable` covariance model and is given by - -.. math:: - \gamma_{\ell_{\mathrm{low}},\ell_{\mathrm{up}}}(r) = - \intop_{\ell_{\mathrm{low}}}^{\ell_{\mathrm{up}}} - \gamma(r,\lambda) \frac{\rm d \lambda}{\lambda} - -with `Stable` modes on each scale: - -.. math:: - \gamma(r,\lambda) &= - \sigma^2(\lambda)\cdot\left(1- - \exp\left[- \left(\frac{r}{\lambda}\right)^{\alpha}\right] - \right)\\ - \sigma^2(\lambda) &= C\cdot\lambda^{2H} - -which gives Gaussian modes for ``alpha=2`` -or Exponential modes for ``alpha=1``. - -For :math:`\ell_{\mathrm{low}}=0` this results in: - -.. math:: - \gamma_{\ell_{\mathrm{up}}}(r) &= - \sigma^2_{\ell_{\mathrm{up}}}\cdot\left(1- - \frac{2H}{\alpha} \cdot - E_{1+\frac{2H}{\alpha}} - \left[\left(\frac{r}{\ell_{\mathrm{up}}}\right)^{\alpha}\right] - \right) \\ - \sigma^2_{\ell_{\mathrm{up}}} &= - C\cdot\frac{\ell_{\mathrm{up}}^{2H}}{2H} -""" - -import numpy as np - -import gstools as gs - -x = y = np.linspace(0, 100, 100) -model = gs.TPLStable( - dim=2, # spatial dimension - var=1, # variance (C is calculated internally, so variance is actually 1) - len_low=0, # lower truncation of the power law - len_scale=10, # length scale (a.k.a. range), len_up = len_low + len_scale - nugget=0.1, # nugget - anis=0.5, # anisotropy between main direction and transversal ones - angles=np.pi / 4, # rotation angles - alpha=1.5, # shape parameter from the stable model - hurst=0.7, # hurst coefficient from the power law -) -srf = gs.SRF(model, mean=1.0, seed=19970221) -srf.structured([x, y]) -srf.plot() diff --git a/examples/00_misc/01_export.py b/examples/00_misc/01_export.py deleted file mode 100644 index e38294fe6..000000000 --- a/examples/00_misc/01_export.py +++ /dev/null @@ -1,25 +0,0 @@ -""" -Exporting Fields ----------------- - -GSTools provides simple exporting routines to convert generated fields to -`VTK `__ files. - -These can be viewed for example with `Paraview `__. -""" - -# sphinx_gallery_thumbnail_path = 'pics/paraview.png' -import gstools as gs - -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model) -field = srf((x, y), mesh_type="structured") -srf.vtk_export(filename="field") - -############################################################################### -# The result displayed with Paraview: -# -# .. image:: https://raw.githubusercontent.com/GeoStat-Framework/GeoStat-Framework.github.io/master/img/paraview.png -# :width: 400px -# :align: center diff --git a/examples/00_misc/02_check_rand_meth_sampling.py b/examples/00_misc/02_check_rand_meth_sampling.py deleted file mode 100644 index 58d998b4d..000000000 --- a/examples/00_misc/02_check_rand_meth_sampling.py +++ /dev/null @@ -1,68 +0,0 @@ -""" -Check Random Sampling ---------------------- -""" - -import numpy as np -from matplotlib import pyplot as plt -from mpl_toolkits.mplot3d import Axes3D - -import gstools as gs - - -def norm_rad(vec): - """Direction on the unit sphere.""" - vec = np.array(vec, ndmin=2) - norm = np.zeros(vec.shape[1]) - for i in range(vec.shape[0]): - norm += vec[i] ** 2 - norm = np.sqrt(norm) - return np.einsum("j,ij->ij", 1 / norm, vec), norm - - -def plot_rand_meth_samples(generator): - """Plot the samples of the rand meth class.""" - norm, rad = norm_rad(generator._cov_sample) - - fig = plt.figure(figsize=(10, 4)) - - if generator.model.dim == 3: - ax = fig.add_subplot(121, projection=Axes3D.name) - u = np.linspace(0, 2 * np.pi, 100) - v = np.linspace(0, np.pi, 100) - x = np.outer(np.cos(u), np.sin(v)) - y = np.outer(np.sin(u), np.sin(v)) - z = np.outer(np.ones(np.size(u)), np.cos(v)) - ax.plot_surface(x, y, z, rstride=4, cstride=4, color="b", alpha=0.1) - ax.scatter(norm[0], norm[1], norm[2]) - elif generator.model.dim == 2: - ax = fig.add_subplot(121) - u = np.linspace(0, 2 * np.pi, 100) - x = np.cos(u) - y = np.sin(u) - ax.plot(x, y, color="b", alpha=0.1) - ax.scatter(norm[0], norm[1]) - ax.set_aspect("equal") - else: - ax = fig.add_subplot(121) - ax.bar(-1, np.sum(np.isclose(norm, -1)), color="C0") - ax.bar(1, np.sum(np.isclose(norm, 1)), color="C0") - ax.set_xticks([-1, 1]) - ax.set_xticklabels(("-1", "1")) - ax.set_title("Direction sampling") - - ax = fig.add_subplot(122) - x = np.linspace(0, 10 / generator.model.integral_scale) - y = generator.model.spectral_rad_pdf(x) - ax.plot(x, y, label="radial spectral density") - sample_in = np.sum(rad <= np.max(x)) - ax.hist(rad[rad <= np.max(x)], bins=sample_in // 50, density=True) - ax.set_xlim([0, np.max(x)]) - ax.set_title(f"Radius samples shown {sample_in}/{len(rad)}") - ax.legend() - plt.show() - - -model = gs.Stable(dim=3, alpha=1.5) -srf = gs.SRF(model, seed=2020) -plot_rand_meth_samples(srf.generator) diff --git a/examples/00_misc/04_herten.py b/examples/00_misc/04_herten.py deleted file mode 100644 index 1e1b8a23f..000000000 --- a/examples/00_misc/04_herten.py +++ /dev/null @@ -1,290 +0,0 @@ -""" -Analyzing the Herten Aquifer with GSTools ------------------------------------------ - -This example is going to be a bit more extensive and we are going to do some -basic data preprocessing for the actual variogram estimation. But this example -will be self-contained and all data gathering and processing will be done in -this example script. - - -The Data -^^^^^^^^ - -We are going to analyse the Herten aquifer, which is situated in Southern -Germany. Multiple outcrop faces where surveyed and interpolated to a 3D -dataset. In these publications, you can find more information about the data: - -| Bayer, Peter; Comunian, Alessandro; Höyng, Dominik; Mariethoz, Gregoire (2015): Physicochemical properties and 3D geostatistical simulations of the Herten and the Descalvado aquifer analogs. PANGAEA, https://doi.org/10.1594/PANGAEA.844167, -| Supplement to: Bayer, P et al. (2015): Three-dimensional multi-facies realizations of sedimentary reservoir and aquifer analogs. Scientific Data, 2, 150033, https://doi.org/10.1038/sdata.2015.33 -| - -Retrieving the Data -^^^^^^^^^^^^^^^^^^^ - -To begin with, we need to download and extract the data. Therefore, we are -going to use some built-in Python libraries. For simplicity, many values and -strings will be hardcoded. - -You don't have to execute the ``download_herten`` and ``generate_transmissivity`` -functions, since the only produce the ``herten_transmissivity.gz`` -and ``grid_dim_origin_spacing.txt``, which are already present. -""" - -import os - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -VTK_PATH = os.path.join("Herten-analog", "sim-big_1000x1000x140", "sim.vtk") - -############################################################################### - - -def download_herten(): - """Download the data, warning: its about 250MB.""" - import urllib.request - import zipfile - - print("Downloading Herten data") - data_filename = "data.zip" - data_url = ( - "http://store.pangaea.de/Publications/" - "Bayer_et_al_2015/Herten-analog.zip" - ) - urllib.request.urlretrieve(data_url, "data.zip") - # extract the "big" simulation - with zipfile.ZipFile(data_filename, "r") as zf: - zf.extract(VTK_PATH) - - -############################################################################### - - -def generate_transmissivity(): - """Generate a file with a transmissivity field from the HERTEN data.""" - import shutil - - import pyvista as pv - - print("Loading Herten data with pyvista") - mesh = pv.read(VTK_PATH) - herten = mesh.point_data["facies"].reshape(mesh.dimensions, order="F") - # conductivity values per fazies from the supplementary data - cond = 1e-4 * np.array( - [2.5, 2.3, 0.61, 260, 1300, 950, 0.43, 0.006, 23, 1.4] - ) - # asign the conductivities to the facies - herten_cond = cond[herten] - # Next, we are going to calculate the transmissivity, - # by integrating over the vertical axis - herten_trans = np.sum(herten_cond, axis=2) * mesh.spacing[2] - # saving some grid informations - grid = [mesh.dimensions[:2], mesh.origin[:2], mesh.spacing[:2]] - print("Saving the transmissivity field and grid information") - np.savetxt("herten_transmissivity.gz", herten_trans) - np.savetxt("grid_dim_origin_spacing.txt", grid) - # Some cleanup. You can comment out these lines to keep the downloaded data - os.remove("data.zip") - shutil.rmtree("Herten-analog") - - -############################################################################### -# Downloading and Preprocessing -# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -# -# You can uncomment the following two calls, so the data is downloaded -# and processed again. - -# download_herten() -# generate_transmissivity() - - -############################################################################### -# Analyzing the data -# ^^^^^^^^^^^^^^^^^^ -# -# The Herten data provides information about the grid, which was already used in -# the previous code block. From this information, we can create our own grid on -# which we can estimate the variogram. As a first step, we are going to estimate -# an isotropic variogram, meaning that we will take point pairs from all -# directions into account. An unstructured grid is a natural choice for this. -# Therefore, we are going to create an unstructured grid from the given, -# structured one. For this, we are going to write another small function - -herten_log_trans = np.log(np.loadtxt("herten_transmissivity.gz")) -dim, origin, spacing = np.loadtxt("grid_dim_origin_spacing.txt") - -# create a structured grid on which the data is defined -x_s = np.arange(origin[0], origin[0] + dim[0] * spacing[0], spacing[0]) -y_s = np.arange(origin[1], origin[1] + dim[1] * spacing[1], spacing[1]) -# create the corresponding unstructured grid for the variogram estimation -x_u, y_u = np.meshgrid(x_s, y_s) - - -############################################################################### -# Let's have a look at the transmissivity field of the Herten aquifer - -plt.imshow(herten_log_trans.T, origin="lower", aspect="equal") -plt.show() - - -############################################################################### -# Estimating the Variogram -# ^^^^^^^^^^^^^^^^^^^^^^^^ -# -# Finally, everything is ready for the variogram estimation. For the unstructured -# method, we have to define the bins on which the variogram will be estimated. -# Through expert knowledge (i.e. fiddling around), we assume that the main -# features of the variogram will be below 10 metres distance. And because the -# data has a high spatial resolution, the resolution of the bins can also be -# high. The transmissivity data is still defined on a structured grid, but we can -# simply flatten it with :any:`numpy.ndarray.flatten`, in order to bring it into -# the right shape. It might be more memory efficient to use -# ``herten_log_trans.reshape(-1)``, but for better readability, we will stick to -# :any:`numpy.ndarray.flatten`. Taking all data points into account would take a -# very long time (expert knowledge \*wink\*), thus we will only take 2000 datapoints into account, which are sampled randomly. In order to make the exact -# results reproducible, we can also set a seed. - - -bins = gs.standard_bins(pos=(x_u, y_u), max_dist=10) -bin_center, gamma = gs.vario_estimate( - (x_u, y_u), - herten_log_trans.reshape(-1), - bins, - sampling_size=2000, - sampling_seed=19920516, -) - -############################################################################### -# The estimated variogram is calculated on the centre of the given bins, -# therefore, the ``bin_center`` array is also returned. - -############################################################################### -# Fitting the Variogram -# ^^^^^^^^^^^^^^^^^^^^^ -# -# Now, we can see, if the estimated variogram can be modelled by a common -# variogram model. Let's try the :any:`Exponential` model. - -# fit an exponential model -fit_model = gs.Exponential(dim=2) -fit_model.fit_variogram(bin_center, gamma, nugget=False) - -############################################################################### -# Finally, we can visualise some results. For quickly plotting a covariance -# model, GSTools provides some helper functions. - -ax = fit_model.plot(x_max=max(bin_center)) -ax.plot(bin_center, gamma) - - -############################################################################### -# That looks like a pretty good fit! By printing the model, we can directly see -# the fitted parameters - -print(fit_model) - -############################################################################### -# With this data, we could start generating new ensembles of the Herten aquifer -# with the :any:`SRF` class. - - -############################################################################### -# Estimating the Variogram in Specific Directions -# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -# -# Estimating a variogram on a structured grid gives us the possibility to only -# consider values in a specific direction. This could be a first test, to see if -# the data is anisotropic. -# In order to speed up the calculations, we are going to only use every 10th datapoint and for a comparison with the isotropic variogram calculated earlier, we -# only need the first 21 array items. - - -# estimate the variogram on a structured grid -# use only every 10th value, otherwise calculations would take very long -x_s_skip = np.ravel(x_s)[::10] -y_s_skip = np.ravel(y_s)[::10] -herten_trans_skip = herten_log_trans[::10, ::10] - -############################################################################### -# With this much smaller data set, we can immediately estimate the variogram in -# the x- and y-axis - -gamma_x = gs.vario_estimate_axis(herten_trans_skip, direction="x") -gamma_y = gs.vario_estimate_axis(herten_trans_skip, direction="y") - -############################################################################### -# With these two estimated variograms, we can start fitting :any:`Exponential` -# covariance models - -x_plot = x_s_skip[:21] -y_plot = y_s_skip[:21] -# fit an exponential model -fit_model_x = gs.Exponential(dim=2) -fit_model_x.fit_variogram(x_plot, gamma_x[:21], nugget=False) -fit_model_y = gs.Exponential(dim=2) -fit_model_y.fit_variogram(y_plot, gamma_y[:21], nugget=False) - -############################################################################### -# Now, the isotropic variogram and the two variograms in x- and y-direction can -# be plotted together with their respective models, which will be plotted with -# dashed lines. - -plt.figure() # new figure -(line,) = plt.plot(bin_center, gamma, label="estimated variogram (isotropic)") -plt.plot( - bin_center, - fit_model.variogram(bin_center), - color=line.get_color(), - linestyle="--", - label="exp. variogram (isotropic)", -) - -(line,) = plt.plot(x_plot, gamma_x[:21], label="estimated variogram in x-dir") -plt.plot( - x_plot, - fit_model_x.variogram(x_plot), - color=line.get_color(), - linestyle="--", - label="exp. variogram in x-dir", -) - -(line,) = plt.plot(y_plot, gamma_y[:21], label="estimated variogram in y-dir") -plt.plot( - y_plot, - fit_model_y.variogram(y_plot), - color=line.get_color(), - linestyle="--", - label="exp. variogram in y-dir", -) - -plt.legend() -plt.show() - -############################################################################### -# The plot might be a bit cluttered, but at least it is pretty obvious that the -# Herten aquifer has no apparent anisotropies in its spatial structure. - -print("semivariogram model (isotropic):\n", fit_model) -print("semivariogram model (in x-dir.):\n", fit_model_x) -print("semivariogram model (in y-dir.):\n", fit_model_y) - - -############################################################################### -# Creating a Spatial Random Field from the Herten Parameters -# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -# -# With all the hard work done, it's straight forward now, to generate new -# *Herten-like realisations* - -# create a spatial random field on the low-resolution grid -srf = gs.SRF(fit_model, seed=19770928) -srf.structured([x_s_skip, y_s_skip]) -ax = srf.plot() -ax.set_aspect("equal") - -############################################################################### -# That's pretty neat! diff --git a/examples/00_misc/05_standalone_field.py b/examples/00_misc/05_standalone_field.py deleted file mode 100644 index e467f0431..000000000 --- a/examples/00_misc/05_standalone_field.py +++ /dev/null @@ -1,30 +0,0 @@ -""" -Standalone Field class ----------------------- - -The :any:`Field` class of GSTools can be used to plot arbitrary data in nD. - -In the following example we will produce 10000 random points in 4D with -random values and plot them. -""" - -import numpy as np - -import gstools as gs - -rng = np.random.RandomState(19970221) -x0 = rng.rand(10000) * 100.0 -x1 = rng.rand(10000) * 100.0 -x2 = rng.rand(10000) * 100.0 -x3 = rng.rand(10000) * 100.0 -values = rng.rand(10000) * 100.0 - -############################################################################### -# Only thing needed to instantiate the Field is the dimension. -# -# Afterwards we can call the instance like all other Fields -# (:any:`SRF`, :any:`Krige` or :any:`CondSRF`), but with an additional field. - -plotter = gs.field.Field(dim=4) -plotter(pos=(x0, x1, x2, x3), field=values) -plotter.plot() diff --git a/examples/00_misc/README.rst b/examples/00_misc/README.rst deleted file mode 100644 index bef7ae572..000000000 --- a/examples/00_misc/README.rst +++ /dev/null @@ -1,9 +0,0 @@ -Miscellaneous Tutorials -======================= - -More examples which do not really fit into other categories. Some are not more -than a code snippet, while others are more complex and more than one part of -GSTools is involved. - -Examples --------- diff --git a/examples/00_misc/grid_dim_origin_spacing.txt b/examples/00_misc/grid_dim_origin_spacing.txt deleted file mode 100644 index 024928d3e..000000000 --- a/examples/00_misc/grid_dim_origin_spacing.txt +++ /dev/null @@ -1,3 +0,0 @@ -1.000000000000000000e+03 1.000000000000000000e+03 -0.000000000000000000e+00 0.000000000000000000e+00 -5.000000000000000278e-02 5.000000000000000278e-02 diff --git a/examples/00_misc/herten_transmissivity.gz b/examples/00_misc/herten_transmissivity.gz deleted file mode 100644 index fa1d00e3a..000000000 Binary files a/examples/00_misc/herten_transmissivity.gz and /dev/null differ diff --git a/examples/01_random_field/00_gaussian.py b/examples/01_random_field/00_gaussian.py deleted file mode 100644 index b7bde5f9c..000000000 --- a/examples/01_random_field/00_gaussian.py +++ /dev/null @@ -1,38 +0,0 @@ -r""" -A Very Simple Example ---------------------- - -We are going to start with a very simple example of a spatial random field -with an isotropic Gaussian covariance model and following parameters: - -- variance :math:`\sigma^2=1` -- correlation length :math:`\lambda=10` - -First, we set things up and create the axes for the field. We are going to -need the :any:`SRF` class for the actual generation of the spatial random field. -But :any:`SRF` also needs a covariance model and we will simply take the -:any:`Gaussian` model. -""" - -import gstools as gs - -x = y = range(100) - -############################################################################### -# Now we create the covariance model with the parameters :math:`\sigma^2` and -# :math:`\lambda` and hand it over to :any:`SRF`. By specifying a seed, -# we make sure to create reproducible results: - -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, seed=20170519) - -############################################################################### -# With these simple steps, everything is ready to create our first random field. -# We will create the field on a structured grid (as you might have guessed from -# the `x` and `y`), which makes it easier to plot. - -field = srf.structured([x, y]) -srf.plot() - -############################################################################### -# Wow, that was pretty easy! diff --git a/examples/01_random_field/01_srf_ensemble.py b/examples/01_random_field/01_srf_ensemble.py deleted file mode 100644 index 68cc2c0fa..000000000 --- a/examples/01_random_field/01_srf_ensemble.py +++ /dev/null @@ -1,54 +0,0 @@ -""" -Creating an Ensemble of Fields ------------------------------- - -Creating an ensemble of random fields would also be -a great idea. Let's reuse most of the previous code. - -We will set the position tuple `pos` before generation to reuse it afterwards. -""" - -import matplotlib.pyplot as pt -import numpy as np - -import gstools as gs - -x = y = np.arange(100) - -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model) -srf.set_pos([x, y], "structured") - -############################################################################### -# This time, we did not provide a seed to :any:`SRF`, as the seeds will used -# during the actual computation of the fields. We will create four ensemble -# members, for better visualisation, save them in to srf class and in a first -# step, we will be using the loop counter as the seeds. - -ens_no = 4 -for i in range(ens_no): - srf(seed=i, store=f"field{i}") - -############################################################################### -# Now let's have a look at the results. We can access the fields by name or -# index: - -fig, ax = pt.subplots(2, 2, sharex=True, sharey=True) -ax = ax.flatten() -for i in range(ens_no): - ax[i].imshow(srf[i].T, origin="lower") -pt.show() - -############################################################################### -# Using better Seeds -# ^^^^^^^^^^^^^^^^^^ -# -# It is not always a good idea to use incrementing seeds. Therefore GSTools -# provides a seed generator :any:`MasterRNG`. The loop, in which the fields are -# generated would then look like - -from gstools.random import MasterRNG - -seed = MasterRNG(20170519) -for i in range(ens_no): - srf(seed=seed(), store=f"better_field{i}") diff --git a/examples/01_random_field/02_fancier.py b/examples/01_random_field/02_fancier.py deleted file mode 100644 index 1922cec72..000000000 --- a/examples/01_random_field/02_fancier.py +++ /dev/null @@ -1,31 +0,0 @@ -r""" -Creating Fancier Fields ------------------------ - -Only using Gaussian covariance fields gets boring. Now we are going to create -much rougher random fields by using an exponential covariance model and we are going to make them anisotropic. - -The code is very similar to the previous examples, but with a different -covariance model class :any:`Exponential`. As model parameters we a using -following - -- variance :math:`\sigma^2=1` -- correlation length :math:`\lambda=(12, 3)^T` -- rotation angle :math:`\theta=\pi/8` - -""" - -import numpy as np - -import gstools as gs - -x = y = np.arange(100) -model = gs.Exponential(dim=2, var=1, len_scale=[12.0, 3.0], angles=np.pi / 8) -srf = gs.SRF(model, seed=20170519) -srf.structured([x, y]) -srf.plot() - -############################################################################### -# The anisotropy ratio could also have been set with - -model = gs.Exponential(dim=2, var=1, len_scale=12, anis=0.25, angles=np.pi / 8) diff --git a/examples/01_random_field/03_unstr_srf_export.py b/examples/01_random_field/03_unstr_srf_export.py deleted file mode 100644 index 94d009525..000000000 --- a/examples/01_random_field/03_unstr_srf_export.py +++ /dev/null @@ -1,34 +0,0 @@ -""" -Using an Unstructured Grid --------------------------- - -For many applications, the random fields are needed on an unstructured grid. -Normally, such a grid would be read in, but we can simply generate one and -then create a random field at those coordinates. -""" - -import numpy as np - -import gstools as gs - -############################################################################### -# Creating our own unstructured grid -seed = gs.random.MasterRNG(19970221) -rng = np.random.RandomState(seed()) -x = rng.randint(0, 100, size=10000) -y = rng.randint(0, 100, size=10000) - -model = gs.Exponential(dim=2, var=1, len_scale=[12, 3], angles=np.pi / 8) -srf = gs.SRF(model, seed=20170519) -field = srf((x, y)) -srf.vtk_export("field") -# Or create a PyVista dataset -# mesh = srf.to_pyvista() - -############################################################################### -ax = srf.plot() -ax.set_aspect("equal") - -############################################################################### -# Comparing this image to the previous one, you can see that be using the same -# seed, the same field can be computed on different grids. diff --git a/examples/01_random_field/04_srf_merge.py b/examples/01_random_field/04_srf_merge.py deleted file mode 100644 index 241ed0793..000000000 --- a/examples/01_random_field/04_srf_merge.py +++ /dev/null @@ -1,49 +0,0 @@ -""" -Merging two Fields ------------------- - -We can even generate the same field realisation on different grids. Let's try -to merge two unstructured rectangular fields. - -""" - -# sphinx_gallery_thumbnail_number = 2 -import numpy as np - -import gstools as gs - -# creating our own unstructured grid -seed = gs.random.MasterRNG(19970221) -rng = np.random.RandomState(seed()) -x = rng.randint(0, 100, size=10000) -y = rng.randint(0, 100, size=10000) - -model = gs.Exponential(dim=2, var=1, len_scale=[12, 3], angles=np.pi / 8) -srf = gs.SRF(model, seed=20170519) -field1 = srf((x, y)) -srf.plot() -############################################################################### -# But now we extend the field on the right hand side by creating a new -# unstructured grid and calculating a field with the same parameters and the -# same seed on it: - -# new grid -seed = gs.random.MasterRNG(20011012) -rng = np.random.RandomState(seed()) -x2 = rng.randint(99, 150, size=10000) -y2 = rng.randint(20, 80, size=10000) - -field2 = srf((x2, y2)) -ax = srf.plot() -ax.tricontourf(x, y, field1.T, levels=256) -ax.set_aspect("equal") - -############################################################################### -# The slight mismatch where the two fields were merged is merely due to -# interpolation problems of the plotting routine. You can convince yourself -# be increasing the resolution of the grids by a factor of 10. -# -# Of course, this merging could also have been done by appending the grid -# point ``(x2, y2)`` to the original grid ``(x, y)`` before generating the field. -# But one application scenario would be to generate hugh fields, which would not -# fit into memory anymore. diff --git a/examples/01_random_field/05_mesh_ensemble.py b/examples/01_random_field/05_mesh_ensemble.py deleted file mode 100755 index 1e2f0da86..000000000 --- a/examples/01_random_field/05_mesh_ensemble.py +++ /dev/null @@ -1,94 +0,0 @@ -""" -Generating Fields on Meshes ---------------------------- - -GSTools provides an interface for meshes, to support -`meshio `_ and -`ogs5py `_ meshes. - -When using `meshio`, the generated fields will be stored immediately in the -mesh container. - -There are two options to generate a field on a given mesh: - -- `points="points"` will generate a field on the mesh points -- `points="centroids"` will generate a field on the cell centroids - -In this example, we will generate a simple mesh with the aid of -`meshzoo `_. -""" - -import matplotlib.pyplot as plt -import matplotlib.tri as tri -import meshio -import meshzoo -import numpy as np - -import gstools as gs - -# generate a triangulated hexagon with meshzoo -points, cells = meshzoo.ngon(6, 4) -mesh = meshio.Mesh(points, {"triangle": cells}) - -############################################################################### -# Now we prepare the SRF class as always. We will generate an ensemble of -# fields on the generated mesh. - -# number of fields -fields_no = 12 -# model setup -model = gs.Gaussian(dim=2, len_scale=0.5) -srf = gs.SRF(model, mean=1) - -############################################################################### -# To generate fields on a mesh, we provide a separate method: :any:`SRF.mesh`. -# First we generate fields on the mesh-centroids controlled by a seed. -# You can specify the field name by the keyword `name`. - -for i in range(fields_no): - srf.mesh(mesh, points="centroids", name=f"c-field-{i}", seed=i) - -############################################################################### -# Now we generate fields on the mesh-points again controlled by a seed. - -for i in range(fields_no): - srf.mesh(mesh, points="points", name=f"p-field-{i}", seed=i) - -############################################################################### -# To get an impression we now want to plot the generated fields. -# Luckily, matplotlib supports triangular meshes. - -triangulation = tri.Triangulation(points[:, 0], points[:, 1], cells) -# figure setup -cols = 4 -rows = int(np.ceil(fields_no / cols)) - -############################################################################### -# Cell data can be easily visualized with matplotlibs `tripcolor`. -# To highlight the cell structure, we use `triplot`. - -fig = plt.figure(figsize=[2 * cols, 2 * rows]) -for i, field in enumerate(mesh.cell_data, 1): - ax = fig.add_subplot(rows, cols, i) - ax.tripcolor(triangulation, mesh.cell_data[field][0]) - ax.triplot(triangulation, linewidth=0.5, color="k") - ax.set_aspect("equal") -fig.tight_layout() - -############################################################################### -# Point data is plotted via `tricontourf`. - -fig = plt.figure(figsize=[2 * cols, 2 * rows]) -for i, field in enumerate(mesh.point_data, 1): - ax = fig.add_subplot(rows, cols, i) - ax.tricontourf(triangulation, mesh.point_data[field]) - ax.triplot(triangulation, linewidth=0.5, color="k") - ax.set_aspect("equal") -fig.tight_layout() -plt.show() - -############################################################################### -# Last but not least, `meshio` can be used for what is does best: Exporting. -# Tada! - -mesh.write("mesh_ensemble.vtk") diff --git a/examples/01_random_field/06_pyvista_support.py b/examples/01_random_field/06_pyvista_support.py deleted file mode 100644 index 29de8dd7a..000000000 --- a/examples/01_random_field/06_pyvista_support.py +++ /dev/null @@ -1,58 +0,0 @@ -""" -Using PyVista meshes --------------------- - -`PyVista `__ is a helper module for the -Visualization Toolkit (VTK) that takes a different approach on interfacing with -VTK through NumPy and direct array access. - -It provides mesh data structures and filtering methods for spatial datasets, -makes 3D plotting simple and is built for large/complex data geometries. - -The :any:`Field.mesh` method enables easy field creation on PyVista meshes -used by the :any:`SRF` or :any:`Krige` class. -""" - -# sphinx_gallery_thumbnail_path = 'pics/GS_pyvista_cut.png' -import pyvista as pv - -import gstools as gs - -############################################################################### -# We create a structured grid with PyVista containing 50 segments on all three -# axes each with a length of 2 (whatever unit). - -dims, spacing = (50, 50, 50), (2, 2, 2) -grid = pv.ImageData(dimensions=dims, spacing=spacing) - -############################################################################### -# Now we set up the SRF class as always. We'll use an anisotropic model. - -model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) -srf = gs.SRF(model, seed=19970221) - -############################################################################### -# The PyVista mesh can now be directly passed to the :any:`SRF.mesh` method. -# When dealing with meshes, one can choose if the field should be generated -# on the mesh-points (`"points"`) or the cell-centroids (`"centroids"`). -# -# In addition we can set a name, under which the resulting field is stored -# in the mesh. - -srf.mesh(grid, points="points", name="random-field") - -############################################################################### -# Now we have access to PyVista's abundancy of methods to explore the field. -# -# .. note:: -# PyVista is not working on readthedocs, but you can try it out yourself by -# uncommenting the following line of code. - -# grid.contour(isosurfaces=8).plot() - -############################################################################### -# The result should look like this: -# -# .. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_pyvista_cut.png -# :width: 400px -# :align: center diff --git a/examples/01_random_field/07_higher_dimensions.py b/examples/01_random_field/07_higher_dimensions.py deleted file mode 100755 index b65ab3ead..000000000 --- a/examples/01_random_field/07_higher_dimensions.py +++ /dev/null @@ -1,82 +0,0 @@ -""" -Higher Dimensions ------------------ - -GSTools provides experimental support for higher dimensions. - -Anisotropy is the same as in lower dimensions: - -- in `n` dimensions we need `(n-1)` anisotropy ratios - -Rotation on the other hand is a bit more complex. -With increasing dimensions more and more rotation angles are added in order -to properply describe the rotated axes of anisotropy. - -By design the first rotation angles coincide with the lower ones: - -- 2D (rotation in x-y plane) -> 3D: first angle describes xy-plane rotation -- 3D (Tait-Bryan angles) -> 4D: first 3 angles coincide with Tait-Bryan angles - -By increasing the dimension from `n` to `(n+1)`, `n` angles are added: - -- 2D (1 angle) -> 3D: 3 angles (2 added) -- 3D (3 angles) -> 4D: 6 angles (3 added) - -the following list of rotation-planes are described by the list of -angles in the model: - -1. x-y plane -2. x-z plane -3. y-z plane -4. x-v plane -5. y-v plane -6. z-v plane -7. ... - -The rotation direction in these planes have alternating signs -in order to match Tait-Bryan in 3D. - -Let's have a look at a 4D example, where we naively add a 4th dimension. -""" - -import matplotlib.pyplot as plt - -import gstools as gs - -dim = 4 -size = 20 -pos = [range(size)] * dim -model = gs.Exponential(dim=dim, len_scale=5) -srf = gs.SRF(model, seed=20170519) -field = srf.structured(pos) - -############################################################################### -# In order to "prove" correctness, we can calculate an empirical variogram -# of the generated field and fit our model to it. - -bin_center, vario = gs.vario_estimate( - pos, field, sampling_size=2000, mesh_type="structured" -) -model.fit_variogram(bin_center, vario) -print(model) - -############################################################################### -# As you can see, the estimated variance and length scale match our input -# quite well. -# -# Let's have a look at the fit and a x-y cross-section of the 4D field: - -f, a = plt.subplots(1, 2, gridspec_kw={"width_ratios": [2, 1]}, figsize=[9, 3]) -model.plot(x_max=max(bin_center), ax=a[0]) -a[0].scatter(bin_center, vario) -a[1].imshow(field[:, :, 0, 0].T, origin="lower") -a[0].set_title("isotropic empirical variogram with fitted model") -a[1].set_title("x-y cross-section") -f.show() - -############################################################################### -# GSTools also provides plotting routines for higher dimensions. -# Fields are shown by 2D cross-sections, where other dimensions can be -# controlled via sliders. - -srf.plot() diff --git a/examples/01_random_field/README.rst b/examples/01_random_field/README.rst deleted file mode 100644 index 6b226b2f9..000000000 --- a/examples/01_random_field/README.rst +++ /dev/null @@ -1,17 +0,0 @@ -Random Field Generation -======================= - -The main feature of GSTools is the spatial random field generator :any:`SRF`, -which can generate random fields following a given covariance model. -The generator provides a lot of nice features, which will be explained in -the following - -GSTools generates spatial random fields with a given covariance model or -semi-variogram. This is done by using the so-called randomization method. -The spatial random field is represented by a stochastic Fourier integral -and its discretised modes are evaluated at random frequencies. - -GSTools supports arbitrary and non-isotropic covariance models. - -Examples --------- diff --git a/examples/02_cov_model/00_intro.py b/examples/02_cov_model/00_intro.py deleted file mode 100644 index 6b73fd2a1..000000000 --- a/examples/02_cov_model/00_intro.py +++ /dev/null @@ -1,75 +0,0 @@ -""" -Introductory example -==================== - -Let us start with a short example of a self defined model (Of course, we -provide a lot of predefined models [See: :any:`gstools.covmodel`], -but they all work the same way). -Therefore we reimplement the Gaussian covariance model -by defining just the "normalized" -`correlation `_ -function: -""" - -import numpy as np - -import gstools as gs - - -# use CovModel as the base-class -class Gau(gs.CovModel): - def cor(self, h): - return np.exp(-(h**2)) - - -############################################################################### -# Here the parameter ``h`` stands for the normalized range ``r / len_scale``. -# Now we can instantiate this model: - -model = Gau(dim=2, var=2.0, len_scale=10) - -############################################################################### -# To have a look at the variogram, let's plot it: - -model.plot() - -############################################################################### -# This is almost identical to the already provided :any:`Gaussian` model. -# There, a scaling factor is implemented so the len_scale coincides with the -# integral scale: - -gau_model = gs.Gaussian(dim=2, var=2.0, len_scale=10) -gau_model.plot() - - -############################################################################### -# Parameters -# ---------- -# -# We already used some parameters, which every covariance models has. -# The basic ones are: -# -# - **dim** : dimension of the model -# - **var** : variance of the model (on top of the subscale variance) -# - **len_scale** : length scale of the model -# - **nugget** : nugget (subscale variance) of the model -# -# These are the common parameters used to characterize -# a covariance model and are therefore used by every model in GSTools. -# You can also access and reset them: - -print("old model:", model) -model.dim = 3 -model.var = 1 -model.len_scale = 15 -model.nugget = 0.1 -print("new model:", model) - - -############################################################################### -# .. note:: -# -# - The sill of the variogram is calculated by ``sill = variance + nugget`` -# So we treat the variance as everything **above** the nugget, -# which is sometimes called **partial sill**. -# - A covariance model can also have additional parameters. diff --git a/examples/02_cov_model/01_basic_methods.py b/examples/02_cov_model/01_basic_methods.py deleted file mode 100755 index 4c97fba85..000000000 --- a/examples/02_cov_model/01_basic_methods.py +++ /dev/null @@ -1,45 +0,0 @@ -r""" -Basic Methods -============= - -The covariance model class :any:`CovModel` of GSTools provides a set of handy -methods. - -One of the following functions defines the main characterization of the -variogram: - -- ``CovModel.variogram`` : The variogram of the model given by - - .. math:: - \gamma\left(r\right)= - \sigma^2\cdot\left(1-\rho\left(r\right)\right)+n - -- ``CovModel.covariance`` : The (auto-)covariance of the model given by - - .. math:: - C\left(r\right)= \sigma^2\cdot\rho\left(r\right) - -- ``CovModel.correlation`` : The (auto-)correlation - (or normalized covariance) of the model given by - - .. math:: - \rho\left(r\right) - -- ``CovModel.cor`` : The normalized correlation taking a - normalized range given by: - - .. math:: - \mathrm{cor}\left(\frac{r}{\ell}\right) = \rho\left(r\right) - - -As you can see, it is the easiest way to define a covariance model by giving a -correlation function as demonstrated in the introductory example. -If one of the above functions is given, the others will be determined: -""" - -import gstools as gs - -model = gs.Exponential(dim=3, var=2.0, len_scale=10, nugget=0.5) -ax = model.plot("variogram") -model.plot("covariance", ax=ax) -model.plot("correlation", ax=ax) diff --git a/examples/02_cov_model/02_aniso_rotation.py b/examples/02_cov_model/02_aniso_rotation.py deleted file mode 100755 index b7459e396..000000000 --- a/examples/02_cov_model/02_aniso_rotation.py +++ /dev/null @@ -1,56 +0,0 @@ -""" -Anisotropy and Rotation -======================= - -The internally used (semi-) variogram -represents the isotropic case for the model. -Nevertheless, you can provide anisotropy ratios by: -""" - -import gstools as gs - -model = gs.Gaussian(dim=3, var=2.0, len_scale=10, anis=0.5) -print(model.anis) -print(model.len_scale_vec) - - -############################################################################### -# As you can see, we defined just one anisotropy-ratio -# and the second transversal direction was filled up with ``1.``. -# You can get the length-scales in each direction by -# the attribute :any:`CovModel.len_scale_vec`. For full control you can set -# a list of anistropy ratios: ``anis=[0.5, 0.4]``. -# -# Alternatively you can provide a list of length-scales: - -model = gs.Gaussian(dim=3, var=2.0, len_scale=[10, 5, 4]) -model.plot("vario_spatial") -print("Anisotropy representations:") -print("Anis. ratios:", model.anis) -print("Main length scale", model.len_scale) -print("All length scales", model.len_scale_vec) - - -############################################################################### -# Rotation Angles -# --------------- -# -# The main directions of the field don't have to coincide with the spatial -# directions :math:`x`, :math:`y` and :math:`z`. Therefore you can provide -# rotation angles for the model: - -model = gs.Gaussian(dim=3, var=2.0, len_scale=[10, 2], angles=2.5) -model.plot("vario_spatial") -print("Rotation angles", model.angles) - -############################################################################### -# Again, the angles were filled up with ``0.`` to match the dimension and you -# could also provide a list of angles. The number of angles depends on the -# given dimension: -# -# - in 1D: no rotation performable -# - in 2D: given as rotation around z-axis -# - in 3D: given by yaw, pitch, and roll (known as -# `Tait–Bryan `_ -# angles) -# - in nD: See the random field example about higher dimensions diff --git a/examples/02_cov_model/03_spectral_methods.py b/examples/02_cov_model/03_spectral_methods.py deleted file mode 100755 index 61c7e49b0..000000000 --- a/examples/02_cov_model/03_spectral_methods.py +++ /dev/null @@ -1,47 +0,0 @@ -r""" -Spectral methods -================ - -The spectrum of a covariance model is given by: - -.. math:: S(\mathbf{k}) = \left(\frac{1}{2\pi}\right)^n - \int C(\Vert\mathbf{r}\Vert) e^{i b\mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r} - -Since the covariance function :math:`C(r)` is radially symmetric, we can -calculate this by the -`hankel-transformation `_: - -.. math:: S(k) = \left(\frac{1}{2\pi}\right)^n \cdot - \frac{(2\pi)^{n/2}}{(bk)^{n/2-1}} - \int_0^\infty r^{n/2-1} C(r) J_{n/2-1}(bkr) r dr - -Where :math:`k=\left\Vert\mathbf{k}\right\Vert`. - -Depending on the spectrum, the spectral-density is defined by: - -.. math:: \tilde{S}(k) = \frac{S(k)}{\sigma^2} - -You can access these methods by: -""" - -import gstools as gs - -model = gs.Gaussian(dim=3, var=2.0, len_scale=10) -ax = model.plot("spectrum") -model.plot("spectral_density", ax=ax) - -############################################################################### -# .. note:: -# The spectral-density is given by the radius of the input phase. But it is -# **not** a probability density function for the radius of the phase. -# To obtain the pdf for the phase-radius, you can use the methods -# :any:`CovModel.spectral_rad_pdf` -# or :any:`CovModel.ln_spectral_rad_pdf` for the logarithm. -# -# The user can also provide a cdf (cumulative distribution function) by -# defining a method called ``spectral_rad_cdf`` -# and/or a ppf (percent-point function) -# by ``spectral_rad_ppf``. -# -# The attributes :any:`CovModel.has_cdf` -# and :any:`CovModel.has_ppf` will check for that. diff --git a/examples/02_cov_model/04_different_scales.py b/examples/02_cov_model/04_different_scales.py deleted file mode 100755 index 0e2e1991b..000000000 --- a/examples/02_cov_model/04_different_scales.py +++ /dev/null @@ -1,69 +0,0 @@ -r""" -Different scales -================ - -Besides the length-scale, there are many other ways of characterizing a certain -scale of a covariance model. We provide two common scales with the covariance -model. - -Integral scale --------------- - -The `integral scale `_ -of a covariance model is calculated by: - -.. math:: I = \int_0^\infty \rho(r) dr - -You can access it by: -""" - -import gstools as gs - -model = gs.Stable(dim=3, var=2.0, len_scale=10) -print("Main integral scale:", model.integral_scale) -print("All integral scales:", model.integral_scale_vec) - - -############################################################################### -# You can also specify integral length scales like the ordinary length scale, -# and len_scale/anis will be recalculated: - -model = gs.Stable(dim=3, var=2.0, integral_scale=[10, 4, 2]) -print("Anisotropy ratios:", model.anis) -print("Main length scale:", model.len_scale) -print("All length scales:", model.len_scale_vec) -print("Main integral scale:", model.integral_scale) -print("All integral scales:", model.integral_scale_vec) - - -############################################################################### -# Percentile scale -# ---------------- -# -# Another scale characterizing the covariance model, is the percentile scale. -# It is the distance, where the normalized -# variogram reaches a certain percentage of its sill. - -model = gs.Stable(dim=3, var=2.0, len_scale=10) -per_scale = model.percentile_scale(0.9) -int_scale = model.integral_scale -len_scale = model.len_scale -print("90% Percentile scale:", per_scale) -print("Integral scale:", int_scale) -print("Length scale:", len_scale) - -############################################################################### -# .. note:: -# -# The nugget is neglected by the percentile scale. -# -# -# Comparison -# ---------- - -ax = model.plot() -ax.axhline(1.8, color="k", label=r"90% percentile") -ax.axvline(per_scale, color="k", linestyle="--", label=r"90% percentile scale") -ax.axvline(int_scale, color="k", linestyle="-.", label=r"integral scale") -ax.axvline(len_scale, color="k", linestyle=":", label=r"length scale") -ax.legend() diff --git a/examples/02_cov_model/05_additional_para.py b/examples/02_cov_model/05_additional_para.py deleted file mode 100755 index 3264cec47..000000000 --- a/examples/02_cov_model/05_additional_para.py +++ /dev/null @@ -1,47 +0,0 @@ -r""" -Additional Parameters -===================== - -Let's pimp our self-defined model ``Gau`` from the introductory example -by setting the exponent as an additional parameter: - -.. math:: - \rho(r) := \exp\left(-\left(\frac{r}{\ell}\right)^{\alpha}\right) - -This leads to the so called **stable** covariance model and we can define it by -""" - -import numpy as np - -import gstools as gs - - -class Stab(gs.CovModel): - def default_opt_arg(self): - return {"alpha": 1.5} - - def cor(self, h): - return np.exp(-(h**self.alpha)) - - -############################################################################### -# As you can see, we override the method :any:`CovModel.default_opt_arg` -# to provide a standard value for the optional argument ``alpha``. -# We can access it in the correlation function by ``self.alpha`` -# -# Now we can instantiate this model by either setting alpha implicitly with -# the default value or explicitly: - -model1 = Stab(dim=2, var=2.0, len_scale=10) -model2 = Stab(dim=2, var=2.0, len_scale=10, alpha=0.5) -ax = model1.plot() -model2.plot(ax=ax) - -############################################################################### -# Apparently, the parameter alpha controls the slope of the variogram -# and consequently the roughness of a generated random field. -# -# .. note:: -# -# You don't have to override the :any:`CovModel.default_opt_arg`, -# but you will get a ValueError if you don't set it on creation. diff --git a/examples/02_cov_model/06_fitting_para_ranges.py b/examples/02_cov_model/06_fitting_para_ranges.py deleted file mode 100755 index 7c8f083ed..000000000 --- a/examples/02_cov_model/06_fitting_para_ranges.py +++ /dev/null @@ -1,76 +0,0 @@ -""" -Fitting variogram data -====================== - -The model class comes with a routine to fit the model-parameters to given -variogram data. In the following we will use the self defined stable model -from a previous example. -""" - -import numpy as np - -import gstools as gs - - -class Stab(gs.CovModel): - def default_opt_arg(self): - return {"alpha": 1.5} - - def cor(self, h): - return np.exp(-(h**self.alpha)) - - -# Exemplary variogram data (e.g. estimated from field observations) -bins = [1.0, 3.0, 5.0, 7.0, 9.0, 11.0] -est_vario = [0.2, 0.5, 0.6, 0.8, 0.8, 0.9] -# fitting model -model = Stab(dim=2) -# we have to provide boundaries for the parameters -model.set_arg_bounds(alpha=[0, 3]) -results, pcov = model.fit_variogram(bins, est_vario, nugget=False) -print("Results:", results) - -############################################################################### - -ax = model.plot() -ax.scatter(bins, est_vario, color="k", label="sample variogram") -ax.legend() - - -############################################################################### -# As you can see, we have to provide boundaries for the parameters. -# As a default, the following bounds are set: -# -# - additional parameters: ``[-np.inf, np.inf]`` -# - variance: ``[0.0, np.inf]`` -# - len_scale: ``[0.0, np.inf]`` -# - nugget: ``[0.0, np.inf]`` -# -# Also, you can deselect parameters from fitting, so their predefined values -# will be kept. In our case, we fixed a ``nugget`` of ``0.0``, which was set -# by default. You can deselect any standard or -# optional argument of the covariance model. -# The second return value ``pcov`` is the estimated covariance of ``popt`` from -# the used scipy routine :any:`scipy.optimize.curve_fit`. -# -# You can use the following methods to manipulate the used bounds: -# -# .. currentmodule:: gstools.covmodel -# -# .. autosummary:: -# CovModel.default_opt_arg_bounds -# CovModel.default_arg_bounds -# CovModel.set_arg_bounds -# CovModel.check_arg_bounds -# -# You can override the :any:`CovModel.default_opt_arg_bounds` -# to provide standard bounds for your additional parameters. -# -# To access the bounds you can use: -# -# .. autosummary:: -# CovModel.var_bounds -# CovModel.len_scale_bounds -# CovModel.nugget_bounds -# CovModel.opt_arg_bounds -# CovModel.arg_bounds diff --git a/examples/02_cov_model/README.rst b/examples/02_cov_model/README.rst deleted file mode 100644 index 73704183c..000000000 --- a/examples/02_cov_model/README.rst +++ /dev/null @@ -1,88 +0,0 @@ -.. _tutorial_02_cov: - -The Covariance Model -==================== - -One of the core-features of GSTools is the powerful :any:`CovModel` -class, which allows you to easily define arbitrary covariance models by -yourself. The resulting models provide a bunch of nice features to explore the -covariance models. - -A covariance model is used to characterize the -`semi-variogram `_, -denoted by :math:`\gamma`, of a spatial random field. -In GSTools, we use the following form for an isotropic and stationary field: - -.. math:: - \gamma\left(r\right)= - \sigma^2\cdot\left(1-\mathrm{cor}\left(s\cdot\frac{r}{\ell}\right)\right)+n - -Where: - - - :math:`r` is the lag distance - - :math:`\ell` is the main correlation length - - :math:`s` is a scaling factor for unit conversion or normalization - - :math:`\sigma^2` is the variance - - :math:`n` is the nugget (subscale variance) - - :math:`\mathrm{cor}(h)` is the normalized correlation function depending on - the non-dimensional distance :math:`h=s\cdot\frac{r}{\ell}` - -Depending on the normalized correlation function, all covariance models in -GSTools are providing the following functions: - - - :math:`\rho(r)=\mathrm{cor}\left(s\cdot\frac{r}{\ell}\right)` - is the so called - `correlation `_ - function - - :math:`C(r)=\sigma^2\cdot\rho(r)` is the so called - `covariance `_ - function, which gives the name for our GSTools class - -.. note:: - - We are not limited to isotropic models. GSTools supports anisotropy ratios - for length scales in orthogonal transversal directions like: - - - :math:`x_0` (main direction) - - :math:`x_1` (1. transversal direction) - - :math:`x_2` (2. transversal direction) - - ... - - These main directions can also be rotated. - Just have a look at the corresponding examples. - -Provided Covariance Models --------------------------- - -.. currentmodule:: gstools.covmodel - -The following standard covariance models are provided by GSTools - -.. autosummary:: - Gaussian - Exponential - Matern - Integral - Stable - Rational - Cubic - Linear - Circular - Spherical - HyperSpherical - SuperSpherical - JBessel - TPLSimple - -As a special feature, we also provide truncated power law (TPL) covariance models - -.. autosummary:: - TPLGaussian - TPLExponential - TPLStable - -These models provide a lower and upper length scale truncation -for superpositioned models. - -Examples --------- diff --git a/examples/03_variogram/00_fit_variogram.py b/examples/03_variogram/00_fit_variogram.py deleted file mode 100644 index 7334ed2c8..000000000 --- a/examples/03_variogram/00_fit_variogram.py +++ /dev/null @@ -1,36 +0,0 @@ -""" -Fit Variogram -------------- -""" - -import numpy as np - -import gstools as gs - -############################################################################### -# Generate a synthetic field with an exponential model. - -x = np.random.RandomState(19970221).rand(1000) * 100.0 -y = np.random.RandomState(20011012).rand(1000) * 100.0 -model = gs.Exponential(dim=2, var=2, len_scale=8) -srf = gs.SRF(model, mean=0, seed=19970221) -field = srf((x, y)) - -############################################################################### -# Estimate the variogram of the field with 40 bins. - -bins = np.arange(40) -bin_center, gamma = gs.vario_estimate((x, y), field, bins) - -############################################################################### -# Fit the variogram with a stable model (no nugget fitted). - -fit_model = gs.Stable(dim=2) -fit_model.fit_variogram(bin_center, gamma, nugget=False) - -############################################################################### -# Plot the fitting result. - -ax = fit_model.plot(x_max=40) -ax.scatter(bin_center, gamma) -print(fit_model) diff --git a/examples/03_variogram/01_find_best_model.py b/examples/03_variogram/01_find_best_model.py deleted file mode 100755 index eab031cf6..000000000 --- a/examples/03_variogram/01_find_best_model.py +++ /dev/null @@ -1,64 +0,0 @@ -""" -Finding the best fitting variogram model ----------------------------------------- -""" - -import numpy as np -from matplotlib import pyplot as plt - -import gstools as gs - -############################################################################### -# Generate a synthetic field with an exponential model. - -x = np.random.RandomState(19970221).rand(1000) * 100.0 -y = np.random.RandomState(20011012).rand(1000) * 100.0 -model = gs.Exponential(dim=2, var=2, len_scale=8) -srf = gs.SRF(model, mean=0, seed=19970221) -field = srf((x, y)) - -############################################################################### -# Estimate the variogram of the field with 40 bins and plot the result. - -bins = np.arange(40) -bin_center, gamma = gs.vario_estimate((x, y), field, bins) - -############################################################################### -# Define a set of models to test. - -models = { - "Gaussian": gs.Gaussian, - "Exponential": gs.Exponential, - "Matern": gs.Matern, - "Stable": gs.Stable, - "Rational": gs.Rational, - "Circular": gs.Circular, - "Spherical": gs.Spherical, - "SuperSpherical": gs.SuperSpherical, - "JBessel": gs.JBessel, -} -scores = {} - -############################################################################### -# Iterate over all models, fit their variogram and calculate the r2 score. - -# plot the estimated variogram -plt.scatter(bin_center, gamma, color="k", label="data") -ax = plt.gca() - -# fit all models to the estimated variogram -for model in models: - fit_model = models[model](dim=2) - para, pcov, r2 = fit_model.fit_variogram(bin_center, gamma, return_r2=True) - fit_model.plot(x_max=40, ax=ax) - scores[model] = r2 - -############################################################################### -# Create a ranking based on the score and determine the best models - -ranking = sorted(scores.items(), key=lambda item: item[1], reverse=True) -print("RANKING by Pseudo-r2 score") -for i, (model, score) in enumerate(ranking, 1): - print(f"{i:>6}. {model:>15}: {score:.5}") - -plt.show() diff --git a/examples/03_variogram/02_multi_vario.py b/examples/03_variogram/02_multi_vario.py deleted file mode 100755 index 71048849d..000000000 --- a/examples/03_variogram/02_multi_vario.py +++ /dev/null @@ -1,44 +0,0 @@ -""" -Multi-field variogram estimation --------------------------------- - -In this example, we demonstrate how to estimate a variogram from multiple -fields on the same point-set that should have the same statistical properties. -""" - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -x = np.random.RandomState(19970221).rand(1000) * 100.0 -y = np.random.RandomState(20011012).rand(1000) * 100.0 -model = gs.Exponential(dim=2, var=2, len_scale=8) -srf = gs.SRF(model, mean=0) - -############################################################################### -# Generate two synthetic fields with an exponential model. - -field1 = srf((x, y), seed=19970221) -field2 = srf((x, y), seed=20011012) -fields = [field1, field2] - -############################################################################### -# Now we estimate the variograms for both fields individually and then again -# simultaneously with only one call. - -bins = np.arange(40) -bin_center, gamma1 = gs.vario_estimate((x, y), field1, bins) -bin_center, gamma2 = gs.vario_estimate((x, y), field2, bins) -bin_center, gamma = gs.vario_estimate((x, y), fields, bins) - -############################################################################### -# Now we demonstrate that the mean variogram from both fields coincides -# with the joined estimated one. - -plt.plot(bin_center, gamma1, label="field 1") -plt.plot(bin_center, gamma2, label="field 2") -plt.plot(bin_center, gamma, label="joined fields") -plt.plot(bin_center, 0.5 * (gamma1 + gamma2), ":", label="field 1+2 mean") -plt.legend() -plt.show() diff --git a/examples/03_variogram/03_directional_2d.py b/examples/03_variogram/03_directional_2d.py deleted file mode 100755 index 460c75131..000000000 --- a/examples/03_variogram/03_directional_2d.py +++ /dev/null @@ -1,66 +0,0 @@ -""" -Directional variogram estimation and fitting in 2D --------------------------------------------------- - -In this example, we demonstrate how to estimate a directional variogram by -setting the direction angles in 2D. - -Afterwards we will fit a model to this estimated variogram and show the result. -""" - -import numpy as np -from matplotlib import pyplot as plt - -import gstools as gs - -############################################################################### -# Generating synthetic field with anisotropy and a rotation of 22.5 degree. - -angle = np.pi / 8 -model = gs.Exponential(dim=2, len_scale=[10, 5], angles=angle) -x = y = range(101) -srf = gs.SRF(model, seed=123456) -field = srf((x, y), mesh_type="structured") - -############################################################################### -# Now we are going to estimate a directional variogram with an angular -# tolerance of 11.25 degree and a bandwith of 8. - -bins = range(0, 40, 2) -bin_center, dir_vario, counts = gs.vario_estimate( - *((x, y), field, bins), - direction=gs.rotated_main_axes(dim=2, angles=angle), - angles_tol=np.pi / 16, - bandwidth=8, - mesh_type="structured", - return_counts=True, -) - -############################################################################### -# Afterwards we can use the estimated variogram to fit a model to it: - -print("Original:") -print(model) -model.fit_variogram(bin_center, dir_vario) -print("Fitted:") -print(model) - -############################################################################### -# Plotting. - -fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[10, 5]) - -ax1.scatter(bin_center, dir_vario[0], label="emp. vario: pi/8") -ax1.scatter(bin_center, dir_vario[1], label="emp. vario: pi*5/8") -ax1.legend(loc="lower right") - -model.plot("vario_axis", axis=0, ax=ax1, x_max=40, label="fit on axis 0") -model.plot("vario_axis", axis=1, ax=ax1, x_max=40, label="fit on axis 1") -ax1.set_title("Fitting an anisotropic model") - -srf.plot(ax=ax2) -plt.show() - -############################################################################### -# Without fitting a model, we see that the correlation length in the main -# direction is greater than the transversal one. diff --git a/examples/03_variogram/04_directional_3d.py b/examples/03_variogram/04_directional_3d.py deleted file mode 100755 index 6a8b6ddfa..000000000 --- a/examples/03_variogram/04_directional_3d.py +++ /dev/null @@ -1,98 +0,0 @@ -""" -Directional variogram estimation and fitting in 3D --------------------------------------------------- - -In this example, we demonstrate how to estimate a directional variogram by -setting the estimation directions in 3D. - -Afterwards we will fit a model to this estimated variogram and show the result. -""" - -import matplotlib.pyplot as plt -import numpy as np -from mpl_toolkits.mplot3d import Axes3D - -import gstools as gs - -############################################################################### -# Generating synthetic field with anisotropy and rotation by Tait-Bryan angles. - -dim = 3 -# rotation around z, y, x -angles = [np.deg2rad(90), np.deg2rad(45), np.deg2rad(22.5)] -model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=angles) -x = y = z = range(50) -pos = (x, y, z) -srf = gs.SRF(model, seed=1001) -field = srf.structured(pos) - -############################################################################### -# Here we generate the axes of the rotated coordinate system -# to get an impression what the rotation angles do. - -# All 3 axes of the rotated coordinate-system -main_axes = gs.rotated_main_axes(dim, angles) -axis1, axis2, axis3 = main_axes - -############################################################################### -# Now we estimate the variogram along the main axes. When the main axes are -# unknown, one would need to sample multiple directions and look for the one -# with the longest correlation length (flattest gradient). -# Then check the transversal directions and so on. - -bin_center, dir_vario, counts = gs.vario_estimate( - pos, - field, - direction=main_axes, - bandwidth=10, - sampling_size=2000, - sampling_seed=1001, - mesh_type="structured", - return_counts=True, -) - -############################################################################### -# Afterwards we can use the estimated variogram to fit a model to it. -# Note, that the rotation angles need to be set beforehand. - -print("Original:") -print(model) -model.fit_variogram(bin_center, dir_vario) -print("Fitted:") -print(model) - -############################################################################### -# Plotting main axes and the fitted directional variogram. - -fig = plt.figure(figsize=[10, 5]) -ax1 = fig.add_subplot(121, projection=Axes3D.name) -ax2 = fig.add_subplot(122) - -ax1.plot([0, axis1[0]], [0, axis1[1]], [0, axis1[2]], label="0.") -ax1.plot([0, axis2[0]], [0, axis2[1]], [0, axis2[2]], label="1.") -ax1.plot([0, axis3[0]], [0, axis3[1]], [0, axis3[2]], label="2.") -ax1.set_xlim(-1, 1) -ax1.set_ylim(-1, 1) -ax1.set_zlim(-1, 1) -ax1.set_xlabel("X") -ax1.set_ylabel("Y") -ax1.set_zlabel("Z") -ax1.set_title("Tait-Bryan main axis") -ax1.legend(loc="lower left") - -x_max = max(bin_center) -ax2.scatter(bin_center, dir_vario[0], label="0. axis") -ax2.scatter(bin_center, dir_vario[1], label="1. axis") -ax2.scatter(bin_center, dir_vario[2], label="2. axis") -model.plot("vario_axis", axis=0, ax=ax2, x_max=x_max, label="fit on axis 0") -model.plot("vario_axis", axis=1, ax=ax2, x_max=x_max, label="fit on axis 1") -model.plot("vario_axis", axis=2, ax=ax2, x_max=x_max, label="fit on axis 2") -ax2.set_title("Fitting an anisotropic model") -ax2.legend() - -plt.show() - -############################################################################### -# Also, let's have a look at the field. - -srf.plot() diff --git a/examples/03_variogram/05_auto_fit_variogram.py b/examples/03_variogram/05_auto_fit_variogram.py deleted file mode 100644 index 2fcc7fbd6..000000000 --- a/examples/03_variogram/05_auto_fit_variogram.py +++ /dev/null @@ -1,37 +0,0 @@ -""" -Fit Variogram with automatic binning ------------------------------------- -""" - -import numpy as np - -import gstools as gs - -############################################################################### -# Generate a synthetic field with an exponential model. - -x = np.random.RandomState(19970221).rand(1000) * 100.0 -y = np.random.RandomState(20011012).rand(1000) * 100.0 -model = gs.Exponential(dim=2, var=2, len_scale=8) -srf = gs.SRF(model, mean=0, seed=19970221) -field = srf((x, y)) -print(field.var()) -############################################################################### -# Estimate the variogram of the field with automatic binning. - -bin_center, gamma = gs.vario_estimate((x, y), field) -print("estimated bin number:", len(bin_center)) -print("maximal bin distance:", max(bin_center)) - -############################################################################### -# Fit the variogram with a stable model (no nugget fitted). - -fit_model = gs.Stable(dim=2) -fit_model.fit_variogram(bin_center, gamma, nugget=False) -print(fit_model) - -############################################################################### -# Plot the fitting result. - -ax = fit_model.plot(x_max=max(bin_center)) -ax.scatter(bin_center, gamma) diff --git a/examples/03_variogram/06_auto_bin_latlon.py b/examples/03_variogram/06_auto_bin_latlon.py deleted file mode 100644 index cc248ea16..000000000 --- a/examples/03_variogram/06_auto_bin_latlon.py +++ /dev/null @@ -1,90 +0,0 @@ -""" -Automatic binning with lat-lon data ------------------------------------ - -In this example we demonstrate automatic binning for a tiny data set -containing temperature records from Germany -(See the detailed DWD example for more information on the data). - -We use a data set from 20 meteo-stations choosen randomly. -""" - -import numpy as np - -import gstools as gs - -# lat, lon, temperature -data = np.array( - [ - [52.9336, 8.237, 15.7], - [48.6159, 13.0506, 13.9], - [52.4853, 7.9126, 15.1], - [50.7446, 9.345, 17.0], - [52.9437, 12.8518, 21.9], - [53.8633, 8.1275, 11.9], - [47.8342, 10.8667, 11.4], - [51.0881, 12.9326, 17.2], - [48.406, 11.3117, 12.9], - [49.7273, 8.1164, 17.2], - [49.4691, 11.8546, 13.4], - [48.0197, 12.2925, 13.9], - [50.4237, 7.4202, 18.1], - [53.0316, 13.9908, 21.3], - [53.8412, 13.6846, 21.3], - [54.6792, 13.4343, 17.4], - [49.9694, 9.9114, 18.6], - [51.3745, 11.292, 20.2], - [47.8774, 11.3643, 12.7], - [50.5908, 12.7139, 15.8], - ] -) -pos = data.T[:2] # lat, lon -field = data.T[2] # temperature - -############################################################################### -# Since the overall range of these meteo-stations is too low, we can use the -# data-variance as additional information during the fit of the variogram. - -emp_v = gs.vario_estimate(pos, field, latlon=True, geo_scale=gs.KM_SCALE) -sph = gs.Spherical(latlon=True, geo_scale=gs.KM_SCALE) -sph.fit_variogram(*emp_v, sill=np.var(field)) -ax = sph.plot("vario_yadrenko", x_max=2 * np.max(emp_v[0])) -ax.scatter(*emp_v, label="Empirical variogram") -ax.legend() -print(sph) - -############################################################################### -# As we can see, the variogram fitting was successful and providing the data -# variance helped finding the right length-scale. -# -# Now, we'll use this covariance model to interpolate the given data with -# ordinary kriging. - -# enclosing box for data points -grid_lat = np.linspace(np.min(pos[0]), np.max(pos[0])) -grid_lon = np.linspace(np.min(pos[1]), np.max(pos[1])) -# ordinary kriging -krige = gs.krige.Ordinary(sph, pos, field) -krige((grid_lat, grid_lon), mesh_type="structured") -ax = krige.plot() -# plotting lat on y-axis and lon on x-axis -ax.scatter(pos[1], pos[0], 50, c=field, edgecolors="k", label="input") -ax.legend() - -############################################################################### -# Looks good, doesn't it? -# -# This workflow is also implemented in the :any:`Krige` class, by setting -# ``fit_variogram=True``. Then the whole procedure shortens: - -krige = gs.krige.Ordinary(sph, pos, field, fit_variogram=True) -krige.structured((grid_lat, grid_lon)) - -# plot the result -krige.plot() -# show the fitting results -print(krige.model) - -############################################################################### -# This example shows, that setting up variogram estimation and kriging routines -# is straight forward with GSTools! diff --git a/examples/03_variogram/README.rst b/examples/03_variogram/README.rst deleted file mode 100644 index 8eb42a8a8..000000000 --- a/examples/03_variogram/README.rst +++ /dev/null @@ -1,14 +0,0 @@ -Variogram Estimation -==================== - -Estimating the spatial correlations is an important part of geostatistics. -These spatial correlations can be expressed by the variogram, which can be -estimated with the subpackage :any:`gstools.variogram`. The variograms can be -estimated on structured and unstructured grids. - -The same `(semi-)variogram `_ as -:ref:`tutorial_02_cov` is being used -by this subpackage. - -Examples --------- diff --git a/examples/04_vector_field/00_2d_vector_field.py b/examples/04_vector_field/00_2d_vector_field.py deleted file mode 100644 index 2e7227642..000000000 --- a/examples/04_vector_field/00_2d_vector_field.py +++ /dev/null @@ -1,47 +0,0 @@ -""" -Generating a Random 2D Vector Field ------------------------------------ - -As a first example we are going to generate a 2d vector field with a Gaussian -covariance model on a structured grid: -""" - -import numpy as np - -import gstools as gs - -# the grid -x = np.arange(100) -y = np.arange(100) - -# a smooth Gaussian covariance model -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, generator="VectorField", seed=19841203) -srf((x, y), mesh_type="structured") -srf.plot() - -############################################################################### -# Let us have a look at the influence of the covariance model. Choosing the -# exponential model and keeping all other parameters the same - -# a rougher exponential covariance model -model2 = gs.Exponential(dim=2, var=1, len_scale=10) -srf.model = model2 -srf((x, y), mesh_type="structured", seed=19841203) -srf.plot() - -############################################################################### -# and we see, that the wiggles are much "rougher" than the smooth Gaussian ones. - - -############################################################################### -# Applications -# ~~~~~~~~~~~~ -# -# One great advantage of the Kraichnan method is, that after some initializations, -# one can compute the velocity field at arbitrary points, online, with hardly any -# overhead. -# This means, that for a Lagrangian transport simulation for example, the velocity -# can be evaluated at each particle position very efficiently and without any -# interpolation. These field interpolations are a common problem for Lagrangian -# methods. diff --git a/examples/04_vector_field/01_3d_vector_field.py b/examples/04_vector_field/01_3d_vector_field.py deleted file mode 100755 index 5b1872bd4..000000000 --- a/examples/04_vector_field/01_3d_vector_field.py +++ /dev/null @@ -1,64 +0,0 @@ -""" -Generating a Random 3D Vector Field ------------------------------------ - -In this example we are going to generate a random 3D vector field with a -Gaussian covariance model. The mesh on which we generate the field will be -externally defined and it will be generated by PyVista. -""" - -# sphinx_gallery_thumbnail_path = 'pics/GS_3d_vector_field.png' -import pyvista as pv - -import gstools as gs - -# mainly for setting a white background -pv.set_plot_theme("document") - -############################################################################### -# create a uniform grid with PyVista -dims, spacing, origin = (40, 30, 10), (1, 1, 1), (-10, 0, 0) -mesh = pv.ImageData(dimensions=dims, spacing=spacing, origin=origin) - -############################################################################### -# create an incompressible random 3d velocity field on the given mesh -# with added mean velocity in x-direction -model = gs.Gaussian(dim=3, var=3, len_scale=1.5) -srf = gs.SRF(model, mean=(0.5, 0, 0), generator="VectorField", seed=198412031) -srf.mesh(mesh, points="points", name="Velocity") - -############################################################################### -# Now, we can do the plotting -streamlines = mesh.streamlines( - "Velocity", - terminal_speed=0.0, - n_points=800, - source_radius=2.5, -) - -# set a fancy camera position -cpos = [(25, 23, 17), (0, 10, 0), (0, 0, 1)] - -p = pv.Plotter() -# adding an outline might help navigating in 3D space -# p.add_mesh(mesh.outline(), color="k") -p.add_mesh( - streamlines.tube(radius=0.005), - show_scalar_bar=False, - diffuse=0.5, - ambient=0.5, -) - -############################################################################### -# .. note:: -# PyVista is not working on readthedocs, but you can try it out yourself by -# uncommenting the following line of code. - -# p.show(cpos=cpos) - -############################################################################### -# The result should look like this: -# -# .. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_3d_vector_field.png -# :width: 400px -# :align: center diff --git a/examples/04_vector_field/README.rst b/examples/04_vector_field/README.rst deleted file mode 100644 index cbe397125..000000000 --- a/examples/04_vector_field/README.rst +++ /dev/null @@ -1,37 +0,0 @@ -Random Vector Field Generation -============================== - -In 1970, Kraichnan was the first to suggest a randomization method. -For studying the diffusion of single particles in a random incompressible -velocity field, he came up with a randomization method which includes a -projector which ensures the incompressibility of the vector field. - - -Without loss of generality we assume that the mean velocity :math:`\bar{U}` is oriented -towards the direction of the first basis vector :math:`\mathbf{e}_1`. Our goal is now to -generate random fluctuations with a given covariance model around this mean velocity. -And at the same time, making sure that the velocity field remains incompressible or -in other words, ensure :math:`\nabla \cdot \mathbf U = 0`. -This can be done by using the randomization method we already know, but adding a -projector to every mode being summed: - - -.. math:: - - \mathbf{U}(\mathbf{x}) = \bar{U} \mathbf{e}_1 - \sqrt{\frac{\sigma^{2}}{N}} - \sum_{i=1}^{N} \mathbf{p}(\mathbf{k}_i) \left[ Z_{1,i} - \cos\left( \langle \mathbf{k}_{i}, \mathbf{x} \rangle \right) - + \sin\left( \langle \mathbf{k}_{i}, \mathbf{x} \rangle \right) \right] - -with the projector - -.. math:: - - \mathbf{p}(\mathbf{k}_i) = \mathbf{e}_1 - \frac{\mathbf{k}_i k_1}{k^2} \; . - -By calculating :math:`\nabla \cdot \mathbf U = 0`, it can be verified, that -the resulting field is indeed incompressible. - - -Examples --------- diff --git a/examples/05_kriging/00_simple_kriging.py b/examples/05_kriging/00_simple_kriging.py deleted file mode 100755 index 1a245b6c3..000000000 --- a/examples/05_kriging/00_simple_kriging.py +++ /dev/null @@ -1,50 +0,0 @@ -r""" -Simple Kriging --------------- - -Simple kriging assumes a known mean of the data. -For simplicity we assume a mean of 0, -which can be achieved by subtracting the mean from the observed values and -subsequently adding it to the resulting data. - -The resulting equation system for :math:`W` is given by: - -.. math:: - - W = \begin{pmatrix}c(x_1,x_1) & \cdots & c(x_1,x_n) \\ - \vdots & \ddots & \vdots \\ - c(x_n,x_1) & \cdots & c(x_n,x_n) - \end{pmatrix}^{-1} - \begin{pmatrix}c(x_1,x_0) \\ \vdots \\ c(x_n,x_0) \end{pmatrix} - -Thereby :math:`c(x_i,x_j)` is the covariance of the given observations. - - -Example -^^^^^^^ - -Here we use simple kriging in 1D (for plotting reasons) with 5 given observations/conditions. -The mean of the field has to be given beforehand. - -""" - -import numpy as np - -from gstools import Gaussian, krige - -# condtions -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -# spatial random field class -model = Gaussian(dim=1, var=0.5, len_scale=2) - -############################################################################### -krig = krige.Simple(model, mean=1, cond_pos=cond_pos, cond_val=cond_val) -krig(gridx) - -############################################################################### -ax = krig.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.legend() diff --git a/examples/05_kriging/01_ordinary_kriging.py b/examples/05_kriging/01_ordinary_kriging.py deleted file mode 100644 index d26254ef2..000000000 --- a/examples/05_kriging/01_ordinary_kriging.py +++ /dev/null @@ -1,50 +0,0 @@ -r""" -Ordinary Kriging ----------------- - -Ordinary kriging will estimate an appropriate mean of the field, -based on the given observations/conditions and the covariance model used. - -The resulting system of equations for :math:`W` is given by: - -.. math:: - - \begin{pmatrix}W\\\mu\end{pmatrix} = \begin{pmatrix} - c(x_1,x_1) & \cdots & c(x_1,x_n) &1 \\ - \vdots & \ddots & \vdots & \vdots \\ - c(x_n,x_1) & \cdots & c(x_n,x_n) & 1 \\ - 1 &\cdots& 1 & 0 - \end{pmatrix}^{-1} - \begin{pmatrix}c(x_1,x_0) \\ \vdots \\ c(x_n,x_0) \\ 1\end{pmatrix} - -Thereby :math:`c(x_i,x_j)` is the covariance of the given observations -and :math:`\mu` is a Lagrange multiplier to minimize the kriging error and estimate the mean. - - -Example -^^^^^^^ - -Here we use ordinary kriging in 1D (for plotting reasons) with 5 given observations/conditions. -The estimated mean can be accessed by ``krig.mean``. -""" - -import numpy as np - -from gstools import Gaussian, krige - -# condtions -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -# spatial random field class -model = Gaussian(dim=1, var=0.5, len_scale=2) - -############################################################################### -krig = krige.Ordinary(model, cond_pos=cond_pos, cond_val=cond_val) -krig(gridx) - -############################################################################### -ax = krig.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.legend() diff --git a/examples/05_kriging/02_pykrige_interface.py b/examples/05_kriging/02_pykrige_interface.py deleted file mode 100755 index a6fbf03e1..000000000 --- a/examples/05_kriging/02_pykrige_interface.py +++ /dev/null @@ -1,64 +0,0 @@ -""" -Interface to PyKrige --------------------- - -To use fancier methods like -`regression kriging `__, -we provide an interface to -`PyKrige `__ (>v1.5), which means -you can pass a GSTools covariance model to the kriging routines of PyKrige. - -To demonstrate the general workflow, we compare ordinary kriging of PyKrige -with the corresponding GSTools routine in 2D: -""" - -import numpy as np -from matplotlib import pyplot as plt -from pykrige.ok import OrdinaryKriging - -import gstools as gs - -# conditioning data -cond_x = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_y = [1.2, 0.6, 3.2, 4.4, 3.8] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] - -# grid definition for output field -gridx = np.arange(0.0, 5.5, 0.1) -gridy = np.arange(0.0, 6.5, 0.1) - -############################################################################### -# A GSTools based :any:`Gaussian` covariance model: - -model = gs.Gaussian( - dim=2, len_scale=1, anis=0.2, angles=-0.5, var=0.5, nugget=0.1 -) - -############################################################################### -# Ordinary Kriging with PyKrige -# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -# -# One can pass the defined GSTools model as -# variogram model, which will `not` be fitted to the given data. -# By providing the GSTools model, rotation and anisotropy are also -# automatically defined: - -OK1 = OrdinaryKriging(cond_x, cond_y, cond_val, variogram_model=model) -z1, ss1 = OK1.execute("grid", gridx, gridy) -plt.imshow(z1, origin="lower") -plt.show() - -############################################################################### -# Ordinary Kriging with GSTools -# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -# -# The :any:`Ordinary` kriging class is provided by GSTools as a shortcut to -# define ordinary kriging with the general :any:`Krige` class. -# -# PyKrige's routines are using exact kriging by default (when given a nugget). -# To reproduce this behavior in GSTools, we have to set ``exact=True``. - -OK2 = gs.krige.Ordinary(model, [cond_x, cond_y], cond_val, exact=True) -OK2.structured([gridx, gridy]) -ax = OK2.plot() -ax.set_aspect("equal") diff --git a/examples/05_kriging/03_compare_kriging.py b/examples/05_kriging/03_compare_kriging.py deleted file mode 100755 index 463faa0a6..000000000 --- a/examples/05_kriging/03_compare_kriging.py +++ /dev/null @@ -1,36 +0,0 @@ -""" -Compare Kriging ---------------- -""" - -import matplotlib.pyplot as plt -import numpy as np - -from gstools import Gaussian, krige - -# condtions -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) - -############################################################################### -# A gaussian variogram model. - -model = Gaussian(dim=1, var=0.5, len_scale=2) - -############################################################################### -# Two kriged fields. One with simple and one with ordinary kriging. - -kr1 = krige.Simple(model=model, mean=1, cond_pos=cond_pos, cond_val=cond_val) -kr2 = krige.Ordinary(model=model, cond_pos=cond_pos, cond_val=cond_val) -kr1(gridx) -kr2(gridx) - -############################################################################### - -plt.plot(gridx, kr1.field, label="simple kriged field") -plt.plot(gridx, kr2.field, label="ordinary kriged field") -plt.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -plt.legend() -plt.show() diff --git a/examples/05_kriging/04_extdrift_kriging.py b/examples/05_kriging/04_extdrift_kriging.py deleted file mode 100755 index 2e6a168a5..000000000 --- a/examples/05_kriging/04_extdrift_kriging.py +++ /dev/null @@ -1,26 +0,0 @@ -""" -External Drift Kriging ----------------------- -""" - -import numpy as np - -from gstools import SRF, Gaussian, krige - -# synthetic condtions with a drift -drift_model = Gaussian(dim=1, len_scale=4) -drift = SRF(drift_model, seed=1010) -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -ext_drift = drift(cond_pos) -cond_val = ext_drift * 2 + 1 -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -grid_drift = drift(gridx) -# kriging -model = Gaussian(dim=1, var=2, len_scale=4) -krig = krige.ExtDrift(model, cond_pos, cond_val, ext_drift) -krig(gridx, ext_drift=grid_drift) -ax = krig.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.plot(gridx, grid_drift, label="drift") -ax.legend() diff --git a/examples/05_kriging/05_universal_kriging.py b/examples/05_kriging/05_universal_kriging.py deleted file mode 100755 index 5501694ad..000000000 --- a/examples/05_kriging/05_universal_kriging.py +++ /dev/null @@ -1,41 +0,0 @@ -""" -Universal Kriging ------------------ - -You can give a polynomial order or a list of self defined -functions representing the internal drift of the given values. -This drift will be fitted internally during the kriging interpolation. - -In the following we are creating artificial data, where a linear drift -was added. The resulting samples are then used as input for Universal kriging. - -The "linear" drift is then estimated during the interpolation. -To access only the estimated mean/drift, we provide a switch `only_mean` -in the call routine. -""" - -import numpy as np - -from gstools import SRF, Gaussian, krige - -# synthetic condtions with a drift -drift_model = Gaussian(dim=1, var=0.1, len_scale=2) -drift = SRF(drift_model, seed=101) -cond_pos = np.linspace(0.1, 8, 10) -cond_val = drift(cond_pos) + cond_pos * 0.1 + 1 -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -drift_field = drift(gridx) + gridx * 0.1 + 1 -# kriging -model = Gaussian(dim=1, var=0.1, len_scale=2) -krig = krige.Universal(model, cond_pos, cond_val, "linear") -krig(gridx) -ax = krig.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.plot(gridx, gridx * 0.1 + 1, ":", label="linear drift") -ax.plot(gridx, drift_field, "--", label="original field") - -mean = krig(gridx, only_mean=True) -ax.plot(gridx, mean, label="estimated drift") - -ax.legend() diff --git a/examples/05_kriging/06_detrended_kriging.py b/examples/05_kriging/06_detrended_kriging.py deleted file mode 100755 index 6d20cf1db..000000000 --- a/examples/05_kriging/06_detrended_kriging.py +++ /dev/null @@ -1,32 +0,0 @@ -""" -Detrended Kriging ------------------ -""" - -import numpy as np - -from gstools import SRF, Gaussian, krige - - -def trend(x): - """Example for a simple linear trend.""" - return x * 0.1 + 1 - - -# synthetic condtions with trend/drift -drift_model = Gaussian(dim=1, var=0.1, len_scale=2) -drift = SRF(drift_model, seed=101) -cond_pos = np.linspace(0.1, 8, 10) -cond_val = drift(cond_pos) + trend(cond_pos) -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -drift_field = drift(gridx) + trend(gridx) -# kriging -model = Gaussian(dim=1, var=0.1, len_scale=2) -krig_trend = krige.Detrended(model, cond_pos, cond_val, trend) -krig_trend(gridx) -ax = krig_trend.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.plot(gridx, trend(gridx), ":", label="linear trend") -ax.plot(gridx, drift_field, "--", label="original field") -ax.legend() diff --git a/examples/05_kriging/07_detrended_ordinary_kriging.py b/examples/05_kriging/07_detrended_ordinary_kriging.py deleted file mode 100755 index 81d017447..000000000 --- a/examples/05_kriging/07_detrended_ordinary_kriging.py +++ /dev/null @@ -1,32 +0,0 @@ -""" -Detrended Ordinary Kriging --------------------------- -""" - -import numpy as np - -from gstools import SRF, Gaussian, krige - - -def trend(x): - """Example for a simple linear trend.""" - return x * 0.1 + 1 - - -# synthetic condtions with trend/drift -drift_model = Gaussian(dim=1, var=0.1, len_scale=2) -drift = SRF(drift_model, seed=101) -cond_pos = np.linspace(0.1, 8, 10) -cond_val = drift(cond_pos) + trend(cond_pos) -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -drift_field = drift(gridx) + trend(gridx) -# kriging -model = Gaussian(dim=1, var=0.1, len_scale=2) -krig_trend = krige.Ordinary(model, cond_pos, cond_val, trend=trend) -krig_trend(gridx) -ax = krig_trend.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.plot(gridx, trend(gridx), ":", label="linear trend") -ax.plot(gridx, drift_field, "--", label="original field") -ax.legend() diff --git a/examples/05_kriging/08_measurement_errors.py b/examples/05_kriging/08_measurement_errors.py deleted file mode 100755 index c2965ca0c..000000000 --- a/examples/05_kriging/08_measurement_errors.py +++ /dev/null @@ -1,56 +0,0 @@ -r""" -Incorporating measurement errors --------------------------------- - -To incorporate the nugget effect and/or given measurement errors, -one can set `exact` to `False` and provide either individual measurement errors -for each point or set the nugget as a constant measurement error everywhere. - -In the following we will show the influence of the nugget and -measurement errors. -""" - -import numpy as np - -import gstools as gs - -# condtions -cond_pos = [0.3, 1.1, 1.9, 3.3, 4.7] -cond_val = [0.47, 0.74, 0.56, 1.47, 1.74] -cond_err = [0.01, 0.0, 0.1, 0.05, 0] -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -# spatial random field class -model = gs.Gaussian(dim=1, var=0.9, len_scale=1, nugget=0.1) - -############################################################################### -# Here we will use Simple kriging (`unbiased=False`) to interpolate the given -# conditions. - -krig = gs.Krige( - model=model, - cond_pos=cond_pos, - cond_val=cond_val, - mean=1, - unbiased=False, - exact=False, - cond_err=cond_err, -) -krig(gridx) - -############################################################################### -# Let's plot the data. You can see, that the estimated values differ more from -# the input, when the given measurement errors get bigger. -# In addition we plot the standard deviation. - -ax = krig.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.fill_between( - gridx, - # plus/minus standard deviation (70 percent confidence interval) - krig.field - np.sqrt(krig.krige_var), - krig.field + np.sqrt(krig.krige_var), - alpha=0.3, - label="Standard deviation", -) -ax.legend() diff --git a/examples/05_kriging/09_pseudo_inverse.py b/examples/05_kriging/09_pseudo_inverse.py deleted file mode 100755 index 7615d8886..000000000 --- a/examples/05_kriging/09_pseudo_inverse.py +++ /dev/null @@ -1,40 +0,0 @@ -r""" -Redundant data and pseudo-inverse ---------------------------------- - -It can happen, that the kriging system gets numerically unstable. -One reason could be, that the input data contains redundant conditioning points -that hold different values. - -To smoothly deal with such situations, you can use the pseudo -inverse for the kriging matrix, which is enabled by default. - -This will result in the average value for the redundant data. - -Example -^^^^^^^ - -In the following we have two different values at the same location. -The resulting kriging field will hold the average at this point. -""" - -import numpy as np - -from gstools import Gaussian, krige - -# condtions -cond_pos = [0.3, 1.9, 1.1, 3.3, 1.1] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.14] -# resulting grid -gridx = np.linspace(0.0, 8.0, 81) -# spatial random field class -model = Gaussian(dim=1, var=0.5, len_scale=1) - -############################################################################### -krig = krige.Ordinary(model, cond_pos=cond_pos, cond_val=cond_val) -krig(gridx) - -############################################################################### -ax = krig.plot() -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.legend() diff --git a/examples/05_kriging/README.rst b/examples/05_kriging/README.rst deleted file mode 100644 index ef92e425f..000000000 --- a/examples/05_kriging/README.rst +++ /dev/null @@ -1,100 +0,0 @@ -.. _tutorial_05_kriging: - -Kriging -======= - -The subpackage :py:mod:`gstools.krige` provides routines for Gaussian process regression, -also known as kriging. -Kriging is a method of data interpolation based on predefined covariance models. - -The aim of kriging is to derive the value of a field at some point :math:`x_0`, -when there are fixed observed values :math:`z(x_1)\ldots z(x_n)` at given points :math:`x_i`. - -The resluting value :math:`z_0` at :math:`x_0` is calculated as a weighted mean: - -.. math:: - - z_0 = \sum_{i=1}^n w_i \cdot z_i - -The weights :math:`W = (w_1,\ldots,w_n)` depent on the given covariance model and the location of the target point. - -The different kriging approaches provide different ways of calculating :math:`W`. - -The :any:`Krige` class provides everything in one place and you can switch on/off -the features you want: - -* `unbiased`: the weights have to sum up to `1`. If true, this results in - :any:`Ordinary` kriging, where the mean is estimated, otherwise it will result in - :any:`Simple` kriging, where the mean has to be given. -* `drift_functions`: you can give a polynomial order or a list of self defined - functions representing the internal drift of the given values. This drift will - be fitted internally during the kriging interpolation. This results in :any:`Universal` kriging. -* `ext_drift`: You can also give an external drift per point to the routine. - In contrast to the internal drift, that is evaluated at the desired points with - the given functions, the external drift has to given for each point form an "external" - source. This results in :any:`ExtDrift` kriging. -* `trend`, `mean`, `normalizer`: These are used to pre- and post-process data. - If you already have fitted a trend model that is provided as a callable function, - you can give it to the kriging routine. Normalizer are power-transformations - to gain normality. - `mean` behaves similar to `trend` but is applied at another position: - - 1. conditioning data is de-trended (substracting trend) - 2. detrended conditioning data is then normalized (in order to follow a normal distribution) - 3. normalized conditioning data is set to zero mean (subtracting mean) - - Cosequently, when there is no normalizer given, trend and mean are the same thing - and only one should be used. - :any:`Detrended` kriging is a shortcut to provide only a trend and simple kriging - with normal data. -* `exact` and `cond_err`: To incorporate the nugget effect and/or measurement errors, - one can set `exact` to `False` and provide either individual measurement errors - for each point or set the nugget as a constant measurement error everywhere. -* `pseudo_inv`: Sometimes the inversion of the kriging matrix can be numerically unstable. - This occurs for examples in cases of redundant input values. In this case we provide a switch to - use the pseudo-inverse of the matrix. Then redundant conditional values will automatically - be averaged. - -.. note:: - - All mentioned features can be combined within the :any:`Krige` class. - All other kriging classes are just shortcuts to this class with a limited list - of input parameters. - -The routines for kriging are almost identical to the routines for spatial random fields, -with regard to their handling. -First you define a covariance model, as described in :ref:`tutorial_02_cov`, -then you initialize the kriging class with this model: - -.. code-block:: python - - import gstools as gs - # condtions - cond_pos = [...] - cond_val = [...] - model = gs.Gaussian(dim=1, var=0.5, len_scale=2) - krig = gs.krige.Simple(model, cond_pos=cond_pos, cond_val=cond_val, mean=1) - -The resulting field instance ``krig`` has the same methods as the -:any:`SRF` class. -You can call it to evaluate the kriged field at different points, -you can plot the latest field or you can export the field and so on. - -Provided Kriging Methods ------------------------- - -.. currentmodule:: gstools.krige - -The following kriging methods are provided within the -submodule :any:`gstools.krige`. - -.. autosummary:: - Krige - Simple - Ordinary - Universal - ExtDrift - Detrended - -Examples --------- diff --git a/examples/06_conditioned_fields/00_condition_ensemble.py b/examples/06_conditioned_fields/00_condition_ensemble.py deleted file mode 100644 index 5cc07eedf..000000000 --- a/examples/06_conditioned_fields/00_condition_ensemble.py +++ /dev/null @@ -1,63 +0,0 @@ -""" -Conditioning with Ordinary Kriging ----------------------------------- - -Here we use ordinary kriging in 1D (for plotting reasons) -with 5 given observations/conditions, -to generate an ensemble of conditioned random fields. -""" - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -# condtions -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] -gridx = np.linspace(0.0, 15.0, 151) - -############################################################################### -# The conditioned spatial random field class depends on a Krige class in order -# to handle the conditions. -# This is created as described in the kriging tutorial. -# -# Here we use a Gaussian covariance model and ordinary kriging for conditioning -# the spatial random field. - -model = gs.Gaussian(dim=1, var=0.5, len_scale=1.5) -krige = gs.krige.Ordinary(model, cond_pos, cond_val) -cond_srf = gs.CondSRF(krige) -cond_srf.set_pos(gridx) - -############################################################################### -# To generate the ensemble we will use a seed-generator. -# We can specify individual names for each field by the keyword `store`: - -seed = gs.random.MasterRNG(20170519) -for i in range(100): - cond_srf(seed=seed(), store=f"f{i}") - label = "Conditioned ensemble" if i == 0 else None - plt.plot(gridx, cond_srf[f"f{i}"], color="k", alpha=0.1, label=label) - -fields = [cond_srf[f"f{i}"] for i in range(100)] -plt.plot(gridx, cond_srf.krige(only_mean=True), label="estimated mean") -plt.plot(gridx, np.mean(fields, axis=0), linestyle=":", label="Ensemble mean") -plt.plot(gridx, cond_srf.krige.field, linestyle="dashed", label="kriged field") -plt.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -# 99 percent confidence interval -conf = gs.tools.confidence_scaling(0.99) -plt.fill_between( - gridx, - cond_srf.krige.field - conf * np.sqrt(cond_srf.krige.krige_var), - cond_srf.krige.field + conf * np.sqrt(cond_srf.krige.krige_var), - alpha=0.3, - label="99% confidence interval", -) -plt.legend() -plt.show() - -############################################################################### -# As you can see, the kriging field coincides with the ensemble mean of the -# conditioned random fields and the estimated mean -# is the mean of the far-field. diff --git a/examples/06_conditioned_fields/01_2D_condition_ensemble.py b/examples/06_conditioned_fields/01_2D_condition_ensemble.py deleted file mode 100644 index 81f514647..000000000 --- a/examples/06_conditioned_fields/01_2D_condition_ensemble.py +++ /dev/null @@ -1,71 +0,0 @@ -""" -Creating an Ensemble of conditioned 2D Fields ---------------------------------------------- - -Let's create an ensemble of conditioned random fields in 2D. -""" - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -# conditioning data (x, y, value) -cond_pos = [[0.3, 1.9, 1.1, 3.3, 4.7], [1.2, 0.6, 3.2, 4.4, 3.8]] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] - -# grid definition for output field -x = np.arange(0, 5, 0.1) -y = np.arange(0, 5, 0.1) - -model = gs.Gaussian(dim=2, var=0.5, len_scale=5, anis=0.5, angles=-0.5) -krige = gs.Krige(model, cond_pos=cond_pos, cond_val=cond_val) -cond_srf = gs.CondSRF(krige) -cond_srf.set_pos([x, y], "structured") - -############################################################################### -# To generate the ensemble we will use a seed-generator. -# By specifying ``store=[f"fld{i}", False, False]``, only the conditioned field -# is stored with the specified name. The raw random field and the raw kriging -# field is not stored. This way, we can access each conditioned field by index -# ``cond_srf[i]``: - -seed = gs.random.MasterRNG(20170519) -ens_no = 4 -for i in range(ens_no): - cond_srf(seed=seed(), store=[f"fld{i}", False, False]) - -############################################################################### -# Now let's have a look at the pairwise differences between the generated -# fields. We will see, that they coincide at the given conditions. - -fig, ax = plt.subplots(ens_no + 1, ens_no + 1, figsize=(8, 8)) -# plotting kwargs for scatter and image -vmax = np.max(cond_srf.all_fields) -sc_kw = dict(c=cond_val, edgecolors="k", vmin=0, vmax=vmax) -im_kw = dict(extent=2 * [0, 5], origin="lower", vmin=0, vmax=vmax) -for i in range(ens_no): - # conditioned fields and conditions - ax[i + 1, 0].imshow(cond_srf[i].T, **im_kw) - ax[i + 1, 0].scatter(*cond_pos, **sc_kw) - ax[i + 1, 0].set_ylabel(f"Field {i}", fontsize=10) - ax[0, i + 1].imshow(cond_srf[i].T, **im_kw) - ax[0, i + 1].scatter(*cond_pos, **sc_kw) - ax[0, i + 1].set_title(f"Field {i}", fontsize=10) - # absolute differences - for j in range(ens_no): - ax[i + 1, j + 1].imshow(np.abs(cond_srf[i] - cond_srf[j]).T, **im_kw) - -# beautify plots -ax[0, 0].axis("off") -for a in ax.flatten(): - a.set_xticklabels([]), a.set_yticklabels([]) - a.set_xticks([]), a.set_yticks([]) -fig.subplots_adjust(wspace=0, hspace=0) -fig.show() - -############################################################################### -# To check if the generated fields are correct, we can have a look at their -# names: - -print(cond_srf.field_names) diff --git a/examples/06_conditioned_fields/README.rst b/examples/06_conditioned_fields/README.rst deleted file mode 100644 index 4d7e67981..000000000 --- a/examples/06_conditioned_fields/README.rst +++ /dev/null @@ -1,26 +0,0 @@ -Conditioned Fields -================== - -Kriged fields tend to approach the field mean outside the area of observations. -To generate random fields, that coincide with given observations, but are still -random according to a given covariance model away from the observations proximity, -we provide the generation of conditioned random fields. - -The idea behind conditioned random fields builds up on kriging. -First we generate a field with a kriging method, then we generate a random field, -with 0 as mean and 1 as variance that will be multiplied with the kriging -standard deviation. - -To do so, you can instantiate a :any:`CondSRF` class with a configured -:any:`Krige` class. - -The setup of the a conditioned random field should be as follows: - -.. code-block:: python - - krige = gs.Krige(model, cond_pos, cond_val) - cond_srf = gs.CondSRF(krige) - field = cond_srf(grid) - -Examples --------- diff --git a/examples/07_transformations/00_log_normal.py b/examples/07_transformations/00_log_normal.py deleted file mode 100755 index d44c16270..000000000 --- a/examples/07_transformations/00_log_normal.py +++ /dev/null @@ -1,18 +0,0 @@ -""" -log-normal fields ------------------ - -Here we transform a field to a log-normal distribution: - -See :any:`transform.normal_to_lognormal` -""" - -import gstools as gs - -# structured field with a size of 100x100 and a grid-size of 1x1 -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, seed=20170519) -srf.structured([x, y]) -srf.transform("normal_to_lognormal") # also "lognormal" works -srf.plot() diff --git a/examples/07_transformations/01_binary.py b/examples/07_transformations/01_binary.py deleted file mode 100755 index 125e29d06..000000000 --- a/examples/07_transformations/01_binary.py +++ /dev/null @@ -1,20 +0,0 @@ -""" -binary fields -------------- - -Here we transform a field to a binary field with only two values. -The dividing value is the mean by default and the upper and lower values -are derived to preserve the variance. - -See :any:`transform.binary` -""" - -import gstools as gs - -# structured field with a size of 100x100 and a grid-size of 1x1 -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, seed=20170519) -srf.structured([x, y]) -srf.transform("binary") -srf.plot() diff --git a/examples/07_transformations/02_discrete.py b/examples/07_transformations/02_discrete.py deleted file mode 100755 index 48f67a2d7..000000000 --- a/examples/07_transformations/02_discrete.py +++ /dev/null @@ -1,45 +0,0 @@ -""" -Discrete fields ---------------- - -Here we transform a field to a discrete field with values. -If we do not give thresholds, the pairwise means of the given -values are taken as thresholds. -If thresholds are given, arbitrary values can be applied to the field. - -See :any:`transform.discrete` -""" - -import numpy as np - -import gstools as gs - -# Structured field with a size of 100x100 and a grid-size of 0.5x0.5 -x = y = np.arange(200) * 0.5 -model = gs.Gaussian(dim=2, var=1, len_scale=5) -srf = gs.SRF(model, seed=20170519) -srf.structured([x, y]) - -############################################################################### -# Create 5 equidistanly spaced values, thresholds are the arithmetic means - -values1 = np.linspace(np.min(srf.field), np.max(srf.field), 5) -srf.transform("discrete", store="f1", values=values1) -srf.plot("f1") - -############################################################################### -# Calculate thresholds for equal shares -# but apply different values to the separated classes - -values2 = [0, -1, 2, -3, 4] -srf.transform("discrete", store="f2", values=values2, thresholds="equal") -srf.plot("f2") - -############################################################################### -# Create user defined thresholds -# and apply different values to the separated classes - -values3 = [0, 1, 10] -thresholds = [-1, 1] -srf.transform("discrete", store="f3", values=values3, thresholds=thresholds) -srf.plot("f3") diff --git a/examples/07_transformations/03_zinn_harvey.py b/examples/07_transformations/03_zinn_harvey.py deleted file mode 100755 index fad1fb64e..000000000 --- a/examples/07_transformations/03_zinn_harvey.py +++ /dev/null @@ -1,21 +0,0 @@ -""" -Zinn & Harvey transformation ----------------------------- - -Here, we transform a field with the so called "Zinn & Harvey" transformation presented in -`Zinn & Harvey (2003) `__. -With this transformation, one could overcome the restriction that in ordinary -Gaussian random fields the mean values are the ones being the most connected. - -See :any:`transform.zinnharvey` -""" - -import gstools as gs - -# structured field with a size of 100x100 and a grid-size of 1x1 -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, seed=20170519) -srf.structured([x, y]) -srf.transform("zinnharvey", conn="high") -srf.plot() diff --git a/examples/07_transformations/04_bimodal.py b/examples/07_transformations/04_bimodal.py deleted file mode 100755 index 4dd6fb298..000000000 --- a/examples/07_transformations/04_bimodal.py +++ /dev/null @@ -1,23 +0,0 @@ -""" -Bimodal fields --------------- - -We provide two transformations to obtain bimodal distributions: - -* `arcsin `__. -* `uquad `__. - -Both transformations will preserve the mean and variance of the given field by default. - -See: :any:`transform.normal_to_arcsin` and :any:`transform.normal_to_uquad` -""" - -import gstools as gs - -# structured field with a size of 100x100 and a grid-size of 1x1 -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, seed=20170519) -field = srf.structured([x, y]) -srf.transform("normal_to_arcsin") # also "arcsin" works -srf.plot() diff --git a/examples/07_transformations/05_combinations.py b/examples/07_transformations/05_combinations.py deleted file mode 100755 index 1fbe367e4..000000000 --- a/examples/07_transformations/05_combinations.py +++ /dev/null @@ -1,41 +0,0 @@ -""" -Combinations ------------- - -You can combine different transformations simply by successively applying them. - -Here, we first force the single field realization to hold the given moments, -namely mean and variance. -Then we apply the Zinn & Harvey transformation to connect the low values. -Afterwards the field is transformed to a binary field and last but not least, -we transform it to log-values. - -We can select the desired field by its name and we can define an output name -to store the field. - -If you don't specify `field` and `store` everything happens inplace. -""" - -# sphinx_gallery_thumbnail_number = 1 -import gstools as gs - -# structured field with a size of 100x100 and a grid-size of 1x1 -x = y = range(100) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, mean=-9, seed=20170519) -srf.structured([x, y]) -srf.transform("force_moments", field="field", store="f_forced") -srf.transform("zinnharvey", field="f_forced", store="f_zinnharvey", conn="low") -srf.transform("binary", field="f_zinnharvey", store="f_binary") -srf.transform("lognormal", field="f_binary", store="f_result") -srf.plot(field="f_result") - -############################################################################### -# The resulting field could be interpreted as a transmissivity field, where -# the values of low permeability are the ones being the most connected -# and only two kinds of soil exist. -# -# All stored fields can be accessed and plotted by name: - -print("Max binary value:", srf.f_binary.max()) -srf.plot(field="f_zinnharvey") diff --git a/examples/07_transformations/README.rst b/examples/07_transformations/README.rst deleted file mode 100644 index d93c99307..000000000 --- a/examples/07_transformations/README.rst +++ /dev/null @@ -1,50 +0,0 @@ -Field transformations -===================== - -The generated fields of gstools are ordinary Gaussian random fields. -In application there are several transformations to describe real world -problems in an appropriate manner. - -GStools provides a submodule :py:mod:`gstools.transform` with a range of -common transformations: - -.. currentmodule:: gstools.transform - -.. autosummary:: - binary - discrete - boxcox - zinnharvey - normal_force_moments - normal_to_lognormal - normal_to_uniform - normal_to_arcsin - normal_to_uquad - apply_function - - -All the transformations take a field class, that holds a generated field, -as input and will manipulate this field inplace or store it with a given name. - -Simply apply a transformation to a field class: - -.. code-block:: python - - import gstools as gs - ... - srf = gs.SRF(model) - srf(...) - gs.transform.normal_to_lognormal(srf) - -Or use the provided wrapper: - -.. code-block:: python - - import gstools as gs - ... - srf = gs.SRF(model) - srf(...) - srf.transform("lognormal") - -Examples --------- diff --git a/examples/08_geo_coordinates/00_field_generation.py b/examples/08_geo_coordinates/00_field_generation.py deleted file mode 100755 index 5b1a6fca9..000000000 --- a/examples/08_geo_coordinates/00_field_generation.py +++ /dev/null @@ -1,65 +0,0 @@ -""" -Working with lat-lon random fields ----------------------------------- - -In this example, we demonstrate how to generate a random field on -geographical coordinates. - -First we setup a model, with ``latlon=True``, to get the associated -Yadrenko model. - -In addition, we will use a kilometer scale provided by :any:`KM_SCALE` -as ``geo_scale`` to have a meaningful length scale in km. -By default the length scale would be given in radians (:any:`RADIAN_SCALE`). -A third option is a length scale in degrees (:any:`DEGREE_SCALE`). - -To generate the field, we simply pass ``(lat, lon)`` as the position tuple -to the :any:`SRF` class. -""" - -import numpy as np - -import gstools as gs - -model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE) - -lat = lon = range(-80, 81) -srf = gs.SRF(model, seed=1234) -field = srf.structured((lat, lon)) -srf.plot() - -############################################################################### -# This was easy as always! Now we can use this field to estimate the empirical -# variogram in order to prove, that the generated field has the correct -# geo-statistical properties. -# The :any:`vario_estimate` routine also provides a ``latlon`` switch to -# indicate, that the given field is defined on geographical variables. -# -# As we will see, everthing went well... phew! - -bin_edges = np.linspace(0, 777 * 3, 30) -bin_center, emp_vario = gs.vario_estimate( - (lat, lon), - field, - bin_edges, - latlon=True, - mesh_type="structured", - sampling_size=2000, - sampling_seed=12345, - geo_scale=gs.KM_SCALE, -) - -ax = model.plot("vario_yadrenko", x_max=max(bin_center)) -model.fit_variogram(bin_center, emp_vario, nugget=False) -model.plot("vario_yadrenko", ax=ax, label="fitted", x_max=max(bin_center)) -ax.scatter(bin_center, emp_vario, color="k") -print(model) - -############################################################################### -# .. note:: -# -# Note, that the estimated variogram coincides with the yadrenko variogram, -# which means it depends on the great-circle distance given in radians. -# -# Keep that in mind when defining bins: The range is at most -# :math:`\pi\approx 3.14`, which corresponds to the half globe. diff --git a/examples/08_geo_coordinates/01_dwd_krige.py b/examples/08_geo_coordinates/01_dwd_krige.py deleted file mode 100755 index 3c17fb7e0..000000000 --- a/examples/08_geo_coordinates/01_dwd_krige.py +++ /dev/null @@ -1,174 +0,0 @@ -""" -Kriging geographical data -------------------------- - -In this example we are going to interpolate actual temperature data from -the German weather service `DWD `_. - -Data is retrieved utilizing the beautiful package -`wetterdienst `_, -which serves as an API for the DWD data. - -For better visualization, we also download a simple shapefile of the German -borderline with `cartopy `_. - -In order to keep the number of dependecies low, the calls of both functions -shown beneath are commented out. -""" - -# sphinx_gallery_thumbnail_number = 2 -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - - -def get_borders_germany(): - """Download simple german shape file with cartopy.""" - import geopandas as gp # 0.8.1 - from cartopy.io import shapereader as shp_read # version 0.18.0 - - shpfile = shp_read.natural_earth("50m", "cultural", "admin_0_countries") - df = gp.read_file(shpfile) # only use the simplest polygon - poly = df.loc[df["ADMIN"] == "Germany"]["geometry"].values[0][0] - np.savetxt("de_borders.txt", list(poly.exterior.coords)) - - -def get_dwd_temperature(date="2020-06-09 12:00:00"): - """Get air temperature from german weather stations from 9.6.20 12:00.""" - from wetterdienst.dwd import observations as obs # version 0.13.0 - - settings = dict( - resolution=obs.DWDObservationResolution.HOURLY, - start_date=date, - end_date=date, - ) - sites = obs.DWDObservationStations( - parameter_set=obs.DWDObservationParameterSet.TEMPERATURE_AIR, - period=obs.DWDObservationPeriod.RECENT, - **settings, - ) - ids, lat, lon = sites.all().loc[:, ["STATION_ID", "LAT", "LON"]].values.T - observations = obs.DWDObservationData( - station_ids=ids, - parameters=obs.DWDObservationParameter.HOURLY.TEMPERATURE_AIR_200, - periods=obs.DWDObservationPeriod.RECENT, - **settings, - ) - temp = observations.all().VALUE.values - sel = np.isfinite(temp) - # select only valid temperature data - ids, lat, lon, temp = ids.astype(float)[sel], lat[sel], lon[sel], temp[sel] - head = "id, lat, lon, temp" # add a header to the file - np.savetxt("temp_obs.txt", np.array([ids, lat, lon, temp]).T, header=head) - - -############################################################################### -# If you want to download the data again, -# uncomment the two following lines. We will simply load the resulting -# files to gain the border polygon and the observed temperature along with -# the station locations given by lat-lon values. - -# get_borders_germany() -# get_dwd_temperature(date="2020-06-09 12:00:00") - -border = np.loadtxt("de_borders.txt") -ids, lat, lon, temp = np.loadtxt("temp_obs.txt").T - -############################################################################### -# First we will estimate the variogram of our temperature data. -# As the maximal bin distance we choose 900 km. - -bin_center, vario = gs.vario_estimate( - (lat, lon), temp, latlon=True, geo_scale=gs.KM_SCALE, max_dist=900 -) - -############################################################################### -# Now we can use this estimated variogram to fit a model to it. -# Here we will use a :any:`Spherical` model. We select the ``latlon`` option -# to use the `Yadrenko` variant of the model to gain a valid model for lat-lon -# coordinates and we set the ``geo_scale`` to the earth-radius. Otherwise the length -# scale would be given in radians representing the great-circle distance. -# -# We deselect the nugget from fitting and plot the result afterwards. -# -# .. note:: -# -# You need to plot the Yadrenko variogram, since the standard variogram -# still holds the ordinary routine that is not respecting the great-circle -# distance. - -model = gs.Spherical(latlon=True, geo_scale=gs.KM_SCALE) -model.fit_variogram(bin_center, vario, nugget=False) -ax = model.plot("vario_yadrenko", x_max=max(bin_center)) -ax.scatter(bin_center, vario) -print(model) - -############################################################################### -# As we see, we have a rather large correlation length of 600 km. -# -# Now we want to interpolate the data using :any:`Universal` kriging. -# In order to tinker around with the data, we will use a north-south drift -# by assuming a linear correlation with the latitude. -# This can be done as follows: - - -def north_south_drift(lat, lon): - return lat - - -uk = gs.krige.Universal( - model=model, - cond_pos=(lat, lon), - cond_val=temp, - drift_functions=north_south_drift, -) - -############################################################################### -# Now we generate the kriging field, by defining a lat-lon grid that covers -# the whole of Germany. The :any:`Krige` class provides the option to only -# krige the mean field, so one can have a glimpse at the estimated drift. - -g_lat = np.arange(47, 56.1, 0.1) -g_lon = np.arange(5, 16.1, 0.1) - -uk.set_pos((g_lat, g_lon), mesh_type="structured") -uk(return_var=False, store="temp_field") -uk(only_mean=True, store="mean_field") - -############################################################################### -# And that's it. Now let's have a look at the generated field and the input -# data along with the estimated mean: - -levels = np.linspace(5, 23, 64) -fig, ax = plt.subplots(1, 3, figsize=[10, 5], sharey=True) -sca = ax[0].scatter(lon, lat, c=temp, vmin=5, vmax=23, cmap="coolwarm") -co1 = ax[1].contourf(g_lon, g_lat, uk["temp_field"], levels, cmap="coolwarm") -co2 = ax[2].contourf(g_lon, g_lat, uk["mean_field"], levels, cmap="coolwarm") - -[ax[i].plot(border[:, 0], border[:, 1], color="k") for i in range(3)] -[ax[i].set_xlim([5, 16]) for i in range(3)] -[ax[i].set_xlabel("Lon in deg") for i in range(3)] -ax[0].set_ylabel("Lat in deg") - -ax[0].set_title("Temperature observations at 2m\nfrom DWD (2020-06-09 12:00)") -ax[1].set_title("Interpolated temperature\nwith North-South drift") -ax[2].set_title("Estimated mean drift\nfrom Universal Kriging") - -fmt = dict(orientation="horizontal", shrink=0.5, fraction=0.1, pad=0.2) -fig.colorbar(co2, ax=ax, **fmt).set_label("T in [°C]") - -############################################################################### -# To get a better impression of the estimated north-south drift, we'll take -# a look at a cross-section at a longitude of 10 degree: - -fig, ax = plt.subplots() -ax.plot(g_lat, uk["temp_field"][:, 50], label="Interpolated temperature") -ax.plot(g_lat, uk["mean_field"][:, 50], label="North-South mean drift") -ax.set_xlabel("Lat in deg") -ax.set_ylabel("T in [°C]") -ax.set_title("North-South cross-section at 10°") -ax.legend() - -############################################################################### -# Interpretion of the results is now up to you! ;-) diff --git a/examples/08_geo_coordinates/README.rst b/examples/08_geo_coordinates/README.rst deleted file mode 100644 index b0cf79d13..000000000 --- a/examples/08_geo_coordinates/README.rst +++ /dev/null @@ -1,68 +0,0 @@ -Geographic Coordinates -====================== - -GSTools provides support for -`geographic coordinates `_ -given by: - -- latitude ``lat``: specifies the north–south position of a point on the Earth's surface -- longitude ``lon``: specifies the east–west position of a point on the Earth's surface - -If you want to use this feature for field generation or Kriging, you -have to set up a geographical covariance Model by setting ``latlon=True`` -in your desired model (see :any:`CovModel`): - -.. code-block:: python - - import numpy as np - import gstools as gs - - model = gs.Gaussian(latlon=True, var=2, len_scale=np.pi / 16) - -By doing so, the model will use the associated `Yadrenko` model on a sphere -(see `here `_). -The `len_scale` is given in radians to scale the arc-length. -In order to have a more meaningful length scale, one can use the ``geo_scale`` -argument: - -.. code-block:: python - - import gstools as gs - - model = gs.Gaussian(latlon=True, var=2, len_scale=500, geo_scale=gs.KM_SCALE) - -Then ``len_scale`` can be interpreted as given in km. - -A `Yadrenko` model :math:`C` is derived from a valid -isotropic covariance model in 3D :math:`C_{3D}` by the following relation: - -.. math:: - C(\zeta)=C_{3D}\left(2r \cdot \sin\left(\frac{\zeta}{2r}\right)\right) - -Where :math:`\zeta` is the -`great-circle distance `_ -and :math:`r` is the ``geo_scale``. - -.. note:: - - ``lat`` and ``lon`` are given in degree, whereas the great-circle distance - :math:`zeta` is given in units of the ``geo_scale``. - -Note, that :math:`2r \cdot \sin(\frac{\zeta}{2r})` is the -`chordal distance `_ -of two points on a sphere with radius :math:`r`, which means we simply think of the -earth surface as a sphere, that is cut out of the surrounding three dimensional space, -when using the `Yadrenko` model. - -.. note:: - - Anisotropy is not available with the geographical models, since their - geometry is not euclidean. When passing values for :any:`CovModel.anis` - or :any:`CovModel.angles`, they will be ignored. - - Since the Yadrenko model comes from a 3D model, the model dimension will - be 3 (see :any:`CovModel.dim`) but the `field_dim` will be 2 in this case - (see :any:`CovModel.field_dim`). - -Examples --------- diff --git a/examples/08_geo_coordinates/de_borders.txt b/examples/08_geo_coordinates/de_borders.txt deleted file mode 100644 index c8cdb5a88..000000000 --- a/examples/08_geo_coordinates/de_borders.txt +++ /dev/null @@ -1,492 +0,0 @@ -9.524023437500005684e+00 4.752421874999999574e+01 -9.350000000000022737e+00 4.759892578124999574e+01 -9.182812500000011369e+00 4.767070312499999574e+01 -9.127539062500005684e+00 4.767070312499999574e+01 -8.881152343750017053e+00 4.765639648437499432e+01 -8.874023437500000000e+00 4.766269531249999858e+01 -8.831152343750005684e+00 4.770361328125000000e+01 -8.793066406250005684e+00 4.771655273437500000e+01 -8.770117187500005684e+00 4.770991210937499716e+01 -8.754785156250022737e+00 4.769804687499999574e+01 -8.728320312500017053e+00 4.770004882812499858e+01 -8.617871093750011369e+00 4.776611328125000000e+01 -8.572656250000022737e+00 4.777563476562500000e+01 -8.509863281250005684e+00 4.776689453124999574e+01 -8.435742187500011369e+00 4.773134765624999432e+01 -8.403417968750005684e+00 4.768779296874999574e+01 -8.413281250000011369e+00 4.766269531249999858e+01 -8.451757812500005684e+00 4.765180664062499716e+01 -8.552343750000005684e+00 4.765913085937499716e+01 -8.567089843750011369e+00 4.765190429687499574e+01 -8.570507812500011369e+00 4.763779296874999858e+01 -8.559472656250022737e+00 4.762402343750000000e+01 -8.477636718750005684e+00 4.761269531249999432e+01 -8.454003906250022737e+00 4.759619140625000000e+01 -8.430078125000022737e+00 4.759213867187499858e+01 -8.414746093750011369e+00 4.758959960937500000e+01 -8.327832031250011369e+00 4.760693359375000000e+01 -8.198242187500000000e+00 4.760693359375000000e+01 -8.093750000000000000e+00 4.757617187500000000e+01 -7.927050781250017053e+00 4.756386718749999432e+01 -7.698046875000017053e+00 4.756987304687499574e+01 -7.615625000000022737e+00 4.759272460937499716e+01 -7.565429687500000000e+00 4.760654296874999858e+01 -7.529394531250005684e+00 4.767387695312499574e+01 -7.538574218750000000e+00 4.777363281249999716e+01 -7.593261718750000000e+00 4.790566406249999432e+01 -7.608496093750005684e+00 4.800258789062499432e+01 -7.584179687500011369e+00 4.806430664062499858e+01 -7.616601562500022737e+00 4.815678710937499574e+01 -7.705664062500005684e+00 4.828002929687500000e+01 -7.765136718750000000e+00 4.841000976562499858e+01 -7.794824218750022737e+00 4.854682617187499716e+01 -7.837988281250005684e+00 4.863603515624999574e+01 -7.922753906250022737e+00 4.869853515624999574e+01 -8.124023437500000000e+00 4.887329101562500000e+01 -8.140332031250011369e+00 4.888642578124999716e+01 -8.134863281250005684e+00 4.897358398437499716e+01 -8.080664062500005684e+00 4.898588867187499574e+01 -8.001269531250017053e+00 4.901093749999999716e+01 -7.799218750000022737e+00 4.904189453124999432e+01 -7.610937500000005684e+00 4.906176757812500000e+01 -7.525488281250005684e+00 4.908637695312499716e+01 -7.450585937500022737e+00 4.915219726562499858e+01 -7.404199218750022737e+00 4.915307617187500000e+01 -7.313378906250022737e+00 4.912954101562499432e+01 -7.199902343750011369e+00 4.911362304687499858e+01 -7.117382812500011369e+00 4.912753906249999858e+01 -7.065722656250017053e+00 4.912485351562499858e+01 -7.036718750000005684e+00 4.911269531249999432e+01 -7.022167968750011369e+00 4.912343749999999432e+01 -7.001464843750000000e+00 4.917988281249999716e+01 -6.958300781250017053e+00 4.919462890624999574e+01 -6.891210937500005684e+00 4.920751953125000000e+01 -6.849511718750022737e+00 4.920195312499999574e+01 -6.820703125000022737e+00 4.917392578124999858e+01 -6.776269531250022737e+00 4.915415039062499858e+01 -6.735449218750005684e+00 4.916059570312499716e+01 -6.607617187500011369e+00 4.929086914062499858e+01 -6.574707031250000000e+00 4.931967773437499858e+01 -6.566308593750022737e+00 4.934619140625000000e+01 -6.534277343750005684e+00 4.939467773437499432e+01 -6.458105468750005684e+00 4.944287109375000000e+01 -6.382226562500022737e+00 4.945815429687499432e+01 -6.344335937500005684e+00 4.945273437499999858e+01 -6.348437500000017053e+00 4.951269531250000000e+01 -6.378320312500022737e+00 4.959960937500000000e+01 -6.406738281250000000e+00 4.964497070312499716e+01 -6.444628906250017053e+00 4.968203124999999432e+01 -6.484765625000022737e+00 4.970781249999999574e+01 -6.493750000000005684e+00 4.975439453125000000e+01 -6.487304687500000000e+00 4.979848632812499432e+01 -6.440917968750000000e+00 4.980532226562499432e+01 -6.324609375000022737e+00 4.983789062500000000e+01 -6.256054687500011369e+00 4.987216796874999858e+01 -6.204882812500017053e+00 4.991513671874999858e+01 -6.138183593750000000e+00 4.997431640624999716e+01 -6.109765625000022737e+00 5.003437499999999716e+01 -6.108300781250022737e+00 5.009423828125000000e+01 -6.116503906250017053e+00 5.012099609374999432e+01 -6.121289062500011369e+00 5.013935546874999716e+01 -6.175097656250017053e+00 5.023266601562500000e+01 -6.364453125000011369e+00 5.031616210937500000e+01 -6.343652343750022737e+00 5.040024414062499858e+01 -6.340917968750005684e+00 5.045175781249999858e+01 -6.294921875000000000e+00 5.048549804687499432e+01 -6.203027343750022737e+00 5.049912109374999858e+01 -6.178710937500000000e+00 5.052250976562499574e+01 -6.168457031250000000e+00 5.054536132812499716e+01 -6.235937500000005684e+00 5.059667968750000000e+01 -6.154492187500011369e+00 5.063725585937499574e+01 -6.119433593750017053e+00 5.067924804687499574e+01 -6.005957031250005684e+00 5.073222656249999574e+01 -5.993945312500017053e+00 5.075043945312499716e+01 -6.048437500000005684e+00 5.090488281249999858e+01 -6.006835937500000000e+00 5.094995117187500000e+01 -5.955078125000000000e+00 5.097294921874999574e+01 -5.894726562500011369e+00 5.098422851562499858e+01 -5.867187500000000000e+00 5.100566406249999574e+01 -5.857519531250005684e+00 5.103012695312499858e+01 -5.868359375000011369e+00 5.104531249999999432e+01 -5.939257812500017053e+00 5.104082031249999574e+01 -5.961035156250005684e+00 5.105668945312499574e+01 -6.129980468750005684e+00 5.114741210937499716e+01 -6.136914062500011369e+00 5.116484374999999574e+01 -6.113378906250005684e+00 5.117470703124999432e+01 -6.082421875000022737e+00 5.117998046874999574e+01 -6.074804687500005684e+00 5.119902343749999574e+01 -6.075878906250011369e+00 5.122412109375000000e+01 -6.166210937500011369e+00 5.135483398437499858e+01 -6.192871093750000000e+00 5.141059570312499716e+01 -6.198828125000005684e+00 5.144999999999999574e+01 -6.193261718750022737e+00 5.148891601562499432e+01 -6.141601562500000000e+00 5.155009765624999574e+01 -6.091113281250017053e+00 5.159892578124999574e+01 -6.089355468750000000e+00 5.163779296874999858e+01 -6.052734375000000000e+00 5.165825195312499574e+01 -5.948535156250017053e+00 5.176240234374999716e+01 -5.948730468750000000e+00 5.180268554687499716e+01 -6.007617187500017053e+00 5.183398437500000000e+01 -6.089843750000000000e+00 5.185395507812499716e+01 -6.117187500000000000e+00 5.187041015624999574e+01 -6.166503906250000000e+00 5.188076171875000142e+01 -6.297070312500011369e+00 5.185073242187500142e+01 -6.355664062500011369e+00 5.182465820312499716e+01 -6.372167968750005684e+00 5.183002929687499716e+01 -6.425000000000011369e+00 5.185839843750000000e+01 -6.517578125000000000e+00 5.185395507812499716e+01 -6.741796875000005684e+00 5.191088867187500000e+01 -6.775195312500017053e+00 5.193828124999999574e+01 -6.800390625000005684e+00 5.196738281249999858e+01 -6.802441406250011369e+00 5.198017578124999716e+01 -6.715625000000017053e+00 5.203618164062499574e+01 -6.712988281250005684e+00 5.205688476562500000e+01 -6.724511718750022737e+00 5.208022460937500142e+01 -6.749023437500000000e+00 5.209868164062499574e+01 -6.800390625000005684e+00 5.211123046875000142e+01 -6.855078125000005684e+00 5.213579101562499574e+01 -6.977246093750011369e+00 5.220551757812499716e+01 -7.019628906250005684e+00 5.226601562500000142e+01 -7.032617187500022737e+00 5.233149414062499716e+01 -7.035156250000000000e+00 5.238022460937499858e+01 -7.001855468750022737e+00 5.241899414062499574e+01 -6.968164062500022737e+00 5.244409179687500000e+01 -6.922070312500011369e+00 5.244028320312499858e+01 -6.832519531250000000e+00 5.244228515625000142e+01 -6.748828125000017053e+00 5.246401367187500142e+01 -6.702929687500017053e+00 5.249921874999999716e+01 -6.691601562500011369e+00 5.253017578125000142e+01 -6.712402343750000000e+00 5.254965820312499858e+01 -6.718750000000000000e+00 5.257358398437499858e+01 -6.705371093750017053e+00 5.259765625000000000e+01 -6.710742187500017053e+00 5.261787109374999716e+01 -6.748437500000022737e+00 5.263408203124999574e+01 -7.013183593750000000e+00 5.263354492187500000e+01 -7.033007812500017053e+00 5.265136718750000000e+01 -7.050878906250005684e+00 5.274477539062500142e+01 -7.117089843750022737e+00 5.288701171874999574e+01 -7.179492187500017053e+00 5.296621093750000142e+01 -7.189941406250000000e+00 5.299951171875000000e+01 -7.188964843750000000e+00 5.318720703124999716e+01 -7.197265625000000000e+00 5.328227539062499574e+01 -7.152050781250011369e+00 5.332695312499999574e+01 -7.053320312500005684e+00 5.337583007812499858e+01 -7.074316406250005684e+00 5.347763671874999858e+01 -7.107128906250011369e+00 5.355698242187499858e+01 -7.206445312500022737e+00 5.365454101562500000e+01 -7.285253906250005684e+00 5.368134765624999716e+01 -7.629199218750017053e+00 5.369726562500000000e+01 -8.009277343750000000e+00 5.369072265624999574e+01 -8.167089843750005684e+00 5.354340820312499716e+01 -8.108496093750005684e+00 5.346767578125000142e+01 -8.200781250000005684e+00 5.343242187499999574e+01 -8.245214843750005684e+00 5.344531250000000000e+01 -8.279003906250011369e+00 5.351118164062499716e+01 -8.301562500000017053e+00 5.358413085937500142e+01 -8.333886718750022737e+00 5.360620117187500000e+01 -8.451367187500011369e+00 5.355170898437499716e+01 -8.492675781250000000e+00 5.351435546874999716e+01 -8.495214843750005684e+00 5.339423828124999716e+01 -8.538476562500022737e+00 5.355688476562500000e+01 -8.506250000000022737e+00 5.367075195312499858e+01 -8.528417968750005684e+00 5.378110351562499858e+01 -8.575585937500022737e+00 5.383847656249999858e+01 -8.618945312500017053e+00 5.387500000000000000e+01 -8.897753906250017053e+00 5.383569335937500000e+01 -9.205566406250000000e+00 5.385595703125000000e+01 -9.321972656250011369e+00 5.381347656250000000e+01 -9.585351562500022737e+00 5.360048828125000142e+01 -9.673144531250017053e+00 5.356562499999999716e+01 -9.783984375000017053e+00 5.355463867187499716e+01 -9.631250000000022737e+00 5.360019531249999858e+01 -9.312011718750000000e+00 5.385913085937500000e+01 -9.216406250000005684e+00 5.389121093749999858e+01 -9.069628906250017053e+00 5.390092773437499574e+01 -8.978125000000005684e+00 5.392622070312499716e+01 -8.920410156250000000e+00 5.396533203125000000e+01 -8.903515625000011369e+00 5.400029296874999574e+01 -8.906640625000022737e+00 5.426079101562499574e+01 -8.851562500000000000e+00 5.429956054687500000e+01 -8.780371093750005684e+00 5.431303710937499574e+01 -8.736035156250011369e+00 5.429521484374999574e+01 -8.644921875000022737e+00 5.429497070312499574e+01 -8.625781250000017053e+00 5.435395507812499716e+01 -8.648046875000005684e+00 5.439765624999999716e+01 -8.831152343750005684e+00 5.442753906249999574e+01 -8.951855468750011369e+00 5.446757812499999574e+01 -8.957226562500011369e+00 5.453833007812500000e+01 -8.880957031250005684e+00 5.459394531249999716e+01 -8.789648437500005684e+00 5.469594726562500142e+01 -8.682324218750011369e+00 5.479184570312499858e+01 -8.670312500000022737e+00 5.490341796874999858e+01 -8.670703125000017053e+00 5.490332031250000000e+01 -8.857226562500017053e+00 5.490112304687500000e+01 -8.902929687500005684e+00 5.489692382812499716e+01 -9.185839843750017053e+00 5.484467773437499716e+01 -9.254980468750005684e+00 5.480800781250000142e+01 -9.341992187500011369e+00 5.480629882812500142e+01 -9.498730468750011369e+00 5.484042968749999858e+01 -9.615820312500005684e+00 5.485541992187499716e+01 -9.661230468750005684e+00 5.483437500000000142e+01 -9.725000000000022737e+00 5.482553710937499858e+01 -9.739746093750000000e+00 5.482553710937499858e+01 -9.745898437500017053e+00 5.480717773437499574e+01 -9.892285156250011369e+00 5.478061523437499858e+01 -9.953808593750011369e+00 5.473828125000000000e+01 -1.002216796875001137e+01 5.467392578124999858e+01 -1.002880859375000000e+01 5.458129882812500000e+01 -9.941308593750022737e+00 5.451464843750000000e+01 -9.868652343750000000e+00 5.447246093749999574e+01 -1.014345703125002274e+01 5.448842773437500142e+01 -1.017080078125002274e+01 5.445019531250000000e+01 -1.021240234375000000e+01 5.440893554687500000e+01 -1.036044921875000568e+01 5.443833007812499858e+01 -1.073154296875000568e+01 5.431625976562499858e+01 -1.095595703125002274e+01 5.437568359374999716e+01 -1.101337890625001137e+01 5.437915039062500000e+01 -1.106435546875002274e+01 5.428051757812500000e+01 -1.100859375000001705e+01 5.418115234375000000e+01 -1.081074218750001137e+01 5.407514648437499716e+01 -1.085458984375000568e+01 5.400981445312499574e+01 -1.091777343750001705e+01 5.399531249999999716e+01 -1.110429687500001705e+01 5.400917968750000142e+01 -1.139960937500001137e+01 5.394462890624999574e+01 -1.146113281250001137e+01 5.396474609375000142e+01 -1.170058593750002274e+01 5.411352539062500000e+01 -1.179628906250002274e+01 5.414545898437499716e+01 -1.211132812500000000e+01 5.416831054687499858e+01 -1.216865234375001137e+01 5.422587890624999574e+01 -1.229628906250002274e+01 5.428378906249999858e+01 -1.237851562500000568e+01 5.434702148437499858e+01 -1.257539062500001137e+01 5.446738281249999858e+01 -1.277910156250001705e+01 5.444570312500000142e+01 -1.289804687500000568e+01 5.442265624999999574e+01 -1.302861328125001705e+01 5.441103515625000142e+01 -1.314746093750000000e+01 5.428271484375000000e+01 -1.344804687500001705e+01 5.414086914062500000e+01 -1.372421875000000568e+01 5.415322265625000142e+01 -1.382226562500000000e+01 5.401904296875000000e+01 -1.386552734375001705e+01 5.385336914062499858e+01 -1.395039062500001137e+01 5.380136718749999858e+01 -1.402500000000000568e+01 5.376743164062499858e+01 -1.425000000000000000e+01 5.373188476562499716e+01 -1.425888671875000568e+01 5.372963867187500142e+01 -1.426611328125000000e+01 5.370712890624999858e+01 -1.427988281250000568e+01 5.362475585937500000e+01 -1.429873046875002274e+01 5.355644531249999574e+01 -1.441455078125000000e+01 5.328349609374999574e+01 -1.441230468750001137e+01 5.321674804687499716e+01 -1.441093750000001705e+01 5.319902343749999574e+01 -1.436855468750002274e+01 5.310556640624999858e+01 -1.429316406250001137e+01 5.302675781250000142e+01 -1.419365234375001705e+01 5.298232421875000142e+01 -1.413886718750001137e+01 5.293286132812500000e+01 -1.412861328125001137e+01 5.287822265624999574e+01 -1.425371093750001705e+01 5.278251953124999574e+01 -1.451406250000002274e+01 5.264560546874999858e+01 -1.461943359375001705e+01 5.252851562499999716e+01 -1.456972656250002274e+01 5.243110351562499716e+01 -1.455458984375002274e+01 5.235966796874999574e+01 -1.457392578125001137e+01 5.231416015624999716e+01 -1.461562500000002274e+01 5.227763671874999574e+01 -1.467988281250001137e+01 5.225000000000000000e+01 -1.470537109375001705e+01 5.220747070312499716e+01 -1.469238281250000000e+01 5.215004882812500142e+01 -1.470458984375000000e+01 5.211020507812499858e+01 -1.475253906250000568e+01 5.208183593749999574e+01 -1.474814453125000568e+01 5.207080078125000000e+01 -1.472480468750001137e+01 5.203085937499999858e+01 -1.469296875000000568e+01 5.195800781250000000e+01 -1.467490234375000568e+01 5.190483398437499574e+01 -1.460166015625000568e+01 5.183237304687499858e+01 -1.462392578125002274e+01 5.177080078124999574e+01 -1.468134765625001137e+01 5.169819335937499716e+01 -1.472490234375001705e+01 5.166171874999999858e+01 -1.473867187500002274e+01 5.162714843749999716e+01 -1.471093750000000000e+01 5.154492187500000000e+01 -1.472470703125000568e+01 5.152387695312499716e+01 -1.490595703125001137e+01 5.146333007812499716e+01 -1.493554687500000000e+01 5.143535156249999574e+01 -1.495312500000000000e+01 5.137714843749999716e+01 -1.501660156250000000e+01 5.125273437499999574e+01 -1.496386718750000000e+01 5.109511718749999432e+01 -1.491748046875000000e+01 5.100874023437499716e+01 -1.481425781250001705e+01 5.087163085937499574e+01 -1.480937500000001705e+01 5.085898437499999858e+01 -1.479746093750000568e+01 5.084233398437499574e+01 -1.476650390625002274e+01 5.081831054687499716e+01 -1.472333984375001137e+01 5.081469726562500000e+01 -1.465820312500000000e+01 5.083261718749999858e+01 -1.461357421875001705e+01 5.085556640624999858e+01 -1.462382812500001705e+01 5.091474609374999716e+01 -1.459521484375000000e+01 5.091860351562499432e+01 -1.455966796875000568e+01 5.095493164062499858e+01 -1.454570312500001705e+01 5.099394531249999574e+01 -1.450732421875000000e+01 5.100986328124999858e+01 -1.436728515625000568e+01 5.102626953124999432e+01 -1.431972656250002274e+01 5.103779296874999716e+01 -1.428320312500000000e+01 5.102949218749999716e+01 -1.425585937500000000e+01 5.100185546874999432e+01 -1.427333984375002274e+01 5.097690429687499858e+01 -1.429941406250000568e+01 5.095258789062499716e+01 -1.437705078125000568e+01 5.091406250000000000e+01 -1.436904296875002274e+01 5.089873046874999574e+01 -1.420175781250000568e+01 5.086123046874999432e+01 -1.409648437500001705e+01 5.082275390625000000e+01 -1.399843750000002274e+01 5.080112304687499858e+01 -1.389853515625000568e+01 5.076127929687499574e+01 -1.370136718750001137e+01 5.071650390624999716e+01 -1.355673828125000568e+01 5.070463867187499574e+01 -1.352656250000001137e+01 5.069282226562499716e+01 -1.347255859375002274e+01 5.061694335937500000e+01 -1.343613281250000568e+01 5.060107421875000000e+01 -1.340117187500001705e+01 5.060932617187499716e+01 -1.337460937500000568e+01 5.062172851562499432e+01 -1.334101562500001137e+01 5.061142578124999858e+01 -1.330605468750002274e+01 5.058632812499999432e+01 -1.326953125000000000e+01 5.057641601562500000e+01 -1.323769531250002274e+01 5.057675781249999858e+01 -1.318115234375000000e+01 5.051049804687500000e+01 -1.301640625000001705e+01 5.049038085937499432e+01 -1.299707031250000000e+01 5.045605468750000000e+01 -1.296679687500000000e+01 5.041621093749999716e+01 -1.294267578125001705e+01 5.040644531249999716e+01 -1.286826171875000568e+01 5.042221679687499858e+01 -1.276542968750001705e+01 5.043095703124999574e+01 -1.270644531250002274e+01 5.040913085937499716e+01 -1.263554687500001705e+01 5.039707031249999858e+01 -1.254902343750001137e+01 5.039340820312499858e+01 -1.245263671875000000e+01 5.034980468749999716e+01 -1.235859375000001137e+01 5.027324218749999574e+01 -1.230566406250000000e+01 5.020571289062499432e+01 -1.227734375000000000e+01 5.018144531249999574e+01 -1.223115234375001137e+01 5.024487304687500000e+01 -1.217480468750000000e+01 5.028837890624999574e+01 -1.213486328125000568e+01 5.031093749999999432e+01 -1.209921875000000568e+01 5.031098632812499716e+01 -1.208984375000000000e+01 5.030175781250000000e+01 -1.208974609375002274e+01 5.026855468750000000e+01 -1.212783203125002274e+01 5.021342773437499574e+01 -1.217500000000001137e+01 5.017583007812499574e+01 -1.218251953125002274e+01 5.014804687499999858e+01 -1.220781250000001705e+01 5.009750976562499858e+01 -1.227646484375000568e+01 5.004233398437499858e+01 -1.238417968750002274e+01 4.999858398437499574e+01 -1.245761718750000568e+01 4.995551757812499716e+01 -1.251201171875001705e+01 4.989580078124999574e+01 -1.251250000000001705e+01 4.987744140625000000e+01 -1.249755859375000000e+01 4.985307617187499574e+01 -1.247187500000001137e+01 4.983007812500000000e+01 -1.245019531250000000e+01 4.980014648437499858e+01 -1.239052734375002274e+01 4.973964843749999432e+01 -1.240820312500000000e+01 4.971318359374999574e+01 -1.245703125000000000e+01 4.967978515624999858e+01 -1.250029296875001705e+01 4.963969726562499574e+01 -1.255576171875000568e+01 4.957485351562499432e+01 -1.263203125000001137e+01 4.946123046874999574e+01 -1.268115234375000000e+01 4.941450195312499716e+01 -1.274785156250001705e+01 4.936621093750000000e+01 -1.281337890625002274e+01 4.932934570312500000e+01 -1.291669921875001137e+01 4.933046874999999432e+01 -1.302373046875001705e+01 4.926010742187499858e+01 -1.314052734375002274e+01 4.915834960937499432e+01 -1.322783203125001705e+01 4.911166992187499858e+01 -1.328876953125001137e+01 4.909746093749999574e+01 -1.333906250000001137e+01 4.906079101562500000e+01 -1.338369140625002274e+01 4.900810546874999574e+01 -1.340117187500001705e+01 4.897758789062499574e+01 -1.344072265625001705e+01 4.895556640625000000e+01 -1.354765625000001705e+01 4.895966796874999716e+01 -1.368496093750002274e+01 4.887670898437500000e+01 -1.376992187500002274e+01 4.881596679687499574e+01 -1.381474609375001705e+01 4.876694335937499858e+01 -1.380292968750001137e+01 4.874750976562499716e+01 -1.379746093750000568e+01 4.868642578124999432e+01 -1.379882812500000000e+01 4.862167968749999858e+01 -1.378535156250001137e+01 4.858745117187499574e+01 -1.372392578125001705e+01 4.854238281249999432e+01 -1.369218750000001705e+01 4.853276367187499574e+01 -1.367519531250002274e+01 4.852304687499999858e+01 -1.348662109375001705e+01 4.858183593749999574e+01 -1.347167968750000000e+01 4.857182617187499574e+01 -1.345986328125002274e+01 4.856455078124999858e+01 -1.340937500000001137e+01 4.839414062499999858e+01 -1.337460937500000568e+01 4.836137695312499574e+01 -1.332285156250000568e+01 4.833124999999999716e+01 -1.321523437500002274e+01 4.830190429687499432e+01 -1.314042968750001705e+01 4.828994140624999432e+01 -1.308212890625000568e+01 4.827509765624999716e+01 -1.289746093750000000e+01 4.820371093749999858e+01 -1.281425781250001705e+01 4.816083984374999716e+01 -1.276035156250000568e+01 4.810698242187499574e+01 -1.276005859375001705e+01 4.807597656249999574e+01 -1.284990234375001705e+01 4.798481445312499716e+01 -1.295351562500002274e+01 4.789062500000000000e+01 -1.295419921875000568e+01 4.780776367187499432e+01 -1.290830078125000568e+01 4.774580078124999716e+01 -1.289765625000001137e+01 4.772187499999999716e+01 -1.292812500000002274e+01 4.771284179687499716e+01 -1.298554687500001137e+01 4.770942382812499716e+01 -1.303359375000002274e+01 4.769873046875000000e+01 -1.305410156250002274e+01 4.765512695312499858e+01 -1.304794921875000568e+01 4.757915039062499574e+01 -1.303154296875001705e+01 4.750800781249999716e+01 -1.301435546875001137e+01 4.747807617187499574e+01 -1.296806640625001705e+01 4.747568359374999858e+01 -1.287890625000000000e+01 4.750644531249999858e+01 -1.280937500000001705e+01 4.754218749999999716e+01 -1.278281250000000568e+01 4.756416015624999716e+01 -1.278115234375002274e+01 4.759042968749999858e+01 -1.279619140625001705e+01 4.760703124999999858e+01 -1.277138671875002274e+01 4.763940429687500000e+01 -1.268583984375001705e+01 4.766933593749999432e+01 -1.259423828125000000e+01 4.765629882812499574e+01 -1.252656250000001137e+01 4.763613281249999432e+01 -1.248291015625000000e+01 4.763730468749999858e+01 -1.243574218750001137e+01 4.766611328124999858e+01 -1.236318359375002274e+01 4.768818359374999716e+01 -1.226835937500001705e+01 4.770273437499999858e+01 -1.220927734375001705e+01 4.771826171875000000e+01 -1.219687500000000568e+01 4.770908203124999858e+01 -1.220380859375001137e+01 4.764672851562500000e+01 -1.218564453125000568e+01 4.761953124999999432e+01 -1.171679687500000000e+01 4.758349609375000000e+01 -1.157392578125001137e+01 4.754975585937499716e+01 -1.146992187500001137e+01 4.750610351562500000e+01 -1.139296875000002274e+01 4.748715820312499858e+01 -1.137412109375000568e+01 4.746025390624999574e+01 -1.129794921875000568e+01 4.742490234374999858e+01 -1.121191406250000000e+01 4.741362304687499574e+01 -1.119121093750001705e+01 4.742519531249999432e+01 -1.113603515625001705e+01 4.740888671874999716e+01 -1.104199218750000000e+01 4.739311523437499574e+01 -1.098085937500002274e+01 4.739814453124999716e+01 -1.095214843750000000e+01 4.742670898437499716e+01 -1.089394531250002274e+01 4.747045898437500000e+01 -1.087060546875000000e+01 4.750078124999999574e+01 -1.087304687500000000e+01 4.752021484374999716e+01 -1.074160156250002274e+01 4.752412109374999716e+01 -1.065869140625000000e+01 4.754721679687499858e+01 -1.048281250000002274e+01 4.754179687499999574e+01 -1.043945312500000000e+01 4.755156249999999574e+01 -1.043037109375001137e+01 4.754106445312499574e+01 -1.040390625000000568e+01 4.741699218750000000e+01 -1.036914062500000000e+01 4.736606445312499858e+01 -1.031279296875001705e+01 4.731342773437499716e+01 -1.024062500000002274e+01 4.728413085937499716e+01 -1.018300781250002274e+01 4.727880859375000000e+01 -1.018574218750001137e+01 4.731718749999999574e+01 -1.020029296875000568e+01 4.736342773437499432e+01 -1.015878906250000568e+01 4.737426757812500000e+01 -1.009648437500001705e+01 4.737958984374999716e+01 -1.006630859375002274e+01 4.739335937499999574e+01 -1.007421875000000000e+01 4.742851562499999574e+01 -1.005986328125001705e+01 4.744907226562499858e+01 -1.003408203125002274e+01 4.747358398437499716e+01 -9.971582031250022737e+00 4.750532226562499716e+01 -9.839160156250017053e+00 4.755229492187499574e+01 -9.748925781250022737e+00 4.757553710937499858e+01 -9.715136718750017053e+00 4.755078125000000000e+01 -9.650585937500011369e+00 4.752587890625000000e+01 -9.548925781250005684e+00 4.753403320312499858e+01 -9.524023437500005684e+00 4.752421874999999574e+01 diff --git a/examples/08_geo_coordinates/temp_obs.txt b/examples/08_geo_coordinates/temp_obs.txt deleted file mode 100644 index aa8e60fc8..000000000 --- a/examples/08_geo_coordinates/temp_obs.txt +++ /dev/null @@ -1,494 +0,0 @@ -# id, lat, lon, temp -4.400000000000000000e+01 5.293359999999999843e+01 8.237000000000000099e+00 1.569999999999999929e+01 -7.300000000000000000e+01 4.861590000000000344e+01 1.305059999999999931e+01 1.390000000000000036e+01 -7.800000000000000000e+01 5.248530000000000229e+01 7.912600000000000300e+00 1.509999999999999964e+01 -9.100000000000000000e+01 5.074459999999999837e+01 9.345000000000000639e+00 1.700000000000000000e+01 -9.600000000000000000e+01 5.294369999999999976e+01 1.285180000000000078e+01 2.189999999999999858e+01 -1.020000000000000000e+02 5.386330000000000240e+01 8.127499999999999503e+00 1.190000000000000036e+01 -1.250000000000000000e+02 4.783420000000000272e+01 1.086669999999999980e+01 1.140000000000000036e+01 -1.310000000000000000e+02 5.108809999999999718e+01 1.293260000000000076e+01 1.719999999999999929e+01 -1.420000000000000000e+02 4.840599999999999881e+01 1.131170000000000009e+01 1.290000000000000036e+01 -1.500000000000000000e+02 4.972729999999999961e+01 8.116400000000000503e+00 1.719999999999999929e+01 -1.510000000000000000e+02 4.946909999999999741e+01 1.185459999999999958e+01 1.340000000000000036e+01 -1.540000000000000000e+02 4.801970000000000027e+01 1.229250000000000043e+01 1.390000000000000036e+01 -1.610000000000000000e+02 5.042369999999999663e+01 7.420200000000000351e+00 1.810000000000000142e+01 -1.640000000000000000e+02 5.303159999999999741e+01 1.399080000000000013e+01 2.130000000000000071e+01 -1.670000000000000000e+02 5.384120000000000061e+01 1.368459999999999965e+01 2.130000000000000071e+01 -1.830000000000000000e+02 5.467920000000000158e+01 1.343430000000000035e+01 1.739999999999999858e+01 -1.910000000000000000e+02 4.996940000000000026e+01 9.911400000000000432e+00 1.860000000000000142e+01 -1.980000000000000000e+02 5.137449999999999761e+01 1.129199999999999982e+01 2.019999999999999929e+01 -2.170000000000000000e+02 4.787740000000000151e+01 1.136430000000000007e+01 1.269999999999999929e+01 -2.220000000000000000e+02 5.059080000000000155e+01 1.271390000000000065e+01 1.580000000000000071e+01 -2.320000000000000000e+02 4.842530000000000001e+01 1.094170000000000087e+01 1.340000000000000036e+01 -2.570000000000000000e+02 4.872699999999999676e+01 8.245699999999999363e+00 1.359999999999999964e+01 -2.590000000000000000e+02 4.780639999999999645e+01 7.638700000000000045e+00 1.440000000000000036e+01 -2.820000000000000000e+02 4.987429999999999808e+01 1.092060000000000031e+01 1.580000000000000071e+01 -2.940000000000000000e+02 5.231989999999999696e+01 9.429999999999999716e+00 2.150000000000000000e+01 -2.980000000000000000e+02 5.434060000000000201e+01 1.271080000000000076e+01 1.769999999999999929e+01 -3.030000000000000000e+02 5.206139999999999901e+01 1.349959999999999916e+01 2.119999999999999929e+01 -3.140000000000000000e+02 5.116040000000000276e+01 1.450420000000000087e+01 2.039999999999999858e+01 -3.200000000000000000e+02 4.996670000000000300e+01 1.151970000000000027e+01 1.469999999999999929e+01 -3.300000000000000000e+02 4.956170000000000186e+01 8.967299999999999827e+00 1.409999999999999964e+01 -3.420000000000000000e+02 5.231700000000000017e+01 8.169399999999999551e+00 1.639999999999999858e+01 -3.680000000000000000e+02 5.281519999999999726e+01 9.924799999999999400e+00 1.919999999999999929e+01 -3.770000000000000000e+02 4.910699999999999932e+01 7.996699999999999697e+00 1.669999999999999929e+01 -3.790000000000000000e+02 5.090740000000000265e+01 1.126650000000000063e+01 1.810000000000000142e+01 -3.900000000000000000e+02 5.098369999999999891e+01 8.368299999999999628e+00 1.480000000000000071e+01 -4.000000000000000000e+02 5.263089999999999691e+01 1.350220000000000020e+01 2.250000000000000000e+01 -4.030000000000000000e+02 5.245369999999999777e+01 1.330170000000000030e+01 1.919999999999999929e+01 -4.100000000000000000e+02 5.240400000000000347e+01 1.373090000000000011e+01 2.080000000000000071e+01 -4.200000000000000000e+02 5.254469999999999885e+01 1.355979999999999919e+01 2.169999999999999929e+01 -4.270000000000000000e+02 5.238069999999999737e+01 1.353059999999999974e+01 2.250000000000000000e+01 -4.300000000000000000e+02 5.256439999999999912e+01 1.330879999999999974e+01 2.060000000000000142e+01 -4.330000000000000000e+02 5.246750000000000114e+01 1.340210000000000079e+01 2.060000000000000142e+01 -4.450000000000000000e+02 5.182180000000000319e+01 1.171100000000000030e+01 2.200000000000000000e+01 -4.600000000000000000e+02 4.926409999999999911e+01 6.686799999999999855e+00 1.519999999999999929e+01 -5.350000000000000000e+02 5.003719999999999857e+01 7.307900000000000063e+00 1.769999999999999929e+01 -5.910000000000000000e+02 5.339110000000000156e+01 1.068779999999999930e+01 1.889999999999999858e+01 -5.960000000000000000e+02 5.400280000000000058e+01 1.119079999999999941e+01 1.630000000000000071e+01 -6.030000000000000000e+02 5.072930000000000206e+01 7.203999999999999737e+00 1.760000000000000142e+01 -6.170000000000000000e+02 5.187299999999999756e+01 6.886300000000000310e+00 1.559999999999999964e+01 -6.560000000000000000e+02 5.172339999999999804e+01 1.060210000000000008e+01 1.580000000000000071e+01 -6.620000000000000000e+02 5.229149999999999920e+01 1.044640000000000057e+01 1.939999999999999858e+01 -6.910000000000000000e+02 5.304500000000000171e+01 8.797900000000000276e+00 1.650000000000000000e+01 -7.010000000000000000e+02 5.353320000000000078e+01 8.576100000000000279e+00 1.380000000000000071e+01 -7.040000000000000000e+02 5.344509999999999650e+01 9.138999999999999346e+00 1.610000000000000142e+01 -7.220000000000000000e+02 5.179860000000000042e+01 1.061829999999999963e+01 1.009999999999999964e+01 -7.550000000000000000e+02 4.951820000000000022e+01 9.321300000000000807e+00 1.600000000000000000e+01 -7.570000000000000000e+02 4.796249999999999858e+01 7.998300000000000409e+00 1.280000000000000071e+01 -7.600000000000000000e+02 5.336290000000000333e+01 9.943500000000000227e+00 1.750000000000000000e+01 -7.660000000000000000e+02 5.017459999999999809e+01 7.059499999999999886e+00 1.680000000000000071e+01 -7.690000000000000000e+02 5.228170000000000073e+01 9.088900000000000645e+00 1.889999999999999858e+01 -8.170000000000000000e+02 5.103059999999999974e+01 8.814600000000000435e+00 1.850000000000000000e+01 -8.400000000000000000e+02 5.043130000000000024e+01 1.261139999999999972e+01 1.080000000000000071e+01 -8.500000000000000000e+02 5.259590000000000032e+01 1.002960000000000029e+01 1.939999999999999858e+01 -8.530000000000000000e+02 5.079129999999999967e+01 1.287199999999999989e+01 1.710000000000000142e+01 -8.560000000000000000e+02 4.788430000000000319e+01 1.254039999999999999e+01 1.330000000000000071e+01 -8.670000000000000000e+02 5.030660000000000309e+01 1.096790000000000020e+01 1.739999999999999858e+01 -8.800000000000000000e+02 5.177600000000000335e+01 1.431680000000000064e+01 1.989999999999999858e+01 -8.910000000000000000e+02 5.387129999999999797e+01 8.705799999999999983e+00 1.469999999999999929e+01 -8.960000000000000000e+02 5.107780000000000342e+01 1.086190000000000033e+01 1.869999999999999929e+01 -9.170000000000000000e+02 4.988089999999999691e+01 8.677899999999999281e+00 1.639999999999999858e+01 -9.530000000000000000e+02 4.976189999999999714e+01 7.054199999999999804e+00 1.660000000000000142e+01 -9.540000000000000000e+02 5.417960000000000065e+01 7.458700000000000330e+00 1.250000000000000000e+01 -9.630000000000000000e+02 5.258809999999999718e+01 8.342399999999999594e+00 1.660000000000000142e+01 -9.790000000000000000e+02 5.073640000000000327e+01 8.267200000000000770e+00 2.060000000000000142e+01 -9.830000000000000000e+02 4.855619999999999692e+01 1.055990000000000073e+01 1.350000000000000000e+01 -9.910000000000000000e+02 5.091159999999999997e+01 1.370870000000000033e+01 1.869999999999999929e+01 -1.001000000000000000e+03 5.164509999999999934e+01 1.357469999999999999e+01 2.110000000000000142e+01 -1.048000000000000000e+03 5.112800000000000011e+01 1.375430000000000064e+01 1.869999999999999929e+01 -1.050000000000000000e+03 5.102210000000000178e+01 1.384699999999999953e+01 2.000000000000000000e+01 -1.051000000000000000e+03 5.102479999999999905e+01 1.377500000000000036e+01 1.980000000000000071e+01 -1.052000000000000000e+03 5.221739999999999782e+01 1.216409999999999947e+01 2.150000000000000000e+01 -1.072000000000000000e+03 4.947189999999999799e+01 8.192899999999999849e+00 1.669999999999999929e+01 -1.078000000000000000e+03 5.129599999999999937e+01 6.768600000000000172e+00 1.660000000000000142e+01 -1.103000000000000000e+03 4.810029999999999717e+01 1.198719999999999963e+01 1.340000000000000036e+01 -1.107000000000000000e+03 4.985199999999999676e+01 1.049910000000000032e+01 1.559999999999999964e+01 -1.161000000000000000e+03 4.887769999999999726e+01 1.123489999999999966e+01 1.450000000000000000e+01 -1.197000000000000000e+03 4.898949999999999960e+01 1.013119999999999976e+01 1.459999999999999964e+01 -1.200000000000000000e+03 5.406909999999999883e+01 9.010500000000000398e+00 1.519999999999999929e+01 -1.207000000000000000e+03 5.027049999999999841e+01 1.227420000000000044e+01 1.450000000000000000e+01 -1.214000000000000000e+03 4.820120000000000005e+01 8.108800000000000452e+00 1.250000000000000000e+01 -1.224000000000000000e+03 4.813779999999999859e+01 7.835099999999999731e+00 1.400000000000000000e+01 -1.228000000000000000e+03 5.416510000000000247e+01 6.346000000000000085e+00 1.180000000000000071e+01 -1.246000000000000000e+03 5.184179999999999922e+01 8.060700000000000642e+00 1.819999999999999929e+01 -1.262000000000000000e+03 4.834770000000000323e+01 1.181339999999999968e+01 1.350000000000000000e+01 -1.266000000000000000e+03 5.429919999999999902e+01 9.316200000000000259e+00 1.559999999999999964e+01 -1.270000000000000000e+03 5.098290000000000077e+01 1.096080000000000076e+01 1.639999999999999858e+01 -1.279000000000000000e+03 4.964970000000000283e+01 1.100740000000000052e+01 1.480000000000000071e+01 -1.297000000000000000e+03 5.120409999999999684e+01 1.001379999999999981e+01 1.639999999999999858e+01 -1.300000000000000000e+03 5.125399999999999778e+01 8.156499999999999417e+00 1.309999999999999964e+01 -1.303000000000000000e+03 5.140409999999999968e+01 6.967699999999999783e+00 1.559999999999999964e+01 -1.327000000000000000e+03 5.071189999999999998e+01 6.790499999999999758e+00 1.440000000000000036e+01 -1.332000000000000000e+03 4.848319999999999652e+01 1.272409999999999997e+01 1.290000000000000036e+01 -1.339000000000000000e+03 5.291570000000000107e+01 1.018849999999999945e+01 1.869999999999999929e+01 -1.346000000000000000e+03 4.787489999999999668e+01 8.003800000000000026e+00 4.700000000000000178e+00 -1.357000000000000000e+03 4.998069999999999879e+01 1.183760000000000012e+01 1.340000000000000036e+01 -1.358000000000000000e+03 5.042830000000000013e+01 1.295350000000000001e+01 9.400000000000000355e+00 -1.411000000000000000e+03 5.053090000000000259e+01 1.004800000000000004e+01 1.300000000000000000e+01 -1.420000000000000000e+03 5.002590000000000003e+01 8.521300000000000097e+00 1.800000000000000000e+01 -1.424000000000000000e+03 5.012689999999999912e+01 8.669399999999999551e+00 1.819999999999999929e+01 -1.443000000000000000e+03 4.802320000000000277e+01 7.834299999999999820e+00 1.380000000000000071e+01 -1.451000000000000000e+03 5.382770000000000010e+01 9.249299999999999855e+00 1.619999999999999929e+01 -1.468000000000000000e+03 4.845380000000000109e+01 8.409000000000000696e+00 9.599999999999999645e+00 -1.503000000000000000e+03 5.306430000000000291e+01 7.902199999999999669e+00 1.559999999999999964e+01 -1.504000000000000000e+03 5.111899999999999977e+01 9.279899999999999594e+00 1.869999999999999929e+01 -1.526000000000000000e+03 5.056680000000000064e+01 9.653299999999999770e+00 1.819999999999999929e+01 -1.544000000000000000e+03 5.251290000000000191e+01 1.139409999999999989e+01 2.100000000000000000e+01 -1.550000000000000000e+03 4.748299999999999699e+01 1.106209999999999916e+01 1.440000000000000036e+01 -1.580000000000000000e+03 4.998590000000000089e+01 7.954799999999999649e+00 1.989999999999999858e+01 -1.584000000000000000e+03 4.792419999999999902e+01 8.647299999999999542e+00 1.130000000000000071e+01 -1.587000000000000000e+03 4.894809999999999661e+01 1.142890000000000050e+01 1.309999999999999964e+01 -1.590000000000000000e+03 5.149419999999999931e+01 6.246299999999999741e+00 1.680000000000000071e+01 -1.602000000000000000e+03 4.843299999999999983e+01 7.993000000000000327e+00 1.450000000000000000e+01 -1.605000000000000000e+03 5.238750000000000284e+01 1.216009999999999991e+01 2.230000000000000071e+01 -1.612000000000000000e+03 5.088130000000000308e+01 1.212889999999999979e+01 1.830000000000000071e+01 -1.639000000000000000e+03 5.060170000000000101e+01 8.643900000000000361e+00 1.760000000000000142e+01 -1.645000000000000000e+03 5.096560000000000201e+01 9.050000000000000711e+00 1.930000000000000071e+01 -1.666000000000000000e+03 5.482730000000000103e+01 9.505800000000000693e+00 1.469999999999999929e+01 -1.684000000000000000e+03 5.116219999999999857e+01 1.495059999999999967e+01 1.869999999999999929e+01 -1.691000000000000000e+03 5.150019999999999953e+01 9.950699999999999434e+00 1.580000000000000071e+01 -1.694000000000000000e+03 5.360600000000000165e+01 1.210330000000000084e+01 1.960000000000000142e+01 -1.721000000000000000e+03 4.966400000000000148e+01 1.122390000000000043e+01 1.259999999999999964e+01 -1.735000000000000000e+03 4.878940000000000055e+01 1.362899999999999956e+01 1.280000000000000071e+01 -1.736000000000000000e+03 5.357309999999999661e+01 1.067970000000000041e+01 1.800000000000000000e+01 -1.757000000000000000e+03 5.409669999999999845e+01 1.340559999999999974e+01 1.919999999999999929e+01 -1.759000000000000000e+03 5.424369999999999692e+01 1.391019999999999968e+01 1.850000000000000000e+01 -1.766000000000000000e+03 5.213439999999999941e+01 7.696900000000000297e+00 1.610000000000000142e+01 -1.832000000000000000e+03 4.911290000000000333e+01 1.313380000000000081e+01 7.000000000000000000e+00 -1.863000000000000000e+03 5.026670000000000016e+01 9.185399999999999565e+00 1.730000000000000071e+01 -1.869000000000000000e+03 5.331530000000000058e+01 1.393379999999999974e+01 2.019999999999999929e+01 -1.886000000000000000e+03 4.848780000000000001e+01 1.026079999999999970e+01 1.290000000000000036e+01 -1.964000000000000000e+03 4.994449999999999790e+01 6.382100000000000328e+00 1.730000000000000071e+01 -1.975000000000000000e+03 5.363320000000000221e+01 9.988099999999999312e+00 1.739999999999999858e+01 -1.981000000000000000e+03 5.347769999999999868e+01 9.895699999999999719e+00 1.860000000000000142e+01 -2.014000000000000000e+03 5.246439999999999770e+01 9.677899999999999281e+00 2.039999999999999858e+01 -2.023000000000000000e+03 4.879180000000000206e+01 1.070620000000000083e+01 1.390000000000000036e+01 -2.039000000000000000e+03 5.190019999999999811e+01 1.056990000000000052e+01 1.789999999999999858e+01 -2.044000000000000000e+03 5.165200000000000102e+01 1.113669999999999938e+01 1.750000000000000000e+01 -2.074000000000000000e+03 4.837519999999999953e+01 8.980000000000000426e+00 1.130000000000000071e+01 -2.110000000000000000e+03 5.104110000000000014e+01 6.104199999999999626e+00 1.490000000000000036e+01 -2.115000000000000000e+03 5.417499999999999716e+01 7.892000000000000348e+00 1.400000000000000000e+01 -2.171000000000000000e+03 5.085199999999999676e+01 9.737700000000000244e+00 1.869999999999999929e+01 -2.174000000000000000e+03 5.162550000000000239e+01 1.036950000000000038e+01 1.619999999999999929e+01 -2.201000000000000000e+03 5.457500000000000284e+01 1.310440000000000005e+01 1.680000000000000071e+01 -2.211000000000000000e+03 5.073709999999999809e+01 7.652800000000000047e+00 1.430000000000000071e+01 -2.252000000000000000e+03 5.089900000000000091e+01 1.474569999999999936e+01 1.880000000000000071e+01 -2.261000000000000000e+03 5.031230000000000047e+01 1.187599999999999945e+01 1.590000000000000036e+01 -2.290000000000000000e+03 4.780089999999999861e+01 1.101079999999999970e+01 9.800000000000000711e+00 -2.303000000000000000e+03 5.431459999999999866e+01 9.538999999999999702e+00 1.630000000000000071e+01 -2.306000000000000000e+03 5.431940000000000168e+01 1.067319999999999958e+01 1.480000000000000071e+01 -2.315000000000000000e+03 5.176570000000000249e+01 1.316660000000000075e+01 1.930000000000000071e+01 -2.319000000000000000e+03 4.788230000000000075e+01 1.169609999999999950e+01 1.309999999999999964e+01 -2.323000000000000000e+03 5.185289999999999822e+01 9.495300000000000296e+00 1.960000000000000142e+01 -2.362000000000000000e+03 5.056510000000000105e+01 7.484300000000000175e+00 1.650000000000000000e+01 -2.385000000000000000e+03 4.969270000000000209e+01 7.326399999999999579e+00 1.630000000000000071e+01 -2.410000000000000000e+03 4.871119999999999806e+01 1.153619999999999912e+01 1.350000000000000000e+01 -2.429000000000000000e+03 5.398969999999999914e+01 9.569599999999999440e+00 1.689999999999999858e+01 -2.437000000000000000e+03 5.445700000000000074e+01 9.520300000000000651e+00 1.580000000000000071e+01 -2.444000000000000000e+03 5.092510000000000048e+01 1.158300000000000018e+01 2.019999999999999929e+01 -2.480000000000000000e+03 5.006430000000000291e+01 8.993000000000000327e+00 1.810000000000000142e+01 -2.483000000000000000e+03 5.118030000000000257e+01 8.489100000000000534e+00 1.380000000000000071e+01 -2.485000000000000000e+03 4.891700000000000159e+01 9.687099999999999156e+00 1.380000000000000071e+01 -2.486000000000000000e+03 4.942620000000000147e+01 7.755700000000000038e+00 1.669999999999999929e+01 -2.497000000000000000e+03 5.050139999999999674e+01 6.526399999999999757e+00 1.269999999999999929e+01 -2.559000000000000000e+03 4.772330000000000183e+01 1.033479999999999954e+01 1.240000000000000036e+01 -2.564000000000000000e+03 5.437760000000000105e+01 1.014240000000000030e+01 1.530000000000000071e+01 -2.575000000000000000e+03 4.918039999999999878e+01 9.980000000000000426e+00 1.469999999999999929e+01 -2.578000000000000000e+03 5.399949999999999761e+01 1.143410000000000082e+01 1.639999999999999858e+01 -2.597000000000000000e+03 5.022399999999999665e+01 1.007920000000000016e+01 1.730000000000000071e+01 -2.600000000000000000e+03 4.973629999999999995e+01 1.017810000000000059e+01 1.769999999999999929e+01 -2.601000000000000000e+03 5.022180000000000177e+01 8.446899999999999409e+00 1.259999999999999964e+01 -2.618000000000000000e+03 5.084579999999999700e+01 1.048029999999999973e+01 1.409999999999999964e+01 -2.627000000000000000e+03 5.155539999999999878e+01 1.388449999999999918e+01 2.030000000000000071e+01 -2.629000000000000000e+03 5.176120000000000232e+01 6.095399999999999707e+00 1.580000000000000071e+01 -2.638000000000000000e+03 4.810540000000000305e+01 8.754799999999999471e+00 9.000000000000000000e+00 -2.641000000000000000e+03 5.151850000000000307e+01 1.290649999999999942e+01 2.000000000000000000e+01 -2.667000000000000000e+03 5.086460000000000292e+01 7.157499999999999751e+00 1.830000000000000071e+01 -2.680000000000000000e+03 5.028399999999999892e+01 1.044560000000000066e+01 1.800000000000000000e+01 -2.700000000000000000e+03 4.883019999999999783e+01 1.148719999999999963e+01 1.380000000000000071e+01 -2.704000000000000000e+03 5.175110000000000099e+01 1.200939999999999941e+01 2.069999999999999929e+01 -2.708000000000000000e+03 4.766519999999999868e+01 1.108050000000000068e+01 1.269999999999999929e+01 -2.712000000000000000e+03 4.769519999999999982e+01 9.130699999999999150e+00 1.450000000000000000e+01 -2.750000000000000000e+03 5.025229999999999819e+01 1.132089999999999996e+01 1.719999999999999929e+01 -2.773000000000000000e+03 4.942830000000000013e+01 1.190160000000000018e+01 1.269999999999999929e+01 -2.794000000000000000e+03 5.293630000000000280e+01 1.240930000000000000e+01 2.150000000000000000e+01 -2.796000000000000000e+03 5.391559999999999775e+01 1.227899999999999991e+01 1.880000000000000071e+01 -2.812000000000000000e+03 4.836469999999999914e+01 7.828000000000000291e+00 1.450000000000000000e+01 -2.814000000000000000e+03 4.851209999999999667e+01 9.764499999999999957e+00 1.119999999999999929e+01 -2.856000000000000000e+03 5.191729999999999734e+01 1.308779999999999966e+01 1.900000000000000000e+01 -2.878000000000000000e+03 5.139090000000000202e+01 1.187860000000000049e+01 1.900000000000000000e+01 -2.886000000000000000e+03 4.821759999999999735e+01 9.909700000000000841e+00 1.200000000000000000e+01 -2.905000000000000000e+03 4.818489999999999895e+01 1.085069999999999979e+01 1.230000000000000071e+01 -2.907000000000000000e+03 5.479030000000000200e+01 8.951399999999999579e+00 1.340000000000000036e+01 -2.925000000000000000e+03 5.139330000000000354e+01 1.031230000000000047e+01 1.739999999999999858e+01 -2.928000000000000000e+03 5.131510000000000105e+01 1.244619999999999926e+01 2.110000000000000142e+01 -2.932000000000000000e+03 5.143480000000000274e+01 1.223959999999999937e+01 2.030000000000000071e+01 -2.947000000000000000e+03 5.113329999999999842e+01 8.034800000000000608e+00 1.540000000000000036e+01 -2.951000000000000000e+03 5.310070000000000334e+01 1.148639999999999972e+01 1.989999999999999858e+01 -2.953000000000000000e+03 4.785969999999999658e+01 8.230800000000000338e+00 9.599999999999999645e+00 -2.961000000000000000e+03 5.449960000000000093e+01 1.027369999999999983e+01 1.380000000000000071e+01 -2.968000000000000000e+03 5.098940000000000339e+01 6.977699999999999569e+00 1.730000000000000071e+01 -2.985000000000000000e+03 5.093829999999999814e+01 1.420930000000000071e+01 1.939999999999999858e+01 -3.015000000000000000e+03 5.220850000000000080e+01 1.411800000000000033e+01 2.010000000000000142e+01 -3.028000000000000000e+03 5.178540000000000276e+01 8.838800000000000878e+00 1.780000000000000071e+01 -3.031000000000000000e+03 5.163360000000000127e+01 8.394500000000000739e+00 1.900000000000000000e+01 -3.032000000000000000e+03 5.501100000000000279e+01 8.412499999999999645e+00 1.340000000000000036e+01 -3.034000000000000000e+03 5.045049999999999812e+01 1.163499999999999979e+01 1.639999999999999858e+01 -3.042000000000000000e+03 5.056170000000000186e+01 8.238599999999999923e+00 1.930000000000000071e+01 -3.083000000000000000e+03 5.192669999999999675e+01 1.387969999999999970e+01 2.119999999999999929e+01 -3.086000000000000000e+03 5.380250000000000199e+01 1.069890000000000008e+01 1.789999999999999858e+01 -3.093000000000000000e+03 5.297240000000000038e+01 1.113739999999999952e+01 1.860000000000000142e+01 -3.098000000000000000e+03 5.124519999999999698e+01 7.642500000000000071e+00 1.530000000000000071e+01 -3.126000000000000000e+03 5.210289999999999822e+01 1.158270000000000088e+01 2.050000000000000000e+01 -3.137000000000000000e+03 4.996560000000000201e+01 8.213900000000000645e+00 1.689999999999999858e+01 -3.147000000000000000e+03 4.877250000000000085e+01 1.221790000000000020e+01 1.330000000000000071e+01 -3.155000000000000000e+03 5.010150000000000148e+01 6.800900000000000389e+00 1.610000000000000142e+01 -3.158000000000000000e+03 5.254679999999999751e+01 1.454519999999999946e+01 2.089999999999999858e+01 -3.164000000000000000e+03 5.084920000000000329e+01 8.774599999999999511e+00 1.960000000000000142e+01 -3.166000000000000000e+03 5.065100000000000335e+01 1.314690000000000047e+01 1.450000000000000000e+01 -3.167000000000000000e+03 5.066210000000000235e+01 7.960300000000000153e+00 1.559999999999999964e+01 -3.196000000000000000e+03 5.332229999999999848e+01 1.193190000000000062e+01 2.180000000000000071e+01 -3.204000000000000000e+03 5.073349999999999937e+01 1.088150000000000084e+01 1.660000000000000142e+01 -3.226000000000000000e+03 5.172590000000000288e+01 1.151089999999999947e+01 2.050000000000000000e+01 -3.231000000000000000e+03 5.056119999999999948e+01 1.037710000000000043e+01 1.540000000000000036e+01 -3.234000000000000000e+03 5.112939999999999685e+01 1.343280000000000030e+01 1.880000000000000071e+01 -3.244000000000000000e+03 4.798199999999999932e+01 1.013840000000000074e+01 1.200000000000000000e+01 -3.254000000000000000e+03 5.271560000000000201e+01 7.317599999999999660e+00 1.610000000000000142e+01 -3.257000000000000000e+03 4.947729999999999961e+01 9.762199999999999989e+00 1.669999999999999929e+01 -3.268000000000000000e+03 4.816940000000000310e+01 8.943300000000000693e+00 9.500000000000000000e+00 -3.271000000000000000e+03 4.885479999999999734e+01 1.291890000000000072e+01 1.469999999999999929e+01 -3.278000000000000000e+03 4.853770000000000095e+01 9.273400000000000531e+00 1.240000000000000036e+01 -3.284000000000000000e+03 4.966910000000000025e+01 9.008499999999999730e+00 1.630000000000000071e+01 -3.287000000000000000e+03 4.971759999999999735e+01 9.099700000000000344e+00 1.490000000000000036e+01 -3.289000000000000000e+03 5.072809999999999775e+01 1.178379999999999939e+01 1.789999999999999858e+01 -3.307000000000000000e+03 4.747789999999999822e+01 1.126529999999999987e+01 1.250000000000000000e+01 -3.319000000000000000e+03 4.976440000000000197e+01 9.253000000000000114e+00 1.630000000000000071e+01 -3.340000000000000000e+03 5.043829999999999814e+01 7.806099999999999817e+00 1.789999999999999858e+01 -3.362000000000000000e+03 4.897209999999999752e+01 8.873400000000000176e+00 1.390000000000000036e+01 -3.366000000000000000e+03 4.827900000000000347e+01 1.250239999999999974e+01 1.400000000000000000e+01 -3.376000000000000000e+03 5.251760000000000161e+01 1.412320000000000064e+01 2.069999999999999929e+01 -3.379000000000000000e+03 4.816320000000000334e+01 1.154289999999999949e+01 1.390000000000000036e+01 -3.402000000000000000e+03 4.838510000000000133e+01 9.483700000000000685e+00 1.059999999999999964e+01 -3.426000000000000000e+03 5.156600000000000250e+01 1.470079999999999920e+01 1.989999999999999858e+01 -3.442000000000000000e+03 5.035739999999999839e+01 8.750600000000000378e+00 1.610000000000000142e+01 -3.484000000000000000e+03 4.870859999999999701e+01 1.121470000000000056e+01 1.580000000000000071e+01 -3.485000000000000000e+03 4.831150000000000233e+01 1.037729999999999997e+01 1.340000000000000036e+01 -3.490000000000000000e+03 5.053459999999999752e+01 7.085300000000000153e+00 1.730000000000000071e+01 -3.509000000000000000e+03 5.310199999999999676e+01 1.304209999999999958e+01 2.069999999999999929e+01 -3.513000000000000000e+03 5.050019999999999953e+01 1.113439999999999941e+01 1.280000000000000071e+01 -3.527000000000000000e+03 5.089229999999999876e+01 9.404999999999999361e+00 1.590000000000000036e+01 -3.540000000000000000e+03 5.084459999999999980e+01 7.371999999999999886e+00 1.789999999999999858e+01 -3.545000000000000000e+03 4.934400000000000119e+01 7.229700000000000237e+00 1.839999999999999858e+01 -3.571000000000000000e+03 4.981739999999999924e+01 1.186379999999999946e+01 1.369999999999999929e+01 -3.591000000000000000e+03 5.067430000000000234e+01 6.424000000000000377e+00 1.240000000000000036e+01 -3.603000000000000000e+03 4.938949999999999818e+01 9.966699999999999449e+00 1.459999999999999964e+01 -3.612000000000000000e+03 5.267110000000000269e+01 9.222899999999999210e+00 1.919999999999999929e+01 -3.621000000000000000e+03 4.882529999999999859e+01 1.050670000000000037e+01 1.390000000000000036e+01 -3.623000000000000000e+03 5.082939999999999969e+01 6.660199999999999676e+00 1.459999999999999964e+01 -3.631000000000000000e+03 5.371229999999999905e+01 7.151900000000000368e+00 1.380000000000000071e+01 -3.639000000000000000e+03 5.376469999999999771e+01 8.658300000000000551e+00 1.480000000000000071e+01 -3.660000000000000000e+03 5.036019999999999897e+01 6.869699999999999918e+00 1.469999999999999929e+01 -3.667000000000000000e+03 4.942580000000000240e+01 1.125380000000000003e+01 1.340000000000000036e+01 -3.668000000000000000e+03 4.950300000000000011e+01 1.105489999999999995e+01 1.419999999999999929e+01 -3.679000000000000000e+03 4.761869999999999692e+01 1.216649999999999920e+01 1.569999999999999929e+01 -3.730000000000000000e+03 4.739840000000000231e+01 1.027590000000000003e+01 1.450000000000000000e+01 -3.734000000000000000e+03 4.912800000000000011e+01 9.352499999999999147e+00 1.700000000000000000e+01 -3.739000000000000000e+03 4.945210000000000150e+01 1.243650000000000055e+01 1.180000000000000071e+01 -3.761000000000000000e+03 4.920700000000000074e+01 9.517599999999999838e+00 1.660000000000000142e+01 -3.811000000000000000e+03 5.129599999999999937e+01 1.309280000000000044e+01 1.950000000000000000e+01 -3.821000000000000000e+03 5.108729999999999905e+01 1.192919999999999980e+01 1.950000000000000000e+01 -3.836000000000000000e+03 5.045380000000000109e+01 1.022109999999999985e+01 1.700000000000000000e+01 -3.857000000000000000e+03 4.763620000000000232e+01 1.038920000000000066e+01 1.159999999999999964e+01 -3.875000000000000000e+03 4.915100000000000335e+01 1.168960000000000043e+01 1.230000000000000071e+01 -3.897000000000000000e+03 5.408930000000000149e+01 1.087729999999999997e+01 1.669999999999999929e+01 -3.904000000000000000e+03 4.953540000000000276e+01 6.378899999999999793e+00 1.880000000000000071e+01 -3.925000000000000000e+03 4.893289999999999651e+01 8.697300000000000253e+00 1.290000000000000036e+01 -3.927000000000000000e+03 4.793449999999999989e+01 9.286899999999999267e+00 1.130000000000000071e+01 -3.939000000000000000e+03 4.919120000000000203e+01 7.587900000000000311e+00 1.569999999999999929e+01 -3.946000000000000000e+03 5.048190000000000310e+01 1.213000000000000078e+01 1.719999999999999929e+01 -3.975000000000000000e+03 4.947769999999999868e+01 1.153570000000000029e+01 1.269999999999999929e+01 -3.987000000000000000e+03 5.238130000000000308e+01 1.306220000000000070e+01 1.989999999999999858e+01 -4.024000000000000000e+03 5.436430000000000007e+01 1.347710000000000008e+01 1.800000000000000000e+01 -4.032000000000000000e+03 5.179529999999999745e+01 1.113199999999999967e+01 1.950000000000000000e+01 -4.036000000000000000e+03 5.138949999999999818e+01 1.154119999999999990e+01 1.930000000000000071e+01 -4.039000000000000000e+03 5.373310000000000031e+01 9.877599999999999270e+00 1.719999999999999929e+01 -4.063000000000000000e+03 5.244610000000000127e+01 8.590600000000000236e+00 1.730000000000000071e+01 -4.094000000000000000e+03 4.780619999999999692e+01 9.620599999999999596e+00 1.390000000000000036e+01 -4.104000000000000000e+03 4.904249999999999687e+01 1.210190000000000055e+01 1.430000000000000071e+01 -4.127000000000000000e+03 5.099060000000000059e+01 7.695800000000000196e+00 1.639999999999999858e+01 -4.160000000000000000e+03 4.874249999999999972e+01 8.923999999999999488e+00 1.130000000000000071e+01 -4.169000000000000000e+03 4.867029999999999745e+01 7.993900000000000006e+00 1.440000000000000036e+01 -4.175000000000000000e+03 4.755899999999999750e+01 7.772100000000000009e+00 1.430000000000000071e+01 -4.177000000000000000e+03 4.897259999999999991e+01 8.330099999999999838e+00 1.480000000000000071e+01 -4.189000000000000000e+03 4.814789999999999992e+01 9.459600000000000009e+00 1.209999999999999964e+01 -4.261000000000000000e+03 4.787530000000000285e+01 1.212800000000000011e+01 1.469999999999999929e+01 -4.271000000000000000e+03 5.418030000000000257e+01 1.208079999999999998e+01 1.669999999999999929e+01 -4.275000000000000000e+03 5.312879999999999825e+01 9.339800000000000324e+00 1.719999999999999929e+01 -4.280000000000000000e+03 4.921620000000000061e+01 1.110350000000000037e+01 1.380000000000000071e+01 -4.287000000000000000e+03 4.938479999999999848e+01 1.017319999999999958e+01 1.500000000000000000e+01 -4.300000000000000000e+03 4.818139999999999645e+01 8.635600000000000165e+00 1.140000000000000036e+01 -4.301000000000000000e+03 4.985020000000000095e+01 7.871000000000000441e+00 2.089999999999999858e+01 -4.323000000000000000e+03 4.964679999999999893e+01 7.883700000000000152e+00 1.509999999999999964e+01 -4.336000000000000000e+03 4.921280000000000143e+01 7.107700000000000351e+00 1.700000000000000000e+01 -4.349000000000000000e+03 4.895689999999999742e+01 9.070999999999999730e+00 1.369999999999999929e+01 -4.354000000000000000e+03 4.878320000000000078e+01 1.331460000000000043e+01 1.400000000000000000e+01 -4.371000000000000000e+03 5.210419999999999874e+01 8.752100000000000435e+00 1.860000000000000142e+01 -4.377000000000000000e+03 5.035179999999999723e+01 1.000339999999999918e+01 1.550000000000000000e+01 -4.393000000000000000e+03 5.432789999999999964e+01 8.603099999999999525e+00 1.469999999999999929e+01 -4.411000000000000000e+03 4.991949999999999932e+01 8.967100000000000293e+00 1.789999999999999858e+01 -4.445000000000000000e+03 5.176579999999999870e+01 1.065329999999999977e+01 1.569999999999999929e+01 -4.464000000000000000e+03 5.056790000000000163e+01 1.180410000000000004e+01 1.580000000000000071e+01 -4.466000000000000000e+03 5.452750000000000341e+01 9.548700000000000188e+00 1.569999999999999929e+01 -4.480000000000000000e+03 5.034470000000000312e+01 9.553399999999999892e+00 1.810000000000000142e+01 -4.501000000000000000e+03 5.065460000000000207e+01 1.076929999999999943e+01 1.180000000000000071e+01 -4.508000000000000000e+03 5.029679999999999751e+01 6.419400000000000439e+00 1.300000000000000000e+01 -4.548000000000000000e+03 5.018469999999999942e+01 1.207910000000000039e+01 1.490000000000000036e+01 -4.559000000000000000e+03 4.916440000000000055e+01 1.261749999999999972e+01 1.359999999999999964e+01 -4.560000000000000000e+03 5.049249999999999972e+01 9.122600000000000264e+00 1.730000000000000071e+01 -4.592000000000000000e+03 4.932780000000000342e+01 1.208709999999999951e+01 1.330000000000000071e+01 -4.605000000000000000e+03 5.064410000000000167e+01 1.119359999999999999e+01 1.830000000000000071e+01 -4.625000000000000000e+03 5.364249999999999829e+01 1.138719999999999999e+01 1.860000000000000142e+01 -4.642000000000000000e+03 5.289110000000000156e+01 1.172969999999999935e+01 2.050000000000000000e+01 -4.651000000000000000e+03 5.190400000000000347e+01 1.018849999999999945e+01 1.839999999999999858e+01 -4.703000000000000000e+03 4.807189999999999941e+01 9.194300000000000139e+00 1.200000000000000000e+01 -4.706000000000000000e+03 4.827179999999999893e+01 1.302730000000000032e+01 1.400000000000000000e+01 -4.709000000000000000e+03 4.999960000000000093e+01 7.598099999999999632e+00 1.540000000000000036e+01 -4.745000000000000000e+03 5.296039999999999992e+01 9.792999999999999261e+00 1.819999999999999929e+01 -4.763000000000000000e+03 5.106069999999999709e+01 9.926600000000000534e+00 1.789999999999999858e+01 -4.841000000000000000e+03 5.369460000000000122e+01 8.873499999999999943e+00 1.509999999999999964e+01 -4.857000000000000000e+03 5.355340000000000344e+01 9.609700000000000131e+00 1.750000000000000000e+01 -4.878000000000000000e+03 5.166460000000000008e+01 1.088109999999999999e+01 1.680000000000000071e+01 -4.887000000000000000e+03 4.866559999999999775e+01 9.864800000000000679e+00 1.140000000000000036e+01 -4.896000000000000000e+03 5.466539999999999822e+01 9.804999999999999716e+00 1.519999999999999929e+01 -4.911000000000000000e+03 4.882750000000000057e+01 1.255969999999999942e+01 1.350000000000000000e+01 -4.928000000000000000e+03 4.882809999999999917e+01 9.199999999999999289e+00 1.269999999999999929e+01 -4.931000000000000000e+03 4.868829999999999814e+01 9.223499999999999588e+00 1.230000000000000071e+01 -4.978000000000000000e+03 5.063900000000000290e+01 1.002280000000000015e+01 1.610000000000000142e+01 -4.997000000000000000e+03 5.097710000000000008e+01 1.234190000000000076e+01 1.989999999999999858e+01 -5.009000000000000000e+03 5.376100000000000279e+01 1.255739999999999945e+01 1.810000000000000142e+01 -5.014000000000000000e+03 5.327579999999999671e+01 8.985699999999999577e+00 1.650000000000000000e+01 -5.017000000000000000e+03 5.040019999999999811e+01 1.138889999999999958e+01 1.440000000000000036e+01 -5.029000000000000000e+03 4.947370000000000090e+01 7.038499999999999979e+00 1.639999999999999858e+01 -5.046000000000000000e+03 4.985759999999999792e+01 1.235420000000000051e+01 1.380000000000000071e+01 -5.064000000000000000e+03 5.128970000000000340e+01 6.443699999999999761e+00 1.680000000000000071e+01 -5.097000000000000000e+03 5.406609999999999872e+01 1.276750000000000007e+01 1.919999999999999929e+01 -5.099000000000000000e+03 4.973259999999999792e+01 6.613100000000000200e+00 1.880000000000000071e+01 -5.100000000000000000e+03 4.974790000000000134e+01 6.658299999999999663e+00 1.860000000000000142e+01 -5.109000000000000000e+03 5.359969999999999857e+01 1.330390000000000050e+01 2.000000000000000000e+01 -5.111000000000000000e+03 4.803110000000000213e+01 1.253960000000000008e+01 1.359999999999999964e+01 -5.133000000000000000e+03 5.133440000000000225e+01 8.913199999999999790e+00 1.860000000000000142e+01 -5.142000000000000000e+03 5.374439999999999884e+01 1.406969999999999921e+01 1.950000000000000000e+01 -5.146000000000000000e+03 5.294140000000000157e+01 1.052890000000000015e+01 2.010000000000000142e+01 -5.149000000000000000e+03 4.957410000000000139e+01 1.019149999999999956e+01 1.630000000000000071e+01 -5.158000000000000000e+03 5.216009999999999991e+01 1.117590000000000039e+01 1.919999999999999929e+01 -5.229000000000000000e+03 4.804529999999999745e+01 8.460800000000000765e+00 1.059999999999999964e+01 -5.275000000000000000e+03 4.924450000000000216e+01 8.537399999999999878e+00 1.710000000000000142e+01 -5.279000000000000000e+03 5.161939999999999884e+01 9.574899999999999523e+00 1.500000000000000000e+01 -5.280000000000000000e+03 5.392240000000000322e+01 1.022669999999999924e+01 1.780000000000000071e+01 -5.300000000000000000e+03 5.025959999999999894e+01 8.360699999999999577e+00 1.660000000000000142e+01 -5.335000000000000000e+03 5.089629999999999654e+01 1.054840000000000089e+01 1.739999999999999858e+01 -5.347000000000000000e+03 5.150390000000000157e+01 9.111800000000000566e+00 1.789999999999999858e+01 -5.349000000000000000e+03 5.351959999999999695e+01 1.266539999999999999e+01 2.130000000000000071e+01 -5.371000000000000000e+03 5.049730000000000274e+01 9.942700000000000315e+00 1.159999999999999964e+01 -5.397000000000000000e+03 4.966629999999999967e+01 1.218449999999999989e+01 1.369999999999999929e+01 -5.404000000000000000e+03 4.840240000000000009e+01 1.169459999999999944e+01 1.350000000000000000e+01 -5.424000000000000000e+03 5.101769999999999783e+01 1.135440000000000005e+01 1.980000000000000071e+01 -5.426000000000000000e+03 4.937579999999999814e+01 8.121299999999999741e+00 1.300000000000000000e+01 -5.433000000000000000e+03 4.955340000000000344e+01 6.812000000000000277e+00 1.780000000000000071e+01 -5.440000000000000000e+03 4.901149999999999807e+01 1.093079999999999963e+01 1.400000000000000000e+01 -5.480000000000000000e+03 5.157630000000000337e+01 7.887900000000000134e+00 1.800000000000000000e+01 -5.490000000000000000e+03 5.184539999999999793e+01 1.076859999999999928e+01 1.810000000000000142e+01 -5.516000000000000000e+03 5.452830000000000155e+01 1.106060000000000088e+01 1.500000000000000000e+01 -5.538000000000000000e+03 4.788269999999999982e+01 1.115760000000000041e+01 1.269999999999999929e+01 -5.541000000000000000e+03 5.013199999999999790e+01 8.317000000000000171e+00 1.689999999999999858e+01 -5.546000000000000000e+03 5.212069999999999936e+01 1.245850000000000080e+01 1.910000000000000142e+01 -5.562000000000000000e+03 4.865160000000000196e+01 8.680099999999999483e+00 1.109999999999999964e+01 -5.629000000000000000e+03 5.188920000000000243e+01 1.264450000000000074e+01 2.060000000000000142e+01 -5.640000000000000000e+03 5.355040000000000333e+01 7.667200000000000237e+00 1.409999999999999964e+01 -5.643000000000000000e+03 5.318639999999999901e+01 1.249489999999999945e+01 2.200000000000000000e+01 -5.664000000000000000e+03 4.829529999999999745e+01 8.239100000000000534e+00 1.340000000000000036e+01 -5.676000000000000000e+03 5.239620000000000033e+01 1.068919999999999959e+01 1.969999999999999929e+01 -5.688000000000000000e+03 4.770029999999999859e+01 8.105700000000000571e+00 1.059999999999999964e+01 -5.692000000000000000e+03 4.960510000000000019e+01 8.365899999999999892e+00 1.689999999999999858e+01 -5.705000000000000000e+03 4.977040000000000219e+01 9.957599999999999341e+00 1.719999999999999929e+01 -5.715000000000000000e+03 5.246050000000000324e+01 9.431100000000000705e+00 2.000000000000000000e+01 -5.717000000000000000e+03 5.122560000000000002e+01 7.105199999999999960e+00 1.639999999999999858e+01 -5.731000000000000000e+03 4.767830000000000013e+01 8.380100000000000549e+00 1.390000000000000036e+01 -5.745000000000000000e+03 5.296640000000000015e+01 1.332680000000000042e+01 2.100000000000000000e+01 -5.750000000000000000e+03 5.103139999999999787e+01 1.214949999999999974e+01 2.019999999999999929e+01 -5.779000000000000000e+03 5.073140000000000072e+01 1.375159999999999982e+01 1.309999999999999964e+01 -5.792000000000000000e+03 4.742099999999999937e+01 1.098479999999999990e+01 2.799999999999999822e+00 -5.797000000000000000e+03 5.068789999999999907e+01 1.243290000000000006e+01 1.750000000000000000e+01 -5.800000000000000000e+03 4.902799999999999869e+01 1.323850000000000016e+01 1.250000000000000000e+01 -5.822000000000000000e+03 5.286299999999999955e+01 8.698800000000000310e+00 1.689999999999999858e+01 -5.825000000000000000e+03 5.261979999999999791e+01 1.278669999999999973e+01 2.089999999999999858e+01 -5.839000000000000000e+03 5.338810000000000144e+01 7.228699999999999903e+00 1.509999999999999964e+01 -5.856000000000000000e+03 4.854509999999999792e+01 1.335319999999999929e+01 1.319999999999999929e+01 -5.871000000000000000e+03 4.994619999999999749e+01 7.264499999999999957e+00 1.650000000000000000e+01 -5.906000000000000000e+03 4.950619999999999976e+01 8.558500000000000441e+00 1.630000000000000071e+01 -5.930000000000000000e+03 5.464099999999999824e+01 1.002379999999999960e+01 1.490000000000000036e+01 -5.941000000000000000e+03 4.767540000000000333e+01 1.246979999999999933e+01 1.440000000000000036e+01 -6.093000000000000000e+03 5.321390000000000242e+01 1.047039999999999971e+01 1.839999999999999858e+01 -6.105000000000000000e+03 5.431940000000000168e+01 9.805099999999999483e+00 1.569999999999999929e+01 -6.109000000000000000e+03 5.338369999999999749e+01 1.437279999999999980e+01 2.089999999999999858e+01 -6.129000000000000000e+03 5.105930000000000035e+01 1.442660000000000053e+01 1.939999999999999858e+01 -6.157000000000000000e+03 5.364099999999999824e+01 8.080799999999999983e+00 1.430000000000000071e+01 -6.158000000000000000e+03 4.922469999999999857e+01 1.060839999999999961e+01 1.369999999999999929e+01 -6.159000000000000000e+03 5.295420000000000016e+01 7.319600000000000328e+00 1.519999999999999929e+01 -6.163000000000000000e+03 5.416539999999999822e+01 1.035190000000000055e+01 1.619999999999999929e+01 -6.170000000000000000e+03 5.201919999999999789e+01 1.472540000000000049e+01 1.960000000000000142e+01 -6.197000000000000000e+03 5.186639999999999873e+01 9.271000000000000796e+00 1.719999999999999929e+01 -6.199000000000000000e+03 5.424839999999999662e+01 1.304180000000000028e+01 1.930000000000000071e+01 -6.217000000000000000e+03 4.924060000000000059e+01 6.935100000000000264e+00 1.860000000000000142e+01 -6.258000000000000000e+03 4.768449999999999989e+01 9.440899999999999181e+00 1.530000000000000071e+01 -6.259000000000000000e+03 4.902100000000000080e+01 9.603300000000000836e+00 1.430000000000000071e+01 -6.260000000000000000e+03 4.933279999999999887e+01 9.704000000000000625e+00 1.559999999999999964e+01 -6.262000000000000000e+03 4.876950000000000074e+01 9.873699999999999477e+00 1.430000000000000071e+01 -6.263000000000000000e+03 4.777380000000000138e+01 8.821899999999999409e+00 1.359999999999999964e+01 -6.264000000000000000e+03 5.141400000000000148e+01 8.650000000000000355e+00 1.580000000000000071e+01 -6.265000000000000000e+03 5.236129999999999995e+01 1.238669999999999938e+01 2.219999999999999929e+01 -6.266000000000000000e+03 5.203040000000000020e+01 1.096260000000000012e+01 1.860000000000000142e+01 -6.272000000000000000e+03 5.084259999999999735e+01 1.025179999999999936e+01 1.630000000000000071e+01 -6.273000000000000000e+03 5.250750000000000028e+01 1.185510000000000019e+01 2.050000000000000000e+01 -6.275000000000000000e+03 4.867049999999999699e+01 9.462699999999999889e+00 1.369999999999999929e+01 -6.305000000000000000e+03 5.120609999999999928e+01 1.049779999999999980e+01 1.930000000000000071e+01 -6.310000000000000000e+03 5.410490000000000066e+01 1.382390000000000008e+01 1.869999999999999929e+01 -6.312000000000000000e+03 4.953139999999999787e+01 1.064179999999999993e+01 1.480000000000000071e+01 -6.314000000000000000e+03 5.105069999999999908e+01 1.330030000000000001e+01 1.769999999999999929e+01 -6.336000000000000000e+03 5.001319999999999766e+01 9.653999999999999915e+00 1.590000000000000036e+01 -6.337000000000000000e+03 5.176630000000000109e+01 7.519400000000000084e+00 1.730000000000000071e+01 -6.344000000000000000e+03 5.039399999999999835e+01 8.142300000000000537e+00 1.950000000000000000e+01 -6.346000000000000000e+03 4.820700000000000074e+01 1.120350000000000001e+01 1.290000000000000036e+01 -6.347000000000000000e+03 5.005789999999999651e+01 1.029720000000000013e+01 1.710000000000000142e+01 -7.075000000000000000e+03 4.870199999999999818e+01 1.184929999999999950e+01 1.309999999999999964e+01 -7.099000000000000000e+03 5.201109999999999900e+01 1.039659999999999940e+01 1.660000000000000142e+01 -7.105000000000000000e+03 4.783500000000000085e+01 1.265479999999999983e+01 1.350000000000000000e+01 -7.106000000000000000e+03 5.207139999999999702e+01 8.456500000000000128e+00 1.789999999999999858e+01 -7.187000000000000000e+03 4.976359999999999673e+01 9.406299999999999883e+00 1.710000000000000142e+01 -7.298000000000000000e+03 5.452680000000000149e+01 9.042500000000000426e+00 1.509999999999999964e+01 -7.319000000000000000e+03 4.873740000000000094e+01 1.073930000000000007e+01 1.450000000000000000e+01 -7.321000000000000000e+03 5.115070000000000050e+01 1.133210000000000051e+01 1.939999999999999858e+01 -7.329000000000000000e+03 5.054670000000000130e+01 1.228630000000000067e+01 1.600000000000000000e+01 -7.330000000000000000e+03 5.146329999999999671e+01 7.977999999999999758e+00 1.700000000000000000e+01 -7.331000000000000000e+03 4.860990000000000322e+01 1.026740000000000030e+01 1.269999999999999929e+01 -7.341000000000000000e+03 5.009000000000000341e+01 8.786199999999999122e+00 1.750000000000000000e+01 -7.343000000000000000e+03 5.061990000000000123e+01 1.348160000000000025e+01 1.390000000000000036e+01 -7.350000000000000000e+03 4.910880000000000223e+01 1.282310000000000016e+01 1.190000000000000036e+01 -7.351000000000000000e+03 5.331750000000000256e+01 1.341750000000000043e+01 2.110000000000000142e+01 -7.364000000000000000e+03 5.168200000000000216e+01 1.230419999999999980e+01 2.010000000000000142e+01 -7.367000000000000000e+03 5.196430000000000149e+01 9.807199999999999918e+00 1.889999999999999858e+01 -7.368000000000000000e+03 5.100070000000000192e+01 1.036209999999999987e+01 1.600000000000000000e+01 -7.369000000000000000e+03 4.916230000000000189e+01 1.036609999999999943e+01 1.319999999999999929e+01 -7.370000000000000000e+03 4.939099999999999824e+01 1.268379999999999974e+01 1.219999999999999929e+01 -7.373000000000000000e+03 5.359839999999999804e+01 6.702399999999999913e+00 1.430000000000000071e+01 -7.374000000000000000e+03 5.208129999999999882e+01 6.940900000000000070e+00 1.469999999999999929e+01 -7.389000000000000000e+03 5.274609999999999843e+01 1.384270000000000067e+01 2.139999999999999858e+01 -7.393000000000000000e+03 5.144930000000000092e+01 1.425329999999999941e+01 1.989999999999999858e+01 -7.394000000000000000e+03 5.003150000000000119e+01 1.197450000000000081e+01 1.359999999999999964e+01 -7.395000000000000000e+03 4.865950000000000131e+01 1.253880000000000017e+01 1.380000000000000071e+01 -7.396000000000000000e+03 5.050840000000000174e+01 9.224700000000000344e+00 1.350000000000000000e+01 -7.403000000000000000e+03 4.779549999999999699e+01 1.003240000000000087e+01 1.230000000000000071e+01 -7.410000000000000000e+03 5.075130000000000052e+01 9.022399999999999309e+00 1.650000000000000000e+01 -7.412000000000000000e+03 5.000829999999999842e+01 9.423799999999999955e+00 1.509999999999999964e+01 -7.419000000000000000e+03 5.066100000000000136e+01 1.207559999999999967e+01 1.810000000000000142e+01 -7.420000000000000000e+03 5.110439999999999827e+01 1.171119999999999983e+01 1.960000000000000142e+01 -7.424000000000000000e+03 4.777239999999999753e+01 1.290729999999999933e+01 1.639999999999999858e+01 -7.427000000000000000e+03 5.401879999999999882e+01 9.925499999999999545e+00 1.660000000000000142e+01 -7.428000000000000000e+03 5.041669999999999874e+01 1.081559999999999988e+01 1.700000000000000000e+01 -7.431000000000000000e+03 4.801299999999999812e+01 1.155240000000000045e+01 1.290000000000000036e+01 -7.432000000000000000e+03 5.264229999999999876e+01 1.066269999999999918e+01 1.919999999999999929e+01 -1.367000000000000000e+04 5.150880000000000081e+01 6.701800000000000423e+00 1.730000000000000071e+01 -1.367400000000000000e+04 4.929429999999999978e+01 8.905300000000000438e+00 1.550000000000000000e+01 -1.367500000000000000e+04 5.208180000000000121e+01 9.407700000000000173e+00 2.039999999999999858e+01 -1.369600000000000000e+04 5.159660000000000224e+01 7.404799999999999827e+00 1.710000000000000142e+01 -1.370000000000000000e+04 5.133290000000000219e+01 7.341099999999999959e+00 1.580000000000000071e+01 -1.371000000000000000e+04 4.857339999999999947e+01 1.225760000000000005e+01 1.269999999999999929e+01 -1.371100000000000000e+04 5.068200000000000216e+01 1.151500000000000057e+01 1.839999999999999858e+01 -1.371300000000000000e+04 5.108990000000000009e+01 7.628899999999999793e+00 1.650000000000000000e+01 -1.377700000000000000e+04 5.224669999999999703e+01 1.095919999999999916e+01 1.980000000000000071e+01 -1.396500000000000000e+04 4.826389999999999958e+01 8.813399999999999679e+00 1.040000000000000036e+01 -1.500000000000000000e+04 5.079829999999999757e+01 6.024399999999999977e+00 1.290000000000000036e+01 -1.520700000000000000e+04 5.128349999999999653e+01 9.358999999999999986e+00 1.710000000000000142e+01 -1.544400000000000000e+04 4.844180000000000064e+01 9.921599999999999753e+00 1.169999999999999929e+01 -1.555500000000000000e+04 4.787610000000000099e+01 1.058489999999999931e+01 1.080000000000000071e+01 diff --git a/examples/09_spatio_temporal/01_precip_1d.py b/examples/09_spatio_temporal/01_precip_1d.py deleted file mode 100644 index 4b4c6b8a1..000000000 --- a/examples/09_spatio_temporal/01_precip_1d.py +++ /dev/null @@ -1,130 +0,0 @@ -""" -Creating a 1D Synthetic Precipitation Field -------------------------------------------- - -In this example we will create a time series of a 1D synthetic precipitation -field. - -We'll start off by creating a Gaussian random field with an exponential -variogram, which seems to reproduce the spatial correlations of precipitation -fields quite well. We'll create a daily timeseries over a one dimensional cross -section of 50km. This workflow is suited for sub daily precipitation time -series. -""" - -import copy - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -# fix the seed for reproducibility -seed = 20170521 -# spatial axis of 50km with a resolution of 1km -x = np.arange(0, 50, 1.0) -# half daily timesteps over three months -t = np.arange(0.0, 90.0, 0.5) - -# space-time anisotropy ratio given in units d / km -st_anis = 0.4 - -# an exponential variogram with a corr. lengths of 2d and 5km -model = gs.Exponential( - temporal=True, spatial_dim=1, var=1, len_scale=5, anis=st_anis -) -# create a spatial random field instance -srf = gs.SRF(model, seed=seed) - -pos, time = [x], [t] - -# a Gaussian random field which is also saved internally for the transformations -srf.structured(pos + time) -P_gau = copy.deepcopy(srf.field) - -############################################################################### -# Next, we could take care of the dry periods. Therefore we would simply -# introduce a lower threshold value. But we will combine this step with the -# next one. Anyway, for demonstration purposes, we will also do it with the -# threshold value now. - -threshold = 0.85 -P_cut = copy.deepcopy(srf.field) -P_cut[P_cut <= threshold] = 0.0 - -############################################################################### -# With the above lines of code we have created a cut off Gaussian spatial -# random field with an exponential variogram. But precipitation fields are not -# distributed Gaussian. Thus, we will now transform the field with an inverse -# box-cox transformation (create a non-Gaussian field) , which is often used to -# account for the skewness of precipitation fields. Different values have been -# suggested for the transformation parameter lambda, but we will stick to 1/2. -# As already mentioned, we will perform the cutoff for the dry periods with -# this transformation implicitly with the shift. The warning will tell you -# that values have indeed been cut off and it can be ignored. We call the -# resulting field Gaussian anamorphosis. - -# the lower this value, the more will be cut off, a value of 0.2 cuts off -# nearly everything in this example. -cutoff = 0.55 -gs.transform.boxcox(srf, lmbda=0.5, shift=-1.0 / cutoff) - -############################################################################### -# As a last step, the amount of precipitation is set. This should of course be -# calibrated towards observations (the same goes for the threshold, the -# variance, correlation length, and so on). - -amount = 2.0 -srf.field *= amount -P_ana = srf.field - -############################################################################### -# Finally we can have a look at the fields resulting from each step. Note, that -# the cutoff of the cut Gaussian only approximates the cutoff values from the -# box-cox transformation. For a closer look, we will examine a cross section -# at an arbitrary location. And afterwards we will create a contour plot for -# visual candy. - -fig, axs = plt.subplots(2, 2, sharex=True, sharey=True) - -axs[0, 0].set_title("Gaussian") -axs[0, 0].plot(t, P_gau[20, :]) -axs[0, 0].set_ylabel(r"$P$ / mm") - -axs[0, 1].set_title("Cut Gaussian") -axs[0, 1].plot(t, P_cut[20, :]) - -axs[1, 0].set_title("Cut Gaussian Anamorphosis") -axs[1, 0].plot(t, P_ana[20, :]) -axs[1, 0].set_xlabel(r"$t$ / d") -axs[1, 0].set_ylabel(r"$P$ / mm") - -axs[1, 1].set_title("Different Cross Section") -axs[1, 1].plot(t, P_ana[10, :]) -axs[1, 1].set_xlabel(r"$t$ / d") - -plt.tight_layout() - -fig, axs = plt.subplots(2, 2, sharex=True, sharey=True) - -axs[0, 0].set_title("Gaussian") -cont = axs[0, 0].contourf(t, x, P_gau, cmap="PuBu", levels=10) -cbar = fig.colorbar(cont, ax=axs[0, 0]) -cbar.ax.set_ylabel(r"$P$ / mm") -axs[0, 0].set_ylabel(r"$x$ / km") - -axs[0, 1].set_title("Cut Gaussian") -cont = axs[0, 1].contourf(t, x, P_cut, cmap="PuBu", levels=10) -cbar = fig.colorbar(cont, ax=axs[0, 1]) -cbar.ax.set_ylabel(r"$P$ / mm") -axs[0, 1].set_xlabel(r"$t$ / d") - -axs[1, 0].set_title("Cut Gaussian Anamorphosis") -cont = axs[1, 0].contourf(t, x, P_ana, cmap="PuBu", levels=10) -cbar = fig.colorbar(cont, ax=axs[1, 0]) -cbar.ax.set_ylabel(r"$P$ / mm") -axs[1, 0].set_xlabel(r"$t$ / d") -axs[1, 0].set_ylabel(r"$x$ / km") - -fig.delaxes(axs[1, 1]) -plt.tight_layout() diff --git a/examples/09_spatio_temporal/02_precip_2d.py b/examples/09_spatio_temporal/02_precip_2d.py deleted file mode 100644 index 81c789649..000000000 --- a/examples/09_spatio_temporal/02_precip_2d.py +++ /dev/null @@ -1,76 +0,0 @@ -""" -Creating a 2D Synthetic Precipitation Field -------------------------------------------- - -In this example we'll create a time series of a 2D synthetic precipitation -field. - -Very similar to the previous tutorial, we'll start off by creating a Gaussian -random field with an exponential variogram, which seems to reproduce the -spatial correlations of precipitation fields quite well. We'll create a daily -timeseries over a two dimensional domain of 50km x 40km. This workflow is -suited for sub daily precipitation time series. -""" - -import matplotlib.animation as animation -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -# fix the seed for reproducibility -seed = 20170521 -# 1st spatial axis of 50km with a resolution of 1km -x = np.arange(0, 50, 1.0) -# 2nd spatial axis of 40km with a resolution of 1km -y = np.arange(0, 40, 1.0) -# half daily timesteps over three months -t = np.arange(0.0, 90.0, 0.5) - -# space-time anisotropy ratio given in units d / km -st_anis = 0.4 - -# an exponential variogram with a corr. lengths of 5km, 5km, and 2d -model = gs.Exponential( - temporal=True, spatial_dim=2, var=1, len_scale=5, anis=st_anis -) -# create a spatial random field instance -srf = gs.SRF(model, seed=seed) - -pos, time = [x, y], [t] - -# the Gaussian random field -srf.structured(pos + time) - -# account for the skewness and the dry periods -cutoff = 0.55 -gs.transform.boxcox(srf, lmbda=0.5, shift=-1.0 / cutoff) - -# adjust the amount of precipitation -amount = 4.0 -srf.field *= amount - -############################################################################### -# plot the 2d precipitation field over time as an animation. - - -def _update_ani(time_step): - im.set_array(srf.field[:, :, time_step].T) - return (im,) - - -fig, ax = plt.subplots() -im = ax.imshow( - srf.field[:, :, 0].T, - cmap="Blues", - interpolation="bicubic", - origin="lower", -) -cbar = fig.colorbar(im) -cbar.ax.set_ylabel(r"Precipitation $P$ / mm") -ax.set_xlabel(r"$x$ / km") -ax.set_ylabel(r"$y$ / km") - -ani = animation.FuncAnimation( - fig, _update_ani, len(t), interval=100, blit=True -) diff --git a/examples/09_spatio_temporal/03_geographic_coordinates.py b/examples/09_spatio_temporal/03_geographic_coordinates.py deleted file mode 100644 index b1cfbff64..000000000 --- a/examples/09_spatio_temporal/03_geographic_coordinates.py +++ /dev/null @@ -1,38 +0,0 @@ -""" -Working with spatio-temporal lat-lon fields -------------------------------------------- - -In this example, we demonstrate how to generate a spatio-temporal -random field on geographical coordinates. - -First we setup a model, with ``latlon=True`` and ``temporal=True``, -to get the associated spatio-temporal Yadrenko model. - -In addition, we will use a kilometer scale provided by :any:`KM_SCALE` -as ``geo_scale`` to have a meaningful length scale in km. -By default the length scale would be given in radians (:any:`RADIAN_SCALE`). -A third option is a length scale in degrees (:any:`DEGREE_SCALE`). - -To generate the field, we simply pass ``(lat, lon, time)`` as the position tuple -to the :any:`SRF` class. - -We will set a spatial length-scale of `1000` and a time length-scale of `100` days. -""" - -import numpy as np - -import gstools as gs - -model = gs.Matern( - latlon=True, - temporal=True, - var=1, - len_scale=[1000, 100], - geo_scale=gs.KM_SCALE, -) - -lat = lon = np.linspace(-80, 81, 50) -time = np.linspace(0, 777, 50) -srf = gs.SRF(model, seed=1234) -field = srf.structured((lat, lon, time)) -srf.plot() diff --git a/examples/09_spatio_temporal/README.rst b/examples/09_spatio_temporal/README.rst deleted file mode 100644 index 3cb06b9e2..000000000 --- a/examples/09_spatio_temporal/README.rst +++ /dev/null @@ -1,65 +0,0 @@ -Spatio-Temporal Modeling -======================== - -Spatio-Temporal modelling can provide insights into time dependent processes -like rainfall, air temperature or crop yield. - -GSTools provides the metric spatio-temporal model for all covariance models -by setting ``temporal=True``, which enhances the spatial model dimension with -a time dimension to result in the spatio-temporal dimension. -Since the model dimension is then higher than the spatial dimension, you can use -the ``spatial_dim`` argument to explicitly set the spatial dimension. -Doing that and setting a spatio-temporal anisotropy ratio looks like this: - -.. code-block:: python - - import gstools as gs - dim = 3 # spatial dimension - st_anis = 0.4 - st_model = gs.Exponential(temporal=True, spatial_dim=dim, anis=st_anis) - -Since it is given in the name "spatio-temporal", time is always treated as last dimension. -You could also use ``dim`` to specify the dimension but note that it needs to include -the temporal dimension. - -There are now three different dimension attributes giving information about (i) the -model dimension (``dim``), (ii) the field dimension (``field_dim``, including time) and -(iii) the spatial dimension (``spatial_dim`` always 1 less than ``field_dim`` for temporal models). -Model and field dimension can differ in case of geographic coordinates where the model dimension is 3, -but the field or parametric dimension is 2. -If the model is spatio-temporal with geographic coordinates, the model dimension is 4, -the field dimension is 3 and the spatial dimension is 2. - -In the case above we get: - -.. code-block:: python - - st_model.dim == 4 - st_model.field_dim == 4 - st_model.spatial_dim == 3 - -This formulation enables us to have spatial anisotropy and rotation defined as in -non-temporal models, without altering the behavior in the time dimension: - -.. code-block:: python - - anis = [0.4, 0.2] # spatial anisotropy in 3D - angles = [0.5, 0.4, 0.3] # spatial rotation in 3D - st_model = gs.Exponential(temporal=True, spatial_dim=dim, anis=anis+[st_anis], angles=angles) - -In order to generate spatio-temporal position tuples, GSTools provides a -convenient function :any:`generate_st_grid`. The output can be used for -spatio-temporal random field generation (or kriging resp. conditioned fields): - -.. code-block:: python - - pos = dim * [1, 2, 3] # 3 points in space (1,1,1), (2,2,2) and (3,3,3) - time = range(10) # 10 time steps - st_grid = gs.generate_st_grid(pos, time) - st_rf = gs.SRF(st_model) - st_field = st_rf(st_grid).reshape(-1, len(time)) - -Then we can access the different time-steps by the last array index. - -Examples --------- diff --git a/examples/10_normalizer/00_lognormal_kriging.py b/examples/10_normalizer/00_lognormal_kriging.py deleted file mode 100644 index 9880bc37a..000000000 --- a/examples/10_normalizer/00_lognormal_kriging.py +++ /dev/null @@ -1,55 +0,0 @@ -r""" -Log-Normal Kriging ------------------- - -Log Normal kriging is a term to describe a special workflow for kriging to -deal with log-normal data, like conductivity or transmissivity in hydrogeology. - -It simply means to first convert the input data to a normal distribution, i.e. -applying a logarithic function, then interpolating these values with kriging -and transforming the result back with the exponential function. - -The resulting kriging variance describes the error variance of the log-values -of the target variable. - -In this example we will use ordinary kriging. -""" - -import numpy as np - -import gstools as gs - -# condtions -cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] -cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] -# resulting grid -gridx = np.linspace(0.0, 15.0, 151) -# stable covariance model -model = gs.Stable(dim=1, var=0.5, len_scale=2.56, alpha=1.9) - -############################################################################### -# In order to result in log-normal kriging, we will use the :any:`LogNormal` -# Normalizer. This is a parameter-less normalizer, so we don't have to fit it. -normalizer = gs.normalizer.LogNormal - -############################################################################### -# Now we generate the interpolated field as well as the mean field. -# This can be done by setting `only_mean=True` in :any:`Krige.__call__`. -# The result is then stored as `mean_field`. -# -# In terms of log-normal kriging, this mean represents the geometric mean of -# the field. -krige = gs.krige.Ordinary(model, cond_pos, cond_val, normalizer=normalizer) -# interpolate the field -krige(gridx) -# also generate the mean field -krige(gridx, only_mean=True) - -############################################################################### -# And that's it. Let's have a look at the results. -ax = krige.plot() -# plotting the geometric mean -krige.plot("mean_field", ax=ax) -# plotting the conditioning data -ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions") -ax.legend() diff --git a/examples/10_normalizer/01_auto_fit.py b/examples/10_normalizer/01_auto_fit.py deleted file mode 100644 index 71ad13851..000000000 --- a/examples/10_normalizer/01_auto_fit.py +++ /dev/null @@ -1,107 +0,0 @@ -""" -Automatic fitting ------------------ - -In order to demonstrate how to automatically fit normalizer and variograms, -we generate synthetic log-normal data, that should be interpolated with -ordinary kriging. - -Normalizers are fitted by minimizing the likelihood function and variograms -are fitted by estimating the empirical variogram with automatic binning and -fitting the theoretical model to it. Thereby the sill is constrained to match -the field variance. - -Artificial data -^^^^^^^^^^^^^^^ - -Here we generate log-normal data following a Gaussian covariance model. -We will generate the "original" field on a 60x60 mesh, from which we will take -samples in order to pretend a situation of data-scarcity. -""" - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - -# structured field with edge length of 50 -x = y = range(51) -pos = gs.generate_grid([x, y]) -model = gs.Gaussian(dim=2, var=1, len_scale=10) -srf = gs.SRF(model, seed=20170519, normalizer=gs.normalizer.LogNormal()) -# generate the original field -srf(pos) - -############################################################################### -# Here, we sample 60 points and set the conditioning points and values. - -ids = np.arange(srf.field.size) -samples = np.random.RandomState(20210201).choice(ids, size=60, replace=False) - -# sample conditioning points from generated field -cond_pos = pos[:, samples] -cond_val = srf.field[samples] - -############################################################################### -# Fitting and Interpolation -# ^^^^^^^^^^^^^^^^^^^^^^^^^ -# -# Now we want to interpolate the "measured" samples -# and we want to normalize the given data with the BoxCox transformation. -# -# Here we set up the kriging routine and use a :any:`Stable` model, that should -# be fitted automatically to the given data -# and we pass the :any:`BoxCox` normalizer in order to gain normality. -# -# The normalizer will be fitted automatically to the data, -# by setting ``fit_normalizer=True``. -# -# The covariance/variogram model will be fitted by an automatic workflow -# by setting ``fit_variogram=True``. - -krige = gs.krige.Ordinary( - model=gs.Stable(dim=2), - cond_pos=cond_pos, - cond_val=cond_val, - normalizer=gs.normalizer.BoxCox(), - fit_normalizer=True, - fit_variogram=True, -) - -############################################################################### -# First, let's have a look at the fitting results: - -print(krige.model) -print(krige.normalizer) - -############################################################################### -# As we see, it went quite well. Variance is a bit underestimated, but -# length scale and nugget are good. The shape parameter of the stable model -# is correctly estimated to be close to `2`, -# so we result in a Gaussian like model. -# -# The BoxCox parameter `lmbda` was estimated to be almost 0, which means, -# the log-normal distribution was correctly fitted. -# -# Now let's run the kriging interpolation. - -krige(pos) - -############################################################################### -# Plotting -# ^^^^^^^^ -# -# Finally let's compare the original, sampled and interpolated fields. -# As we'll see, there is a lot of information in the covariance structure -# of the measurement samples and the field is reconstructed quite accurately. - -fig, ax = plt.subplots(1, 3, figsize=[8, 3]) -ax[0].imshow(srf.field.reshape(len(x), len(y)).T, origin="lower") -ax[1].scatter(*cond_pos, c=cond_val) -ax[2].imshow(krige.field.reshape(len(x), len(y)).T, origin="lower") -# titles -ax[0].set_title("original field") -ax[1].set_title("sampled field") -ax[2].set_title("interpolated field") -# set aspect ratio to equal in all plots -[ax[i].set_aspect("equal") for i in range(3)] diff --git a/examples/10_normalizer/02_compare.py b/examples/10_normalizer/02_compare.py deleted file mode 100644 index 2dd74488c..000000000 --- a/examples/10_normalizer/02_compare.py +++ /dev/null @@ -1,67 +0,0 @@ -""" -Normalizer Comparison ---------------------- - -Let's compare the transformation behavior of the provided normalizers. - -But first, we define a convenience routine and make some imports as always. -""" - -import matplotlib.pyplot as plt -import numpy as np - -import gstools as gs - - -def dashes(i=1, max_n=12, width=1): - """Return line dashes.""" - return i * [width, width] + [max_n * 2 * width - 2 * i * width, width] - - -############################################################################### -# We select 4 normalizers depending on a single parameter lambda and -# plot their transformation behavior within the interval [-5, 5]. -# -# For the shape parameter lambda, we create a list of 8 values ranging from -# -1 to 2.5. - -lmbdas = [i * 0.5 for i in range(-2, 6)] -normalizers = [ - gs.normalizer.BoxCox, - gs.normalizer.YeoJohnson, - gs.normalizer.Modulus, - gs.normalizer.Manly, -] - -############################################################################### -# Let's plot them! - -fig, ax = plt.subplots(2, 2, figsize=[8, 8]) -for i, norm in enumerate(normalizers): - # correctly setting the data range - x_rng = norm().normalize_range - x = np.linspace(max(-5, x_rng[0] + 0.01), min(5, x_rng[1] - 0.01)) - for j, lmbda in enumerate(lmbdas): - ax.flat[i].plot( - x, - norm(lmbda=lmbda).normalize(x), - label=r"$\lambda=" + str(lmbda) + "$", - color="k", - alpha=0.2 + j * 0.1, - dashes=dashes(j), - ) - # axis formatting - ax.flat[i].grid(which="both", color="grey", linestyle="-", alpha=0.2) - ax.flat[i].set_ylim((-5, 5)) - ax.flat[i].set_xlim((-5, 5)) - ax.flat[i].set_title(norm().name) -# figure formatting -handles, labels = ax.flat[-1].get_legend_handles_labels() -fig.legend(handles, labels, loc="lower center", ncol=4, handlelength=3.0) -fig.suptitle("Normalizer Comparison", fontsize=20) -fig.show() - -############################################################################### -# The missing :any:`LogNormal` transformation is covered by the :any:`BoxCox` -# transformation for lambda=0. The :any:`BoxCoxShift` transformation is -# simply the :any:`BoxCox` transformation shifted on the X-axis. diff --git a/examples/10_normalizer/README.rst b/examples/10_normalizer/README.rst deleted file mode 100644 index 930756be9..000000000 --- a/examples/10_normalizer/README.rst +++ /dev/null @@ -1,55 +0,0 @@ -Normalizing Data -================ - -When dealing with real-world data, one can't assume it to be normal distributed. -In fact, many properties are modeled by applying different transformations, -for example conductivity is often assumed to be log-normal or precipitation -is transformed using the famous box-cox power transformation. - -These "normalizers" are often represented as parameteric power transforms and -one is interested in finding the best parameter to gain normality in the input -data. - -This is of special interest when kriging should be applied, since the target -variable of the kriging interpolation is assumed to be normal distributed. - -GSTools provides a set of Normalizers and routines to automatically fit these -to input data by minimizing the likelihood function. - -Mean, Trend and Normalizers ---------------------------- - -All Field classes (:any:`SRF`, :any:`Krige` or :any:`CondSRF`) provide the input -of `mean`, `normalizer` and `trend`: - -* A `trend` can be a callable function, that represents a trend in input data. - For example a linear decrease of temperature with height. - -* The `normalizer` will be applied after the data was detrended, i.e. the trend - was substracted from the data, in order to gain normality. - -* The `mean` is now interpreted as the mean of the normalized data. The user - could also provide a callable mean, but it is mostly meant to be constant. - -When no normalizer is given, `trend` and `mean` basically behave the same. -We just decided that a trend is associated with raw data and a mean is used -in the context of normally distributed data. - -Provided Normalizers --------------------- - -The following normalizers can be passed to all Field-classes and variogram -estimation routines or can be used as standalone tools to analyse data. - -.. currentmodule:: gstools.normalizer - -.. autosummary:: - LogNormal - BoxCox - BoxCoxShift - YeoJohnson - Modulus - Manly - -Examples --------- diff --git a/pyproject.toml b/pyproject.toml index cd0dc6ede..265bf0976 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -2,7 +2,7 @@ requires = [ "setuptools>=64", "setuptools_scm>=7", - "numpy>=2.0.0rc1,<2.3; python_version >= '3.9'", + "numpy>=2.0.0rc1; python_version >= '3.9'", "oldest-supported-numpy; python_version < '3.9'", "Cython>=3.0.10,<3.1.0", "extension-helpers>=1", @@ -11,8 +11,8 @@ build-backend = "setuptools.build_meta" [project] requires-python = ">=3.8" -name = "gstools" -description = "GSTools: A geostatistical toolbox." +name = "gstools_cython" +description = "Cython backend for GSTools." authors = [ {name = "Sebastian Müller, Lennart Schüler", email = "info@geostat-framework.org"}, ] @@ -46,33 +46,20 @@ classifiers = [ "Topic :: Utilities", ] dependencies = [ - "emcee>=3.0.0", - "hankel>=1.0.0", - "meshio>=5.1.0", "numpy>=1.20.0", - "pyevtk>=1.1.1", - "scipy>=1.1.0", ] [project.optional-dependencies] doc = [ "m2r2>=0.2.8", - "matplotlib>=3.7", - "meshzoo>=0.7", "numpydoc>=1.1", - "pykrige>=1.5,<2", - "pyvista>=0.40", "sphinx>=7", - "sphinx-gallery>=0.8", "sphinx-rtd-theme>=2", - "sphinxcontrib-youtube>=1.1", ] -plotting = [ - "matplotlib>=3.7", - "pyvista>=0.40", +test = [ + "pytest-cov>=3", + "Cython>=3.0.10,<3.1.0", ] -rust = ["gstools_core>=0.2.0,<1"] -test = ["pytest-cov>=3"] lint = [ "black>=24", "pylint", @@ -81,18 +68,18 @@ lint = [ ] [project.urls] -Changelog = "https://github.com/GeoStat-Framework/GSTools/blob/main/CHANGELOG.md" +Changelog = "https://github.com/GeoStat-Framework/GSTools-Cython/blob/main/CHANGELOG.md" Conda-Forge = "https://anaconda.org/conda-forge/gstools" Documentation = "https://gstools.readthedocs.io" Homepage = "https://geostat-framework.org/#gstools" -Source = "https://github.com/GeoStat-Framework/GSTools" -Tracker = "https://github.com/GeoStat-Framework/GSTools/issues" +Source = "https://github.com/GeoStat-Framework/GSTools-Cython" +Tracker = "https://github.com/GeoStat-Framework/GSTools-Cython/issues" [tool.setuptools] license-files = ["LICENSE"] [tool.setuptools_scm] -write_to = "src/gstools/_version.py" +write_to = "src/gstools_cython/_version.py" write_to_template = "__version__ = '{version}'" local_scheme = "no-local-version" fallback_version = "0.0.0.dev0" @@ -100,10 +87,8 @@ fallback_version = "0.0.0.dev0" [tool.isort] profile = "black" multi_line_output = 3 -line_length = 79 [tool.black] -line-length = 79 target-version = [ "py38", "py39", @@ -114,13 +99,12 @@ target-version = [ [tool.coverage] [tool.coverage.run] - source = ["gstools"] + plugins = ["Cython.Coverage"] + source = ["gstools_cython"] omit = [ "*docs*", "*examples*", "*tests*", - "*/src/gstools/covmodel/plot.py", - "*/src/gstools/field/plot.py", ] [tool.coverage.report] @@ -134,8 +118,6 @@ target-version = [ [tool.pylint.main] extension-pkg-whitelist = [ "numpy", - "scipy", - "gstools_core", ] ignore = "_version.py" load-plugins = [ diff --git a/setup.py b/setup.py index b27548a94..1cf7fd456 100644 --- a/setup.py +++ b/setup.py @@ -1,4 +1,4 @@ -"""GSTools: A geostatistical toolbox.""" +"""GSTools-Cython: Cython backend for GSTools.""" import os @@ -8,27 +8,37 @@ from setuptools import Extension, setup # cython extensions -CY_MODULES = [ +CY_MODS = [ Extension( - name=f"gstools.{ext}", - sources=[os.path.join("src", "gstools", *ext.split(".")) + ".pyx"], + name=f"gstools_cython.{ext}", + sources=[os.path.join("src", "gstools_cython", ext) + ".pyx"], include_dirs=[np.get_include()], define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")], ) - for ext in ["field.summator", "variogram.estimator", "krige.krigesum"] + for ext in ["field", "krige", "variogram"] ] # you can set GSTOOLS_BUILD_PARALLEL=0 or GSTOOLS_BUILD_PARALLEL=1 open_mp = False if int(os.getenv("GSTOOLS_BUILD_PARALLEL", "0")): - added = [add_openmp_flags_if_available(mod) for mod in CY_MODULES] - if any(added): - open_mp = True - print(f"## GSTools setup: OpenMP used: {open_mp}") + added = [add_openmp_flags_if_available(mod) for mod in CY_MODS] + open_mp = any(added) + print(f"## GSTools-Cython setup: OpenMP used: {open_mp}") else: - print("## GSTools setup: OpenMP not wanted by the user.") + print("## GSTools-Cython setup: OpenMP not wanted by the user.") +compiler_directives = {} +if int(os.getenv("GSTOOLS_CY_DOCS", "0")): + print(f"## GSTools-Cython setup: embed signatures for documentation") + compiler_directives["embedsignature"] = True +if int(os.getenv("GSTOOLS_CY_COV", "0")): + print(f"## GSTools-Cython setup: enable line-trace for coverage") + compiler_directives["linetrace"] = True + for mod in CY_MODS: + mod.define_macros.append(("CYTHON_TRACE_NOGIL", "1")) + +options = { + "compile_time_env": {"OPENMP": open_mp}, + "compiler_directives": compiler_directives, +} # setup - do not include package data to ignore .pyx files in wheels -setup( - ext_modules=cythonize(CY_MODULES, compile_time_env={"OPENMP": open_mp}), - include_package_data=False, -) +setup(ext_modules=cythonize(CY_MODS, **options), include_package_data=False) diff --git a/src/gstools/__init__.py b/src/gstools/__init__.py deleted file mode 100644 index 11e63a2b3..000000000 --- a/src/gstools/__init__.py +++ /dev/null @@ -1,245 +0,0 @@ -""" -Purpose -======= - -GeoStatTools is a library providing geostatistical tools -for random field generation, conditioned field generation, -kriging and variogram estimation -based on a list of provided or even user-defined covariance models. - -The following functionalities are directly provided on module-level. - -Subpackages -=========== - -.. autosummary:: - :toctree: api - - covmodel - field - variogram - krige - random - tools - transform - normalizer - -Classes -======= - -Kriging -^^^^^^^ -Swiss-Army-Knife for Kriging. For short cut classes see: :any:`gstools.krige` - -.. currentmodule:: gstools.krige - -.. autosummary:: - Krige - -Spatial Random Field -^^^^^^^^^^^^^^^^^^^^ -Classes for (conditioned) random field generation - -.. currentmodule:: gstools.field - -.. autosummary:: - SRF - CondSRF - -Covariance Base-Class -^^^^^^^^^^^^^^^^^^^^^ -Class to construct user defined covariance models - -.. currentmodule:: gstools.covmodel - -.. autosummary:: - CovModel - -Covariance Models -^^^^^^^^^^^^^^^^^ - -Standard Covariance Models -~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.. autosummary:: - Gaussian - Exponential - Matern - Integral - Stable - Rational - Cubic - Linear - Circular - Spherical - HyperSpherical - SuperSpherical - JBessel - -Truncated Power Law Covariance Models -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.. autosummary:: - TPLGaussian - TPLExponential - TPLStable - TPLSimple - -Functions -========= - -VTK-Export -^^^^^^^^^^ -Routines to export fields to the vtk format - -.. currentmodule:: gstools.tools - -.. autosummary:: - vtk_export - to_vtk - -Geometric -^^^^^^^^^ -Some convenient functions for geometric operations - -.. autosummary:: - rotated_main_axes - generate_grid - generate_st_grid - -Variogram Estimation -^^^^^^^^^^^^^^^^^^^^ -Estimate the variogram of a given field with these routines - -.. currentmodule:: gstools.variogram - -.. autosummary:: - vario_estimate - vario_estimate_axis - standard_bins - -Misc -==== - -.. currentmodule:: gstools.tools - -.. autosummary:: - EARTH_RADIUS - KM_SCALE - DEGREE_SCALE - RADIAN_SCALE -""" - -# Hooray! -from gstools import ( - config, - covmodel, - field, - krige, - normalizer, - random, - tools, - transform, - variogram, -) -from gstools.covmodel import ( - Circular, - CovModel, - Cubic, - Exponential, - Gaussian, - HyperSpherical, - Integral, - JBessel, - Linear, - Matern, - Rational, - Spherical, - Stable, - SuperSpherical, - TPLExponential, - TPLGaussian, - TPLSimple, - TPLStable, -) -from gstools.field import SRF, CondSRF -from gstools.krige import Krige -from gstools.tools import ( - DEGREE_SCALE, - EARTH_RADIUS, - KM_SCALE, - RADIAN_SCALE, - generate_grid, - generate_st_grid, - rotated_main_axes, - to_vtk, - to_vtk_structured, - to_vtk_unstructured, - vtk_export, - vtk_export_structured, - vtk_export_unstructured, -) -from gstools.variogram import ( - standard_bins, - vario_estimate, - vario_estimate_axis, - vario_estimate_structured, - vario_estimate_unstructured, -) - -try: - from gstools._version import __version__ -except ModuleNotFoundError: # pragma: no cover - # package is not installed - __version__ = "0.0.0.dev0" - -__all__ = ["__version__"] -__all__ += ["covmodel", "field", "variogram", "krige", "random", "tools"] -__all__ += ["transform", "normalizer", "config"] -__all__ += [ - "CovModel", - "Gaussian", - "Exponential", - "Matern", - "Integral", - "Stable", - "Rational", - "Cubic", - "Linear", - "Circular", - "Spherical", - "HyperSpherical", - "SuperSpherical", - "JBessel", - "TPLGaussian", - "TPLExponential", - "TPLStable", - "TPLSimple", -] - -__all__ += [ - "vario_estimate", - "vario_estimate_axis", - "vario_estimate_structured", - "vario_estimate_unstructured", - "standard_bins", -] - -__all__ += [ - "Krige", - "SRF", - "CondSRF", - "rotated_main_axes", - "generate_grid", - "generate_st_grid", - "EARTH_RADIUS", - "KM_SCALE", - "DEGREE_SCALE", - "RADIAN_SCALE", - "vtk_export", - "vtk_export_structured", - "vtk_export_unstructured", - "to_vtk", - "to_vtk_structured", - "to_vtk_unstructured", -] diff --git a/src/gstools/config.py b/src/gstools/config.py deleted file mode 100644 index 24ce20c7e..000000000 --- a/src/gstools/config.py +++ /dev/null @@ -1,16 +0,0 @@ -""" -GStools subpackage providing global variables. - -.. currentmodule:: gstools.config - -""" - -NUM_THREADS = None - -# pylint: disable=W0611 -try: # pragma: no cover - import gstools_core - - USE_RUST = True -except ImportError: - USE_RUST = False diff --git a/src/gstools/covmodel/__init__.py b/src/gstools/covmodel/__init__.py deleted file mode 100644 index 28ab81f21..000000000 --- a/src/gstools/covmodel/__init__.py +++ /dev/null @@ -1,98 +0,0 @@ -""" -GStools subpackage providing a set of handy covariance models. - -.. currentmodule:: gstools.covmodel - -Subpackages -^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - plot - -Covariance Base-Class -^^^^^^^^^^^^^^^^^^^^^ -Class to construct user defined covariance models - -.. autosummary:: - :toctree: - - CovModel - -Covariance Models -^^^^^^^^^^^^^^^^^ -Standard Covariance Models - -.. autosummary:: - :toctree: - - Gaussian - Exponential - Matern - Integral - Stable - Rational - Cubic - Linear - Circular - Spherical - HyperSpherical - SuperSpherical - JBessel - -Truncated Power Law Covariance Models -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - TPLGaussian - TPLExponential - TPLStable - TPLSimple -""" - -from gstools.covmodel.base import CovModel -from gstools.covmodel.models import ( - Circular, - Cubic, - Exponential, - Gaussian, - HyperSpherical, - Integral, - JBessel, - Linear, - Matern, - Rational, - Spherical, - Stable, - SuperSpherical, -) -from gstools.covmodel.tpl_models import ( - TPLExponential, - TPLGaussian, - TPLSimple, - TPLStable, -) - -__all__ = [ - "CovModel", - "Gaussian", - "Exponential", - "Matern", - "Integral", - "Stable", - "Rational", - "Cubic", - "Linear", - "Circular", - "Spherical", - "HyperSpherical", - "SuperSpherical", - "JBessel", - "TPLGaussian", - "TPLExponential", - "TPLStable", - "TPLSimple", -] diff --git a/src/gstools/covmodel/base.py b/src/gstools/covmodel/base.py deleted file mode 100644 index 23e198812..000000000 --- a/src/gstools/covmodel/base.py +++ /dev/null @@ -1,1210 +0,0 @@ -""" -GStools subpackage providing the base class for covariance models. - -.. currentmodule:: gstools.covmodel.base - -The following classes are provided - -.. autosummary:: - CovModel -""" - -# pylint: disable=C0103, R0201, E1101, C0302, W0613 -import copy - -import numpy as np -from hankel import SymmetricFourierTransform as SFT -from scipy.integrate import quad as integral - -from gstools.covmodel import plot -from gstools.covmodel.fit import fit_variogram -from gstools.covmodel.tools import ( - _init_subclass, - check_arg_bounds, - check_bounds, - compare, - default_arg_from_bounds, - model_repr, - percentile_scale, - set_arg_bounds, - set_dim, - set_len_anis, - set_model_angles, - set_opt_args, - spectral_rad_pdf, -) -from gstools.tools import RADIAN_SCALE -from gstools.tools.geometric import ( - great_circle_to_chordal, - latlon2pos, - matrix_anisometrize, - matrix_isometrize, - pos2latlon, - rotated_main_axes, -) - -__all__ = ["CovModel"] - -# default arguments for hankel.SymmetricFourierTransform -HANKEL_DEFAULT = {"a": -1, "b": 1, "N": 200, "h": 0.001, "alt": True} - - -class CovModel: - r"""Base class for the GSTools covariance models. - - Parameters - ---------- - dim : :class:`int`, optional - dimension of the model. - Includes the temporal dimension if temporal is true. - To specify only the spatial dimension in that case, use `spatial_dim`. - Default: ``3`` - var : :class:`float`, optional - variance of the model (the nugget is not included in "this" variance) - Default: ``1.0`` - len_scale : :class:`float` or :class:`list`, optional - length scale of the model. - If a single value is given, the same length-scale will be used for - every direction. If multiple values (for main and transversal - directions) are given, `anis` will be - recalculated accordingly. If only two values are given in 3D, - the latter one will be used for both transversal directions. - Default: ``1.0`` - nugget : :class:`float`, optional - nugget of the model. Default: ``0.0`` - anis : :class:`float` or :class:`list`, optional - anisotropy ratios in the transversal directions [e_y, e_z]. - - * e_y = l_y / l_x - * e_z = l_z / l_x - - If only one value is given in 3D, e_y will be set to 1. - This value will be ignored, if multiple len_scales are given. - Default: ``1.0`` - angles : :class:`float` or :class:`list`, optional - angles of rotation (given in rad): - - * in 2D: given as rotation around z-axis - * in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles) - - Default: ``0.0`` - integral_scale : :class:`float` or :class:`list` or :any:`None`, optional - If given, ``len_scale`` will be ignored and recalculated, - so that the integral scale of the model matches the given one. - Default: :any:`None` - rescale : :class:`float` or :any:`None`, optional - Optional rescaling factor to divide the length scale with. - This could be used for unit conversion or rescaling the length scale - to coincide with e.g. the integral scale. - Will be set by each model individually. - Default: :any:`None` - latlon : :class:`bool`, optional - Whether the model is describing 2D fields on earths surface described - by latitude and longitude. When using this, the model will internally - use the associated 'Yadrenko' model to represent a valid model. - This means, the spatial distance :math:`r` will be replaced by - :math:`2\sin(\alpha/2)`, where :math:`\alpha` is the great-circle - distance, which is equal to the spatial distance of two points in 3D. - As a consequence, `dim` will be set to `3` and anisotropy will be - disabled. `geo_scale` can be set to e.g. earth's radius, - to have a meaningful `len_scale` parameter. - Default: False - geo_scale : :class:`float`, optional - Geographic unit scaling in case of latlon coordinates to get a - meaningful length scale unit. - By default, len_scale is assumed to be in radians with latlon=True. - Can be set to :any:`KM_SCALE` to have len_scale in km or - :any:`DEGREE_SCALE` to have len_scale in degrees. - Default: :any:`RADIAN_SCALE` - temporal : :class:`bool`, optional - Create a metric spatio-temporal covariance model. - Setting this to true will increase `dim` and `field_dim` by 1. - `spatial_dim` will be `field_dim - 1`. - The time-dimension is appended, meaning the pos tuple is (x,y,z,...,t). - Default: False - spatial_dim : :class:`int`, optional - spatial dimension of the model. - If given, the model dimension will be determined from this spatial dimension - and the possible temporal dimension if temporal is ture. - Default: None - var_raw : :class:`float` or :any:`None`, optional - raw variance of the model which will be multiplied with - :any:`CovModel.var_factor` to result in the actual variance. - If given, ``var`` will be ignored. - (This is just for models that override :any:`CovModel.var_factor`) - Default: :any:`None` - hankel_kw: :class:`dict` or :any:`None`, optional - Modify the init-arguments of - :any:`hankel.SymmetricFourierTransform` - used for the spectrum calculation. Use with caution (Better: Don't!). - ``None`` is equivalent to ``{"a": -1, "b": 1, "N": 1000, "h": 0.001}``. - Default: :any:`None` - **opt_arg - Optional arguments are covered by these keyword arguments. - If present, they are described in the section `Other Parameters`. - """ - - def __init__( - self, - dim=3, - var=1.0, - len_scale=1.0, - nugget=0.0, - anis=1.0, - angles=0.0, - *, - integral_scale=None, - rescale=None, - latlon=False, - geo_scale=RADIAN_SCALE, - temporal=False, - spatial_dim=None, - var_raw=None, - hankel_kw=None, - **opt_arg, - ): - # assert, that we use a subclass - # this is the case, if __init_subclass__ is called, which creates - # the "variogram"... so we check for that - if not hasattr(self, "variogram"): - raise TypeError("Don't instantiate 'CovModel' directly!") - - # prepare dim setting - self._dim = None - self._hankel_kw = None - self._sft = None - # prepare parameters (they are checked in dim setting) - self._rescale = None - self._len_scale = None - self._anis = None - self._angles = None - # prepare parameters boundaries - self._var_bounds = None - self._len_scale_bounds = None - self._nugget_bounds = None - self._anis_bounds = None - self._opt_arg_bounds = {} - # Set latlon and temporal first - self._latlon = bool(latlon) - self._temporal = bool(temporal) - self._geo_scale = abs(float(geo_scale)) - # SFT class will be created within dim.setter but needs hankel_kw - self.hankel_kw = hankel_kw - # using time increases model dimension given by "spatial_dim" - self.dim = ( - dim if spatial_dim is None else spatial_dim + int(self.temporal) - ) - - # optional arguments for the variogram-model - set_opt_args(self, opt_arg) - - # set standard boundaries for variance, len_scale, nugget and opt_arg - bounds = self.default_arg_bounds() - bounds.update(self.default_opt_arg_bounds()) - self.set_arg_bounds(check_args=False, **bounds) - - # set parameters - self.rescale = rescale - self._nugget = float(nugget) - - # set anisotropy and len_scale, disable anisotropy for latlon models - self._len_scale, self._anis = set_len_anis( - self.dim, len_scale, anis, self.latlon - ) - self._angles = set_model_angles( - self.dim, angles, self.latlon, self.temporal - ) - - # set var at last, because of the var_factor (to be right initialized) - if var_raw is None: - self._var = None - self.var = var - else: - self._var = float(var_raw) - self._integral_scale = None - self.integral_scale = integral_scale - # set var again, if int_scale affects var_factor - if var_raw is None: - self._var = None - self.var = var - else: - self._var = float(var_raw) - # final check for parameter bounds - self.check_arg_bounds() - # additional checks for the optional arguments (provided by user) - self.check_opt_arg() - # precision for printing - self._prec = 3 - - # one of these functions needs to be overridden - def __init_subclass__(cls): - """Initialize gstools covariance model.""" - _init_subclass(cls) - - # modify the docstrings: class docstring gets attributes added - if cls.__doc__ is None: - cls.__doc__ = "User defined GSTools Covariance-Model." - cls.__doc__ += CovModel.__doc__[45:] - # overridden functions get standard doc if no new doc was created - ign = ["__", "variogram", "covariance", "cor"] - for att, attr_cls in cls.__dict__.items(): - if any(att.startswith(i) for i in ign) or att not in dir(CovModel): - continue - attr_doc = getattr(CovModel, att).__doc__ - if attr_cls.__doc__ is None: - attr_cls.__doc__ = attr_doc - - # special variogram functions - - def vario_axis(self, r, axis=0): - r"""Variogram along axis of anisotropy.""" - if axis == 0: - return self.variogram(r) - return self.variogram(np.abs(r) / self.anis[axis - 1]) - - def cov_axis(self, r, axis=0): - r"""Covariance along axis of anisotropy.""" - if axis == 0: - return self.covariance(r) - return self.covariance(np.abs(r) / self.anis[axis - 1]) - - def cor_axis(self, r, axis=0): - r"""Correlation along axis of anisotropy.""" - if axis == 0: - return self.correlation(r) - return self.correlation(np.abs(r) / self.anis[axis - 1]) - - def vario_yadrenko(self, zeta): - r"""Yadrenko variogram for great-circle distance from latlon-pos.""" - return self.variogram(great_circle_to_chordal(zeta, self.geo_scale)) - - def cov_yadrenko(self, zeta): - r"""Yadrenko covariance for great-circle distance from latlon-pos.""" - return self.covariance(great_circle_to_chordal(zeta, self.geo_scale)) - - def cor_yadrenko(self, zeta): - r"""Yadrenko correlation for great-circle distance from latlon-pos.""" - return self.correlation(great_circle_to_chordal(zeta, self.geo_scale)) - - def vario_spatial(self, pos): - r"""Spatial variogram respecting anisotropy and rotation.""" - return self.variogram(self._get_iso_rad(pos)) - - def cov_spatial(self, pos): - r"""Spatial covariance respecting anisotropy and rotation.""" - return self.covariance(self._get_iso_rad(pos)) - - def cor_spatial(self, pos): - r"""Spatial correlation respecting anisotropy and rotation.""" - return self.correlation(self._get_iso_rad(pos)) - - def vario_nugget(self, r): - """Isotropic variogram of the model respecting the nugget at r=0.""" - r = np.asarray(np.abs(r), dtype=np.double) - r_gz = np.logical_not(np.isclose(r, 0)) - res = np.empty_like(r, dtype=np.double) - res[r_gz] = self.variogram(r[r_gz]) - res[np.logical_not(r_gz)] = 0.0 - return res - - def cov_nugget(self, r): - """Isotropic covariance of the model respecting the nugget at r=0.""" - r = np.asarray(np.abs(r), dtype=np.double) - r_gz = np.logical_not(np.isclose(r, 0)) - res = np.empty_like(r, dtype=np.double) - res[r_gz] = self.covariance(r[r_gz]) - res[np.logical_not(r_gz)] = self.sill - return res - - def plot(self, func="variogram", **kwargs): # pragma: no cover - """ - Plot a function of a the CovModel. - - Parameters - ---------- - func : :class:`str`, optional - Function to be plotted. Could be one of: - - * "variogram" - * "covariance" - * "correlation" - * "vario_spatial" - * "cov_spatial" - * "cor_spatial" - * "vario_yadrenko" - * "cov_yadrenko" - * "cor_yadrenko" - * "vario_axis" - * "cov_axis" - * "cor_axis" - * "spectrum" - * "spectral_density" - * "spectral_rad_pdf" - - **kwargs - Keyword arguments forwarded to the plotting function - `"plot_" + func` in :py:mod:`gstools.covmodel.plot`. - - See Also - -------- - gstools.covmodel.plot - """ - routine = getattr(plot, "plot_" + func) - return routine(self, **kwargs) - - # pykrige functions - - def pykrige_vario(self, args=None, r=0): # pragma: no cover - """Isotropic variogram of the model for pykrige.""" - if self.latlon: - return self.vario_yadrenko(np.deg2rad(r)) - return self.variogram(r) - - @property - def pykrige_anis(self): - """2D anisotropy ratio for pykrige.""" - if self.dim == 2: - return 1 / self.anis[0] - return 1.0 # pragma: no cover - - @property - def pykrige_anis_y(self): - """3D anisotropy ratio in y direction for pykrige.""" - if self.dim >= 2: - return 1 / self.anis[0] - return 1.0 # pragma: no cover - - @property - def pykrige_anis_z(self): - """3D anisotropy ratio in z direction for pykrige.""" - if self.dim == 3: - return 1 / self.anis[1] - return 1.0 # pragma: no cover - - @property - def pykrige_angle(self): - """2D rotation angle for pykrige.""" - if self.dim == 2: - return self.angles[0] / np.pi * 180 - return 0.0 # pragma: no cover - - @property - def pykrige_angle_z(self): - """3D rotation angle around z for pykrige.""" - if self.dim >= 2: - return self.angles[0] / np.pi * 180 - return 0.0 # pragma: no cover - - @property - def pykrige_angle_y(self): - """3D rotation angle around y for pykrige.""" - if self.dim == 3: - return self.angles[1] / np.pi * 180 - return 0.0 # pragma: no cover - - @property - def pykrige_angle_x(self): - """3D rotation angle around x for pykrige.""" - if self.dim == 3: - return self.angles[2] / np.pi * 180 - return 0.0 # pragma: no cover - - @property - def pykrige_kwargs(self): - """Keyword arguments for pykrige routines.""" - kwargs = { - "variogram_model": "custom", - "variogram_parameters": [], - "variogram_function": self.pykrige_vario, - } - if self.dim == 1: - add_kwargs = {} - elif self.dim == 2: - add_kwargs = { - "anisotropy_scaling": self.pykrige_anis, - "anisotropy_angle": self.pykrige_angle, - } - else: - add_kwargs = { - "anisotropy_scaling_y": self.pykrige_anis_y, - "anisotropy_scaling_z": self.pykrige_anis_z, - "anisotropy_angle_x": self.pykrige_angle_x, - "anisotropy_angle_y": self.pykrige_angle_y, - "anisotropy_angle_z": self.pykrige_angle_z, - } - kwargs.update(add_kwargs) - return kwargs - - # methods for optional/default arguments (can be overridden) - - def default_opt_arg(self): - """Provide default optional arguments by the user. - - Should be given as a dictionary when overridden. - """ - return { - opt: default_arg_from_bounds(bnd) - for (opt, bnd) in self.default_opt_arg_bounds().items() - } - - def default_opt_arg_bounds(self): - """Provide default boundaries for optional arguments.""" - res = {} - for opt in self.opt_arg: - res[opt] = [-np.inf, np.inf] - return res - - def check_opt_arg(self): - """Run checks for the optional arguments. - - This is in addition to the bound-checks - - Notes - ----- - * You can use this to raise a ValueError/warning - * Any return value will be ignored - * This method will only be run once, when the class is initialized - """ - - def check_dim(self, dim): - """Check the given dimension.""" - return True - - def fix_dim(self): - """Set a fix dimension for the model.""" - return None - - def var_factor(self): - """Factor for the variance.""" - return 1.0 - - def default_rescale(self): - """Provide default rescaling factor.""" - return 1.0 - - # calculation of different scales - - def calc_integral_scale(self): - """Calculate the integral scale of the isotrope model.""" - self._integral_scale = integral(self.correlation, 0, np.inf)[0] - return self._integral_scale - - def percentile_scale(self, per=0.9): - """Calculate the percentile scale of the isotrope model. - - This is the distance, where the given percentile of the variance - is reached by the variogram - """ - return percentile_scale(self, per) - - # spectrum methods (can be overridden for speedup) - - def spectrum(self, k): - r""" - Spectrum of the covariance model. - - This is given by: - - .. math:: S(\mathbf{k}) = \left(\frac{1}{2\pi}\right)^n - \int C(r) e^{i \mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r} - - Internally, this is calculated by the hankel transformation: - - .. math:: S(k) = \left(\frac{1}{2\pi}\right)^n \cdot - \frac{(2\pi)^{n/2}}{k^{n/2-1}} - \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr) dr - - Where :math:`C(r)` is the covariance function of the model. - - Parameters - ---------- - k : :class:`float` - Radius of the phase: :math:`k=\left\Vert\mathbf{k}\right\Vert` - """ - return self.spectral_density(k) * self.var - - def spectral_density(self, k): - r""" - Spectral density of the covariance model. - - This is given by: - - .. math:: \tilde{S}(k) = \frac{S(k)}{\sigma^2} - - Where :math:`S(k)` is the spectrum of the covariance model. - - Parameters - ---------- - k : :class:`float` - Radius of the phase: :math:`k=\left\Vert\mathbf{k}\right\Vert` - """ - k = np.asarray(np.abs(k), dtype=np.double) - return self._sft.transform(self.correlation, k, ret_err=False) - - def spectral_rad_pdf(self, r): - """Radial spectral density of the model.""" - return spectral_rad_pdf(self, r) - - def ln_spectral_rad_pdf(self, r): - """Log radial spectral density of the model.""" - with np.errstate(divide="ignore"): - return np.log(self.spectral_rad_pdf(r)) - - def _has_cdf(self): - """State if a cdf is defined with 'spectral_rad_cdf'.""" - return hasattr(self, "spectral_rad_cdf") - - def _has_ppf(self): - """State if a ppf is defined with 'spectral_rad_ppf'.""" - return hasattr(self, "spectral_rad_ppf") - - # spatial routines - - def isometrize(self, pos): - """Make a position tuple ready for isotropic operations.""" - pos = np.asarray(pos, dtype=np.double).reshape((self.field_dim, -1)) - if self.latlon: - return latlon2pos( - pos, - radius=self.geo_scale, - temporal=self.temporal, - time_scale=self.anis[-1], - ) - return np.dot(matrix_isometrize(self.dim, self.angles, self.anis), pos) - - def anisometrize(self, pos): - """Bring a position tuple into the anisotropic coordinate-system.""" - pos = np.asarray(pos, dtype=np.double).reshape((self.dim, -1)) - if self.latlon: - return pos2latlon( - pos, - radius=self.geo_scale, - temporal=self.temporal, - time_scale=self.anis[-1], - ) - return np.dot( - matrix_anisometrize(self.dim, self.angles, self.anis), pos - ) - - def main_axes(self): - """Axes of the rotated coordinate-system.""" - return rotated_main_axes(self.dim, self.angles) - - def _get_iso_rad(self, pos): - """Isometrized radians.""" - pos = np.asarray(pos, dtype=np.double).reshape((self.dim, -1)) - iso = np.dot(matrix_isometrize(self.dim, self.angles, self.anis), pos) - return np.linalg.norm(iso, axis=0) - - # fitting routine - - def fit_variogram( - self, - x_data, - y_data, - anis=True, - sill=None, - init_guess="default", - weights=None, - method="trf", - loss="soft_l1", - max_eval=None, - return_r2=False, - curve_fit_kwargs=None, - **para_select, - ): - """ - Fitting the variogram-model to an empirical variogram. - - Parameters - ---------- - x_data : :class:`numpy.ndarray` - The bin-centers of the empirical variogram. - y_data : :class:`numpy.ndarray` - The measured variogram - If multiple are given, they are interpreted as the directional - variograms along the main axis of the associated rotated - coordinate system. - Anisotropy ratios will be estimated in that case. - anis : :class:`bool`, optional - In case of a directional variogram, you can control anisotropy - by this argument. Deselect the parameter from fitting, by setting - it "False". - You could also pass a fixed value to be set in the model. - Then the anisotropy ratios wont be altered during fitting. - Default: True - sill : :class:`float` or :class:`bool`, optional - Here you can provide a fixed sill for the variogram. - It needs to be in a fitting range for the var and nugget bounds. - If variance or nugget are not selected for estimation, - the nugget will be recalculated to fulfill: - - * sill = var + nugget - * if the variance is bigger than the sill, - nugget will bet set to its lower bound - and the variance will be set to the fitting partial sill. - - If variance is deselected, it needs to be less than the sill, - otherwise a ValueError comes up. Same for nugget. - If sill=False, it will be deselected from estimation - and set to the current sill of the model. - Then, the procedure above is applied. - Default: None - init_guess : :class:`str` or :class:`dict`, optional - Initial guess for the estimation. Either: - - * "default": using the default values of the covariance model - ("len_scale" will be mean of given bin centers; - "var" and "nugget" will be mean of given variogram values - (if in given bounds)) - * "current": using the current values of the covariance model - * dict: dictionary with parameter names and given value - (separate "default" can bet set to "default" or "current" for - unspecified values to get same behavior as given above - ("default" by default)) - Example: ``{"len_scale": 10, "default": "current"}`` - - Default: "default" - weights : :class:`str`, :class:`numpy.ndarray`, :class:`callable`, optional - Weights applied to each point in the estimation. Either: - - * 'inv': inverse distance ``1 / (x_data + 1)`` - * list: weights given per bin - * callable: function applied to x_data - - If callable, it must take a 1-d ndarray. - Then ``weights = f(x_data)``. - Default: None - method : {'trf', 'dogbox'}, optional - Algorithm to perform minimization. - - * 'trf' : Trust Region Reflective algorithm, - particularly suitable for large sparse problems with bounds. - Generally robust method. - * 'dogbox' : dogleg algorithm with rectangular trust regions, - typical use case is small problems with bounds. - Not recommended for problems with rank-deficient Jacobian. - - Default: 'trf' - loss : :class:`str` or :class:`callable`, optional - Determines the loss function in scipys curve_fit. - The following keyword values are allowed: - - * 'linear' (default) : ``rho(z) = z``. Gives a standard - least-squares problem. - * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth - approximation of l1 (absolute value) loss. Usually a good - choice for robust least squares. - * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works - similarly to 'soft_l1'. - * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers - influence, but may cause difficulties in optimization process. - * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on - a single residual, has properties similar to 'cauchy'. - - If callable, it must take a 1-d ndarray ``z=f**2`` and return an - array_like with shape (3, m) where row 0 contains function values, - row 1 contains first derivatives and row 2 contains second - derivatives. Default: 'soft_l1' - max_eval : :class:`int` or :any:`None`, optional - Maximum number of function evaluations before the termination. - If None (default), the value is chosen automatically: 100 * n. - return_r2 : :class:`bool`, optional - Whether to return the r2 score of the estimation. - Default: False - curve_fit_kwargs : :class:`dict`, optional - Other keyword arguments passed to scipys curve_fit. Default: None - **para_select - You can deselect parameters from fitting, by setting - them "False" using their names as keywords. - You could also pass fixed values for each parameter. - Then these values will be applied and the involved parameters wont - be fitted. - By default, all parameters are fitted. - - Returns - ------- - fit_para : :class:`dict` - Dictionary with the fitted parameter values - pcov : :class:`numpy.ndarray` - The estimated covariance of `popt` from - :any:`scipy.optimize.curve_fit`. - To compute one standard deviation errors - on the parameters use ``perr = np.sqrt(np.diag(pcov))``. - r2_score : :class:`float`, optional - r2 score of the curve fitting results. Only if return_r2 is True. - - Notes - ----- - You can set the bounds for each parameter by accessing - :any:`CovModel.set_arg_bounds`. - - The fitted parameters will be instantly set in the model. - """ - return fit_variogram( - model=self, - x_data=x_data, - y_data=y_data, - anis=anis, - sill=sill, - init_guess=init_guess, - weights=weights, - method=method, - loss=loss, - max_eval=max_eval, - return_r2=return_r2, - curve_fit_kwargs=curve_fit_kwargs, - **para_select, - ) - - # bounds setting and checks - - def default_arg_bounds(self): - """Provide default boundaries for arguments. - - Given as a dictionary. - """ - res = { - "var": (0.0, np.inf, "oo"), - "len_scale": (0.0, np.inf, "oo"), - "nugget": (0.0, np.inf, "co"), - "anis": (0.0, np.inf, "oo"), - } - return res - - def set_arg_bounds(self, check_args=True, **kwargs): - r"""Set bounds for the parameters of the model. - - Parameters - ---------- - check_args : bool, optional - Whether to check if the arguments are in their valid bounds. - In case not, a proper default value will be determined. - Default: True - **kwargs - Parameter name as keyword ("var", "len_scale", "nugget", ) - and a list of 2 or 3 values: ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - return set_arg_bounds(self, check_args, **kwargs) - - def check_arg_bounds(self): - """Check arguments to be within their given bounds.""" - return check_arg_bounds(self) - - # bounds properties - - @property - def var_bounds(self): - """:class:`list`: Bounds for the variance. - - Notes - ----- - Is a list of 2 or 3 values: ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - return self._var_bounds - - @var_bounds.setter - def var_bounds(self, bounds): - if not check_bounds(bounds): - raise ValueError( - f"Given bounds for 'var' are not valid, got: {bounds}" - ) - self._var_bounds = bounds - - @property - def len_scale_bounds(self): - """:class:`list`: Bounds for the length scale. - - Notes - ----- - Is a list of 2 or 3 values: ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - return self._len_scale_bounds - - @len_scale_bounds.setter - def len_scale_bounds(self, bounds): - if not check_bounds(bounds): - raise ValueError( - f"Given bounds for 'len_scale' are not valid, got: {bounds}" - ) - self._len_scale_bounds = bounds - - @property - def nugget_bounds(self): - """:class:`list`: Bounds for the nugget. - - Notes - ----- - Is a list of 2 or 3 values: ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - return self._nugget_bounds - - @nugget_bounds.setter - def nugget_bounds(self, bounds): - if not check_bounds(bounds): - raise ValueError( - f"Given bounds for 'nugget' are not valid, got: {bounds}" - ) - self._nugget_bounds = bounds - - @property - def anis_bounds(self): - """:class:`list`: Bounds for the nugget. - - Notes - ----- - Is a list of 2 or 3 values: ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - return self._anis_bounds - - @anis_bounds.setter - def anis_bounds(self, bounds): - if not check_bounds(bounds): - raise ValueError( - f"Given bounds for 'anis' are not valid, got: {bounds}" - ) - self._anis_bounds = bounds - - @property - def opt_arg_bounds(self): - """:class:`dict`: Bounds for the optional arguments. - - Notes - ----- - Keys are the opt-arg names and values are lists of 2 or 3 values: - ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - return self._opt_arg_bounds - - @property - def arg_bounds(self): - """:class:`dict`: Bounds for all parameters. - - Notes - ----- - Keys are the arg names and values are lists of 2 or 3 values: - ``[a, b]`` or ``[a, b, ]`` where - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - res = { - "var": self.var_bounds, - "len_scale": self.len_scale_bounds, - "nugget": self.nugget_bounds, - "anis": self.anis_bounds, - } - res.update(self.opt_arg_bounds) - return res - - @property - def temporal(self): - """:class:`bool`: Whether the model is a metric spatio-temporal one.""" - return self._temporal - - # geographical coordinates related - - @property - def latlon(self): - """:class:`bool`: Whether the model depends on geographical coords.""" - return self._latlon - - @property - def geo_scale(self): - """:class:`float`: Geographic scaling for geographical coords.""" - return self._geo_scale - - @property - def field_dim(self): - """:class:`int`: The (parametric) field dimension of the model (with time).""" - return 2 + int(self.temporal) if self.latlon else self.dim - - @property - def spatial_dim(self): - """:class:`int`: The spatial field dimension of the model (without time).""" - return 2 if self.latlon else self.dim - int(self.temporal) - - # standard parameters - - @property - def dim(self): - """:class:`int`: The dimension of the model.""" - return self._dim - - @dim.setter - def dim(self, dim): - set_dim(self, dim) - - @property - def var(self): - """:class:`float`: The variance of the model.""" - return self._var * self.var_factor() - - @var.setter - def var(self, var): - self._var = float(var) / self.var_factor() - self.check_arg_bounds() - - @property - def var_raw(self): - """:class:`float`: The raw variance of the model without factor. - - (See. CovModel.var_factor) - """ - return self._var - - @var_raw.setter - def var_raw(self, var_raw): - self._var = float(var_raw) - self.check_arg_bounds() - - @property - def nugget(self): - """:class:`float`: The nugget of the model.""" - return self._nugget - - @nugget.setter - def nugget(self, nugget): - self._nugget = float(nugget) - self.check_arg_bounds() - - @property - def len_scale(self): - """:class:`float`: The main length scale of the model.""" - return self._len_scale - - @len_scale.setter - def len_scale(self, len_scale): - self._len_scale, anis = set_len_anis( - self.dim, len_scale, self.anis, self.latlon - ) - if self.latlon: - self._anis = np.array((self.dim - 1) * [1], dtype=np.double) - else: - self._anis = anis - self.check_arg_bounds() - - @property - def rescale(self): - """:class:`float`: Rescale factor for the length scale of the model.""" - return self._rescale - - @rescale.setter - def rescale(self, rescale): - rescale = self.default_rescale() if rescale is None else rescale - self._rescale = abs(float(rescale)) - - @property - def len_rescaled(self): - """:class:`float`: The rescaled main length scale of the model.""" - return self._len_scale / self._rescale - - @property - def anis(self): - """:class:`numpy.ndarray`: The anisotropy factors of the model.""" - return self._anis - - @anis.setter - def anis(self, anis): - self._len_scale, self._anis = set_len_anis( - self.dim, self.len_scale, anis, self.latlon - ) - self.check_arg_bounds() - - @property - def angles(self): - """:class:`numpy.ndarray`: Rotation angles (in rad) of the model.""" - return self._angles - - @angles.setter - def angles(self, angles): - self._angles = set_model_angles( - self.dim, angles, self.latlon, self.temporal - ) - self.check_arg_bounds() - - @property - def integral_scale(self): - """:class:`float`: The main integral scale of the model. - - Raises - ------ - ValueError - If integral scale is not setable. - """ - self._integral_scale = self.calc_integral_scale() - return self._integral_scale - - @integral_scale.setter - def integral_scale(self, integral_scale): - if integral_scale is not None: - # format int-scale right - self.len_scale = integral_scale - integral_scale = self.len_scale - # reset len_scale - self.len_scale = 1.0 - int_tmp = self.calc_integral_scale() - self.len_scale = integral_scale / int_tmp - if not np.isclose(self.integral_scale, integral_scale, rtol=1e-3): - raise ValueError( - f"{self.name}: Integral scale could not be set correctly! " - "Please just provide a 'len_scale'!" - ) - - @property - def hankel_kw(self): - """:class:`dict`: :any:`hankel.SymmetricFourierTransform` kwargs.""" - return self._hankel_kw - - @hankel_kw.setter - def hankel_kw(self, hankel_kw): - if self._hankel_kw is None or hankel_kw is None: - self._hankel_kw = copy.copy(HANKEL_DEFAULT) - if hankel_kw is not None: - self._hankel_kw.update(hankel_kw) - if self.dim is not None: - self._sft = SFT(ndim=self.dim, **self.hankel_kw) - - @property - def dist_func(self): - """:class:`tuple` of :any:`callable`: pdf, cdf and ppf. - - Spectral distribution info from the model. - """ - pdf = self.spectral_rad_pdf - cdf = None - ppf = None - if self.has_cdf: - cdf = self.spectral_rad_cdf - if self.has_ppf: - ppf = self.spectral_rad_ppf - return pdf, cdf, ppf - - @property - def has_cdf(self): - """:class:`bool`: State if a cdf is defined by the user.""" - return self._has_cdf() - - @property - def has_ppf(self): - """:class:`bool`: State if a ppf is defined by the user.""" - return self._has_ppf() - - @property - def sill(self): - """:class:`float`: The sill of the variogram. - - Notes - ----- - This is calculated by: - * ``sill = variance + nugget`` - """ - return self.var + self.nugget - - @property - def arg(self): - """:class:`list` of :class:`str`: Names of all arguments.""" - return ["var", "len_scale", "nugget", "anis", "angles"] + self._opt_arg - - @property - def arg_list(self): - """:class:`list` of :class:`float`: Values of all arguments.""" - alist = [self.var, self.len_scale, self.nugget, self.anis, self.angles] - for opt in self.opt_arg: - alist.append(getattr(self, opt)) - return alist - - @property - def iso_arg(self): - """:class:`list` of :class:`str`: Names of isotropic arguments.""" - return ["var", "len_scale", "nugget"] + self._opt_arg - - @property - def iso_arg_list(self): - """:class:`list` of :class:`float`: Values of isotropic arguments.""" - alist = [self.var, self.len_scale, self.nugget] - for opt in self.opt_arg: - alist.append(getattr(self, opt)) - return alist - - @property - def opt_arg(self): - """:class:`list` of :class:`str`: Names of the optional arguments.""" - return self._opt_arg - - @property - def len_scale_vec(self): - """:class:`numpy.ndarray`: The length scales in each direction. - - Notes - ----- - This is calculated by: - * ``len_scale_vec[0] = len_scale`` - * ``len_scale_vec[1] = len_scale*anis[0]`` - * ``len_scale_vec[2] = len_scale*anis[1]`` - """ - res = np.zeros(self.dim, dtype=np.double) - res[0] = self.len_scale - for i in range(1, self._dim): - res[i] = self.len_scale * self.anis[i - 1] - return res - - @property - def integral_scale_vec(self): - """:class:`numpy.ndarray`: The integral scales in each direction. - - Notes - ----- - This is calculated by: - * ``integral_scale_vec[0] = integral_scale`` - * ``integral_scale_vec[1] = integral_scale*anis[0]`` - * ``integral_scale_vec[2] = integral_scale*anis[1]`` - """ - res = np.zeros(self.dim, dtype=np.double) - res[0] = self.integral_scale - for i in range(1, self.dim): - res[i] = self.integral_scale * self.anis[i - 1] - return res - - @property - def name(self): - """:class:`str`: The name of the CovModel class.""" - return self.__class__.__name__ - - @property - def do_rotation(self): - """:any:`bool`: State if a rotation is performed.""" - return not np.all(np.isclose(self.angles, 0.0)) - - @property - def is_isotropic(self): - """:any:`bool`: State if a model is isotropic.""" - return np.all(np.isclose(self.anis, 1.0)) - - def __eq__(self, other): - """Compare CovModels.""" - if not isinstance(other, CovModel): - return False - return compare(self, other) - - def __setattr__(self, name, value): - """Set an attribute.""" - super().__setattr__(name, value) - # if an optional variogram argument was given, check bounds - if hasattr(self, "_opt_arg") and name in self._opt_arg: - self.check_arg_bounds() - - def __repr__(self): - """Return String representation.""" - return model_repr(self) diff --git a/src/gstools/covmodel/fit.py b/src/gstools/covmodel/fit.py deleted file mode 100755 index 8b19f4977..000000000 --- a/src/gstools/covmodel/fit.py +++ /dev/null @@ -1,540 +0,0 @@ -""" -GStools subpackage providing tools for the covariance-model. - -.. currentmodule:: gstools.covmodel.fit - -The following classes and functions are provided - -.. autosummary:: - fit_variogram -""" - -# pylint: disable=C0103, W0632 -import numpy as np -from scipy.optimize import curve_fit - -from gstools.covmodel.tools import check_arg_in_bounds, default_arg_from_bounds -from gstools.tools.geometric import great_circle_to_chordal, set_anis - -__all__ = ["fit_variogram"] - - -DEFAULT_PARA = ["var", "len_scale", "nugget"] - - -def fit_variogram( - model, - x_data, - y_data, - anis=True, - sill=None, - init_guess="default", - weights=None, - method="trf", - loss="soft_l1", - max_eval=None, - return_r2=False, - curve_fit_kwargs=None, - **para_select, -): - """ - Fitting a variogram-model to an empirical variogram. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model to fit. - x_data : :class:`numpy.ndarray` - The bin-centers of the empirical variogram. - y_data : :class:`numpy.ndarray` - The measured variogram - If multiple are given, they are interpreted as the directional - variograms along the main axis of the associated rotated - coordinate system. - Anisotropy ratios will be estimated in that case. - anis : :class:`bool`, optional - In case of a directional variogram, you can control anisotropy - by this argument. Deselect the parameter from fitting, by setting - it "False". - You could also pass a fixed value to be set in the model. - Then the anisotropy ratios won't be altered during fitting. - Default: True - sill : :class:`float` or :class:`bool` or :any:`None`, optional - Here you can provide a fixed sill for the variogram. - It needs to be in a fitting range for the var and nugget bounds. - If variance or nugget are not selected for estimation, - the nugget will be recalculated to fulfill: - - * sill = var + nugget - * if the variance is bigger than the sill, - nugget will bet set to its lower bound - and the variance will be set to the fitting partial sill. - - If variance is deselected, it needs to be less than the sill, - otherwise a ValueError comes up. Same for nugget. - If sill=False, it will be deselected from estimation - and set to the current sill of the model. - Then, the procedure above is applied. - Default: None - init_guess : :class:`str` or :class:`dict`, optional - Initial guess for the estimation. Either: - - * "default": using the default values of the covariance model - ("len_scale" will be mean of given bin centers; - "var" and "nugget" will be mean of given variogram values - (if in given bounds)) - * "current": using the current values of the covariance model - * dict: dictionary with parameter names and given value - (separate "default" can bet set to "default" or "current" for - unspecified values to get same behavior as given above - ("default" by default)) - Example: ``{"len_scale": 10, "default": "current"}`` - - Default: "default" - weights : :class:`str`, :class:`numpy.ndarray`, :class:`callable`optional - Weights applied to each point in the estimation. Either: - - * 'inv': inverse distance ``1 / (x_data + 1)`` - * list: weights given per bin - * callable: function applied to x_data - - If callable, it must take a 1-d ndarray. Then ``weights = f(x_data)``. - Default: None - method : {'trf', 'dogbox'}, optional - Algorithm to perform minimization. - - * 'trf' : Trust Region Reflective algorithm, particularly suitable - for large sparse problems with bounds. Generally robust method. - * 'dogbox' : dogleg algorithm with rectangular trust regions, - typical use case is small problems with bounds. Not recommended - for problems with rank-deficient Jacobian. - - Default: 'trf' - loss : :class:`str` or :class:`callable`, optional - Determines the loss function in scipys curve_fit. - The following keyword values are allowed: - - * 'linear' (default) : ``rho(z) = z``. Gives a standard - least-squares problem. - * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth - approximation of l1 (absolute value) loss. Usually a good - choice for robust least squares. - * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works - similarly to 'soft_l1'. - * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers - influence, but may cause difficulties in optimization process. - * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on - a single residual, has properties similar to 'cauchy'. - - If callable, it must take a 1-d ndarray ``z=f**2`` and return an - array_like with shape (3, m) where row 0 contains function values, - row 1 contains first derivatives and row 2 contains second - derivatives. Default: 'soft_l1' - max_eval : :class:`int` or :any:`None`, optional - Maximum number of function evaluations before the termination. - If None (default), the value is chosen automatically: 100 * n. - return_r2 : :class:`bool`, optional - Whether to return the r2 score of the estimation. - Default: False - curve_fit_kwargs : :class:`dict`, optional - Other keyword arguments passed to scipys curve_fit. Default: None - **para_select - You can deselect parameters from fitting, by setting - them "False" using their names as keywords. - You could also pass fixed values for each parameter. - Then these values will be applied and the involved parameters wont - be fitted. - By default, all parameters are fitted. - - Returns - ------- - fit_para : :class:`dict` - Dictionary with the fitted parameter values - pcov : :class:`numpy.ndarray` - The estimated covariance of `popt` from - :any:`scipy.optimize.curve_fit`. - To compute one standard deviation errors - on the parameters use ``perr = np.sqrt(np.diag(pcov))``. - r2_score : :class:`float`, optional - r2 score of the curve fitting results. Only if return_r2 is True. - - Notes - ----- - You can set the bounds for each parameter by accessing - :any:`CovModel.set_arg_bounds`. - - The fitted parameters will be instantly set in the model. - """ - # preprocess selected parameters - para, sill, constrain_sill, anis = _pre_para( - model, para_select, sill, anis - ) - # check curve_fit kwargs - curve_fit_kwargs = {} if curve_fit_kwargs is None else curve_fit_kwargs - # check method - if method not in ["trf", "dogbox"]: - raise ValueError("fit: method needs to be either 'trf' or 'dogbox'") - # prepare variogram data - # => concatenate directional variograms to have a 1D array for x and y - x_data, y_data, is_dir_vario = _check_vario(model, x_data, y_data) - # prepare init guess dictionary - init_guess = _pre_init_guess( - model, init_guess, np.mean(x_data), np.mean(y_data) - ) - # only fit anisotropy if a directional variogram was given - anis &= is_dir_vario - # set weights - _set_weights(model, weights, x_data, curve_fit_kwargs, is_dir_vario) - # set the lower/upper boundaries for the variogram-parameters - bounds, init_guess_list = _init_curve_fit_para( - model, para, init_guess, constrain_sill, sill, anis - ) - # create the fitting curve - curve_fit_kwargs["f"] = _get_curve( - model, para, constrain_sill, sill, anis, is_dir_vario - ) - # set the remaining kwargs for curve_fit - curve_fit_kwargs["bounds"] = bounds - curve_fit_kwargs["p0"] = init_guess_list - curve_fit_kwargs["xdata"] = x_data - curve_fit_kwargs["ydata"] = y_data - curve_fit_kwargs["loss"] = loss - curve_fit_kwargs["max_nfev"] = max_eval - curve_fit_kwargs["method"] = method - # fit the variogram - popt, pcov = curve_fit(**curve_fit_kwargs) - # convert the results - fit_para = _post_fitting(model, para, popt, anis, is_dir_vario) - # calculate the r2 score if wanted - if return_r2: - return fit_para, pcov, _r2_score(model, x_data, y_data, is_dir_vario) - return fit_para, pcov - - -def _pre_para(model, para_select, sill, anis): - """Preprocess selected parameters.""" - var_last = False - var_tmp = 0.0 # init value - for par in para_select: - if par not in model.arg_bounds: - raise ValueError(f"fit: unknown parameter in selection: {par}") - if not isinstance(para_select[par], bool): - if par == "var": - var_last = True - var_tmp = float(para_select[par]) - else: - setattr(model, par, float(para_select[par])) - para_select[par] = False - # set variance last due to possible recalculations - if var_last: - model.var = var_tmp - # remove those that were set to True - para_select = {k: v for k, v in para_select.items() if not v} - # handling the sill - sill = None if (isinstance(sill, bool) and sill) else sill - if sill is not None: - sill = model.sill if isinstance(sill, bool) else float(sill) - constrain_sill = True - sill_low = model.arg_bounds["var"][0] + model.arg_bounds["nugget"][0] - sill_up = model.arg_bounds["var"][1] + model.arg_bounds["nugget"][1] - if not sill_low <= sill <= sill_up: - raise ValueError("fit: sill out of bounds.") - if "var" in para_select and "nugget" in para_select: - if model.var > sill: - model.nugget = model.arg_bounds["nugget"][0] - model.var = sill - model.nugget - else: - model.nugget = sill - model.var - elif "var" in para_select: - if model.var > sill: - raise ValueError( - "fit: if sill is fixed and variance deselected, " - "the set variance should be less than the given sill." - ) - para_select["nugget"] = False - model.nugget = sill - model.var - elif "nugget" in para_select: - if model.nugget > sill: - raise ValueError( - "fit: if sill is fixed and nugget deselected, " - "the set nugget should be less than the given sill." - ) - para_select["var"] = False - model.var = sill - model.nugget - else: - # deselect the nugget, to recalculate it accordingly - # nugget = sill - var - para_select["nugget"] = False - else: - constrain_sill = False - # select all parameters to be fitted - para = {par: True for par in DEFAULT_PARA} - para.update({opt: True for opt in model.opt_arg}) - # now deselect unwanted parameters - para.update(para_select) - # check if anisotropy should be fitted or set - if not isinstance(anis, bool): - model.anis = anis - anis = False - return para, sill, constrain_sill, anis - - -def _pre_init_guess(model, init_guess, mean_x=1.0, mean_y=1.0): - # init guess should be a dict - if not isinstance(init_guess, dict): - init_guess = {"default": init_guess} - # "default" init guess is the respective default value - default_guess = init_guess.pop("default", "default") - if default_guess not in ["default", "current"]: - raise ValueError(f"fit_variogram: unknown def. guess: {default_guess}") - default = default_guess == "default" - # check invalid names for given init guesses - invalid_para = set(init_guess) - set(model.iso_arg + ["anis"]) - if invalid_para: - raise ValueError(f"fit_variogram: unknown init guess: {invalid_para}") - bnd = model.arg_bounds - # default length scale is mean of given bin centers (respecting "rescale") - init_guess.setdefault( - "len_scale", mean_x * model.rescale if default else model.len_scale - ) - # init guess for variance and nugget is mean of given variogram - for par in ["var", "nugget"]: - init_guess.setdefault(par, mean_y if default else getattr(model, par)) - # anis setting - init_guess.setdefault( - "anis", default_arg_from_bounds(bnd["anis"]) if default else model.anis - ) - # correctly handle given values for anis (need a list of values) - init_guess["anis"] = list(set_anis(model.dim, init_guess["anis"])) - # set optional arguments - for opt in model.opt_arg: - init_guess.setdefault( - opt, - ( - default_arg_from_bounds(bnd[opt]) - if default - else getattr(model, opt) - ), - ) - # convert all init guesses to float (except "anis") - for arg in model.iso_arg: - init_guess[arg] = float(init_guess[arg]) - return init_guess - - -def _check_vario(model, x_data, y_data): - # prepare variogram data - x_data = np.asarray(x_data).reshape(-1) - y_data = np.asarray(y_data).reshape(-1) - # if multiple variograms are given, they will be interpreted - # as directional variograms along the main rotated axes of the model - is_dir_vario = False - if model.dim > 1 and x_data.size * model.dim == y_data.size: - is_dir_vario = True - # concatenate multiple variograms - x_data = np.tile(x_data, model.dim) - elif x_data.size != y_data.size: - raise ValueError( - "CovModel.fit_variogram: Wrong number of empirical variograms! " - "Either provide only one variogram to fit an isotropic model, " - "or directional ones for all main axes to fit anisotropy." - ) - if is_dir_vario and model.latlon: - raise ValueError( - "CovModel.fit_variogram: lat-lon models don't support anisotropy." - ) - if model.latlon: - # convert to yadrenko model - x_data = great_circle_to_chordal(x_data, model.geo_scale) - return x_data, y_data, is_dir_vario - - -def _set_weights(model, weights, x_data, curve_fit_kwargs, is_dir_vario): - if weights is not None: - if callable(weights): - weights = 1.0 / weights(x_data) - elif isinstance(weights, str) and weights == "inv": - weights = 1.0 + x_data - else: - if is_dir_vario and weights.size * model.dim == x_data.size: - weights = np.tile(weights, model.dim) - weights = 1.0 / np.asarray(weights).reshape(-1) - curve_fit_kwargs["sigma"] = weights - curve_fit_kwargs["absolute_sigma"] = True - - -def _init_curve_fit_para(model, para, init_guess, constrain_sill, sill, anis): - """Create initial guess and bounds for fitting.""" - low_bounds = [] - top_bounds = [] - init_guess_list = [] - for par in DEFAULT_PARA: - if para[par]: - low_bounds.append(model.arg_bounds[par][0]) - if par == "var" and constrain_sill: # var <= sill in this case - top_bounds.append(sill) - else: - top_bounds.append(model.arg_bounds[par][1]) - init_guess_list.append( - _init_guess( - bounds=[low_bounds[-1], top_bounds[-1]], - default=init_guess[par], - ) - ) - for opt in model.opt_arg: - if para[opt]: - low_bounds.append(model.arg_bounds[opt][0]) - top_bounds.append(model.arg_bounds[opt][1]) - init_guess_list.append( - _init_guess( - bounds=[low_bounds[-1], top_bounds[-1]], - default=init_guess[opt], - ) - ) - if anis: - for i in range(model.dim - 1): - low_bounds.append(model.anis_bounds[0]) - top_bounds.append(model.anis_bounds[1]) - init_guess_list.append( - _init_guess( - bounds=[low_bounds[-1], top_bounds[-1]], - default=init_guess["anis"][i], - ) - ) - return (low_bounds, top_bounds), init_guess_list - - -def _init_guess(bounds, default): - """Proper determination of initial guess.""" - if bounds[0] < default < bounds[1]: - return default - return default_arg_from_bounds(bounds) - - -def _get_curve(model, para, constrain_sill, sill, anis, is_dir_vario): - """Create the curve for scipys curve_fit.""" - var_save = model.var - - # we need arg1, otherwise curve_fit throws an error (bug?!) - def curve(x, arg1, *args): - """Adapted Variogram function.""" - args = (arg1,) + args - para_skip = 0 - opt_skip = 0 - if para["var"]: - var_tmp = args[para_skip] - if constrain_sill: - nugget_tmp = sill - var_tmp - # punishment, if resulting nugget out of range for fixed sill - if check_arg_in_bounds(model, "nugget", nugget_tmp) > 0: - return np.full_like(x, np.inf) - # nugget estimation deselected in this case - model.nugget = nugget_tmp - para_skip += 1 - if para["len_scale"]: - model.len_scale = args[para_skip] - para_skip += 1 - if para["nugget"]: - model.nugget = args[para_skip] - para_skip += 1 - for opt in model.opt_arg: - if para[opt]: - setattr(model, opt, args[para_skip + opt_skip]) - opt_skip += 1 - # set var at last because of var_factor (other parameter needed) - if para["var"]: - model.var = var_tmp - # needs to be reset for TPL models when len_scale was changed - else: - model.var = var_save - if is_dir_vario: - if anis: - model.anis = args[1 - model.dim :] - xs = x[: x.size // model.dim] - out = np.array([], dtype=np.double) - for i in range(model.dim): - out = np.concatenate((out, model.vario_axis(xs, axis=i))) - return out - return model.variogram(x) - - return curve - - -def _post_fitting(model, para, popt, anis, is_dir_vario): - """Postprocess fitting results and application to model.""" - fit_para = {} - para_skip = 0 - opt_skip = 0 - var_tmp = 0.0 # init value - for par in DEFAULT_PARA: - if para[par]: - if par == "var": # set variance last - var_tmp = popt[para_skip] - else: - setattr(model, par, popt[para_skip]) - fit_para[par] = popt[para_skip] - para_skip += 1 - else: - fit_para[par] = getattr(model, par) - for opt in model.opt_arg: - if para[opt]: - setattr(model, opt, popt[para_skip + opt_skip]) - fit_para[opt] = popt[para_skip + opt_skip] - opt_skip += 1 - else: - fit_para[opt] = getattr(model, opt) - if is_dir_vario: - if anis: - model.anis = popt[1 - model.dim :] - fit_para["anis"] = model.anis - # set var at last because of var_factor (other parameter needed) - if para["var"]: - model.var = var_tmp - return fit_para - - -def _r2_score(model, x_data, y_data, is_dir_vario): - """Calculate the R2 score.""" - if is_dir_vario: - xs = x_data[: x_data.size // model.dim] - vario = np.array([], dtype=np.double) - for i in range(model.dim): - vario = np.concatenate((vario, model.vario_axis(xs, axis=i))) - else: - vario = model.variogram(x_data) - residuals = y_data - vario - ss_res = np.sum(residuals**2) - ss_tot = np.sum((y_data - np.mean(y_data)) ** 2) - return 1.0 - (ss_res / ss_tot) - - -def logistic_weights(p=0.1, mean=0.7): # pragma: no cover - """ - Return a logistic weights function. - - Parameters - ---------- - p : :class:`float`, optional - Parameter for the growth rate. - Within this percentage of the data range, the function will - be in the upper resp. lower percentile p. The default is 0.1. - mean : :class:`float`, optional - Percentage of the data range, where this function has its - sigmoid's midpoint. The default is 0.7. - - Returns - ------- - callable - Weighting function. - """ - - # define the callable weights function - def func(x_data): - """Callable function for the weights.""" - x_range = np.amax(x_data) - np.amin(x_data) - # logit function for growth rate - growth = np.log(p / (1 - p)) / (p * x_range) - x_mean = mean * x_range + np.amin(x_data) - return 1.0 / (1.0 + np.exp(growth * (x_mean - x_data))) - - return func diff --git a/src/gstools/covmodel/models.py b/src/gstools/covmodel/models.py deleted file mode 100644 index b1a9d68ec..000000000 --- a/src/gstools/covmodel/models.py +++ /dev/null @@ -1,960 +0,0 @@ -""" -GStools subpackage providing different covariance models. - -.. currentmodule:: gstools.covmodel.models - -The following classes are provided - -.. autosummary:: - Gaussian - Exponential - Matern - Integral - Stable - Rational - Cubic - Linear - Circular - Spherical - HyperSpherical - SuperSpherical - JBessel -""" - -# pylint: disable=C0103, E1101, R0201 -import warnings - -import numpy as np -from scipy import special as sps - -from gstools.covmodel.base import CovModel -from gstools.covmodel.tools import AttributeWarning -from gstools.tools.special import exp_int, inc_gamma_low - -__all__ = [ - "Gaussian", - "Exponential", - "Matern", - "Integral", - "Stable", - "Rational", - "Cubic", - "Linear", - "Circular", - "Spherical", - "HyperSpherical", - "SuperSpherical", - "JBessel", -] - - -class Gaussian(CovModel): - r"""The Gaussian covariance model. - - Notes - ----- - This model is given by the following variogram [Webster2007]_: - - .. math:: - \gamma(r)= - \sigma^{2} - \left(1-\exp\left(-\left(s\cdot\frac{r}{\ell}\right)^{2}\right)\right)+n - - Where the standard rescale factor is :math:`s=\frac{\sqrt{\pi}}{2}`. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - - def cor(self, h): - """Gaussian normalized correlation function.""" - return np.exp(-(h**2)) - - def default_rescale(self): - """Gaussian rescaling factor to result in integral scale.""" - return np.sqrt(np.pi) / 2.0 - - def spectral_density(self, k): # noqa: D102 - k = np.asarray(k, dtype=np.double) - return (self.len_rescaled / 2.0 / np.sqrt(np.pi)) ** self.dim * np.exp( - -((k * self.len_rescaled / 2.0) ** 2) - ) - - def spectral_rad_cdf(self, r): - """Gaussian radial spectral cdf.""" - r = np.asarray(r, dtype=np.double) - if self.dim == 1: - return sps.erf(r * self.len_rescaled / 2.0) - if self.dim == 2: - return 1.0 - np.exp(-((r * self.len_rescaled / 2.0) ** 2)) - if self.dim == 3: - return sps.erf( - r * self.len_rescaled / 2.0 - ) - r * self.len_rescaled / np.sqrt(np.pi) * np.exp( - -((r * self.len_rescaled / 2.0) ** 2) - ) - return None # pragma: no cover - - def spectral_rad_ppf(self, u): - """Gaussian radial spectral ppf. - - Notes - ----- - Not defined for 3D. - """ - u = np.asarray(u, dtype=np.double) - if self.dim == 1: - return 2.0 / self.len_rescaled * sps.erfinv(u) - if self.dim == 2: - return 2.0 / self.len_rescaled * np.sqrt(-np.log(1.0 - u)) - return None # pragma: no cover - - def _has_cdf(self): - return self.dim in [1, 2, 3] - - def _has_ppf(self): - return self.dim in [1, 2] - - def calc_integral_scale(self): # noqa: D102 - return self.len_rescaled * np.sqrt(np.pi) / 2.0 - - -class Exponential(CovModel): - r"""The Exponential covariance model. - - Notes - ----- - This model is given by the following variogram [Webster2007]_: - - .. math:: - \gamma(r)= - \sigma^{2} - \left(1-\exp\left(-s\cdot\frac{r}{\ell}\right)\right)+n - - Where the standard rescale factor is :math:`s=1`. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - - def cor(self, h): - """Exponential normalized correlation function.""" - return np.exp(-h) - - def spectral_density(self, k): # noqa: D102 - k = np.asarray(k, dtype=np.double) - return ( - self.len_rescaled**self.dim - * sps.gamma((self.dim + 1) / 2.0) - / (np.pi * (1.0 + (k * self.len_rescaled) ** 2)) - ** ((self.dim + 1) / 2.0) - ) - - def spectral_rad_cdf(self, r): - """Exponential radial spectral cdf.""" - r = np.asarray(r, dtype=np.double) - if self.dim == 1: - return np.arctan(r * self.len_rescaled) * 2.0 / np.pi - if self.dim == 2: - return 1.0 - 1.0 / np.sqrt(1.0 + (r * self.len_rescaled) ** 2) - if self.dim == 3: - return ( - ( - np.arctan(r * self.len_rescaled) - - r - * self.len_rescaled - / (1.0 + (r * self.len_rescaled) ** 2) - ) - * 2.0 - / np.pi - ) - return None # pragma: no cover - - def spectral_rad_ppf(self, u): - """Exponential radial spectral ppf. - - Notes - ----- - Not defined for 3D. - """ - u = np.asarray(u, dtype=np.double) - if self.dim == 1: - return np.tan(np.pi / 2 * u) / self.len_rescaled - if self.dim == 2: - u_power = np.divide( - 1, - u**2, - out=np.full_like(u, np.inf), - where=np.logical_not(np.isclose(u, 0)), - ) - return np.sqrt(u_power - 1.0) / self.len_rescaled - return None # pragma: no cover - - def _has_cdf(self): - return self.dim in [1, 2, 3] - - def _has_ppf(self): - return self.dim in [1, 2] - - def calc_integral_scale(self): # noqa: D102 - return self.len_rescaled - - -class Stable(CovModel): - r"""The stable covariance model. - - Notes - ----- - This model is given by the following correlation function - [Wackernagel2003]_: - - .. math:: - \rho(r) = - \exp\left(- \left(s\cdot\frac{r}{\ell}\right)^{\alpha}\right) - - Where the standard rescale factor is :math:`s=1`. - :math:`\alpha` is a shape parameter with :math:`\alpha\in(0,2]` - - References - ---------- - .. [Wackernagel2003] Wackernagel, H. "Multivariate geostatistics", - Springer, Berlin, Heidelberg (2003) - - Other Parameters - ---------------- - alpha : :class:`float`, optional - Shape parameter. Standard range: ``(0, 2]`` - Default: ``1.5`` - """ - - def default_opt_arg(self): - """Defaults for the optional arguments. - - * ``{"alpha": 1.5}`` - - Returns - ------- - :class:`dict` - Defaults for optional arguments - """ - return {"alpha": 1.5} - - def default_opt_arg_bounds(self): - """Defaults for boundaries of the optional arguments. - - * ``{"alpha": [0, 2, "oc"]}`` - - Returns - ------- - :class:`dict` - Boundaries for optional arguments - """ - return {"alpha": [0, 2, "oc"]} - - def check_opt_arg(self): - """Check the optional arguments. - - Warns - ----- - alpha - If alpha is < 0.3, the model tends to a nugget model and gets - numerically unstable. - """ - if self.alpha < 0.3: - warnings.warn( - "Stable: parameter 'alpha' is < 0.3, " - "count with unstable results", - AttributeWarning, - ) - - def cor(self, h): - r"""Stable normalized correlation function.""" - return np.exp(-np.power(h, self.alpha)) - - def calc_integral_scale(self): # noqa: D102 - return self.len_rescaled * sps.gamma(1.0 + 1.0 / self.alpha) - - -class Matern(CovModel): - r"""The Matérn covariance model. - - Notes - ----- - This model is given by the following correlation function [Rasmussen2003]_: - - .. math:: - \rho(r) = - \frac{2^{1-\nu}}{\Gamma\left(\nu\right)} \cdot - \left(\sqrt{\nu}\cdot s\cdot\frac{r}{\ell}\right)^{\nu} \cdot - \mathrm{K}_{\nu}\left(\sqrt{\nu}\cdot s\cdot\frac{r}{\ell}\right) - - Where the standard rescale factor is :math:`s=1`. - :math:`\Gamma` is the gamma function and :math:`\mathrm{K}_{\nu}` - is the modified Bessel function of the second kind. - - :math:`\nu` is a shape parameter and should be >= 0.2. - - If :math:`\nu > 20`, a gaussian model is used, since it represents - the limiting case: - - .. math:: - \rho(r) = - \exp\left(-\left(s\cdot\frac{r}{2\ell}\right)^2\right) - - References - ---------- - .. [Rasmussen2003] Rasmussen, C. E., - "Gaussian processes in machine learning." Summer school on - machine learning. Springer, Berlin, Heidelberg, (2003) - - Other Parameters - ---------------- - nu : :class:`float`, optional - Shape parameter. Standard range: ``[0.2, 30]`` - Default: ``1.0`` - """ - - def default_opt_arg(self): - """Defaults for the optional arguments. - - * ``{"nu": 1.0}`` - - Returns - ------- - :class:`dict` - Defaults for optional arguments - """ - return {"nu": 1.0} - - def default_opt_arg_bounds(self): - """Defaults for boundaries of the optional arguments. - - * ``{"nu": [0.2, 30.0, "cc"]}`` - - Returns - ------- - :class:`dict` - Boundaries for optional arguments - """ - return {"nu": [0.2, 30.0, "cc"]} - - def cor(self, h): - """Matérn normalized correlation function.""" - h = np.asarray(np.abs(h), dtype=np.double) - # for nu > 20 we just use the gaussian model - if self.nu > 20.0: - return np.exp(-((h / 2.0) ** 2)) - # calculate by log-transformation to prevent numerical errors - h_gz = h[h > 0.0] - res = np.ones_like(h) - res[h > 0.0] = np.exp( - (1.0 - self.nu) * np.log(2) - - sps.loggamma(self.nu) - + self.nu * np.log(np.sqrt(self.nu) * h_gz) - ) * sps.kv(self.nu, np.sqrt(self.nu) * h_gz) - # if nu >> 1 we get errors for the farfield, there 0 is approached - res[np.logical_not(np.isfinite(res))] = 0.0 - # covariance is positive - res = np.maximum(res, 0.0) - return res - - def spectral_density(self, k): # noqa: D102 - k = np.asarray(k, dtype=np.double) - x = (k * self.len_rescaled) ** 2 - # for nu > 20 we just use an approximation of the gaussian model - if self.nu > 20.0: - return ( - (self.len_rescaled / np.sqrt(np.pi)) ** self.dim - * np.exp(-x) - * (1 + 0.5 * x**2 / self.nu) - * np.sqrt(1 + x / self.nu) ** (-self.dim) - ) - return (self.len_rescaled / np.sqrt(np.pi)) ** self.dim * np.exp( - -(self.nu + self.dim / 2.0) * np.log(1.0 + x / self.nu) - + sps.loggamma(self.nu + self.dim / 2.0) - - sps.loggamma(self.nu) - - self.dim * np.log(np.sqrt(self.nu)) - ) - - def calc_integral_scale(self): # noqa: D102 - return ( - self.len_rescaled - * np.pi - / np.sqrt(self.nu) - / sps.beta(self.nu, 0.5) - ) - - -class Integral(CovModel): - r"""The Exponential Integral covariance model. - - Notes - ----- - This model is given by the following correlation function [Mueller2021]_: - - .. math:: - \rho(r) = - \frac{\nu}{2}\cdot - E_{1+\frac{\nu}{2}}\left( \left( s\cdot\frac{r}{\ell} \right)^2 \right) - - Where the standard rescale factor is :math:`s=1`. - :math:`E_s(x)` is the exponential integral. - - :math:`\nu` is a shape parameter (1 by default). - - For :math:`\nu \to \infty`, a gaussian model is approached, since it represents - the limiting case: - - .. math:: - \rho(r) = - \exp\left(-\left(s\cdot\frac{r}{\ell}\right)^2\right) - - References - ---------- - .. [Mueller2021] Müller, S., Heße, F., Attinger, S., and Zech, A., - "The extended generalized radial flow model and effective - conductivity for truncated power law variograms", - Adv. Water Resour., 156, 104027, (2021) - - Other Parameters - ---------------- - nu : :class:`float`, optional - Shape parameter. Standard range: ``(0.0, 50]`` - Default: ``1.0`` - """ - - def default_opt_arg(self): - """Defaults for the optional arguments. - - * ``{"nu": 1.0}`` - - Returns - ------- - :class:`dict` - Defaults for optional arguments - """ - return {"nu": 1.0} - - def default_opt_arg_bounds(self): - """Defaults for boundaries of the optional arguments. - - * ``{"nu": [0.0, 50.0, "oc"]}`` - - Returns - ------- - :class:`dict` - Boundaries for optional arguments - """ - return {"nu": [0.0, 50.0, "oc"]} - - def cor(self, h): - """Exponential Integral normalized correlation function.""" - h = np.asarray(h, dtype=np.double) - return 0.5 * self.nu * exp_int(1.0 + 0.5 * self.nu, h**2) - - def spectral_density(self, k): # noqa: D102 - k = np.asarray(k, dtype=np.double) - fac = (0.5 * self.len_rescaled / np.sqrt(np.pi)) ** self.dim - lim = fac * self.nu / (self.nu + self.dim) - # for nu > 50 we just use an approximation of the gaussian model - if self.nu > 50.0: - x = (k * self.len_rescaled / 2) ** 2 - return lim * np.exp(-x) * (1 + 2 * x / (self.nu + self.dim + 2)) - # separate calculation at origin - s = (self.nu + self.dim) / 2 - res = np.empty_like(k) - k_gz = np.logical_not(np.isclose(k, 0)) - x = (k[k_gz] * self.len_rescaled / 2) ** 2 - # limit at k=0 (inc_gamma_low(s, x) / x**s -> 1/s for x -> 0) - res[np.logical_not(k_gz)] = lim - res[k_gz] = 0.5 * self.nu * fac / x**s * inc_gamma_low(s, x) - return res - - def calc_integral_scale(self): # noqa: D102 - return ( - self.len_rescaled * self.nu * np.sqrt(np.pi) / (2 * self.nu + 2.0) - ) - - -class Rational(CovModel): - r"""The rational quadratic covariance model. - - Notes - ----- - This model is given by the following correlation function [Rasmussen2003]_: - - .. math:: - \rho(r) = - \left(1 + \frac{1}{\alpha} \cdot - \left(s\cdot\frac{r}{\ell}\right)^2\right)^{-\alpha} - - Where the standard rescale factor is :math:`s=1`. - :math:`\alpha` is a shape parameter and should be > 0.5. - - For :math:`\alpha\to\infty` this model converges to the Gaussian model: - - .. math:: - \rho(r)= - \exp\left(-\left(s\cdot\frac{r}{\ell}\right)^{2}\right) - - References - ---------- - .. [Rasmussen2003] Rasmussen, C. E., - "Gaussian processes in machine learning." Summer school on - machine learning. Springer, Berlin, Heidelberg, (2003) - - Other Parameters - ---------------- - alpha : :class:`float`, optional - Shape parameter. Standard range: ``[0.5, 50]`` - Default: ``1.0`` - """ - - def default_opt_arg(self): - """Defaults for the optional arguments. - - * ``{"alpha": 1.0}`` - - Returns - ------- - :class:`dict` - Defaults for optional arguments - """ - return {"alpha": 1.0} - - def default_opt_arg_bounds(self): - """Defaults for boundaries of the optional arguments. - - * ``{"alpha": [0.5, 50.0]}`` - - Returns - ------- - :class:`dict` - Boundaries for optional arguments - """ - return {"alpha": [0.5, 50.0]} - - def cor(self, h): - """Rational normalized correlation function.""" - return np.power(1 + h**2 / self.alpha, -self.alpha) - - def calc_integral_scale(self): # noqa: D102 - return ( - self.len_rescaled - * np.sqrt(np.pi * self.alpha) - * sps.gamma(self.alpha - 0.5) - / sps.gamma(self.alpha) - / 2.0 - ) - - -class Cubic(CovModel): - r"""The Cubic covariance model. - - A model with reverse curvature near the origin and a finite range of - correlation. - - Notes - ----- - This model is given by the following correlation function [Chiles2009]_: - - .. math:: - \rho(r) = - \begin{cases} - 1- 7 \left(s\cdot\frac{r}{\ell}\right)^{2} - + \frac{35}{4} \left(s\cdot\frac{r}{\ell}\right)^{3} - - \frac{7}{2} \left(s\cdot\frac{r}{\ell}\right)^{5} - + \frac{3}{4} \left(s\cdot\frac{r}{\ell}\right)^{7} - & r<\frac{\ell}{s}\\ - 0 & r\geq\frac{\ell}{s} - \end{cases} - - Where the standard rescale factor is :math:`s=1`. - - References - ---------- - .. [Chiles2009] Chiles, J. P., & Delfiner, P., - "Geostatistics: modeling spatial uncertainty" (Vol. 497), - John Wiley & Sons. (2009) - """ - - def cor(self, h): - """Spherical normalized correlation function.""" - h = np.minimum(np.abs(h, dtype=np.double), 1.0) - return 1.0 - 7 * h**2 + 8.75 * h**3 - 3.5 * h**5 + 0.75 * h**7 - - -class Linear(CovModel): - r"""The bounded linear covariance model. - - This model is derived from the relative intersection area of - two lines in 1D, where the middle points have a distance of :math:`r` - and the line lengths are :math:`\ell`. - - Notes - ----- - This model is given by the following correlation function [Webster2007]_: - - .. math:: - \rho(r) = - \begin{cases} - 1-s\cdot\frac{r}{\ell} & r<\frac{\ell}{s}\\ - 0 & r\geq\frac{\ell}{s} - \end{cases} - - Where the standard rescale factor is :math:`s=1`. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - - def cor(self, h): - """Linear normalized correlation function.""" - return np.maximum(1 - np.abs(h, dtype=np.double), 0.0) - - def check_dim(self, dim): - """Linear model is only valid in 1D.""" - return dim < 2 - - -class Circular(CovModel): - r"""The circular covariance model. - - This model is derived as the relative intersection area of - two discs in 2D, where the middle points have a distance of :math:`r` - and the diameters are given by :math:`\ell`. - - Notes - ----- - This model is given by the following correlation function [Webster2007]_: - - .. math:: - \rho(r) = - \begin{cases} - \frac{2}{\pi}\cdot - \left( - \cos^{-1}\left(s\cdot\frac{r}{\ell}\right) - - s\cdot\frac{r}{\ell}\cdot\sqrt{1-\left(s\cdot\frac{r}{\ell}\right)^{2}} - \right) - & r<\frac{\ell}{s}\\ - 0 & r\geq\frac{\ell}{s} - \end{cases} - - Where the standard rescale factor is :math:`s=1`. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - - def cor(self, h): - """Circular normalized correlation function.""" - h = np.asarray(np.abs(h), dtype=np.double) - res = np.zeros_like(h) - # arccos is instable around h=1 - h_l1 = h < 1.0 - h_low = h[h_l1] - res[h_l1] = ( - 2 / np.pi * (np.arccos(h_low) - h_low * np.sqrt(1 - h_low**2)) - ) - return res - - def check_dim(self, dim): - """Circular model is only valid in 1D and 2D.""" - return dim < 3 - - -class Spherical(CovModel): - r"""The Spherical covariance model. - - This model is derived from the relative intersection area of - two spheres in 3D, where the middle points have a distance of :math:`r` - and the diameters are given by :math:`\ell`. - - Notes - ----- - This model is given by the following correlation function [Webster2007]_: - - .. math:: - \rho(r) = - \begin{cases} - 1-\frac{3}{2}\cdot s\cdot\frac{r}{\ell} + - \frac{1}{2}\cdot\left(s\cdot\frac{r}{\ell}\right)^{3} - & r<\frac{\ell}{s}\\ - 0 & r\geq\frac{\ell}{s} - \end{cases} - - Where the standard rescale factor is :math:`s=1`. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - - def cor(self, h): - """Spherical normalized correlation function.""" - h = np.minimum(np.abs(h, dtype=np.double), 1.0) - return 1.0 - 1.5 * h + 0.5 * h**3 - - def check_dim(self, dim): - """Spherical model is only valid in 1D, 2D and 3D.""" - return dim < 4 - - -class HyperSpherical(CovModel): - r"""The Hyper-Spherical covariance model. - - This model is derived from the relative intersection area of - two d-dimensional hyperspheres, - where the middle points have a distance of :math:`r` - and the diameters are given by :math:`\ell`. - - In 1D this is the Linear model, in 2D the Circular model - and in 3D the Spherical model. - - Notes - ----- - This model is given by the following correlation function [Matern1960]_: - - .. math:: - \rho(r) = - \begin{cases} - 1-s\cdot\frac{r}{\ell}\cdot\frac{ - _{2}F_{1}\left(\frac{1}{2},-\frac{d-1}{2},\frac{3}{2}, - \left(s\cdot\frac{r}{\ell}\right)^{2}\right)} - {_{2}F_{1}\left(\frac{1}{2},-\frac{d-1}{2},\frac{3}{2},1\right)} - & r<\frac{\ell}{s}\\ - 0 & r\geq\frac{\ell}{s} - \end{cases} - - Where the standard rescale factor is :math:`s=1`. - :math:`d` is the dimension. - - References - ---------- - .. [Matern1960] Matern B., "Spatial Variation", - Swedish National Institute for Forestry Research, (1960) - """ - - def cor(self, h): - """Hyper-Spherical normalized correlation function.""" - h = np.asarray(h, dtype=np.double) - res = np.zeros_like(h) - h_l1 = h < 1 - nu = (self.dim - 1.0) / 2.0 - fac = 1.0 / sps.hyp2f1(0.5, -nu, 1.5, 1) - res[h_l1] = 1 - h[h_l1] * fac * sps.hyp2f1(0.5, -nu, 1.5, h[h_l1] ** 2) - return res - - def spectral_density(self, k): # noqa: D102 - k = np.asarray(k, dtype=np.double) - res = np.empty_like(k) - kl = k * self.len_rescaled - kl_gz = np.logical_not(np.isclose(k, 0)) - res[kl_gz] = sps.gamma(self.dim / 2 + 1) / np.sqrt(np.pi) ** self.dim - res[kl_gz] *= sps.jv(self.dim / 2, kl[kl_gz] / 2) ** 2 - res[kl_gz] /= k[kl_gz] ** self.dim - res[np.logical_not(kl_gz)] = ( - (self.len_rescaled / 4) ** self.dim - / sps.gamma(self.dim / 2 + 1) - / np.sqrt(np.pi) ** self.dim - ) - return res - - -class SuperSpherical(CovModel): - r"""The Super-Spherical covariance model. - - This model is derived from the relative intersection area of - two d-dimensional hyperspheres, - where the middle points have a distance of :math:`r` - and the diameters are given by :math:`\ell`. - It is than valid in all lower dimensions. - By default it coincides with the Hyper-Spherical model. - - Notes - ----- - This model is given by the following correlation function [Matern1960]_: - - .. math:: - \rho(r) = - \begin{cases} - 1-s\cdot\frac{r}{\ell}\cdot\frac{ - _{2}F_{1}\left(\frac{1}{2},-\nu,\frac{3}{2}, - \left(s\cdot\frac{r}{\ell}\right)^{2}\right)} - {_{2}F_{1}\left(\frac{1}{2},-\nu,\frac{3}{2},1\right)} - & r<\frac{\ell}{s}\\ - 0 & r\geq\frac{\ell}{s} - \end{cases} - - Where the standard rescale factor is :math:`s=1`. - :math:`\nu\geq\frac{d-1}{2}` is a shape parameter. - - References - ---------- - .. [Matern1960] Matern B., "Spatial Variation", - Swedish National Institute for Forestry Research, (1960) - - Other Parameters - ---------------- - nu : :class:`float`, optional - Shape parameter. Standard range: ``[(dim-1)/2, 50]`` - Default: ``(dim-1)/2`` - """ - - def default_opt_arg(self): - """Defaults for the optional arguments. - - * ``{"nu": (dim-1)/2}`` - - Returns - ------- - :class:`dict` - Defaults for optional arguments - """ - return {"nu": (self.dim - 1) / 2} - - def default_opt_arg_bounds(self): - """Defaults for boundaries of the optional arguments. - - * ``{"nu": [(dim-1)/2, 50.0]}`` - - Returns - ------- - :class:`dict` - Boundaries for optional arguments - """ - return {"nu": [(self.dim - 1) / 2, 50.0]} - - def cor(self, h): - """Super-Spherical normalized correlation function.""" - h = np.asarray(h, dtype=np.double) - res = np.zeros_like(h) - h_l1 = h < 1 - fac = 1.0 / sps.hyp2f1(0.5, -self.nu, 1.5, 1.0) - res[h_l1] = 1.0 - h[h_l1] * fac * sps.hyp2f1( - 0.5, -self.nu, 1.5, h[h_l1] ** 2 - ) - return res - - -class JBessel(CovModel): - r"""The J-Bessel hole model. - - This covariance model is a valid hole model, meaning it has areas - of negative correlation but a valid spectral density. - - Notes - ----- - This model is given by the following correlation function [Chiles2009]_: - - .. math:: - \rho(r) = - \Gamma(\nu+1) \cdot - \frac{\mathrm{J}_{\nu}\left(s\cdot\frac{r}{\ell}\right)} - {\left(s\cdot\frac{r}{2\ell}\right)^{\nu}} - - Where the standard rescale factor is :math:`s=1`. - :math:`\Gamma` is the gamma function and :math:`\mathrm{J}_{\nu}` - is the Bessel functions of the first kind. - :math:`\nu\geq\frac{d}{2}-1` is a shape parameter, - which defaults to :math:`\nu=\frac{d}{2}`, - since the spectrum of the model gets instable for - :math:`\nu\to\frac{d}{2}-1`. - - For :math:`\nu=\frac{1}{2}` (valid in d=1,2,3) - we get the so-called 'Wave' model: - - .. math:: - \rho(r) = - \frac{\sin\left(s\cdot\frac{r}{\ell}\right)}{s\cdot\frac{r}{\ell}} - - References - ---------- - .. [Chiles2009] Chiles, J. P., & Delfiner, P., - "Geostatistics: modeling spatial uncertainty" (Vol. 497), - John Wiley & Sons. (2009) - - Other Parameters - ---------------- - nu : :class:`float`, optional - Shape parameter. Standard range: ``[dim/2 - 1, 50]`` - Default: ``dim/2`` - """ - - def default_opt_arg(self): - """Defaults for the optional arguments. - - * ``{"nu": dim/2}`` - - Returns - ------- - :class:`dict` - Defaults for optional arguments - """ - return {"nu": self.dim / 2} - - def default_opt_arg_bounds(self): - """Defaults for boundaries of the optional arguments. - - * ``{"nu": [dim/2 - 1, 50.0]}`` - - Returns - ------- - :class:`dict` - Boundaries for optional arguments - """ - return {"nu": [self.dim / 2 - 1, 50.0]} - - def check_opt_arg(self): - """Check the optional arguments. - - Warns - ----- - nu - If nu is close to dim/2 - 1, the model tends to get unstable. - """ - if abs(self.nu - self.dim / 2 + 1) < 0.01: - warnings.warn( - "JBessel: parameter 'nu' is close to d/2-1, " - "count with unstable results", - AttributeWarning, - ) - - def cor(self, h): - """J-Bessel correlation.""" - h = np.asarray(h, dtype=np.double) - h_gz = np.logical_not(np.isclose(h, 0)) - hh = h[h_gz] - res = np.ones_like(h) - nu = self.nu - res[h_gz] = sps.gamma(nu + 1) * sps.jv(nu, hh) / (hh / 2.0) ** nu - return res - - def spectral_density(self, k): # noqa: D102 - k = np.asarray(k, dtype=np.double) - k_ll = k < 1.0 / self.len_rescaled - kk = k[k_ll] - res = np.zeros_like(k) - # the model is degenerated for nu=d/2-1, so we tweak the spectral pdf - # and cut of the divisor at nu-(d/2-1)=0.01 (gamma(0.01) about 100) - res[k_ll] = ( - (self.len_rescaled / np.sqrt(np.pi)) ** self.dim - * sps.gamma(self.nu + 1.0) - / np.minimum(sps.gamma(self.nu - self.dim / 2 + 1), 100.0) - * (1.0 - (kk * self.len_rescaled) ** 2) ** (self.nu - self.dim / 2) - ) - return res diff --git a/src/gstools/covmodel/plot.py b/src/gstools/covmodel/plot.py deleted file mode 100644 index 32148c14a..000000000 --- a/src/gstools/covmodel/plot.py +++ /dev/null @@ -1,288 +0,0 @@ -""" -GStools subpackage providing plotting routines for the covariance models. - -.. currentmodule:: gstools.covmodel.plot - -The following classes and functions are provided - -.. autosummary:: - :toctree: - - plot_variogram - plot_covariance - plot_correlation - plot_vario_yadrenko - plot_cov_yadrenko - plot_cor_yadrenko - plot_vario_axis - plot_cov_axis - plot_cor_axis - plot_vario_spatial - plot_cov_spatial - plot_cor_spatial - plot_spectrum - plot_spectral_density - plot_spectral_rad_pdf -""" - -# pylint: disable=C0103, C0415, E1130 -import numpy as np - -from gstools.tools.geometric import generate_grid -from gstools.tools.misc import get_fig_ax - -__all__ = [ - "plot_variogram", - "plot_covariance", - "plot_correlation", - "plot_vario_yadrenko", - "plot_cov_yadrenko", - "plot_cor_yadrenko", - "plot_vario_axis", - "plot_cov_axis", - "plot_cor_axis", - "plot_vario_spatial", - "plot_cov_spatial", - "plot_cor_spatial", - "plot_spectrum", - "plot_spectral_density", - "plot_spectral_rad_pdf", -] - - -# plotting routines ####################################################### - - -def _plot_spatial(dim, pos, field, fig, ax, temporal, **kwargs): - from gstools.field.plot import plot_1d, plot_nd - - if dim == 1: - return plot_1d(pos, field, fig, ax, temporal, **kwargs) - return plot_nd( - pos, field, "structured", fig, ax, temporal=temporal, **kwargs - ) - - -def plot_vario_spatial( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot spatial variogram of a given CovModel.""" - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(-x_max, x_max) + x_min - pos = [x_s] * model.dim - shp = tuple(len(p) for p in pos) - fld = model.vario_spatial(generate_grid(pos)).reshape(shp) - return _plot_spatial( - model.dim, pos, fld, fig, ax, model.temporal, **kwargs - ) - - -def plot_cov_spatial( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot spatial covariance of a given CovModel.""" - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(-x_max, x_max) + x_min - pos = [x_s] * model.dim - shp = tuple(len(p) for p in pos) - fld = model.cov_spatial(generate_grid(pos)).reshape(shp) - return _plot_spatial( - model.dim, pos, fld, fig, ax, model.temporal, **kwargs - ) - - -def plot_cor_spatial( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot spatial correlation of a given CovModel.""" - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(-x_max, x_max) + x_min - pos = [x_s] * model.dim - shp = tuple(len(p) for p in pos) - fld = model.cor_spatial(generate_grid(pos)).reshape(shp) - return _plot_spatial( - model.dim, pos, fld, fig, ax, model.temporal, **kwargs - ) - - -def plot_variogram( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot variogram of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} variogram") - ax.plot(x_s, model.variogram(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_covariance( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot covariance of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} covariance") - ax.plot(x_s, model.covariance(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_correlation( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot correlation function of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} correlation") - ax.plot(x_s, model.correlation(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_vario_yadrenko( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot Yadrenko variogram of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = min(3 * model.len_scale, model.geo_scale * np.pi) - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} Yadrenko variogram") - ax.plot(x_s, model.vario_yadrenko(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_cov_yadrenko( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot Yadrenko covariance of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = min(3 * model.len_scale, model.geo_scale * np.pi) - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} Yadrenko covariance") - ax.plot(x_s, model.cov_yadrenko(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_cor_yadrenko( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot Yadrenko correlation function of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = min(3 * model.len_scale, model.geo_scale * np.pi) - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} Yadrenko correlation") - ax.plot(x_s, model.cor_yadrenko(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_vario_axis( - model, axis=0, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot variogram of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} variogram on axis {axis}") - ax.plot(x_s, model.vario_axis(x_s, axis), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_cov_axis( - model, axis=0, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot variogram of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} covariance on axis {axis}") - ax.plot(x_s, model.cov_axis(x_s, axis), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_cor_axis( - model, axis=0, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot variogram of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 * model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} correlation on axis {axis}") - ax.plot(x_s, model.cor_axis(x_s, axis), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_spectrum( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot spectrum of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 / model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} {model.dim}D spectrum") - ax.plot(x_s, model.spectrum(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_spectral_density( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot spectral density of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 / model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} {model.dim}D spectral-density") - ax.plot(x_s, model.spectral_density(x_s), **kwargs) - ax.legend() - fig.show() - return ax - - -def plot_spectral_rad_pdf( - model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs -): # pragma: no cover - """Plot radial spectral pdf of a given CovModel.""" - fig, ax = get_fig_ax(fig, ax) - if x_max is None: - x_max = 3 / model.len_scale - x_s = np.linspace(x_min, x_max) - kwargs.setdefault("label", f"{model.name} {model.dim}D spectral-rad-pdf") - ax.plot(x_s, model.spectral_rad_pdf(x_s), **kwargs) - ax.legend() - fig.show() - return ax diff --git a/src/gstools/covmodel/tools.py b/src/gstools/covmodel/tools.py deleted file mode 100644 index dddeb4413..000000000 --- a/src/gstools/covmodel/tools.py +++ /dev/null @@ -1,647 +0,0 @@ -""" -GStools subpackage providing tools for the covariance-model. - -.. currentmodule:: gstools.covmodel.tools - -The following classes and functions are provided - -.. autosummary:: - AttributeWarning - rad_fac - set_opt_args - set_len_anis - check_bounds - check_arg_in_bounds - default_arg_from_bounds - spectral_rad_pdf - percentile_scale - set_arg_bounds - check_arg_bounds - set_dim - compare - model_repr -""" - -# pylint: disable=C0103, W0212 -import warnings - -import numpy as np -from hankel import SymmetricFourierTransform as SFT -from scipy import special as sps -from scipy.optimize import root - -from gstools.tools.geometric import no_of_angles, set_angles, set_anis -from gstools.tools.misc import list_format - -__all__ = [ - "AttributeWarning", - "rad_fac", - "set_opt_args", - "set_len_anis", - "set_model_angles", - "check_bounds", - "check_arg_in_bounds", - "default_arg_from_bounds", - "spectral_rad_pdf", - "percentile_scale", - "set_arg_bounds", - "check_arg_bounds", - "set_dim", - "compare", - "model_repr", -] - - -class AttributeWarning(UserWarning): - """Attribute warning for CovModel class.""" - - -def _init_subclass(cls): - """Initialize gstools covariance model.""" - - def variogram(self, r): - """Isotropic variogram of the model.""" - return self.var - self.covariance(r) + self.nugget - - def covariance(self, r): - """Covariance of the model.""" - return self.var * self.correlation(r) - - def correlation(self, r): - """Correlation function of the model.""" - return 1.0 - (self.variogram(r) - self.nugget) / self.var - - def correlation_from_cor(self, r): - """Correlation function of the model.""" - r = np.asarray(np.abs(r), dtype=np.double) - return self.cor(r / self.len_rescaled) - - def cor_from_correlation(self, h): - """Correlation taking a non-dimensional range.""" - h = np.asarray(np.abs(h), dtype=np.double) - return self.correlation(h * self.len_rescaled) - - abstract = True - if hasattr(cls, "cor"): - if not hasattr(cls, "correlation"): - cls.correlation = correlation_from_cor - abstract = False - else: - cls.cor = cor_from_correlation - if not hasattr(cls, "variogram"): - cls.variogram = variogram - else: - abstract = False - if not hasattr(cls, "covariance"): - cls.covariance = covariance - else: - abstract = False - if not hasattr(cls, "correlation"): - cls.correlation = correlation - else: - abstract = False - if abstract: - raise TypeError( - f"Can't instantiate class '{cls.__name__}', " - "without providing at least one of the methods " - "'cor', 'variogram', 'covariance' or 'correlation'." - ) - - -# Helping functions ########################################################### - - -def rad_fac(dim, r): - """Volume element of the n-dimensional spherical coordinates. - - Given as a factor for integration of a radial-symmetric function. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - r : :class:`numpy.ndarray` - Given radii. - """ - if dim == 1: - fac = 2.0 - elif dim == 2: - fac = 2 * np.pi * r - elif dim == 3: - fac = 4 * np.pi * r**2 - else: # pragma: no cover - fac = ( - dim - * r ** (dim - 1) - * np.sqrt(np.pi) ** dim - / sps.gamma(dim / 2 + 1) - ) - return fac - - -def set_opt_args(model, opt_arg): - """ - Set optional arguments in the model class. - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - opt_arg : :class:`dict` - Dictionary with optional arguments. - - Raises - ------ - ValueError - When an optional argument has an already taken name. - """ - model._opt_arg = [] - # look up the defaults for the optional arguments (defined by the user) - default = model.default_opt_arg() - for opt_name in opt_arg: - if opt_name not in default: - warnings.warn( - f"The given optional argument '{opt_name}' " - "is unknown or has at least no defined standard value. " - "Or you made a Typo... hehe.", - AttributeWarning, - ) - # add the default values if not specified - for def_arg in default: - if def_arg not in opt_arg: - opt_arg[def_arg] = default[def_arg] - # save names of the optional arguments (sort them by name) - model._opt_arg = sorted(opt_arg) - # add the optional arguments as attributes to the class - for opt_name in opt_arg: - if opt_name in dir(model): # "dir" also respects properties - raise ValueError( - f"parameter '{opt_name}' has a 'bad' name, " - "since it is already present in " - "the class. It could not be added to the model." - ) - # Magic happens here - setattr(model, opt_name, float(opt_arg[opt_name])) - - -def set_len_anis(dim, len_scale, anis, latlon=False): - """Set the length scale and anisotropy factors for the given dimension. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - len_scale : :class:`float` or :class:`list` - the length scale of the SRF in x direction or in x- (y-, ...) direction - anis : :class:`float` or :class:`list` - the anisotropy of length scales along the transversal axes - latlon : :class:`bool`, optional - Whether the model is describing 2D fields on earths surface described - by latitude and longitude. In this case there is no spatial anisotropy. - Default: False - - Returns - ------- - len_scale : :class:`float` - the main length scale of the SRF in x direction - anis : :class:`list`, optional - the anisotropy of length scales along the transversal axes - - Notes - ----- - If ``len_scale`` is given by at least two values, - ``anis`` will be recalculated. - - If ``len_scale`` is given as list with to few values, the latter value will - be used for the remaining dimensions. (e.g. [l_1, l_2] in 3D is equal to - [l_1, l_2, l_2]) - - If to few ``anis`` values are given, the first dimensions will be filled - up with 1. (eg. anis=[e] in 3D is equal to anis=[1, e]) - """ - ls_tmp = np.array(len_scale, dtype=np.double) - ls_tmp = np.atleast_1d(ls_tmp)[:dim] - # use just one length scale (x-direction) - out_len_scale = ls_tmp[0] - # set the anisotropies in y- and z-direction according to the input - if len(ls_tmp) == 1: - out_anis = set_anis(dim, anis) - else: - # fill up length-scales with the latter len_scale, such that len()==dim - if len(ls_tmp) < dim: - ls_tmp = np.pad(ls_tmp, (0, dim - len(ls_tmp)), "edge") - # if multiple length-scales are given, calculate the anisotropies - out_anis = np.zeros(dim - 1, dtype=np.double) - for i in range(1, dim): - out_anis[i - 1] = ls_tmp[i] / ls_tmp[0] - # sanity check - for ani in out_anis: - if not ani > 0.0: - raise ValueError( - f"anisotropy-ratios needs to be > 0, got: {out_anis}" - ) - # no spatial anisotropy for latlon - if latlon: - out_anis[:2] = 1.0 - return out_len_scale, out_anis - - -def set_model_angles(dim, angles, latlon=False, temporal=False): - """Set the model angles for the given dimension. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the angles of the SRF - latlon : :class:`bool`, optional - Whether the model is describing 2D fields on earths surface described - by latitude and longitude. - Default: False - temporal : :class:`bool`, optional - Whether a time-dimension is appended. - Default: False - - Returns - ------- - angles : :class:`float` - the angles fitting to the dimension - - Notes - ----- - If too few angles are given, they are filled up with `0`. - """ - if latlon: - return np.array(no_of_angles(dim) * [0], dtype=np.double) - out_angles = set_angles(dim, angles) - if temporal: - # no rotation between spatial dimensions and temporal dimension - out_angles[no_of_angles(dim - 1) :] = 0.0 - return out_angles - - -def check_bounds(bounds): - """ - Check if given bounds are valid. - - Parameters - ---------- - bounds : list - bound can contain 2 to 3 values: - 1. lower bound - float - 2. upper bound - float - 3. Interval type (optional) - * "oo" : open - open - * "oc" : open - close - * "co" : close - open - * "cc" : close - close - """ - if len(bounds) not in (2, 3): - return False - if bounds[1] <= bounds[0]: - return False - if len(bounds) == 3 and bounds[2] not in ("oo", "oc", "co", "cc"): - return False - return True - - -def check_arg_in_bounds(model, arg, val=None): - """Check if given argument value is in bounds of the given model.""" - if arg not in model.arg_bounds: - raise ValueError(f"check bounds: unknown argument: {arg}") - bnd = list(model.arg_bounds[arg]) - val = getattr(model, arg) if val is None else val - val = np.asarray(val) - error_case = 0 - if len(bnd) == 2: - bnd.append("cc") # use closed intervals by default - if bnd[2][0] == "c": - if np.any(val < bnd[0]): - error_case = 1 - else: - if np.any(val <= bnd[0]): - error_case = 2 - if bnd[2][1] == "c": - if np.any(val > bnd[1]): - error_case = 3 - else: - if np.any(val >= bnd[1]): - error_case = 4 - return error_case - - -def default_arg_from_bounds(bounds): - """ - Determine a default value from given bounds. - - Parameters - ---------- - bounds : list - bounds for the value. - - Returns - ------- - float - Default value in the given bounds. - """ - if bounds[0] > -np.inf and bounds[1] < np.inf: - return (bounds[0] + bounds[1]) / 2.0 - if bounds[0] > -np.inf: - return bounds[0] + 1.0 - if bounds[1] < np.inf: - return bounds[1] - 1.0 - return 0.0 # pragma: no cover - - -# outsourced routines - - -def spectral_rad_pdf(model, r): - """ - Spectral radians PDF of a model. - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - r : :class:`numpy.ndarray` - Given radii. - - Returns - ------- - :class:`numpy.ndarray` - PDF values. - - """ - r = np.asarray(np.abs(r), dtype=np.double) - if model.dim > 1: - r_gz = np.logical_not(np.isclose(r, 0)) - # to prevent numerical errors, we just calculate where r>0 - res = np.zeros_like(r, dtype=np.double) - res[r_gz] = rad_fac(model.dim, r[r_gz]) * np.abs( - model.spectral_density(r[r_gz]) - ) - else: - res = rad_fac(model.dim, r) * np.abs(model.spectral_density(r)) - # prevent numerical errors in hankel for small r values (set 0) - res[np.logical_not(np.isfinite(res))] = 0.0 - # prevent numerical errors in hankel for big r (set non-negative) - res = np.maximum(res, 0.0) - return res - - -def percentile_scale(model, per=0.9): - """ - Calculate the percentile scale of the isotrope model. - - This is the distance, where the given percentile of the variance - is reached by the variogram - - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - per : float, optional - Percentile to use. The default is 0.9. - - Raises - ------ - ValueError - When percentile is not in (0, 1). - - Returns - ------- - float - Percentile scale. - - """ - # check the given percentile - if not 0.0 < per < 1.0: - raise ValueError(f"percentile needs to be within (0, 1), got: {per}") - - # define a curve, that has its root at the wanted point - def curve(x): - return 1.0 - model.correlation(x) - per - - # take 'per * len_rescaled' as initial guess - return root(curve, per * model.len_rescaled)["x"][0] - - -def set_arg_bounds(model, check_args=True, **kwargs): - r"""Set bounds for the parameters of the model. - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - check_args : bool, optional - Whether to check if the arguments are in their valid bounds. - In case not, a proper default value will be determined. - Default: True - **kwargs - Parameter name as keyword ("var", "len_scale", "nugget", ) - and a list of 2 or 3 values as value: - - * ``[a, b]`` or - * ``[a, b, ]`` - - is one of ``"oo"``, ``"cc"``, ``"oc"`` or ``"co"`` - to define if the bounds are open ("o") or closed ("c"). - """ - # if variance needs to be resetted, do this at last - var_bnds = [] - for arg, bounds in kwargs.items(): - if not check_bounds(bounds): - raise ValueError( - f"Given bounds for '{arg}' are not valid, got: {bounds}" - ) - if arg in model.opt_arg: - model._opt_arg_bounds[arg] = bounds - elif arg == "var": - var_bnds = bounds - continue - elif arg == "len_scale": - model.len_scale_bounds = bounds - elif arg == "nugget": - model.nugget_bounds = bounds - elif arg == "anis": - model.anis_bounds = bounds - else: - raise ValueError(f"set_arg_bounds: unknown argument '{arg}'") - if check_args and check_arg_in_bounds(model, arg) > 0: - def_arg = default_arg_from_bounds(bounds) - if arg == "anis": - setattr(model, arg, [def_arg] * (model.dim - 1)) - else: - setattr(model, arg, def_arg) - # set var last like always - if var_bnds: - model.var_bounds = var_bnds - if check_args and check_arg_in_bounds(model, "var") > 0: - model.var = default_arg_from_bounds(var_bnds) - - -def check_arg_bounds(model): - """ - Check arguments to be within their given bounds. - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - - Raises - ------ - ValueError - When an argument is not in its valid bounds. - """ - # check var, len_scale, nugget and optional-arguments - for arg in model.arg_bounds: - if not model.arg_bounds[arg]: - continue # no bounds given during init (called from self.dim) - bnd = list(model.arg_bounds[arg]) - val = getattr(model, arg) - error_case = check_arg_in_bounds(model, arg) - if error_case == 1: - raise ValueError(f"{arg} needs to be >= {bnd[0]}, got: {val}") - if error_case == 2: - raise ValueError(f"{arg} needs to be > {bnd[0]}, got: {val}") - if error_case == 3: - raise ValueError(f"{arg} needs to be <= {bnd[1]}, got: {val}") - if error_case == 4: - raise ValueError(f"{arg} needs to be < {bnd[1]}, got: {val}") - - -def set_dim(model, dim): - """ - Set the dimension in the given model. - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - dim : :class:`int` - dimension of the model. - - Raises - ------ - ValueError - When dimension is < 1. - """ - # check if a fixed dimension should be used - if model.fix_dim() is not None and model.fix_dim() != dim: - warnings.warn( - f"{model.name}: using fixed dimension {model.fix_dim()}", - AttributeWarning, - ) - dim = model.fix_dim() - if model.latlon and dim != (3 + int(model.temporal)): - raise ValueError( - f"{model.name}: using fixed dimension {model.fix_dim()}, " - f"which is not compatible with a latlon model (with temporal={model.temporal})." - ) - # force dim=3 (or 4 when temporal=True) for latlon models - dim = (3 + int(model.temporal)) if model.latlon else dim - # set the dimension - if dim < 1: - raise ValueError("Only dimensions of d >= 1 are supported.") - if not model.check_dim(dim): - warnings.warn( - f"Dimension {dim} is not appropriate for this model.", - AttributeWarning, - ) - model._dim = int(dim) - # create fourier transform just once (recreate for dim change) - model._sft = SFT(ndim=model.dim, **model.hankel_kw) - # recalculate dimension related parameters - if model._anis is not None: - model._len_scale, model._anis = set_len_anis( - model.dim, model._len_scale, model._anis - ) - if model._angles is not None: - model._angles = set_model_angles( - model.dim, model._angles, model.latlon, model.temporal - ) - model.check_arg_bounds() - - -def compare(this, that): - """ - Compare CovModels. - - Parameters - ---------- - this / that : :any:`CovModel` - The covariance models to compare. - """ - # prevent attribute error in opt_arg if the are not equal - if set(this.opt_arg) != set(that.opt_arg): - return False - # prevent dim error in anis and angles - if this.dim != that.dim: - return False - equal = True - equal &= this.name == that.name - equal &= np.isclose(this.var, that.var) - equal &= np.isclose(this.var_raw, that.var_raw) # ?! needless? - equal &= np.isclose(this.nugget, that.nugget) - equal &= np.isclose(this.len_scale, that.len_scale) - equal &= np.all(np.isclose(this.anis, that.anis)) - equal &= np.all(np.isclose(this.angles, that.angles)) - equal &= np.isclose(this.rescale, that.rescale) - equal &= this.latlon == that.latlon - equal &= this.temporal == that.temporal - for opt in this.opt_arg: - equal &= np.isclose(getattr(this, opt), getattr(that, opt)) - return equal - - -def model_repr(model): # pragma: no cover - """ - Generate the model string representation. - - Parameters - ---------- - model : :any:`CovModel` - The covariance model in use. - """ - m = model - p = model._prec - opt_str = "" - t_str = ", temporal=True" if m.temporal else "" - if not np.isclose(m.rescale, m.default_rescale()): - opt_str += f", rescale={m.rescale:.{p}}" - for opt in m.opt_arg: - opt_str += f", {opt}={getattr(m, opt):.{p}}" - if m.latlon: - ani_str = ( - "" - if m.is_isotropic or not m.temporal - else f", anis={m.anis[-1]:.{p}}" - ) - r_str = ( - "" - if np.isclose(m.geo_scale, 1) - else f", geo_scale={m.geo_scale:.{p}}" - ) - repr_str = ( - f"{m.name}(latlon={m.latlon}{t_str}, var={m.var:.{p}}, " - f"len_scale={m.len_scale:.{p}}, nugget={m.nugget:.{p}}" - f"{ani_str}{r_str}{opt_str})" - ) - else: - # only print anis and angles if model is anisotropic or rotated - ani_str = "" if m.is_isotropic else f", anis={list_format(m.anis, p)}" - ang_str = ( - f", angles={list_format(m.angles, p)}" if m.do_rotation else "" - ) - repr_str = ( - f"{m.name}(dim={m.spatial_dim}{t_str}, var={m.var:.{p}}, " - f"len_scale={m.len_scale:.{p}}, nugget={m.nugget:.{p}}" - f"{ani_str}{ang_str}{opt_str})" - ) - return repr_str diff --git a/src/gstools/covmodel/tpl_models.py b/src/gstools/covmodel/tpl_models.py deleted file mode 100644 index b728e7b98..000000000 --- a/src/gstools/covmodel/tpl_models.py +++ /dev/null @@ -1,570 +0,0 @@ -""" -GStools subpackage providing truncated power law covariance models. - -.. currentmodule:: gstools.covmodel.tpl_models - -The following classes and functions are provided - -.. autosummary:: - TPLGaussian - TPLExponential - TPLStable - TPLSimple -""" - -# pylint: disable=C0103, E1101 -import warnings - -import numpy as np - -from gstools.covmodel.base import CovModel -from gstools.covmodel.tools import AttributeWarning -from gstools.tools.special import ( - tpl_exp_spec_dens, - tpl_gau_spec_dens, - tplstable_cor, -) - -__all__ = ["TPLGaussian", "TPLExponential", "TPLStable", "TPLSimple"] - - -class TPLCovModel(CovModel): - """Truncated-Power-Law Covariance Model base class for super-position.""" - - @property - def len_up(self): - """:class:`float`: Upper length scale truncation of the model. - - * ``len_up = len_low + len_scale`` - """ - return self.len_low + self.len_scale - - @property - def len_up_rescaled(self): - """:class:`float`: Upper length scale truncation rescaled. - - * ``len_up_rescaled = (len_low + len_scale) / rescale`` - """ - return self.len_up / self.rescale - - @property - def len_low_rescaled(self): - """:class:`float`: Lower length scale truncation rescaled. - - * ``len_low_rescaled = len_low / rescale`` - """ - return self.len_low / self.rescale - - def var_factor(self): - """Factor for C (intensity of variation) to result in variance.""" - return ( - self.len_up_rescaled ** (2 * self.hurst) - - self.len_low_rescaled ** (2 * self.hurst) - ) / (2 * self.hurst) - - def cor(self, h): - """TPL - normalized correlation function.""" - - def correlation(self, r): - """TPL - correlation function.""" - - -# Truncated power law ######################################################### - - -class TPLGaussian(TPLCovModel): - r"""Truncated-Power-Law with Gaussian modes. - - Notes - ----- - The truncated power law is given by a superposition of scale-dependent - variograms [Federico1997]_: - - .. math:: - \gamma_{\ell_{\mathrm{low}},\ell_{\mathrm{up}}}(r) = - \intop_{\ell_{\mathrm{low}}}^{\ell_{\mathrm{up}}} - \gamma(r,\lambda) \frac{\rm d \lambda}{\lambda} - - with `Gaussian` modes on each scale: - - .. math:: - \gamma(r,\lambda) &= - \sigma^2(\lambda)\cdot\left(1- - \exp\left[- \left(\frac{r}{\lambda}\right)^{2}\right] - \right)\\ - \sigma^2(\lambda) &= C\cdot\lambda^{2H} - - This results in: - - .. math:: - \gamma_{\ell_{\mathrm{low}},\ell_{\mathrm{up}}}(r) &= - \sigma^2_{\ell_{\mathrm{low}},\ell_{\mathrm{up}}}\cdot\left(1- - H \cdot - \frac{\ell_{\mathrm{up}}^{2H} \cdot - E_{1+H} - \left[\left(\frac{r}{\ell_{\mathrm{up}}}\right)^{2}\right] - - \ell_{\mathrm{low}}^{2H} \cdot - E_{1+H} - \left[\left(\frac{r}{\ell_{\mathrm{low}}}\right)^{2}\right]} - {\ell_{\mathrm{up}}^{2H}-\ell_{\mathrm{low}}^{2H}} - \right) \\ - \sigma^2_{\ell_{\mathrm{low}},\ell_{\mathrm{up}}} &= - \frac{C\cdot\left(\ell_{\mathrm{up}}^{2H} - -\ell_{\mathrm{low}}^{2H}\right)}{2H} - - The "length scale" of this model is equivalent by the integration range: - - .. math:: - \ell = \ell_{\mathrm{up}} -\ell_{\mathrm{low}} - - If you want to define an upper scale truncation, you should set ``len_low`` - and ``len_scale`` accordingly. - - The following Parameters occur: - - * :math:`C>0` : - scaling factor from the Power-Law (intensity of variation) - This parameter will be calculated internally by the given variance. - You can access C directly by ``model.var_raw`` - * :math:`00` : - scaling factor from the Power-Law (intensity of variation) - This parameter will be calculated internally by the given variance. - You can access C directly by ``model.var_raw`` - * :math:`00` : - scaling factor from the Power-Law (intensity of variation) - This parameter will be calculated internally by the given variance. - You can access C directly by ``model.var_raw`` - * :math:`0 1 and value.size != dim: # vector mean - raise ValueError(f"Mean/Trend: Wrong size ({value})") - return value if value.size > 1 else value.item() - - -class Field: - """A base class for random fields, kriging fields, etc. - - Parameters - ---------- - model : :any:`CovModel`, optional - Covariance Model related to the field. - value_type : :class:`str`, optional - Value type of the field. Either "scalar" or "vector". - The default is "scalar". - mean : :any:`None` or :class:`float` or :any:`callable`, optional - Mean of the field if wanted. Could also be a callable. - The default is None. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the field. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - Trend of the denormalized fields. If no normalizer is applied, - this behaves equal to 'mean'. - The default is None. - dim : :any:`None` or :class:`int`, optional - Dimension of the field if no model is given. - """ - - valid_value_types = ["scalar", "vector"] - """:class:`list` of :class:`str`: valid field value types.""" - - default_field_names = ["field"] - """:class:`list`: Default field names.""" - - def __init__( - self, - model=None, - value_type="scalar", - mean=None, - normalizer=None, - trend=None, - dim=None, - ): - # initialize attributes - self._mesh_type = "unstructured" # default - self._pos = None - self._field_shape = None - self._field_names = [] - self._model = None - self._value_type = None - self._mean = None - self._normalizer = None - self._trend = None - self._dim = dim if dim is None else int(dim) - # set properties - self.model = model - self.value_type = value_type - self.mean = mean - self.normalizer = normalizer - self.trend = trend - - def __len__(self): - return len(self.field_names) - - def __contains__(self, item): - return item in self.field_names - - def __getitem__(self, key): - if key in self.field_names: - return getattr(self, key) - if isinstance(key, int): - return self[self.field_names[key]] - if isinstance(key, slice): - return [self[f] for f in self.field_names[key]] - if isinstance(key, Iterable) and not isinstance(key, str): - return [self[f] for f in key] - raise KeyError(f"{self.name}: requested field '{key}' not present") - - def __delitem__(self, key): - names = [] - if key in self.field_names: - names = [key] - elif isinstance(key, int): - names = [self.field_names[key]] - elif isinstance(key, slice): - names = self.field_names[key] - elif isinstance(key, Iterable) and not isinstance(key, str): - for k in key: - k = self.field_names[k] if isinstance(key, int) else k - names.append(k) - else: - raise KeyError(f"{self.name}: requested field '{key}' not present") - for name in names: - if name not in self.field_names: - raise KeyError( - f"{self.name}: requested field '{name}' not present" - ) - delattr(self, name) - del self._field_names[self._field_names.index(name)] - - def __call__( - self, - pos=None, - field=None, - mesh_type="unstructured", - post_process=True, - store=True, - ): - """Generate the field. - - Parameters - ---------- - pos : :class:`list`, optional - the position tuple, containing main direction and transversal - directions - field : :class:`numpy.ndarray` or :any:`None`, optional - the field values. Will be all zeros if :any:`None` is given. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured'. Default: 'unstructured' - post_process : :class:`bool`, optional - Whether to apply mean, normalizer and trend to the field. - Default: `True` - store : :class:`str` or :class:`bool`, optional - Whether to store field (True/False) with default name - or with specified name. - The default is :any:`True` for default name "field". - - Returns - ------- - field : :class:`numpy.ndarray` - the field values. - """ - name, save = self.get_store_config(store) - pos, shape = self.pre_pos(pos, mesh_type) - if field is None: - field = np.zeros(shape, dtype=np.double) - else: - field = np.asarray(field, dtype=np.double).reshape(shape) - return self.post_field(field, name, post_process, save) - - def structured(self, *args, **kwargs): - """Generate a field on a structured mesh. - - See :any:`__call__` - """ - if self.pos is None: - self.mesh_type = "structured" - if not (args or "pos" in kwargs) and self.mesh_type == "unstructured": - raise ValueError("Field.structured: can't reuse present 'pos'") - call = partial(self.__call__, mesh_type="structured") - return call(*args, **kwargs) - - def unstructured(self, *args, **kwargs): - """Generate a field on an unstructured mesh. - - See :any:`__call__` - """ - if self.pos is None: - self.mesh_type = "unstructured" - if not (args or "pos" in kwargs) and self.mesh_type != "unstructured": - raise ValueError("Field.unstructured: can't reuse present 'pos'") - call = partial(self.__call__, mesh_type="unstructured") - return call(*args, **kwargs) - - def mesh( - self, mesh, points="centroids", direction="all", name="field", **kwargs - ): - """Generate a field on a given meshio, ogs5py or PyVista mesh. - - Parameters - ---------- - mesh : meshio.Mesh or ogs5py.MSH or PyVista mesh - The given mesh - points : :class:`str`, optional - The points to evaluate the field at. - Either the "centroids" of the mesh cells - (calculated as mean of the cell vertices) or the "points" - of the given mesh. - Default: "centroids" - direction : :class:`str` or :class:`list`, optional - Here you can state which direction should be chosen for - lower dimension. For example, if you got a 2D mesh in xz direction, - you have to pass "xz". By default, all directions are used. - One can also pass a list of indices. - Default: "all" - name : :class:`str` or :class:`list` of :class:`str`, optional - Name(s) to store the field(s) in the given mesh as point_data or - cell_data. If to few names are given, digits will be appended. - Default: "field" - **kwargs - Keyword arguments forwarded to :any:`__call__`. - - Notes - ----- - This will store the field in the given mesh under the given name, - if a meshio or PyVista mesh was given. - - See: - - meshio: https://github.com/nschloe/meshio - - ogs5py: https://github.com/GeoStat-Framework/ogs5py - - PyVista: https://github.com/pyvista/pyvista - """ - return generate_on_mesh(self, mesh, points, direction, name, **kwargs) - - def pre_pos(self, pos=None, mesh_type="unstructured", info=False): - """ - Preprocessing positions and mesh_type. - - Parameters - ---------- - pos : :any:`iterable` - the position tuple, containing main direction and transversal - directions - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: `"unstructured"` - info : :class:`bool`, optional - Whether to return information - - Returns - ------- - iso_pos : (d, n), :class:`numpy.ndarray` - Isometrized position tuple. - shape : :class:`tuple` - Shape of the resulting field. - info : :class:`dict`, optional - Information about settings. - - Warnings - -------- - When setting a new position tuple that differs from the present one, - all stored fields will be deleted. - """ - info_ret = {"deleted": False} - if pos is None: - if self.pos is None: - raise ValueError("Field: no position tuple 'pos' present") - else: - info_ret = self.set_pos(pos, mesh_type, info=True) - if self.mesh_type != "unstructured": - pos = generate_grid(self.pos) - else: - pos = self.pos - # return isometrized pos tuple, field shape and possible info - info_ret = (info_ret,) - if self.model is None: - return (pos, self.field_shape) + info * info_ret - return (self.model.isometrize(pos), self.field_shape) + info * info_ret - - def post_field(self, field, name="field", process=True, save=True): - """ - Postprocessing field values. - - Parameters - ---------- - field : :class:`numpy.ndarray` - Field values. - name : :class:`str`, optional - Name. to store the field. - The default is "field". - process : :class:`bool`, optional - Whether to process field to apply mean, normalizer and trend. - The default is True. - save : :class:`bool`, optional - Whether to store the field under the given name. - The default is True. - - Returns - ------- - field : :class:`numpy.ndarray` - Processed field values. - """ - if self.field_shape is None: - raise ValueError("post_field: no 'field_shape' present.") - field = np.asarray(field, dtype=np.double).reshape(self.field_shape) - if process: - field = apply_mean_norm_trend( - pos=self.pos, - field=field, - mesh_type=self.mesh_type, - value_type=self.value_type, - mean=self.mean, - normalizer=self.normalizer, - trend=self.trend, - check_shape=False, - stacked=False, - ) - if save: - name = str(name) - if not name.isidentifier() or ( - name not in self.field_names and name in dir(self) - ): - raise ValueError( - f"Field: given field name '{name}' is not valid" - ) - # allow resetting present fields - if name not in self._field_names: - self._field_names.append(name) - setattr(self, name, field) - return field - - def delete_fields(self, select=None): - """Delete selected fields.""" - del self[self.field_names if select is None else select] - - def transform( - self, method, field="field", store=True, process=False, **kwargs - ): - """ - Apply field transformation. - - Parameters - ---------- - method : :class:`str` - Method to use. - See :py:mod:`gstools.transform` for available transformations. - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - **kwargs - Keyword arguments forwarded to selected method. - - Raises - ------ - ValueError - When method is unknown. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - return apply( - self, method, field=field, store=store, process=process, **kwargs - ) - - def to_pyvista( - self, field_select="field", fieldname="field" - ): # pragma: no cover - """Create a VTK/PyVista grid of the stored field. - - Parameters - ---------- - field_select : :class:`str`, optional - Field that should be stored. Can be: - "field", "raw_field", "krige_field", "err_field" or "krige_var". - Default: "field" - fieldname : :class:`str`, optional - Name of the field in the VTK file. Default: "field" - """ - grid = to_vtk_helper( - self, filename=None, field_select=field_select, fieldname=fieldname - ) - return grid - - def vtk_export( - self, filename, field_select="field", fieldname="field" - ): # pragma: no cover - """Export the stored field to vtk. - - Parameters - ---------- - filename : :class:`str` - Filename of the file to be saved, including the path. Note that an - ending (.vtr or .vtu) will be added to the name. - field_select : :class:`str`, optional - Field that should be stored. Can be: - "field", "raw_field", "krige_field", "err_field" or "krige_var". - Default: "field" - fieldname : :class:`str`, optional - Name of the field in the VTK file. Default: "field" - """ - if not isinstance(filename, str): - raise TypeError("Please use a string filename.") - return to_vtk_helper( - self, - filename=filename, - field_select=field_select, - fieldname=fieldname, - ) - - def plot( - self, field="field", fig=None, ax=None, **kwargs - ): # pragma: no cover - """ - Plot the spatial random field. - - Parameters - ---------- - field : :class:`str`, optional - Field that should be plotted. - Default: "field" - fig : :class:`Figure` or :any:`None` - Figure to plot the axes on. If `None`, a new one will be created. - Default: `None` - ax : :class:`Axes` or :any:`None` - Axes to plot on. If `None`, a new one will be added to the figure. - Default: `None` - **kwargs - Forwarded to the plotting routine. - """ - # just import if needed; matplotlib is not required by setup - from gstools.field.plot import plot_field, plot_vec_field - - if self.value_type is None: - raise ValueError( - "Field value type not set! " - "Specify 'scalar' or 'vector' before plotting." - ) - - if self.value_type == "scalar": - r = plot_field(self, field, fig, ax, **kwargs) - elif self.value_type == "vector": - if self.dim == 2: - r = plot_vec_field(self, field, fig, ax, **kwargs) - else: - raise NotImplementedError( - "Streamflow plotting only supported for 2d case." - ) - else: - raise ValueError(f"Unknown field value type: {self.value_type}") - - return r - - def set_pos(self, pos, mesh_type="unstructured", info=False): - """ - Set positions and mesh_type. - - Parameters - ---------- - pos : :any:`iterable` - the position tuple, containing main direction and transversal - directions - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: `"unstructured"` - info : :class:`bool`, optional - Whether to return information - - Returns - ------- - info : :class:`dict`, optional - Information about settings. - - Warnings - -------- - When setting a new position tuple that differs from the present one, - all stored fields will be deleted. - """ - info_ret = {"deleted": False} - old_type = copy(self.mesh_type) - old_pos = copy(self.pos) - # save pos and mesh-type - self.mesh_type = mesh_type - self.pos = pos - # remove present fields if new pos is different from current - if old_type != self.mesh_type or not _pos_equal(old_pos, self.pos): - self.delete_fields() - info_ret["deleted"] = True - del old_pos - return info_ret if info else None - - def get_store_config(self, store, default=None, fld_cnt=None): - """ - Get storage configuration from given selection. - - Parameters - ---------- - store : :class:`str` or :class:`bool` or :class:`list`, optional - Whether to store fields (True/False) with default names - or with specified names. - The default is :any:`True` for default names. - default : :class:`str` or :class:`list`, optional - Default field names. The default is "field". - fld_cnt : :any:`None` or :class:`int`, optional - Number of fields when using lists. The default is None. - - Returns - ------- - name : :class:`str` or :class:`list` - Name(s) of field. - save : :class:`bool` or :class:`list` - Whether to save field(s). - """ - if default is None: - if fld_cnt is None: - default = self.default_field_names[0] - else: - default = self.default_field_names - # single field - if fld_cnt is None: - save = isinstance(store, str) or bool(store) - name = store if isinstance(store, str) else default - return name, save - # multiple fields - default = _names(default, fld_cnt) - save = [True] * fld_cnt - if isinstance(store, str): - store = [store] - if isinstance(store, Iterable): - store = list(store)[:fld_cnt] - store += [True] * (fld_cnt - len(store)) - name = [None] * fld_cnt - for i, val in enumerate(store): - save[i] = isinstance(val, str) or bool(val) - name[i] = val if isinstance(val, str) else default[i] - else: - save = [bool(store)] * fld_cnt - name = copy(default) - return name, save - - @property - def pos(self): - """:class:`tuple`: The position tuple of the field.""" - return self._pos - - @pos.setter - def pos(self, pos): - if self.mesh_type == "unstructured": - self._pos = np.asarray(pos, dtype=np.double).reshape(self.dim, -1) - self._field_shape = np.shape(self._pos[0]) - else: - self._pos, self._field_shape = format_struct_pos_dim(pos, self.dim) - # prepend dimension if we have a vector field - if self.value_type == "vector": - self._field_shape = (self.dim,) + self._field_shape - if self.latlon: - raise ValueError("Field: Vector fields not allowed for latlon") - - @property - def all_fields(self): - """:class:`list`: All fields as stacked list.""" - return self[self.field_names] - - @property - def field_names(self): - """:class:`list`: Names of present fields.""" - return self._field_names - - @field_names.deleter - def field_names(self): - self.delete_fields() - - @property - def field_shape(self): - """:class:`tuple`: The shape of the field.""" - return self._field_shape - - @property - def mesh_type(self): - """:class:`str`: The mesh type of the field.""" - return self._mesh_type - - @mesh_type.setter - def mesh_type(self, mesh_type): - self._mesh_type = str(mesh_type) - - @property - def model(self): - """:any:`CovModel`: The covariance model of the field.""" - return self._model - - @model.setter - def model(self, model): - if model is not None: - if not isinstance(model, CovModel): - raise ValueError( - "Field: 'model' is not an instance of 'gstools.CovModel'" - ) - self._model = model - self._dim = None - elif self._dim is None: - raise ValueError("Field: either needs 'model' or 'dim'.") - else: - self._model = None - - @property - def mean(self): - """:class:`float` or :any:`callable`: The mean of the field.""" - return self._mean - - @mean.setter - def mean(self, mean): - self._mean = _set_mean_trend(mean, self.dim) - - @property - def normalizer(self): - """:any:`Normalizer`: Normalizer of the field.""" - return self._normalizer - - @normalizer.setter - def normalizer(self, normalizer): - self._normalizer = _check_normalizer(normalizer) - - @property - def trend(self): - """:class:`float` or :any:`callable`: The trend of the field.""" - return self._trend - - @trend.setter - def trend(self, trend): - self._trend = _set_mean_trend(trend, self.dim) - - @property - def value_type(self): - """:class:`str`: Type of the field values (scalar, vector).""" - return self._value_type - - @value_type.setter - def value_type(self, value_type): - if value_type not in self.valid_value_types: - raise ValueError( - f"Field: value type not in {self.valid_value_types}" - ) - self._value_type = value_type - - @property - def dim(self): - """:class:`int`: Dimension of the field.""" - return self._dim if self.model is None else self.model.field_dim - - @property - def latlon(self): - """:class:`bool`: Whether the field depends on geographical coords.""" - return False if self.model is None else self.model.latlon - - @property - def temporal(self): - """:class:`bool`: Whether the field depends on time.""" - return False if self.model is None else self.model.temporal - - @property - def name(self): - """:class:`str`: The name of the class.""" - return self.__class__.__name__ - - def _fmt_mean_norm_trend(self): - # fmt_mean_norm_trend for all child classes - return fmt_mean_norm_trend(self) - - def __repr__(self): - """Return String representation.""" - if self.model is None: - dim_str = f"dim={self.dim}" - else: - dim_str = f"model={self.model.name}" - return ( - f"{self.name}({dim_str}, " - f"value_type='{self.value_type}'{self._fmt_mean_norm_trend()})" - ) diff --git a/src/gstools/field/cond_srf.py b/src/gstools/field/cond_srf.py deleted file mode 100644 index c3e03fe29..000000000 --- a/src/gstools/field/cond_srf.py +++ /dev/null @@ -1,313 +0,0 @@ -""" -GStools subpackage providing a class for conditioned spatial random fields. - -.. currentmodule:: gstools.field.cond_srf - -The following classes are provided - -.. autosummary:: - CondSRF -""" - -# pylint: disable=C0103, W0231, W0221, W0222, E1102 - -import numpy as np - -from gstools.field.base import Field -from gstools.field.generator import Generator, RandMeth -from gstools.krige import Krige - -__all__ = ["CondSRF"] - -GENERATOR = { - "RandMeth": RandMeth, -} -"""dict: Standard generators for conditioned spatial random fields.""" - - -class CondSRF(Field): - """A class to generate conditioned spatial random fields (SRF). - - Parameters - ---------- - krige : :any:`Krige` - Kriging setup to condition the spatial random field. - generator : :class:`str` or :any:`Generator`, optional - Name or class of the field generator to be used. - At the moment, only the following generator is provided: - - * "RandMeth" : The Randomization Method. - See: :any:`RandMeth` - - Default: "RandMeth" - **generator_kwargs - Keyword arguments that are forwarded to the generator in use. - Have a look at the provided generators for further information. - """ - - valid_value_types = ["scalar"] - """:class:`list` of :class:`str`: valid field value types.""" - - default_field_names = ["field", "raw_field", "raw_krige"] - """:class:`list`: Default field names.""" - - def __init__(self, krige, generator="RandMeth", **generator_kwargs): - if not isinstance(krige, Krige): - raise ValueError("CondSRF: krige should be an instance of Krige.") - self._krige = krige - # initialize attributes - self._field_names = [] - # initialize private attributes - self._generator = None - # initialize attributes - self.set_generator(generator, **generator_kwargs) - - def __call__( - self, - pos=None, - seed=np.nan, - mesh_type="unstructured", - post_process=True, - store=True, - krige_store=True, - **kwargs, - ): - """Generate the conditioned spatial random field. - - The field is saved as `self.field` and is also returned. - - Parameters - ---------- - pos : :class:`list`, optional - the position tuple, containing main direction and transversal - directions - seed : :class:`int`, optional - seed for RNG for resetting. Default: keep seed from generator - mesh_type : :class:`str` - 'structured' / 'unstructured' - post_process : :class:`bool`, optional - Whether to apply mean, normalizer and trend to the field. - Default: `True` - store : :class:`str` or :class:`bool` or :class:`list`, optional - Whether to store fields (True/False) with default names - or with specified names. - The default is :any:`True` for default names - ["field", "raw_field", "raw_krige"]. - krige_store : :class:`str` or :class:`bool` or :class:`list`, optional - Whether to store kriging fields (True/False) with default name - or with specified names. - The default is :any:`True` for default names - ["field", "krige_var"]. - **kwargs - keyword arguments that are forwarded to the kriging routine in use. - - Returns - ------- - field : :class:`numpy.ndarray` - the conditioned SRF - """ - name, save = self.get_store_config(store=store, fld_cnt=3) - krige_name, krige_save = self.krige.get_store_config( - store=krige_store, fld_cnt=2 - ) - kwargs["mesh_type"] = mesh_type - kwargs["only_mean"] = False # overwrite if given - kwargs["return_var"] = True # overwrite if given - kwargs["post_process"] = False # overwrite if given - kwargs["store"] = [False, krige_name[1] if krige_save[1] else False] - # update the model/seed in the generator if any changes were made - self.generator.update(self.model, seed) - # get isometrized positions and the resulting field-shape - iso_pos, shape, info = self.pre_pos(pos, mesh_type, info=True) - # generate the field - rawfield = np.reshape(self.generator(iso_pos, add_nugget=False), shape) - # call krige on already set pos (reuse already calculated fields) - if ( - not info["deleted"] - and name[2] in self.field_names - and krige_name[1] in self.krige.field_names - ): - reuse = True - rawkrige, krige_var = self[name[2]], self.krige[krige_name[1]] - else: - reuse = False - rawkrige, krige_var = self.krige(**kwargs) - var_scale, nugget = self.get_scaling(krige_var, shape) - # store krige field (need a copy to not alter field by reference) - if not reuse or krige_name[0] not in self.krige.field_names: - self.krige.post_field( - rawkrige.copy(), krige_name[0], post_process, krige_save[0] - ) - # store raw krige field - if not reuse: - self.post_field(rawkrige, name[2], False, save[2]) - # store raw random field - self.post_field(rawfield, name[1], False, save[1]) - # store cond random field - return self.post_field( - field=rawkrige + var_scale * rawfield + nugget, - name=name[0], - process=post_process, - save=save[0], - ) - - def get_scaling(self, krige_var, shape): - """ - Get scaling coefficients for the random field. - - Parameters - ---------- - krige_var : :class:`numpy.ndarray` - Kriging variance. - shape : :class:`tuple` of :class:`int` - Field shape. - - Returns - ------- - var_scale : :class:`numpy.ndarray` - Variance scaling factor for the random field. - nugget : :class:`numpy.ndarray` or :class:`int` - Nugget to be added to the field. - """ - if self.model.nugget > 0: - var_scale = np.maximum(krige_var - self.model.nugget, 0) - nug_scale = np.sqrt((krige_var - var_scale) / self.model.nugget) - var_scale = np.sqrt(var_scale / self.model.var) - nugget = nug_scale * self.generator.get_nugget(shape) - else: - var_scale = np.sqrt(krige_var / self.model.var) - nugget = 0 - return var_scale, nugget - - def set_generator(self, generator, **generator_kwargs): - """Set the generator for the field. - - Parameters - ---------- - generator : :class:`str` or :any:`Generator`, optional - Name or class of the generator to use for field generation. - Default: "RandMeth" - **generator_kwargs - keyword arguments that are forwarded to the generator in use. - """ - gen = GENERATOR[generator] if generator in GENERATOR else generator - if not (isinstance(gen, type) and issubclass(gen, Generator)): - raise ValueError( - f"gstools.CondSRF: Unknown or wrong generator: {generator}" - ) - self._generator = gen(self.model, **generator_kwargs) - self.value_type = self.generator.value_type - - def set_pos(self, pos, mesh_type="unstructured", info=False): - """ - Set positions and mesh_type. - - Parameters - ---------- - pos : :any:`iterable` - the position tuple, containing main direction and transversal - directions - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: `"unstructured"` - info : :class:`bool`, optional - Whether to return information - - Returns - ------- - info : :class:`dict`, optional - Information about settings. - - Warnings - -------- - When setting a new position tuple that differs from the present one, - all stored fields will be deleted. - """ - info_ret = super().set_pos(pos, mesh_type, info=True) - if info_ret["deleted"]: - self.krige.delete_fields() - return info_ret if info else None - - @property - def pos(self): - """:class:`tuple`: The position tuple of the field.""" - return self.krige.pos - - @pos.setter - def pos(self, pos): - self.krige.pos = pos - - @property - def field_shape(self): - """:class:`tuple`: The shape of the field.""" - return self.krige.field_shape - - @property - def mesh_type(self): - """:class:`str`: The mesh type of the field.""" - return self.krige.mesh_type - - @mesh_type.setter - def mesh_type(self, mesh_type): - self.krige.mesh_type = mesh_type - - @property - def krige(self): - """:any:`Krige`: The underlying kriging class.""" - return self._krige - - @property - def generator(self): - """:any:`callable`: The generator of the field.""" - return self._generator - - @property - def model(self): - """:any:`CovModel`: The covariance model of the field.""" - return self.krige.model - - @model.setter - def model(self, model): - self.krige.model = model - - @property - def mean(self): - """:class:`float` or :any:`callable`: The mean of the field.""" - return self.krige.mean - - @mean.setter - def mean(self, mean): - self.krige.mean = mean - - @property - def normalizer(self): - """:any:`Normalizer`: Normalizer of the field.""" - return self.krige.normalizer - - @normalizer.setter - def normalizer(self, normalizer): - self.krige.normalizer = normalizer - - @property - def trend(self): - """:class:`float` or :any:`callable`: The trend of the field.""" - return self.krige.trend - - @trend.setter - def trend(self, trend): - self.krige.trend = trend - - @property - def value_type(self): - """:class:`str`: Type of the field values (scalar, vector).""" - return self.krige.value_type - - @value_type.setter - def value_type(self, value_type): - self.krige.value_type = value_type - - def __repr__(self): - """Return String representation.""" - return ( - f"{self.name}(krige={self.krige}, generator={self.generator.name})" - ) diff --git a/src/gstools/field/generator.py b/src/gstools/field/generator.py deleted file mode 100644 index 5beab10db..000000000 --- a/src/gstools/field/generator.py +++ /dev/null @@ -1,534 +0,0 @@ -""" -GStools subpackage providing generators for spatial random fields. - -.. currentmodule:: gstools.field.generator - -The following classes are provided - -.. autosummary:: - :toctree: - - Generator - RandMeth - IncomprRandMeth -""" - -# pylint: disable=C0103, W0222, C0412, W0231 -import warnings -from abc import ABC, abstractmethod -from copy import deepcopy as dcp - -import numpy as np - -from gstools import config -from gstools.covmodel.base import CovModel -from gstools.random.rng import RNG - -if config.USE_RUST: # pragma: no cover - # pylint: disable=E0401 - from gstools_core import summate, summate_incompr -else: - from gstools.field.summator import summate, summate_incompr - -__all__ = ["Generator", "RandMeth", "IncomprRandMeth"] - - -SAMPLING = ["auto", "inversion", "mcmc"] - - -class Generator(ABC): - """ - Abstract generator class. - - Parameters - ---------- - model : :any:`CovModel` - Covariance model - **kwargs - Placeholder for keyword-args - """ - - @abstractmethod - def __init__(self, model, **kwargs): - pass - - @abstractmethod - def update(self, model=None, seed=np.nan): - """Update the model and the seed. - - If model and seed are not different, nothing will be done. - - Parameters - ---------- - model : :any:`CovModel` or :any:`None`, optional - covariance model. Default: :any:`None` - seed : :class:`int` or :any:`None` or :any:`numpy.nan`, optional - the seed of the random number generator. - If :any:`None`, a random seed is used. If :any:`numpy.nan`, - the actual seed will be kept. Default: :any:`numpy.nan` - """ - - @abstractmethod - def get_nugget(self, shape): - """ - Generate normal distributed values for the nugget simulation. - - Parameters - ---------- - shape : :class:`tuple` - the shape of the summed modes - - Returns - ------- - nugget : :class:`numpy.ndarray` - the nugget in the same shape as the summed modes - """ - - @abstractmethod - def __call__(self, pos, add_nugget=True): - """ - Generate the field. - - Parameters - ---------- - pos : (d, n), :class:`numpy.ndarray` - the position tuple with d dimensions and n points. - add_nugget : :class:`bool` - Whether to add nugget noise to the field. - - Returns - ------- - :class:`numpy.ndarray` - the random modes - """ - - @property - @abstractmethod - def value_type(self): - """:class:`str`: Type of the field values (scalar, vector).""" - - @property - def name(self): - """:class:`str`: Name of the generator.""" - return self.__class__.__name__ - - -class RandMeth(Generator): - r"""Randomization method for calculating isotropic random fields. - - Parameters - ---------- - model : :any:`CovModel` - Covariance model - mode_no : :class:`int`, optional - Number of Fourier modes. Default: ``1000`` - seed : :class:`int` or :any:`None`, optional - The seed of the random number generator. - If "None", a random seed is used. Default: :any:`None` - sampling : :class:`str`, optional - Sampling strategy. Either - - * "auto": select best strategy depending on given model - * "inversion": use inversion method - * "mcmc": use mcmc sampling - - **kwargs - Placeholder for keyword-args - - Notes - ----- - The Randomization method is used to generate isotropic - spatial random fields characterized by a given covariance model. - The calculation looks like [Hesse2014]_: - - .. math:: - u\left(x\right)= - \sqrt{\frac{\sigma^{2}}{N}}\cdot - \sum_{i=1}^{N}\left( - Z_{1,i}\cdot\cos\left(\left\langle k_{i},x\right\rangle \right)+ - Z_{2,i}\cdot\sin\left(\left\langle k_{i},x\right\rangle \right) - \right) - - where: - - * :math:`N` : fourier mode number - * :math:`Z_{j,i}` : random samples from a normal distribution - * :math:`k_i` : samples from the spectral density distribution of - the covariance model - - References - ---------- - .. [Hesse2014] Heße, F., Prykhodko, V., Schlüter, S., and Attinger, S., - "Generating random fields with a truncated power-law variogram: - A comparison of several numerical methods", - Environmental Modelling & Software, 55, 32-48., (2014) - """ - - def __init__( - self, - model, - *, - mode_no=1000, - seed=None, - sampling="auto", - **kwargs, - ): - if kwargs: - warnings.warn("gstools.RandMeth: **kwargs are ignored") - # initialize attributes - self._mode_no = int(mode_no) - # initialize private attributes - self._model = None - self._seed = None - self._rng = None - self._z_1 = None - self._z_2 = None - self._cov_sample = None - self._value_type = "scalar" - # set sampling strategy - self._sampling = None - self.sampling = sampling - # set model and seed - self.update(model, seed) - - def __call__(self, pos, add_nugget=True): - """Calculate the random modes for the randomization method. - - This method calls the `summate_*` Cython methods, which are the - heart of the randomization method. - - Parameters - ---------- - pos : (d, n), :class:`numpy.ndarray` - the position tuple with d dimensions and n points. - add_nugget : :class:`bool` - Whether to add nugget noise to the field. - - Returns - ------- - :class:`numpy.ndarray` - the random modes - """ - pos = np.asarray(pos, dtype=np.double) - summed_modes = summate( - self._cov_sample, self._z_1, self._z_2, pos, config.NUM_THREADS - ) - nugget = self.get_nugget(summed_modes.shape) if add_nugget else 0.0 - return np.sqrt(self.model.var / self._mode_no) * summed_modes + nugget - - def get_nugget(self, shape): - """ - Generate normal distributed values for the nugget simulation. - - Parameters - ---------- - shape : :class:`tuple` - the shape of the summed modes - - Returns - ------- - nugget : :class:`numpy.ndarray` - the nugget in the same shape as the summed modes - """ - if self.model.nugget > 0: - nugget = np.sqrt(self.model.nugget) * self._rng.random.normal( - size=shape - ) - else: - nugget = 0.0 - return nugget - - def update(self, model=None, seed=np.nan): - """Update the model and the seed. - - If model and seed are not different, nothing will be done. - - Parameters - ---------- - model : :any:`CovModel` or :any:`None`, optional - covariance model. Default: :any:`None` - seed : :class:`int` or :any:`None` or :any:`numpy.nan`, optional - the seed of the random number generator. - If :any:`None`, a random seed is used. If :any:`numpy.nan`, - the actual seed will be kept. Default: :any:`numpy.nan` - """ - # check if a new model is given - if isinstance(model, CovModel): - if self.model != model: - self._model = dcp(model) - if seed is None or not np.isnan(seed): - self.reset_seed(seed) - else: - self.reset_seed(self._seed) - # just update the seed, if its a new one - elif seed is None or not np.isnan(seed): - self.seed = seed - # or just update the seed, when no model is given - elif model is None and (seed is None or not np.isnan(seed)): - if isinstance(self._model, CovModel): - self.seed = seed - else: - raise ValueError( - "gstools.field.generator.RandMeth: no 'model' given" - ) - # if the user tries to trick us, we beat him! - elif model is None and np.isnan(seed): - if not ( - isinstance(self._model, CovModel) - and self._z_1 is not None - and self._z_2 is not None - and self._cov_sample is not None - ): - raise ValueError( - "gstools.field.generator.RandMeth: " - "neither 'model' nor 'seed' given!" - ) - # wrong model type - else: - raise ValueError( - "gstools.field.generator.RandMeth: 'model' is not an " - "instance of 'gstools.CovModel'" - ) - - def reset_seed(self, seed=np.nan): - """ - Recalculate the random amplitudes and wave numbers with the given seed. - - Parameters - ---------- - seed : :class:`int` or :any:`None` or :any:`numpy.nan`, optional - the seed of the random number generator. - If :any:`None`, a random seed is used. If :any:`numpy.nan`, - the actual seed will be kept. Default: :any:`numpy.nan` - - Notes - ----- - Even if the given seed is the present one, modes will be recalculated. - """ - if seed is None or not np.isnan(seed): - self._seed = seed - self._rng = RNG(self._seed) - # normal distributed samples for randmeth - self._z_1 = self._rng.random.normal(size=self._mode_no) - self._z_2 = self._rng.random.normal(size=self._mode_no) - # sample uniform on a sphere - sphere_coord = self._rng.sample_sphere(self.model.dim, self._mode_no) - # sample radii according to radial spectral density of the model - if self.sampling == "inversion" or ( - self.sampling == "auto" and self.model.has_ppf - ): - pdf, cdf, ppf = self.model.dist_func - rad = self._rng.sample_dist( - size=self._mode_no, pdf=pdf, cdf=cdf, ppf=ppf, a=0 - ) - else: - rad = self._rng.sample_ln_pdf( - ln_pdf=self.model.ln_spectral_rad_pdf, - size=self._mode_no, - sample_around=1.0 / self.model.len_rescaled, - ) - # get fully spatial samples by multiplying sphere samples and radii - self._cov_sample = rad * sphere_coord - - @property - def sampling(self): - """:class:`str`: Sampling strategy.""" - return self._sampling - - @sampling.setter - def sampling(self, sampling): - if sampling not in ["auto", "inversion", "mcmc"]: - raise ValueError(f"RandMeth: sampling not in {SAMPLING}.") - self._sampling = sampling - - @property - def seed(self): - """:class:`int`: Seed of the master RNG. - - Notes - ----- - If a new seed is given, the setter property not only saves the - new seed, but also creates new random modes with the new seed. - """ - return self._seed - - @seed.setter - def seed(self, new_seed): - if new_seed is not self._seed: - self.reset_seed(new_seed) - - @property - def model(self): - """:any:`CovModel`: Covariance model of the spatial random field.""" - return self._model - - @model.setter - def model(self, model): - self.update(model) - - @property - def mode_no(self): - """:class:`int`: Number of modes in the randomization method.""" - return self._mode_no - - @mode_no.setter - def mode_no(self, mode_no): - if int(mode_no) != self._mode_no: - self._mode_no = int(mode_no) - self.reset_seed(self._seed) - - @property - def value_type(self): - """:class:`str`: Type of the field values (scalar, vector).""" - return self._value_type - - def __repr__(self): - """Return String representation.""" - return ( - f"{self.name}(model={self.model}, " - f"mode_no={self._mode_no}, seed={self.seed})" - ) - - -class IncomprRandMeth(RandMeth): - r"""RandMeth for incompressible random vector fields. - - Parameters - ---------- - model : :any:`CovModel` - covariance model - mean_velocity : :class:`float`, optional - the mean velocity in x-direction - mode_no : :class:`int`, optional - number of Fourier modes. Default: ``1000`` - seed : :class:`int` or :any:`None`, optional - the seed of the random number generator. - If "None", a random seed is used. Default: :any:`None` - sampling : :class:`str`, optional - Sampling strategy. Either - - * "auto": select best strategy depending on given model - * "inversion": use inversion method - * "mcmc": use mcmc sampling - - **kwargs - Placeholder for keyword-args - - Notes - ----- - The Randomization method is used to generate isotropic - spatial incompressible random vector fields characterized - by a given covariance model. The equation is [Kraichnan1970]_: - - .. math:: - u_i\left(x\right)= \bar{u_i} \delta_{i1} + - \bar{u_i}\sqrt{\frac{\sigma^{2}}{N}}\cdot - \sum_{j=1}^{N}p_i(k_{j})\left( - Z_{1,j}\cdot\cos\left(\left\langle k_{j},x\right\rangle \right)+ - Z_{2,j}\cdot\sin\left(\left\langle k_{j},x\right\rangle \right) - \right) - - where: - - * :math:`\bar u` : mean velocity in :math:`e_1` direction - * :math:`N` : fourier mode number - * :math:`Z_{k,j}` : random samples from a normal distribution - * :math:`k_j` : samples from the spectral density distribution of - the covariance model - * :math:`p_i(k_j) = e_1 - \frac{k_i k_1}{k^2}` : the projector - ensuring the incompressibility - - References - ---------- - .. [Kraichnan1970] Kraichnan, R. H., - "Diffusion by a random velocity field.", - The physics of fluids, 13(1), 22-31., (1970) - """ - - def __init__( - self, - model, - *, - mean_velocity=1.0, - mode_no=1000, - seed=None, - sampling="auto", - **kwargs, - ): - if model.dim < 2 or model.dim > 3: - raise ValueError( - "Only 2D and 3D incompressible fields can be generated." - ) - super().__init__( - model=model, - mode_no=mode_no, - seed=seed, - sampling=sampling, - **kwargs, - ) - - self.mean_u = mean_velocity - self._value_type = "vector" - - def __call__(self, pos, add_nugget=True): - """Calculate the random modes for the randomization method. - - This method calls the `summate_incompr_*` Cython methods, - which are the heart of the randomization method. - In this class the method contains a projector to - ensure the incompressibility of the vector field. - - Parameters - ---------- - pos : (d, n), :class:`numpy.ndarray` - the position tuple with d dimensions and n points. - add_nugget : :class:`bool` - Whether to add nugget noise to the field. - - Returns - ------- - :class:`numpy.ndarray` - the random modes - """ - pos = np.asarray(pos, dtype=np.double) - summed_modes = summate_incompr( - self._cov_sample, - self._z_1, - self._z_2, - pos, - config.NUM_THREADS, - ) - nugget = self.get_nugget(summed_modes.shape) if add_nugget else 0.0 - e1 = self._create_unit_vector(summed_modes.shape) - return ( - self.mean_u * e1 - + self.mean_u - * np.sqrt(self.model.var / self._mode_no) - * summed_modes - + nugget - ) - - def _create_unit_vector(self, broadcast_shape, axis=0): - """Create a unit vector. - - Can be multiplied with a vector of shape broadcast_shape - - Parameters - ---------- - broadcast_shape : :class:`tuple` - the shape of the array with which - the unit vector is to be multiplied - axis : :class:`int`, optional - the direction of the unit vector. Default: ``0`` - - Returns - ------- - :class:`numpy.ndarray` - the unit vector - """ - shape = np.ones(len(broadcast_shape), dtype=int) - shape[0] = self.model.dim - - e1 = np.zeros(shape) - e1[axis] = 1.0 - return e1 diff --git a/src/gstools/field/plot.py b/src/gstools/field/plot.py deleted file mode 100644 index b17cfc715..000000000 --- a/src/gstools/field/plot.py +++ /dev/null @@ -1,402 +0,0 @@ -""" -GStools subpackage providing plotting routines for spatial fields. - -.. currentmodule:: gstools.field.plot - -The following classes and functions are provided - -.. autosummary:: - plot_field - plot_vec_field -""" - -# pylint: disable=C0103, W0613, E1101, E0606 -import numpy as np -from scipy import interpolate as inter -from scipy.spatial import ConvexHull - -from gstools.tools.geometric import rotation_planes -from gstools.tools.misc import get_fig_ax - -try: - import matplotlib.pyplot as plt - from matplotlib.widgets import RadioButtons, Slider -except ImportError as exc: - raise ImportError("Plotting: Matplotlib not installed.") from exc - - -__all__ = ["plot_field", "plot_vec_field"] - - -# plotting routines ####################################################### - - -def plot_field( - fld, field="field", fig=None, ax=None, **kwargs -): # pragma: no cover - """ - Plot a spatial field. - - Parameters - ---------- - fld : :class:`Field` - The given Field class instance. - field : :class:`str`, optional - Field that should be plotted. Default: "field" - fig : :class:`Figure` or :any:`None`, optional - Figure to plot the axes on. If `None`, a new one will be created. - Default: `None` - ax : :class:`Axes` or :any:`None`, optional - Axes to plot on. If `None`, a new one will be added to the figure. - Default: `None` - **kwargs - Forwarded to the plotting routine. - """ - if fld.dim == 1: - return plot_1d(fld.pos, fld[field], fig, ax, fld.temporal, **kwargs) - return plot_nd( - fld.pos, - fld[field], - fld.mesh_type, - fig, - ax, - fld.latlon, - fld.temporal, - **kwargs, - ) - - -def plot_1d( - pos, field, fig=None, ax=None, temporal=False, ax_names=None -): # pragma: no cover - """ - Plot a 1D field. - - Parameters - ---------- - pos : :class:`list` - the position tuple, containing either the point coordinates (x, y, ...) - or the axes descriptions (for mesh_type='structured') - field : :class:`numpy.ndarray` - Field values. - temporal : :class:`bool`, optional - Indicate a metric spatio-temporal covariance model. - The time-dimension is assumed to be appended, - meaning the pos tuple is (x,y,z,...,t) or (lat, lon, t). - Default: False - fig : :class:`Figure` or :any:`None`, optional - Figure to plot the axes on. If `None`, a new one will be created. - Default: `None` - ax : :class:`Axes` or :any:`None`, optional - Axes to plot on. If `None`, a new one will be added to the figure. - Default: `None` - ax_names : :class:`list` of :class:`str`, optional - Axes names. The default is ["$x$", "field"]. - - Returns - ------- - ax : :class:`Axes` - Axis containing the plot. - """ - fig, ax = get_fig_ax(fig, ax) - title = f"Field 1D: {field.shape}" - x = pos[0] - x = x.flatten() - arg = np.argsort(x) - ax_names = _ax_names(1, temporal=temporal, ax_names=ax_names) - ax.plot(x[arg], field.ravel()[arg]) - ax.set_xlabel(ax_names[0]) - ax.set_ylabel(ax_names[1]) - ax.set_title(title) - fig.show() - return ax - - -def plot_nd( - pos, - field, - mesh_type, - fig=None, - ax=None, - latlon=False, - temporal=False, - resolution=128, - ax_names=None, - aspect="quad", - show_colorbar=True, - convex_hull=False, - contour_plot=True, - **kwargs, -): # pragma: no cover - """ - Plot field in arbitrary dimensions. - - Parameters - ---------- - pos : :class:`list` - the position tuple, containing either the point coordinates (x, y, ...) - or the axes descriptions (for mesh_type='structured') - field : :class:`numpy.ndarray` - Field values. - fig : :class:`Figure` or :any:`None`, optional - Figure to plot the axes on. If `None`, a new one will be created. - Default: `None` - ax : :class:`Axes` or :any:`None`, optional - Axes to plot on. If `None`, a new one will be added to the figure. - Default: `None` - latlon : :class:`bool`, optional - Whether the data is representing 2D fields on earths surface described - by latitude and longitude. When using this, the estimator will - use great-circle distance for variogram estimation. - Note, that only an isotropic variogram can be estimated and a - ValueError will be raised, if a direction was specified. - Bin edges need to be given in radians in this case. - Default: False - temporal : :class:`bool`, optional - Indicate a metric spatio-temporal covariance model. - The time-dimension is assumed to be appended, - meaning the pos tuple is (x,y,z,...,t) or (lat, lon, t). - Default: False - resolution : :class:`int`, optional - Resolution of the imshow plot. The default is 128. - ax_names : :class:`list` of :class:`str`, optional - Axes names. The default is ["$x$", "field"]. - aspect : :class:`str` or :any:`None` or :class:`float`, optional - Aspect of the plot. Can be "auto", "equal", "quad", None or a number - describing the aspect ratio. - The default is "quad". - show_colorbar : :class:`bool`, optional - Whether to show the colorbar. The default is True. - convex_hull : :class:`bool`, optional - Whether to show the convex hull in 2D with unstructured data. - The default is False. - contour_plot : :class:`bool`, optional - Whether to use a contour-plot in 2D. The default is True. - - Returns - ------- - ax : :class:`Axes` - Axis containing the plot. - """ - dim = len(pos) - assert dim > 1 - assert not latlon or dim == 2 + int(bool(temporal)) - if dim == 2 and contour_plot: - return _plot_2d( - pos, - field, - mesh_type, - fig, - ax, - latlon, - temporal, - ax_names, - **kwargs, - ) - if latlon: - # swap lat-lon to lon-lat (x-y) - if temporal: - pos = (pos[1], pos[0], pos[2]) - else: - pos = (pos[1], pos[0]) - if mesh_type != "unstructured": - field = np.moveaxis(field, [0, 1], [1, 0]) - ax_names = _ax_names(dim, latlon, temporal, ax_names) - # init planes - planes = rotation_planes(dim) - plane_names = [f" {ax_names[p[0]]} - {ax_names[p[1]]}" for p in planes] - ax_ends = [[p.min(), p.max()] for p in pos] - ax_rngs = [end[1] - end[0] for end in ax_ends] - ax_steps = [rng / resolution for rng in ax_rngs] - ax_extents = [ax_ends[p[0]] + ax_ends[p[1]] for p in planes] - # create figure - reformat = fig is None and ax is None - fig, ax = get_fig_ax(fig, ax) - ax.set_title(f"Field {dim}D {mesh_type} {field.shape}") - if reformat: # only format fig if it was created here - fig.set_size_inches(8, 5.5 + 0.5 * (dim - 2)) - # init additional axis, radio-buttons and sliders - s_frac = 0.5 * (dim - 2) / (6 + 0.5 * (dim - 2)) - s_size = s_frac / max(dim - 2, 1) - left, bottom = (0.25, s_frac + 0.13) if dim > 2 else (None, None) - fig.subplots_adjust(left=left, bottom=bottom) - slider = [] - for i in range(dim - 2, 0, -1): - slider_ax = fig.add_axes([0.3, i * s_size, 0.435, s_size * 0.6]) - slider.append(Slider(slider_ax, "", 0, 1, facecolor="grey")) - slider[-1].vline.set_color("k") - # create radio buttons - if dim > 2: - rax = fig.add_axes( - [0.05, 0.85 - 2 * s_frac, 0.15, 2 * s_frac], frame_on=0, alpha=0 - ) - rax.set_title(" Plane", loc="left") - radio = RadioButtons(rax, plane_names, activecolor="grey") - elif mesh_type == "unstructured" and convex_hull: - # show convex hull in 2D - hull = ConvexHull(pos.T) - for simplex in hull.simplices: - ax.plot(pos[0, simplex], pos[1, simplex], "k") - # init imshow and colorbar axis - grid = np.mgrid[0 : 1 : resolution * 1j, 0 : 1 : resolution * 1j] - f_ini, vmin, vmax = np.full_like(grid[0], np.nan), field.min(), field.max() - im = ax.imshow( - f_ini.T, interpolation="bicubic", origin="lower", vmin=vmin, vmax=vmax - ) - - # actions - def inter_plane(cuts, axes): - """Interpolate plane.""" - plane_ax = [] - for i, (rng, end, cut) in enumerate(zip(ax_rngs, ax_ends, cuts)): - if i in axes: - plane_ax.append(grid[axes.index(i)] * rng + end[0]) - else: - plane_ax.append(np.full_like(grid[0], cut, dtype=float)) - # needs to be a tuple - plane_ax = tuple(plane_ax) - if mesh_type != "unstructured": - return inter.interpn(pos, field, plane_ax, bounds_error=False) - return inter.griddata(pos.T, field, plane_ax, method="nearest") - - def update_field(*args): - """Sliders update.""" - p = plane_names.index(radio.value_selected) if dim > 2 else 0 - # dummy cut values for selected plane-axes (setting to 0) - cuts = [s.val for s in slider] - cuts.insert(planes[p][0], 0) - cuts.insert(planes[p][1], 0) - im.set_array(inter_plane(cuts, planes[p]).T) - fig.canvas.draw_idle() - - def update_plane(label): - """Radio button update.""" - p = plane_names.index(label) - cut_select = [i for i in range(dim) if i not in planes[p]] - # reset sliders - for i, s in zip(cut_select, slider): - s.label.set_text(ax_names[i]) - s.valmin, s.valmax = ax_ends[i] - s.valinit = ax_ends[i][0] + ax_rngs[i] / 2.0 - s.valstep = ax_steps[i] - s.ax.set_xlim(*ax_ends[i]) - # update representation - s.vline.set_data(2 * [s.valinit], [-0.1, 1.1]) - s.reset() - im.set_extent(ax_extents[p]) - asp = 1.0 # init value - if aspect == "quad": - asp = ax_rngs[planes[p][0]] / ax_rngs[planes[p][1]] - if aspect is not None: - ax.set_aspect(asp if aspect == "quad" else aspect) - ax.set_xlabel(ax_names[planes[p][0]]) - ax.set_ylabel(ax_names[planes[p][1]]) - update_field() - - # initial plot on xy plane - update_plane(plane_names[0]) - # bind actions - if dim > 2: - radio.on_clicked(update_plane) - for s in slider: - s.on_changed(update_field) - if show_colorbar: - fig.colorbar(im, ax=ax) - fig.show() - return ax - - -def plot_vec_field(fld, field="field", fig=None, ax=None): # pragma: no cover - """ - Plot a spatial random vector field. - - Parameters - ---------- - fld : :class:`Field` - The given field class instance. - field : :class:`str`, optional - Field that should be plotted. Default: "field" - fig : :class:`Figure` or :any:`None`, optional - Figure to plot the axes on. If `None`, a new one will be created. - Default: `None` - ax : :class:`Axes` or :any:`None`, optional - Axes to plot on. If `None`, a new one will be added to the figure. - Default: `None` - """ - if fld.mesh_type == "unstructured": - raise RuntimeError( - "Only structured vector fields are supported " - "for plotting. Please create one on a structured grid." - ) - plt_fld = fld[field] - norm = np.sqrt(plt_fld[0, :].T ** 2 + plt_fld[1, :].T ** 2) - - fig, ax = get_fig_ax(fig, ax) - title = f"Field 2D {fld.mesh_type}: {plt_fld.shape}" - x = fld.pos[0] - y = fld.pos[1] - - sp = plt.streamplot( - x, - y, - plt_fld[0, :].T, - plt_fld[1, :].T, - color=norm, - linewidth=norm / 2, - ) - ax.set_xlabel("X") - ax.set_ylabel("Y") - ax.set_title(title) - fig.colorbar(sp.lines) - fig.show() - return ax - - -def _ax_names(dim, latlon=False, temporal=False, ax_names=None): - t_fac = int(bool(temporal)) - if ax_names is not None: - assert len(ax_names) >= dim - return ax_names[:dim] - if dim == 2 + t_fac and latlon: - return ["lon", "lat"] + t_fac * ["time"] - if dim - t_fac <= 3: - return ( - ["$x$", "$y$", "$z$"][: dim - t_fac] - + t_fac * ["time"] - + (dim == 1) * ["field"] - ) - return [f"$x_{{{i}}}$" for i in range(dim - t_fac)] + t_fac * ["time"] - - -def _plot_2d( - pos, - field, - mesh_type, - fig=None, - ax=None, - latlon=False, - temporal=False, - ax_names=None, - levels=64, - antialias=True, -): # pragma: no cover - """Plot a 2d field with a contour plot.""" - fig, ax = get_fig_ax(fig, ax) - title = f"Field 2D {mesh_type}: {field.shape}" - ax_names = _ax_names(2, latlon, temporal, ax_names=ax_names) - x, y = pos[::-1] if latlon else pos - if mesh_type == "unstructured": - cont = ax.tricontourf(x, y, field.ravel(), levels=levels) - if antialias: - ax.tricontour(x, y, field.ravel(), levels=levels, zorder=-10) - else: - plt_fld = field if latlon else field.T - cont = ax.contourf(x, y, plt_fld, levels=levels) - if antialias: - ax.contour(x, y, plt_fld, levels=levels, zorder=-10) - ax.set_xlabel(ax_names[0]) - ax.set_ylabel(ax_names[1]) - ax.set_title(title) - fig.colorbar(cont) - fig.show() - return ax diff --git a/src/gstools/field/srf.py b/src/gstools/field/srf.py deleted file mode 100644 index d88e46c09..000000000 --- a/src/gstools/field/srf.py +++ /dev/null @@ -1,218 +0,0 @@ -""" -GStools subpackage providing a class for standard spatial random fields. - -.. currentmodule:: gstools.field.srf - -The following classes are provided - -.. autosummary:: - SRF -""" - -# pylint: disable=C0103, W0221, E1102 - -import numpy as np - -from gstools.field.base import Field -from gstools.field.generator import Generator, IncomprRandMeth, RandMeth -from gstools.field.upscaling import var_coarse_graining, var_no_scaling - -__all__ = ["SRF"] - -GENERATOR = { - "RandMeth": RandMeth, - "IncomprRandMeth": IncomprRandMeth, - "VectorField": IncomprRandMeth, - "VelocityField": IncomprRandMeth, -} -"""dict: Standard generators for spatial random fields.""" - -UPSCALING = { - "coarse_graining": var_coarse_graining, - "no_scaling": var_no_scaling, -} -"""dict: Upscaling routines for spatial random fields.""" - - -class SRF(Field): - """A class to generate spatial random fields (SRF). - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model of the spatial random field. - mean : :class:`float` or :any:`callable`, optional - Mean of the SRF (in normal form). Could also be a callable. - The default is 0.0. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the SRF to transform the field values. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - Trend of the SRF (in transformed form). - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - upscaling : :class:`str`, optional - Method to be used for upscaling the variance at each point - depending on the related element volume. - See the ``point_volumes`` keyword in the :any:`SRF.__call__` routine. - At the moment, the following upscaling methods are provided: - - * "no_scaling" : No upscaling is applied to the variance. - See: :any:`var_no_scaling` - * "coarse_graining" : A volume depended variance is - calculated by the upscaling technique coarse graining. - See: :any:`var_coarse_graining` - - Default: "no_scaling" - generator : :class:`str` or :any:`Generator`, optional - Name or class of the field generator to be used. - At the moment, the following generators are provided: - - * "RandMeth" : The Randomization Method. - See: :any:`RandMeth` - * "IncomprRandMeth" : The incompressible Randomization Method. - This is the original algorithm proposed by Kraichnan 1970 - See: :any:`IncomprRandMeth` - * "VectorField" : an alias for "IncomprRandMeth" - * "VelocityField" : an alias for "IncomprRandMeth" - - Default: "RandMeth" - **generator_kwargs - Keyword arguments that are forwarded to the generator in use. - Have a look at the provided generators for further information. - """ - - def __init__( - self, - model, - mean=0.0, - normalizer=None, - trend=None, - upscaling="no_scaling", - generator="RandMeth", - **generator_kwargs, - ): - super().__init__(model, mean=mean, normalizer=normalizer, trend=trend) - # initialize private attributes - self._generator = None - self._upscaling = None - self._upscaling_func = None - # initialize attributes - self.upscaling = upscaling - self.set_generator(generator, **generator_kwargs) - - def __call__( - self, - pos=None, - seed=np.nan, - point_volumes=0.0, - mesh_type="unstructured", - post_process=True, - store=True, - ): - """Generate the spatial random field. - - The field is saved as `self.field` and is also returned. - - Parameters - ---------- - pos : :class:`list`, optional - the position tuple, containing main direction and transversal - directions - seed : :class:`int`, optional - seed for RNG for resetting. Default: keep seed from generator - point_volumes : :class:`float` or :class:`numpy.ndarray` - If your evaluation points for the field are coming from a mesh, - they are probably representing a certain element volume. - This volume can be passed by `point_volumes` to apply the - given variance upscaling. If `point_volumes` is ``0`` nothing - is changed. Default: ``0`` - mesh_type : :class:`str` - 'structured' / 'unstructured' - post_process : :class:`bool`, optional - Whether to apply mean, normalizer and trend to the field. - Default: `True` - store : :class:`str` or :class:`bool`, optional - Whether to store field (True/False) with default name - or with specified name. - The default is :any:`True` for default name "field". - - Returns - ------- - field : :class:`numpy.ndarray` - the SRF - """ - name, save = self.get_store_config(store) - # update the model/seed in the generator if any changes were made - self.generator.update(self.model, seed) - # get isometrized positions and the resulting field-shape - iso_pos, shape = self.pre_pos(pos, mesh_type) - # generate the field - field = np.reshape(self.generator(iso_pos), shape) - # upscaled variance - if not np.isscalar(point_volumes) or not np.isclose(point_volumes, 0): - scaled_var = self.upscaling_func(self.model, point_volumes) - if np.size(scaled_var) > 1: - scaled_var = np.reshape(scaled_var, shape) - field *= np.sqrt(scaled_var / self.model.sill) - return self.post_field(field, name, post_process, save) - - def upscaling_func(self, *args, **kwargs): - """Upscaling method applied to the field variance.""" - return self._upscaling_func(*args, **kwargs) - - def set_generator(self, generator, **generator_kwargs): - """Set the generator for the field. - - Parameters - ---------- - generator : :class:`str` or :any:`Generator`, optional - Name or class of the field generator to be used. - Default: "RandMeth" - **generator_kwargs - keyword arguments that are forwarded to the generator in use. - """ - gen = GENERATOR[generator] if generator in GENERATOR else generator - if not (isinstance(gen, type) and issubclass(gen, Generator)): - raise ValueError( - f"gstools.SRF: Unknown or wrong generator: {generator}" - ) - self._generator = gen(self.model, **generator_kwargs) - self.value_type = self.generator.value_type - - for val in [self.mean, self.trend]: - if not callable(val) and val is not None: - if np.size(val) > 1 and self.value_type == "scalar": - raise ValueError(f"Mean/Trend: Wrong size ({val})") - - @property - def generator(self): - """:any:`callable`: The generator of the field. - - Default: :any:`RandMeth` - """ - return self._generator - - @property - def upscaling(self): # pragma: no cover - """:class:`str`: Name of the upscaling method. - - See the ``point_volumes`` keyword in the :any:`SRF.__call__` routine. - Default: "no_scaling" - """ - return self._upscaling - - @upscaling.setter - def upscaling(self, upscaling): - if upscaling in UPSCALING: - self._upscaling = upscaling - self._upscaling_func = UPSCALING[upscaling] - else: - raise ValueError(f"SRF: Unknown upscaling method: {upscaling}") - - def __repr__(self): - """Return String representation.""" - return ( - f"{self.name}(model={self.model.name}" - f"{self._fmt_mean_norm_trend()}, generator={self.generator.name})" - ) diff --git a/src/gstools/field/tools.py b/src/gstools/field/tools.py deleted file mode 100644 index dfa2e3c65..000000000 --- a/src/gstools/field/tools.py +++ /dev/null @@ -1,257 +0,0 @@ -""" -GStools subpackage providing tools for Fields. - -.. currentmodule:: gstools.field.tools - -The following classes and functions are provided - -.. autosummary:: - fmt_mean_norm_trend - to_vtk_helper - generate_on_mesh -""" - -# pylint: disable=W0212, C0415 -import meshio -import numpy as np - -from gstools.normalizer import Normalizer -from gstools.tools.export import to_vtk, vtk_export -from gstools.tools.misc import list_format - -__all__ = ["fmt_mean_norm_trend", "to_vtk_helper", "generate_on_mesh"] - - -def _fmt_func_val(f_cls, func_val): # pragma: no cover - if func_val is None: - return str(None) - if callable(func_val): - return "" # or format(func_val.__name__) - if np.size(func_val) > 1: - return list_format(func_val, prec=f_cls.model._prec) - return f"{float(func_val):.{f_cls.model._prec}}" - - -def _fmt_normalizer(f_cls): # pragma: no cover - norm = f_cls.normalizer - return str(None) if norm.__class__ is Normalizer else norm.name - - -def fmt_mean_norm_trend(f_cls): # pragma: no cover - """Format string repr. for mean, normalizer and trend of a field.""" - args = [ - "mean=" + _fmt_func_val(f_cls, f_cls.mean), - "normalizer=" + _fmt_normalizer(f_cls), - "trend=" + _fmt_func_val(f_cls, f_cls.trend), - ] - return "".join([", " + arg for arg in args if not arg.endswith("None")]) - - -def to_vtk_helper( - f_cls, filename=None, field_select="field", fieldname="field" -): # pragma: no cover - """Create a VTK/PyVista grid of the field or save it as a VTK file. - - This is an internal helper that will handle saving or creating objects - - Parameters - ---------- - f_cls : :any:`Field` - Field class in use. - filename : :class:`str` - Filename of the file to be saved, including the path. Note that an - ending (.vtr or .vtu) will be added to the name. If ``None`` is - passed, a PyVista dataset of the appropriate type will be returned. - field_select : :class:`str`, optional - Field that should be stored. Can be: - "field", "raw_field", "krige_field", "err_field" or "krige_var". - Default: "field" - fieldname : :class:`str`, optional - Name of the field in the VTK file. Default: "field" - """ - field = f_cls[field_select] if field_select in f_cls.field_names else None - if f_cls.value_type == "vector": - if not (f_cls.pos is None or field is None or f_cls.mesh_type is None): - suf = ["_X", "_Y", "_Z"] - fields = {} - for i in range(f_cls.model.dim): - fields[fieldname + suf[i]] = field[i] - if filename is None: - return to_vtk(f_cls.pos, fields, f_cls.mesh_type) - return vtk_export(filename, f_cls.pos, fields, f_cls.mesh_type) - raise ValueError(f"Field.to_vtk: '{field_select}' not available.") - if f_cls.value_type == "scalar": - if not (f_cls.pos is None or field is None or f_cls.mesh_type is None): - if filename is None: - return to_vtk(f_cls.pos, {fieldname: field}, f_cls.mesh_type) - return vtk_export( - filename, f_cls.pos, {fieldname: field}, f_cls.mesh_type - ) - raise ValueError(f"Field.to_vtk: '{field_select}' not available.") - raise ValueError(f"Unknown field value type: {f_cls.value_type}") - - -def generate_on_mesh( - f_cls, mesh, points="centroids", direction="all", name="field", **kwargs -): - """Generate a field on a given meshio, ogs5py or pyvista mesh. - - Parameters - ---------- - f_cls : :any:`Field` - The field class in use. - mesh : meshio.Mesh or ogs5py.MSH or PyVista mesh - The given meshio, ogs5py, or PyVista mesh - points : :class:`str`, optional - The points to evaluate the field at. - Either the "centroids" of the mesh cells - (calculated as mean of the cell vertices) or the "points" - of the given mesh. - Default: "centroids" - direction : :class:`str` or :class:`list`, optional - Here you can state which direction should be chosen for - lower dimension. For example, if you got a 2D mesh in xz direction, - you have to pass "xz". By default, all directions are used. - One can also pass a list of indices. - Default: "all" - name : :class:`str` or :class:`list` of :class:`str`, optional - Name(s) to store the field(s) in the given mesh as point_data or - cell_data. If to few names are given, digits will be appended. - Default: "field" - **kwargs - Keyword arguments forwarded to `Field.__call__`. - - Notes - ----- - This will store the field in the given mesh under the given name, - if a meshio or PyVista mesh was given. - - See: https://github.com/nschloe/meshio - - See: https://github.com/GeoStat-Framework/ogs5py - - See: https://github.com/pyvista/pyvista - """ - has_pyvista = False - has_ogs5py = False - - try: - import pyvista as pv - - has_pyvista = True - except ImportError: - pass - try: - import ogs5py as ogs - - has_ogs5py = True - except ImportError: - pass - - if isinstance(direction, str) and direction == "all": - select = list(range(f_cls.dim)) - elif isinstance(direction, str): - select = _get_select(direction)[: f_cls.dim] - else: - select = direction[: f_cls.dim] - if len(select) < f_cls.dim: - raise ValueError( - f"Field.mesh: need at least {f_cls.dim} direction(s), " - f"got '{direction}'" - ) - # convert pyvista mesh - if has_pyvista and pv.is_pyvista_dataset(mesh): - if points == "centroids": - pnts = mesh.cell_centers().points.T[select] - else: - pnts = mesh.points.T[select] - out = f_cls.unstructured(pos=pnts, **kwargs) - # Deal with the output - fields = [out] if isinstance(out, np.ndarray) else out - if f_cls.value_type == "vector": - fields = [f.T for f in fields] - for f_name, field in zip(_names(name, len(fields)), fields): - mesh[f_name] = field - # convert ogs5py mesh - elif has_ogs5py and isinstance(mesh, ogs.MSH): - if points == "centroids": - pnts = mesh.centroids_flat.T[select] - else: - pnts = mesh.NODES.T[select] - out = f_cls.unstructured(pos=pnts, **kwargs) - # convert meshio mesh - elif isinstance(mesh, meshio.Mesh): - if points == "centroids": - # define unique order of cells - offset = [] - length = [] - mesh_dim = mesh.points.shape[1] - if mesh_dim < f_cls.dim: - raise ValueError("Field.mesh: mesh dimension too low!") - pnts = np.empty((0, mesh_dim), dtype=np.double) - for cell in mesh.cells: - pnt = np.mean(mesh.points[cell.data], axis=1) - offset.append(pnts.shape[0]) - length.append(pnt.shape[0]) - pnts = np.vstack((pnts, pnt)) - # generate pos for __call__ - pnts = pnts.T[select] - out = f_cls.unstructured(pos=pnts, **kwargs) - fields = [out] if isinstance(out, np.ndarray) else out - if f_cls.value_type == "vector": - fields = [f.T for f in fields] - f_lists = [] - for field in fields: - f_list = [] - for off, leng in zip(offset, length): - f_list.append(field[off : off + leng]) - f_lists.append(f_list) - for f_name, f_list in zip(_names(name, len(f_lists)), f_lists): - mesh.cell_data[f_name] = f_list - else: - out = f_cls.unstructured(pos=mesh.points.T[select], **kwargs) - fields = [out] if isinstance(out, np.ndarray) else out - if f_cls.value_type == "vector": - fields = [f.T for f in fields] - for f_name, field in zip(_names(name, len(fields)), fields): - mesh.point_data[f_name] = field - else: - raise ValueError("Field.mesh: Unknown mesh format!") - return out - - -def _names(name, cnt): - name = [name] if isinstance(name, str) else list(name)[:cnt] - if len(name) < cnt: - name += [f"{name[-1]}{i + 1}" for i in range(cnt - len(name))] - return name - - -def _get_select(direction): - select = [] - if not 0 < len(direction) < 4: - raise ValueError( - f"Field.mesh: need 1 to 3 direction(s), got '{direction}'" - ) - for axis in direction: - if axis == "x": - if 0 in select: - raise ValueError( - f"Field.mesh: got duplicate directions {direction}" - ) - select.append(0) - elif axis == "y": - if 1 in select: - raise ValueError( - f"Field.mesh: got duplicate directions {direction}" - ) - select.append(1) - elif axis == "z": - if 2 in select: - raise ValueError( - f"Field.mesh: got duplicate directions {direction}" - ) - select.append(2) - else: - raise ValueError(f"Field.mesh: got unknown direction {axis}") - return select diff --git a/src/gstools/field/upscaling.py b/src/gstools/field/upscaling.py deleted file mode 100644 index 857bfc454..000000000 --- a/src/gstools/field/upscaling.py +++ /dev/null @@ -1,98 +0,0 @@ -""" -GStools subpackage providing upscaling routines for the spatial random field. - -.. currentmodule:: gstools.field.upscaling - -The following functions are provided - -.. autosummary:: - :toctree: - - var_coarse_graining - var_no_scaling -""" - -# pylint: disable=W0613 -import warnings - -import numpy as np - -__all__ = ["var_coarse_graining", "var_no_scaling"] - - -# scaling routines ############################################################ - - -def var_coarse_graining(model, point_volumes=0.0): - r"""Coarse Graning procedure to upscale the variance for uniform flow. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for the field. - point_volumes : :class:`float` or :class:`numpy.ndarray` - Volumes of the elements at the given points. Default: ``0`` - - Returns - ------- - scaled_var : :class:`float` or :class:`numpy.ndarray` - The upscaled variance - - Notes - ----- - This procedure was presented in [Attinger03]_. It applies the - upscaling procedure 'Coarse Graining' to the Groundwater flow equation - under uniform flow on a lognormal distributed conductivity field following - a gaussian covariance function. A filter over a cube with a given - edge-length :math:`\lambda` is applied and an upscaled conductivity field - is obtained. - The upscaled field is again following a gaussian covariance function with - scale dependent variance and length-scale: - - .. math:: - \lambda &= V^{\frac{1}{d}} \\ - \sigma^2\left(\lambda\right) &= - \sigma^2\cdot\left( - \frac{\ell^2}{\ell^2+\left(\frac{\lambda}{2}\right)^2} - \right)^{\frac{d}{2}} \\ - \ell\left(\lambda\right) &= - \left(\ell^2+\left(\frac{\lambda}{2}\right)^2\right)^{\frac{1}{2}} - - Therby :math:`\lambda` will be calculated from the given - ``point_volumes`` :math:`V` by assuming a cube with the given volume. - - The upscaled length scale will be ignored by this routine. - - References - ---------- - .. [Attinger03] Attinger, S. 2003, - ''Generalized coarse graining procedures for flow in porous media'', - Computational Geosciences, 7(4), 253–273. - """ - if not np.isclose(model.nugget, 0): - warnings.warn( - "var_coarse_graining: non-zero nugget will violate upscaling!" - ) - # interpret volume as a hypercube and calculate the edge length - edge = point_volumes ** (1.0 / model.dim) - var_factor = ( - model.len_scale**2 / (model.len_scale**2 + edge**2 / 4) - ) ** (model.dim / 2.0) - - return model.sill * var_factor - - -def var_no_scaling(model, *args, **kwargs): - r"""Dummy function to bypass scaling. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for the field. - - Returns - ------- - var : :class:`float` - The model variance. - """ - return model.sill diff --git a/src/gstools/krige/__init__.py b/src/gstools/krige/__init__.py deleted file mode 100644 index 66d032464..000000000 --- a/src/gstools/krige/__init__.py +++ /dev/null @@ -1,29 +0,0 @@ -""" -GStools subpackage providing kriging. - -.. currentmodule:: gstools.krige - -Kriging Classes -^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - Krige - Simple - Ordinary - Universal - ExtDrift - Detrended -""" - -from gstools.krige.base import Krige -from gstools.krige.methods import ( - Detrended, - ExtDrift, - Ordinary, - Simple, - Universal, -) - -__all__ = ["Krige", "Simple", "Ordinary", "Universal", "ExtDrift", "Detrended"] diff --git a/src/gstools/krige/base.py b/src/gstools/krige/base.py deleted file mode 100755 index 78aa2a9f7..000000000 --- a/src/gstools/krige/base.py +++ /dev/null @@ -1,729 +0,0 @@ -""" -GStools subpackage providing a base class for kriging. - -.. currentmodule:: gstools.krige.base - -The following classes are provided - -.. autosummary:: - Krige -""" - -# pylint: disable=C0103, W0221, E1102, R0201, C0412 -import collections - -import numpy as np -import scipy.linalg as spl -from scipy.spatial.distance import cdist - -from gstools import config -from gstools.field.base import Field -from gstools.krige.tools import get_drift_functions, set_condition -from gstools.tools.geometric import rotated_main_axes -from gstools.tools.misc import eval_func -from gstools.variogram import vario_estimate - -if config.USE_RUST: # pragma: no cover - # pylint: disable=E0401 - from gstools_core import calc_field_krige, calc_field_krige_and_variance -else: - from gstools.krige.krigesum import ( - calc_field_krige, - calc_field_krige_and_variance, - ) - -__all__ = ["Krige"] - - -P_INV = {"pinv": spl.pinv, "pinvh": spl.pinvh} -"""dict: Standard pseudo-inverse routines""" - - -class Krige(Field): - """ - A Swiss Army knife for kriging. - - A Kriging class enabling the basic kriging routines: - Simple-, Ordinary-, Universal-, External Drift- - and detrended/regression-Kriging as well as - Kriging the Mean [Wackernagel2003]_. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for kriging. - cond_pos : :class:`list` - tuple, containing the given condition positions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - drift_functions : :class:`list` of :any:`callable`, :class:`str` or :class:`int` - Either a list of callable functions, an integer representing - the polynomial order of the drift or one of the following strings: - - * "linear" : regional linear drift (equals order=1) - * "quadratic" : regional quadratic drift (equals order=2) - - ext_drift : :class:`numpy.ndarray` or :any:`None`, optional - the external drift values at the given cond. positions. - mean : :class:`float`, optional - mean value used to shift normalized conditioning data. - Could also be a callable. The default is None. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the input data to gain normality. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - A callable trend function. Should have the signature: f(x, [y, z, ...]) - This is used for detrended kriging, where the trended is subtracted - from the conditions before kriging is applied. - This can be used for regression kriging, where the trend function - is determined by an external regression algorithm. - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - unbiased : :class:`bool`, optional - Whether the kriging weights should sum up to 1, so the estimator - is unbiased. If unbiased is `False` and no drifts are given, - this results in simple kriging. - Default: True - exact : :class:`bool`, optional - Whether the interpolator should reproduce the exact input values. - If `False`, `cond_err` is interpreted as measurement error - at the conditioning points and the result will be more smooth. - Default: False - cond_err : :class:`str`, :class :class:`float` or :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied to - all points or an array with individual values for each point. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - pseudo_inv : :class:`bool`, optional - Whether the kriging system is solved with the pseudo inverted - kriging matrix. If `True`, this leads to more numerical stability - and redundant points are averaged. But it can take more time. - Default: True - pseudo_inv_type : :class:`str` or :any:`callable`, optional - Here you can select the algorithm to compute the pseudo-inverse matrix: - - * `"pinv"`: use `pinv` from `scipy` which uses `SVD` - * `"pinvh"`: use `pinvh` from `scipy` which uses eigen-values - - If you want to use another routine to invert the kriging matrix, - you can pass a callable which takes a matrix and returns the inverse. - Default: `"pinv"` - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given conditioning data. - Default: False - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - - Notes - ----- - If you have changed any properties in the class, you can update the kriging - setup by calling :any:`Krige.set_condition` without any arguments. - - References - ---------- - .. [Wackernagel2003] Wackernagel, H., - "Multivariate geostatistics", - Springer, Berlin, Heidelberg (2003) - """ - - valid_value_types = ["scalar"] - """:class:`list` of :class:`str`: valid field value types.""" - - default_field_names = ["field", "krige_var", "mean_field"] - """:class:`list`: Default field names.""" - - def __init__( - self, - model, - cond_pos, - cond_val, - drift_functions=None, - ext_drift=None, - mean=None, - normalizer=None, - trend=None, - unbiased=True, - exact=False, - cond_err="nugget", - pseudo_inv=True, - pseudo_inv_type="pinv", - fit_normalizer=False, - fit_variogram=False, - ): - super().__init__(model, mean=mean, normalizer=normalizer, trend=trend) - self._unbiased = bool(unbiased) - self._exact = bool(exact) - self._pseudo_inv = bool(pseudo_inv) - self._pseudo_inv_type = None - self.pseudo_inv_type = pseudo_inv_type - # initialize private attributes - self._cond_pos = None - self._cond_val = None - self._cond_err = None - self._krige_mat = None - self._krige_pos = None - self._cond_trend = None - self._cond_ext_drift = np.array([]) - self._drift_functions = None - self.set_drift_functions(drift_functions) - self.set_condition( - cond_pos, - cond_val, - ext_drift, - cond_err, - fit_normalizer, - fit_variogram, - ) - - def __call__( - self, - pos=None, - mesh_type="unstructured", - ext_drift=None, - chunk_size=None, - only_mean=False, - return_var=True, - post_process=True, - store=True, - ): - """ - Generate the kriging field. - - The field is saved as `self.field` and is also returned. - The error variance is saved as `self.krige_var` and is also returned. - - Parameters - ---------- - pos : :class:`list`, optional - the position tuple, containing main direction and transversal - directions (x, [y, z]) - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - ext_drift : :class:`numpy.ndarray` or :any:`None`, optional - the external drift values at the given positions (only for EDK) - chunk_size : :class:`int`, optional - Chunk size to cut down the size of the kriging system to prevent - memory errors. - Default: None - only_mean : :class:`bool`, optional - Whether to only calculate the mean of the kriging field. - Default: `False` - return_var : :class:`bool`, optional - Whether to return the variance along with the field. - Default: `True` - post_process : :class:`bool`, optional - Whether to apply mean, normalizer and trend to the field. - Default: `True` - store : :class:`str` or :class:`bool` or :class:`list`, optional - Whether to store kriging fields (True/False) with default name - or with specified names. - The default is :any:`True` for default names - ["field", "krige_var"] or "mean_field" if `only_mean=True`. - - Returns - ------- - field : :class:`numpy.ndarray` - the kriged field or mean_field - krige_var : :class:`numpy.ndarray`, optional - the kriging error variance - (if return_var is True and only_mean is False) - """ - return_var &= not only_mean # don't return variance when calc. mean - fld_cnt = 2 if return_var else 1 - default = self.default_field_names[2] if only_mean else None - name, save = self.get_store_config(store, default, fld_cnt) - - iso_pos, shape = self.pre_pos(pos, mesh_type) - pnt_cnt = len(iso_pos[0]) - - field = np.empty(pnt_cnt, dtype=np.double) - krige_var = np.empty(pnt_cnt, dtype=np.double) if return_var else None - # set constant mean if present and wanted - if only_mean and self.drift_no == 0: - field[...] = self.get_mean(post_process=False) - # execute the kriging routine - else: - # set chunk size - chunk_size = pnt_cnt if chunk_size is None else int(chunk_size) - chunk_no = int(np.ceil(pnt_cnt / chunk_size)) - ext_drift = self._pre_ext_drift(pnt_cnt, ext_drift) - # iterate chunks - for i in range(chunk_no): - # get chunk slice for actual chunk - chunk_slice = ( - i * chunk_size, - min(pnt_cnt, (i + 1) * chunk_size), - ) - c_slice = slice(*chunk_slice) - # get RHS of the kriging system - k_vec = self._get_krige_vecs( - iso_pos, chunk_slice, ext_drift, only_mean - ) - # generate the raw kriging field and error variance - self._summate(field, krige_var, c_slice, k_vec, return_var) - # reshape field if we got a structured mesh - field = np.reshape(field, shape) - # save field to class - field = self.post_field(field, name[0], post_process, save[0]) - if return_var: # care about the estimated error variance - krige_var = np.reshape( - np.maximum(self.model.sill - krige_var, 0), shape - ) - krige_var = self.post_field(krige_var, name[1], False, save[1]) - return field, krige_var - return field - - def _summate(self, field, krige_var, c_slice, k_vec, return_var): - if return_var: # estimate error variance - field[c_slice], krige_var[c_slice] = calc_field_krige_and_variance( - self._krige_mat, k_vec, self._krige_cond - ) - else: # solely calculate the interpolated field - field[c_slice] = calc_field_krige( - self._krige_mat, k_vec, self._krige_cond - ) - - def _inv(self, mat): - # return pseudo-inverted matrix if wanted (numerically more stable) - if self.pseudo_inv: - # if the given type is a callable, call it - if callable(self.pseudo_inv_type): - return self.pseudo_inv_type(mat) - # use the selected method to compute the pseudo-inverse matrix - return P_INV[self.pseudo_inv_type](mat) - # if no pseudo-inverse is wanted, calculate the real inverse - return spl.inv(mat) - - def _get_krige_mat(self): - """Calculate the inverse matrix of the kriging equation.""" - res = np.empty((self.krige_size, self.krige_size), dtype=np.double) - # fill the kriging matrix with the covariance - res[: self.cond_no, : self.cond_no] = self.model.covariance( - self._get_dists(self._krige_pos) - ) - # apply the measurement error (nugget by default) - res[np.diag_indices(self.cond_no)] += self.cond_err - # set unbias condition (weights have to sum up to 1) - if self.unbiased: - res[self.cond_no, : self.cond_no] = 1 - res[: self.cond_no, self.cond_no] = 1 - # set functional drift terms - for i, f in enumerate(self.drift_functions): - drift_tmp = f(*self.cond_pos) - res[-self.drift_no + i, : self.cond_no] = drift_tmp - res[: self.cond_no, -self.drift_no + i] = drift_tmp - # set external drift terms - if self.ext_drift_no > 0: - ext_size = self.krige_size - self.ext_drift_no - res[ext_size:, : self.cond_no] = self.cond_ext_drift - res[: self.cond_no, ext_size:] = self.cond_ext_drift.T - # set lower right part of the matrix to 0 - res[self.cond_no :, self.cond_no :] = 0 - return self._inv(res) - - def _get_krige_vecs( - self, pos, chunk_slice=(0, None), ext_drift=None, only_mean=False - ): - """Calculate the RHS of the kriging equation.""" - # determine the chunk size - chunk_size = len(pos[0]) if chunk_slice[1] is None else chunk_slice[1] - chunk_size -= chunk_slice[0] - chunk_pos = None # init value - res = np.empty((self.krige_size, chunk_size), dtype=np.double) - if only_mean: - # set points to limit of the covariance to only get the mean - res[: self.cond_no, :] = 0 - else: - # get correct covariance functions (depending on exact values) - cf = self.model.cov_nugget if self.exact else self.model.covariance - res[: self.cond_no, :] = cf( - self._get_dists(self._krige_pos, pos, chunk_slice) - ) - # apply the unbiased condition - if self.unbiased: - res[self.cond_no, :] = 1 - # drift function need the anisotropic and rotated positions - if self.int_drift_no > 0: - chunk_pos = self.model.anisometrize(pos)[:, slice(*chunk_slice)] - # apply functional drift - for i, f in enumerate(self.drift_functions): - res[-self.drift_no + i, :] = f(*chunk_pos) - # apply external drift - if self.ext_drift_no > 0: - ext_size = self.krige_size - self.ext_drift_no - res[ext_size:, :] = ext_drift[:, slice(*chunk_slice)] - return res - - def _pre_ext_drift(self, pnt_cnt, ext_drift=None, set_cond=False): - """ - Preprocessor for external drifts. - - Parameters - ---------- - pnt_cnt : :class:`numpy.ndarray` - Number of points of the mesh. - ext_drift : :class:`numpy.ndarray` or :any:`None`, optional - the external drift values at the given positions (only for EDK) - For multiple external drifts, the first dimension - should be the index of the drift term. - set_cond : :class:`bool`, optional - State if the given external drift is set for the conditioning - points. Default: False - - Returns - ------- - ext_drift : :class:`numpy.ndarray` or :any:`None` - the drift values at the given positions - """ - if ext_drift is not None: - ext_drift = np.atleast_2d(np.asarray(ext_drift, dtype=np.double)) - if ext_drift.size == 0: # treat empty array as no ext_drift - return np.array([]) - if set_cond: - if len(ext_drift.shape) > 2 or ext_drift.shape[1] != pnt_cnt: - raise ValueError("Krige: wrong number of ext. drifts.") - return ext_drift - ext_shape = np.shape(ext_drift) - shape = (self.ext_drift_no, pnt_cnt) - if self.drift_no > 1 and ext_shape[0] != self.ext_drift_no: - raise ValueError("Krige: wrong number of external drifts.") - if np.prod(ext_shape) != np.prod(shape): - raise ValueError("Krige: wrong number of ext. drift values.") - return np.asarray(ext_drift, dtype=np.double).reshape(shape) - if not set_cond and self._cond_ext_drift.size > 0: - raise ValueError("Krige: wrong number of ext. drift values.") - return np.array([]) - - def _get_dists(self, pos1, pos2=None, pos2_slice=(0, None)): - """ - Calculate pairwise distances. - - Parameters - ---------- - pos1 : :class:`tuple` of :class:`numpy.ndarray` - the first position tuple - pos2 : :class:`tuple` of :class:`numpy.ndarray`, optional - the second position tuple. If none, the first one is taken. - pos2_slice : :class:`tuple` of :class:`int`, optional - Start and stop of slice for the pos2 array. Default: all values. - - Returns - ------- - :class:`numpy.ndarray` - Matrix containing the pairwise distances. - """ - if pos2 is None: - return cdist(pos1.T, pos1.T) - return cdist(pos1.T, pos2.T[slice(*pos2_slice), ...]) - - def get_mean(self, post_process=True): - """Calculate the estimated mean of the detrended field. - - Parameters - ---------- - post_process : :class:`bool`, optional - Whether to apply field-mean and normalizer. - Default: `True` - - Returns - ------- - mean : :class:`float` or :any:`None` - Mean of the Kriging System. - - Notes - ----- - Only not ``None`` if the Kriging System has a constant mean. - This means, no drift is given and the given field-mean is constant. - The result is neglecting a potential given trend. - """ - # if there are drift-terms, no constant mean can be calculated -> None - # if mean should not be post-processed, it exists when no drift given - if not self.has_const_mean and (post_process or self.drift_no > 0): - return None - res = 0.0 # for simple kriging return the given mean - # correctly setting given mean - mean = 0.0 if self.mean is None else self.mean - # for ordinary kriging return the estimated mean - if self.unbiased: - # set the right side of the kriging system to the limit of cov. - mean_est = np.concatenate((np.full_like(self.cond_val, 0.0), [1])) - # execute the kriging routine with einsum - res = np.einsum( - "i,ij,j", self._krige_cond, self._krige_mat, mean_est - ) - return self.normalizer.denormalize(res + mean) if post_process else res - - def set_condition( - self, - cond_pos=None, - cond_val=None, - ext_drift=None, - cond_err=None, - fit_normalizer=False, - fit_variogram=False, - ): - """Set the conditions for kriging. - - This method could also be used to update the kriging setup, when - properties were changed. Then you can call it without arguments. - - Parameters - ---------- - cond_pos : :class:`list`, optional - the position tuple of the conditions (x, [y, z]). Default: current. - cond_val : :class:`numpy.ndarray`, optional - the values of the conditions (nan values will be ignored). - Default: current. - ext_drift : :class:`numpy.ndarray` or :any:`None`, optional - the external drift values at the given conditions (only for EDK) - For multiple external drifts, the first dimension - should be the index of the drift term. When passing `None`, the - extisting external drift will be used. - cond_err : :class:`str`, :class :class:`float`, :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied - to all points or an array with individual values for each point. - The measurement error has to be <= nugget. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given conditioning data. - Default: False - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - """ - # only use existing external drift, if no new positions are given - ext_drift = ( - self._cond_ext_drift - if (ext_drift is None and cond_pos is None) - else ext_drift - ) - # use existing values or set default - cond_pos = self._cond_pos if cond_pos is None else cond_pos - cond_val = self._cond_val if cond_val is None else cond_val - cond_err = self._cond_err if cond_err is None else cond_err - cond_err = "nugget" if cond_err is None else cond_err # default - if cond_pos is None or cond_val is None: - raise ValueError("Krige.set_condition: missing cond_pos/cond_val.") - # correctly format cond_pos and cond_val - self._cond_pos, self._cond_val = set_condition( - cond_pos, cond_val, self.dim - ) - if fit_normalizer: # fit normalizer to detrended data - self.normalizer.fit(self.cond_val - self.cond_trend) - if fit_variogram: # fitting model to empirical variogram of data - # normalize field - if self.model.latlon and self.model.temporal: - msg = "Krige: can't fit variogram for spatio-temporal latlon data." - raise ValueError(msg) - field = self.normalizer.normalize(self.cond_val - self.cond_trend) - field -= self.cond_mean - sill = np.var(field) - if self.model.is_isotropic: - emp_vario = vario_estimate( - self.cond_pos, - field, - latlon=self.model.latlon, - geo_scale=self.model.geo_scale, - ) - else: - axes = rotated_main_axes(self.model.dim, self.model.angles) - emp_vario = vario_estimate( - self.cond_pos, field, direction=axes - ) - # set the sill to the field variance - self.model.fit_variogram(*emp_vario, sill=sill) - # set the measurement errors - self.cond_err = cond_err - # set the external drift values and the conditioning points - self._cond_ext_drift = self._pre_ext_drift( - self.cond_no, ext_drift, set_cond=True - ) - # upate the internal kriging settings - self._krige_pos = self.model.isometrize(self.cond_pos) - # krige pos are the unrotated and isotropic condition positions - self._krige_mat = self._get_krige_mat() - - def set_drift_functions(self, drift_functions=None): - """ - Set the drift functions for universal kriging. - - Parameters - ---------- - drift_functions : :class:`list` of :any:`callable`, :class:`str` or :class:`int` - Either a list of callable functions, an integer representing - the polynomial order of the drift or one of the following strings: - - * "linear" : regional linear drift (equals order=1) - * "quadratic" : regional quadratic drift (equals order=2) - - Raises - ------ - ValueError - If the given drift functions are not callable. - """ - if drift_functions is None: - self._drift_functions = [] - elif isinstance(drift_functions, (str, int)): - self._drift_functions = get_drift_functions( - self.dim, drift_functions - ) - else: - if isinstance(drift_functions, collections.abc.Iterator): - drift_functions = list(drift_functions) - # check for a single content thats not a string - try: - iter(drift_functions) - except TypeError: - drift_functions = [drift_functions] - for f in drift_functions: - if not callable(f): - raise ValueError("Krige: Drift functions not callable") - self._drift_functions = drift_functions - - @property - def _krige_cond(self): - """:class:`numpy.ndarray`: The prepared kriging conditions.""" - pad_size = self.drift_no + int(self.unbiased) - # detrend data and normalize - val = self.normalizer.normalize(self.cond_val - self.cond_trend) - # set to zero mean - val -= self.cond_mean - return np.pad(val, (0, pad_size), mode="constant", constant_values=0) - - @property - def cond_pos(self): - """:class:`list`: The position tuple of the conditions.""" - return self._cond_pos - - @property - def cond_val(self): - """:class:`list`: The values of the conditions.""" - return self._cond_val - - @property - def cond_err(self): - """:class:`list`: The measurement errors at the condition points.""" - if isinstance(self._cond_err, str) and self._cond_err == "nugget": - return self.model.nugget - return self._cond_err - - @cond_err.setter - def cond_err(self, value): - if isinstance(value, str) and value == "nugget": - self._cond_err = value - else: - if self.exact: - raise ValueError( - "krige.cond_err: measurement errors can't be given, " - "when interpolator should be exact." - ) - value = np.asarray(value, dtype=np.double).reshape(-1) - if value.size == 1: - self._cond_err = value.item() - else: - if value.size != self.cond_no: - raise ValueError( - "krige.cond_err: wrong number of measurement errors." - ) - self._cond_err = value - - @property - def cond_no(self): - """:class:`int`: The number of the conditions.""" - return len(self._cond_val) - - @property - def cond_ext_drift(self): - """:class:`numpy.ndarray`: The ext. drift at the conditions.""" - return self._cond_ext_drift - - @property - def cond_mean(self): - """:class:`numpy.ndarray`: Trend at the conditions.""" - return eval_func(self.mean, self.cond_pos, self.dim, broadcast=True) - - @property - def cond_trend(self): - """:class:`numpy.ndarray`: Trend at the conditions.""" - return eval_func(self.trend, self.cond_pos, self.dim, broadcast=True) - - @property - def unbiased(self): - """:class:`bool`: Whether the kriging is unbiased or not.""" - return self._unbiased - - @property - def exact(self): - """:class:`bool`: Whether the interpolator is exact.""" - return self._exact - - @property - def pseudo_inv(self): - """:class:`bool`: Whether pseudo inverse matrix is used.""" - return self._pseudo_inv - - @property - def pseudo_inv_type(self): - """:class:`str`: Method selector for pseudo inverse calculation.""" - return self._pseudo_inv_type - - @pseudo_inv_type.setter - def pseudo_inv_type(self, val): - if val not in P_INV and not callable(val): - raise ValueError(f"Krige: pseudo_inv_type not in {sorted(P_INV)}") - self._pseudo_inv_type = val - - @property - def drift_functions(self): - """:class:`list` of :any:`callable`: The drift functions.""" - return self._drift_functions - - @property - def has_const_mean(self): - """:class:`bool`: Whether the field has a constant mean or not.""" - return self.drift_no == 0 and not callable(self.mean) - - @property - def krige_size(self): - """:class:`int`: Size of the kriging system.""" - return self.cond_no + self.drift_no + int(self.unbiased) - - @property - def drift_no(self): - """:class:`int`: Number of drift values per point.""" - return self.int_drift_no + self.ext_drift_no - - @property - def int_drift_no(self): - """:class:`int`: Number of internal drift values per point.""" - return len(self.drift_functions) - - @property - def ext_drift_no(self): - """:class:`int`: Number of external drift values per point.""" - return self.cond_ext_drift.shape[0] - - def __repr__(self): - """Return String representation.""" - return ( - f"{self.name}(model={self.model.name}, " - f"cond_no={self.cond_no}{self._fmt_mean_norm_trend()})" - ) diff --git a/src/gstools/krige/methods.py b/src/gstools/krige/methods.py deleted file mode 100644 index 19ffed56d..000000000 --- a/src/gstools/krige/methods.py +++ /dev/null @@ -1,520 +0,0 @@ -""" -GStools subpackage providing a class for simple kriging. - -.. currentmodule:: gstools.krige.methods - -The following classes are provided - -.. autosummary:: - Simple - Ordinary - Universal - ExtDrift - Detrended -""" - -# pylint: disable=C0103 -from gstools.krige.base import Krige - -__all__ = ["Simple", "Ordinary", "Universal", "ExtDrift", "Detrended"] - - -class Simple(Krige): - """ - Simple kriging. - - Simple kriging is used to interpolate data with a given mean. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for kriging. - cond_pos : :class:`list` - tuple, containing the given condition positions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - mean : :class:`float`, optional - mean value used to shift normalized conditioning data. - Could also be a callable. The default is None. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the input data to gain normality. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - A callable trend function. Should have the signature: f(x, [y, z, ...]) - This is used for detrended kriging, where the trended is subtracted - from the conditions before kriging is applied. - This can be used for regression kriging, where the trend function - is determined by an external regression algorithm. - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - exact : :class:`bool`, optional - Whether the interpolator should reproduce the exact input values. - If `False`, `cond_err` is interpreted as measurement error - at the conditioning points and the result will be more smooth. - Default: False - cond_err : :class:`str`, :class :class:`float` or :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied to - all points or an array with individual values for each point. - The measurement error has to be <= nugget. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - pseudo_inv : :class:`bool`, optional - Whether the kriging system is solved with the pseudo inverted - kriging matrix. If `True`, this leads to more numerical stability - and redundant points are averaged. But it can take more time. - Default: True - pseudo_inv_type : :class:`str` or :any:`callable`, optional - Here you can select the algorithm to compute the pseudo-inverse matrix: - - * `"pinv"`: use `pinv` from `scipy` which uses `SVD` - * `"pinvh"`: use `pinvh` from `scipy` which uses eigen-values - - If you want to use another routine to invert the kriging matrix, - you can pass a callable which takes a matrix and returns the inverse. - Default: `"pinv"` - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given conditioning data. - Default: False - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - """ - - def __init__( - self, - model, - cond_pos, - cond_val, - mean=0.0, - normalizer=None, - trend=None, - exact=False, - cond_err="nugget", - pseudo_inv=True, - pseudo_inv_type="pinv", - fit_normalizer=False, - fit_variogram=False, - ): - super().__init__( - model, - cond_pos, - cond_val, - mean=mean, - normalizer=normalizer, - trend=trend, - unbiased=False, - exact=exact, - cond_err=cond_err, - pseudo_inv=pseudo_inv, - pseudo_inv_type=pseudo_inv_type, - fit_normalizer=fit_normalizer, - fit_variogram=fit_variogram, - ) - - -class Ordinary(Krige): - """ - Ordinary kriging. - - Ordinary kriging is used to interpolate data and estimate a proper mean. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for kriging. - cond_pos : :class:`list` - tuple, containing the given condition positions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the input data to gain normality. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - A callable trend function. Should have the signature: f(x, [y, z, ...]) - This is used for detrended kriging, where the trended is subtracted - from the conditions before kriging is applied. - This can be used for regression kriging, where the trend function - is determined by an external regression algorithm. - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - exact : :class:`bool`, optional - Whether the interpolator should reproduce the exact input values. - If `False`, `cond_err` is interpreted as measurement error - at the conditioning points and the result will be more smooth. - Default: False - cond_err : :class:`str`, :class :class:`float` or :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied to - all points or an array with individual values for each point. - The measurement error has to be <= nugget. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - pseudo_inv : :class:`bool`, optional - Whether the kriging system is solved with the pseudo inverted - kriging matrix. If `True`, this leads to more numerical stability - and redundant points are averaged. But it can take more time. - Default: True - pseudo_inv_type : :class:`str` or :any:`callable`, optional - Here you can select the algorithm to compute the pseudo-inverse matrix: - - * `"pinv"`: use `pinv` from `scipy` which uses `SVD` - * `"pinvh"`: use `pinvh` from `scipy` which uses eigen-values - - If you want to use another routine to invert the kriging matrix, - you can pass a callable which takes a matrix and returns the inverse. - Default: `"pinv"` - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given conditioning data. - Default: False - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - """ - - def __init__( - self, - model, - cond_pos, - cond_val, - normalizer=None, - trend=None, - exact=False, - cond_err="nugget", - pseudo_inv=True, - pseudo_inv_type="pinv", - fit_normalizer=False, - fit_variogram=False, - ): - super().__init__( - model, - cond_pos, - cond_val, - trend=trend, - normalizer=normalizer, - exact=exact, - cond_err=cond_err, - pseudo_inv=pseudo_inv, - pseudo_inv_type=pseudo_inv_type, - fit_normalizer=fit_normalizer, - fit_variogram=fit_variogram, - ) - - -class Universal(Krige): - """ - Universal kriging. - - Universal kriging is used to interpolate given data with a variable mean, - that is determined by a functional drift. - - This estimator is set to be unbiased by default. - This means, that the weights in the kriging equation sum up to 1. - Consequently no constant function needs to be given for a constant drift, - since the unbiased condition is applied to all given drift functions. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for kriging. - cond_pos : :class:`list` - tuple, containing the given condition positions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - drift_functions : :class:`list` of :any:`callable`, :class:`str` or :class:`int` - Either a list of callable functions, an integer representing - the polynomial order of the drift or one of the following strings: - - * "linear" : regional linear drift (equals order=1) - * "quadratic" : regional quadratic drift (equals order=2) - - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the input data to gain normality. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - A callable trend function. Should have the signature: f(x, [y, z, ...]) - This is used for detrended kriging, where the trended is subtracted - from the conditions before kriging is applied. - This can be used for regression kriging, where the trend function - is determined by an external regression algorithm. - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - exact : :class:`bool`, optional - Whether the interpolator should reproduce the exact input values. - If `False`, `cond_err` is interpreted as measurement error - at the conditioning points and the result will be more smooth. - Default: False - cond_err : :class:`str`, :class :class:`float` or :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied to - all points or an array with individual values for each point. - The measurement error has to be <= nugget. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - pseudo_inv : :class:`bool`, optional - Whether the kriging system is solved with the pseudo inverted - kriging matrix. If `True`, this leads to more numerical stability - and redundant points are averaged. But it can take more time. - Default: True - pseudo_inv_type : :class:`str` or :any:`callable`, optional - Here you can select the algorithm to compute the pseudo-inverse matrix: - - * `"pinv"`: use `pinv` from `scipy` which uses `SVD` - * `"pinvh"`: use `pinvh` from `scipy` which uses eigen-values - - If you want to use another routine to invert the kriging matrix, - you can pass a callable which takes a matrix and returns the inverse. - Default: `"pinv"` - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given conditioning data. - Default: False - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - """ - - def __init__( - self, - model, - cond_pos, - cond_val, - drift_functions, - normalizer=None, - trend=None, - exact=False, - cond_err="nugget", - pseudo_inv=True, - pseudo_inv_type="pinv", - fit_normalizer=False, - fit_variogram=False, - ): - super().__init__( - model, - cond_pos, - cond_val, - drift_functions=drift_functions, - normalizer=normalizer, - trend=trend, - exact=exact, - cond_err=cond_err, - pseudo_inv=pseudo_inv, - pseudo_inv_type=pseudo_inv_type, - fit_normalizer=fit_normalizer, - fit_variogram=fit_variogram, - ) - - -class ExtDrift(Krige): - """ - External drift kriging (EDK). - - External drift kriging is used to interpolate given data - with a variable mean, that is determined by an external drift. - - This estimator is set to be unbiased by default. - This means, that the weights in the kriging equation sum up to 1. - Consequently no constant external drift needs to be given to estimate - a proper mean. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for kriging. - cond_pos : :class:`list` - tuple, containing the given condition positions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - ext_drift : :class:`numpy.ndarray` - the external drift values at the given condition positions. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the input data to gain normality. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - A callable trend function. Should have the signature: f(x, [y, z, ...]) - This is used for detrended kriging, where the trended is subtracted - from the conditions before kriging is applied. - This can be used for regression kriging, where the trend function - is determined by an external regression algorithm. - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - exact : :class:`bool`, optional - Whether the interpolator should reproduce the exact input values. - If `False`, `cond_err` is interpreted as measurement error - at the conditioning points and the result will be more smooth. - Default: False - cond_err : :class:`str`, :class :class:`float` or :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied to - all points or an array with individual values for each point. - The measurement error has to be <= nugget. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - pseudo_inv : :class:`bool`, optional - Whether the kriging system is solved with the pseudo inverted - kriging matrix. If `True`, this leads to more numerical stability - and redundant points are averaged. But it can take more time. - Default: True - pseudo_inv_type : :class:`str` or :any:`callable`, optional - Here you can select the algorithm to compute the pseudo-inverse matrix: - - * `"pinv"`: use `pinv` from `scipy` which uses `SVD` - * `"pinvh"`: use `pinvh` from `scipy` which uses eigen-values - - If you want to use another routine to invert the kriging matrix, - you can pass a callable which takes a matrix and returns the inverse. - Default: `"pinv"` - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given conditioning data. - Default: False - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - """ - - def __init__( - self, - model, - cond_pos, - cond_val, - ext_drift, - normalizer=None, - trend=None, - exact=False, - cond_err="nugget", - pseudo_inv=True, - pseudo_inv_type="pinv", - fit_normalizer=False, - fit_variogram=False, - ): - super().__init__( - model, - cond_pos, - cond_val, - ext_drift=ext_drift, - normalizer=normalizer, - trend=trend, - exact=exact, - cond_err=cond_err, - pseudo_inv=pseudo_inv, - pseudo_inv_type=pseudo_inv_type, - fit_normalizer=fit_normalizer, - fit_variogram=fit_variogram, - ) - - -class Detrended(Krige): - """ - Detrended simple kriging. - - In detrended kriging, the data is detrended before interpolation by - simple kriging with zero mean. - - The trend needs to be a callable function the user has to provide. - This can be used for regression kriging, where the trend function - is determined by an external regression algorithm. - - This is just a shortcut for simple kriging with a given trend function, - zero mean and no normalizer. - - A trend can be given with EVERY provided kriging routine. - - Parameters - ---------- - model : :any:`CovModel` - Covariance Model used for kriging. - cond_pos : :class:`list` - tuple, containing the given condition positions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - trend_function : :any:`callable` - The callable trend function. Should have the signature: f(x, [y, z]) - exact : :class:`bool`, optional - Whether the interpolator should reproduce the exact input values. - If `False`, `cond_err` is interpreted as measurement error - at the conditioning points and the result will be more smooth. - Default: False - cond_err : :class:`str`, :class :class:`float` or :class:`list`, optional - The measurement error at the conditioning points. - Either "nugget" to apply the model-nugget, a single value applied to - all points or an array with individual values for each point. - The measurement error has to be <= nugget. - The "exact=True" variant only works with "cond_err='nugget'". - Default: "nugget" - pseudo_inv : :class:`bool`, optional - Whether the kriging system is solved with the pseudo inverted - kriging matrix. If `True`, this leads to more numerical stability - and redundant points are averaged. But it can take more time. - Default: True - pseudo_inv_type : :class:`str` or :any:`callable`, optional - Here you can select the algorithm to compute the pseudo-inverse matrix: - - * `"pinv"`: use `pinv` from `scipy` which uses `SVD` - * `"pinvh"`: use `pinvh` from `scipy` which uses eigen-values - - If you want to use another routine to invert the kriging matrix, - you can pass a callable which takes a matrix and returns the inverse. - Default: `"pinv"` - fit_variogram : :class:`bool`, optional - Whether to fit the given variogram model to the data. - Directional variogram fitting is triggered by setting - any anisotropy factor of the model to anything unequal 1 - but the main axes of correlation are taken from the model - rotation angles. If the model is a spatio-temporal latlon - model, this will raise an error. - This assumes the sill to be the data variance and with - standard bins provided by the :any:`standard_bins` routine. - Default: False - """ - - def __init__( - self, - model, - cond_pos, - cond_val, - trend, - exact=False, - cond_err="nugget", - pseudo_inv=True, - pseudo_inv_type="pinv", - fit_variogram=False, - ): - super().__init__( - model, - cond_pos, - cond_val, - trend=trend, - unbiased=False, - exact=exact, - cond_err=cond_err, - pseudo_inv=pseudo_inv, - pseudo_inv_type=pseudo_inv_type, - fit_variogram=fit_variogram, - ) diff --git a/src/gstools/krige/tools.py b/src/gstools/krige/tools.py deleted file mode 100644 index 629265957..000000000 --- a/src/gstools/krige/tools.py +++ /dev/null @@ -1,96 +0,0 @@ -""" -GStools subpackage providing tools for Kriging. - -.. currentmodule:: gstools.krige.tools - -The following classes and functions are provided - -.. autosummary:: - set_condition - get_drift_functions -""" - -# pylint: disable=C0103 -from itertools import combinations_with_replacement - -import numpy as np - -__all__ = ["set_condition", "get_drift_functions"] - - -def set_condition(cond_pos, cond_val, dim): - """ - Set the conditions for kriging. - - Parameters - ---------- - cond_pos : :class:`list` - the position tuple of the conditions (x, [y, z]) - cond_val : :class:`numpy.ndarray` - the values of the conditions (nan values will be ignored) - dim : :class:`int`, optional - Spatial dimension - - Raises - ------ - ValueError - If the given data does not match the given dimension. - - Returns - ------- - cond_pos : :class:`list` - the error checked cond_pos with all finite values - cond_val : :class:`numpy.ndarray` - the error checked cond_val for all finite cond_pos values - """ - # convert the input for right shapes and dimension checks - cond_val = np.asarray(cond_val, dtype=np.double).reshape(-1) - cond_pos = np.asarray(cond_pos, dtype=np.double).reshape(dim, -1) - if len(cond_pos[0]) != len(cond_val): - raise ValueError( - "Please check your 'cond_pos' and 'cond_val' parameters. " - "The shapes do not match." - ) - mask = np.isfinite(cond_val) - return cond_pos[:, mask], cond_val[mask] - - -def get_drift_functions(dim, drift_type): - """ - Get functions for a given drift type in universal kriging. - - Parameters - ---------- - dim : :class:`int` - Given dimension. - drift_type : :class:`str` or :class:`int` - Drift type: 'linear' or 'quadratic' or an integer for the polynomial - order of the drift type. (linear equals 1, quadratic equals 2 ...) - - Returns - ------- - :class:`list` of :any:`callable` - List of drift functions. - """ - if drift_type in ["lin", "linear"]: - drift_type = 1 - elif drift_type in ["quad", "quadratic"]: - drift_type = 2 - else: - drift_type = int(drift_type) - drift_functions = [] - for d in range(drift_type): - selects = combinations_with_replacement(range(dim), d + 1) - for select in selects: - drift_functions.append(_f_factory(select)) - return drift_functions - - -def _f_factory(select): - def f(*pos): - res = 1.0 - for i in select: - res *= np.asarray(pos[i]) - return res - - return f diff --git a/src/gstools/normalizer/__init__.py b/src/gstools/normalizer/__init__.py deleted file mode 100644 index 505a6d67f..000000000 --- a/src/gstools/normalizer/__init__.py +++ /dev/null @@ -1,61 +0,0 @@ -""" -GStools subpackage providing normalization routines. - -.. currentmodule:: gstools.normalizer - -Base-Normalizer -^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - Normalizer - -Field-Normalizer -^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - LogNormal - BoxCox - BoxCoxShift - YeoJohnson - Modulus - Manly - -Convenience Routines -^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - apply_mean_norm_trend - remove_trend_norm_mean -""" - -from gstools.normalizer.base import Normalizer -from gstools.normalizer.methods import ( - BoxCox, - BoxCoxShift, - LogNormal, - Manly, - Modulus, - YeoJohnson, -) -from gstools.normalizer.tools import ( - apply_mean_norm_trend, - remove_trend_norm_mean, -) - -__all__ = [ - "Normalizer", - "LogNormal", - "BoxCox", - "BoxCoxShift", - "YeoJohnson", - "Modulus", - "Manly", - "apply_mean_norm_trend", - "remove_trend_norm_mean", -] diff --git a/src/gstools/normalizer/base.py b/src/gstools/normalizer/base.py deleted file mode 100644 index 4a8477c60..000000000 --- a/src/gstools/normalizer/base.py +++ /dev/null @@ -1,260 +0,0 @@ -""" -GStools subpackage providing the base class for normalizers. - -.. currentmodule:: gstools.normalizer.base - -The following classes are provided - -.. autosummary:: - Normalizer -""" - -# pylint: disable=R0201 -import warnings - -import numpy as np -import scipy.misc as spm -import scipy.optimize as spo - - -class Normalizer: - """Normalizer class. - - Parameters - ---------- - data : array_like, optional - Input data to fit the transformation to in order to gain normality. - The default is None. - **parameter - Specified parameters given by name. If not given, default parameters - will be used. - """ - - default_parameter = {} - """:class:`dict`: Default parameters of the Normalizer.""" - normalize_range = (-np.inf, np.inf) - """:class:`tuple`: Valid range for input data.""" - denormalize_range = (-np.inf, np.inf) - """:class:`tuple`: Valid range for output/normal data.""" - _dx = 1e-6 # dx for numerical derivative - - def __init__(self, data=None, **parameter): - # only use parameter, that have a provided default value - for key, value in self.default_parameter.items(): - setattr(self, key, parameter.get(key, value)) - # fit parameters if data is given - if data is not None: - self.fit(data) - # optimization results - self._opti = None - # precision for printing - self._prec = 3 - - def _denormalize(self, data): - return data - - def _normalize(self, data): - return data - - def _derivative(self, data): - return spm.derivative(self._normalize, data, dx=self._dx) - - def _loglikelihood(self, data): - add = -0.5 * np.size(data) * (np.log(2 * np.pi) + 1) - return self._kernel_loglikelihood(data) + add - - def _kernel_loglikelihood(self, data): - res = -0.5 * np.size(data) * np.log(np.var(self._normalize(data))) - return res + np.sum(np.log(np.maximum(1e-16, self._derivative(data)))) - - def _check_input(self, data, data_range=None, return_output_template=True): - is_data = np.logical_not(np.isnan(data)) - if return_output_template: - out = np.full_like(data, np.nan, dtype=np.double) - data = np.asarray(data, dtype=np.double)[is_data] - if data_range is not None and np.min(np.abs(data_range)) < np.inf: - dat_in = np.logical_and(data > data_range[0], data < data_range[1]) - if not np.all(dat_in): - warnings.warn( - f"{self.name}: " - f"data (min: {np.min(data)}, max: {np.max(data)}) " - f"out of range: {data_range}. " - "Affected values will be treated as NaN." - ) - is_data[is_data] &= dat_in - data = data[dat_in] - if return_output_template: - return data, is_data, out - return data - - def denormalize(self, data): - """Transform to input distribution. - - Parameters - ---------- - data : array_like - Input data (normal distributed). - - Returns - ------- - :class:`numpy.ndarray` - Denormalized data. - """ - data, is_data, out = self._check_input(data, self.denormalize_range) - out[is_data] = self._denormalize(data) - return out - - def normalize(self, data): - """Transform to normal distribution. - - Parameters - ---------- - data : array_like - Input data (not normal distributed). - - Returns - ------- - :class:`numpy.ndarray` - Normalized data. - """ - data, is_data, out = self._check_input(data, self.normalize_range) - out[is_data] = self._normalize(data) - return out - - def derivative(self, data): - """Factor for normal PDF to gain target PDF. - - Parameters - ---------- - data : array_like - Input data (not normal distributed). - - Returns - ------- - :class:`numpy.ndarray` - Derivative of the normalization transformation function. - """ - data, is_data, out = self._check_input(data, self.normalize_range) - out[is_data] = self._derivative(data) - return out - - def likelihood(self, data): - """Likelihood for given data with current parameters. - - Parameters - ---------- - data : array_like - Input data to fit the transformation to in order to gain normality. - - Returns - ------- - :class:`float` - Likelihood of the given data. - """ - return np.exp(self.loglikelihood(data)) - - def loglikelihood(self, data): - """Log-Likelihood for given data with current parameters. - - Parameters - ---------- - data : array_like - Input data to fit the transformation to in order to gain normality. - - Returns - ------- - :class:`float` - Log-Likelihood of the given data. - """ - data = self._check_input(data, self.normalize_range, False) - return self._loglikelihood(data) - - def kernel_loglikelihood(self, data): - """Kernel Log-Likelihood for given data with current parameters. - - Parameters - ---------- - data : array_like - Input data to fit the transformation to in order to gain normality. - - Returns - ------- - :class:`float` - Kernel Log-Likelihood of the given data. - - Notes - ----- - This loglikelihood function is neglecting additive constants, - that are not needed for optimization. - """ - data = self._check_input(data, self.normalize_range, False) - return self._kernel_loglikelihood(data) - - def fit(self, data, skip=None, **kwargs): - """Fitting the transformation to data by maximizing Log-Likelihood. - - Parameters - ---------- - data : array_like - Input data to fit the transformation to in order to gain normality. - skip : :class:`list` of :class:`str` or :any:`None`, optional - Names of parameters to be skipped in fitting. - The default is None. - **kwargs - Keyword arguments passed to :any:`scipy.optimize.minimize_scalar` - when only one parameter present or :any:`scipy.optimize.minimize`. - - Returns - ------- - :class:`dict` - Optimal parameters given by names. - """ - skip = [] if skip is None else skip - all_names = sorted(self.default_parameter) - para_names = [name for name in all_names if name not in skip] - - def _neg_kllf(par, dat): - for name, val in zip(para_names, np.atleast_1d(par)): - setattr(self, name, val) - return -self.kernel_loglikelihood(dat) - - if len(para_names) == 0: # transformations without para. (no opti.) - warnings.warn(f"{self.name}.fit: no parameters!") - return {} - if len(para_names) == 1: # one-para. transformations (simple opti.) - # default bracket like in scipy's boxcox (if not given) - kwargs.setdefault("bracket", (-2, 2)) - out = spo.minimize_scalar(_neg_kllf, args=(data,), **kwargs) - else: # general case - # init guess from current parameters (if x0 not given) - kwargs.setdefault("x0", [getattr(self, p) for p in para_names]) - out = spo.minimize(_neg_kllf, args=(data,), **kwargs) - # save optimization results - self._opti = out - for name, val in zip(para_names, np.atleast_1d(out.x)): - setattr(self, name, val) - return {name: getattr(self, name) for name in all_names} - - def __eq__(self, other): - """Compare Normalizers.""" - # check for correct base class - if type(self) is not type(other): - return False - # if base class is same, this is safe - for val in self.default_parameter: - if not np.isclose(getattr(self, val), getattr(other, val)): - return False - return True - - @property - def name(self): - """:class:`str`: The name of the normalizer class.""" - return self.__class__.__name__ - - def __repr__(self): - """Return String representation.""" - para_strs = [ - f"{p}={float(getattr(self, p)):.{self._prec}}" - for p in sorted(self.default_parameter) - ] - return f"{self.name}({', '.join(para_strs)})" diff --git a/src/gstools/normalizer/methods.py b/src/gstools/normalizer/methods.py deleted file mode 100644 index a46dc2306..000000000 --- a/src/gstools/normalizer/methods.py +++ /dev/null @@ -1,363 +0,0 @@ -""" -GStools subpackage providing different normalizer transformations. - -.. currentmodule:: gstools.normalizer.methods - -The following classes are provided - -.. autosummary:: - LogNormal - BoxCox - BoxCoxShift - YeoJohnson - Modulus - Manly -""" - -# pylint: disable=E1101 -import numpy as np - -from gstools.normalizer.base import Normalizer - - -class LogNormal(Normalizer): - r"""Log-normal fields. - - Notes - ----- - This parameter-free transformation is given by: - - .. math:: - y=\log(x) - """ - - normalize_range = (0.0, np.inf) - """Valid range for input data.""" - - def _denormalize(self, data): - return np.exp(data) - - def _normalize(self, data): - return np.log(data) - - def _derivative(self, data): - return np.power(data, -1) - - -class BoxCox(Normalizer): - r"""Box-Cox (1964) transformed fields. - - Parameters - ---------- - data : array_like, optional - Input data to fit the transformation in order to gain normality. - The default is None. - lmbda : :class:`float`, optional - Shape parameter. Default: 1 - - Notes - ----- - This transformation is given by [Box1964]_: - - .. math:: - y=\begin{cases} - \frac{x^{\lambda} - 1}{\lambda} & \lambda\neq 0 \\ - \log(x) & \lambda = 0 - \end{cases} - - References - ---------- - .. [Box1964] G.E.P. Box and D.R. Cox, - "An Analysis of Transformations", - Journal of the Royal Statistical Society B, 26, 211-252, (1964) - """ - - default_parameter = {"lmbda": 1} - """:class:`dict`: Default parameter of the BoxCox-Normalizer.""" - normalize_range = (0.0, np.inf) - """:class:`tuple`: Valid range for input data.""" - - @property - def denormalize_range(self): - """:class:`tuple`: Valid range for output data depending on lmbda. - - `(-1/lmbda, inf)` or `(-inf, -1/lmbda)` - """ - if np.isclose(self.lmbda, 0): - return (-np.inf, np.inf) - if self.lmbda < 0: - return (-np.inf, -np.divide(1, self.lmbda)) - return (-np.divide(1, self.lmbda), np.inf) - - def _denormalize(self, data): - if np.isclose(self.lmbda, 0): - return np.exp(data) - return (1 + np.multiply(data, self.lmbda)) ** (1 / self.lmbda) - - def _normalize(self, data): - if np.isclose(self.lmbda, 0): - return np.log(data) - return (np.power(data, self.lmbda) - 1) / self.lmbda - - def _derivative(self, data): - return np.power(data, self.lmbda - 1) - - -class BoxCoxShift(Normalizer): - r"""Box-Cox (1964) transformed fields including shifting. - - Parameters - ---------- - data : array_like, optional - Input data to fit the transformation in order to gain normality. - The default is None. - lmbda : :class:`float`, optional - Shape parameter. Default: 1 - shift : :class:`float`, optional - Shift parameter. Default: 0 - - Notes - ----- - This transformation is given by [Box1964]_: - - .. math:: - y=\begin{cases} - \frac{(x+s)^{\lambda} - 1}{\lambda} & \lambda\neq 0 \\ - \log(x+s) & \lambda = 0 - \end{cases} - - Fitting the shift parameter is rather hard. You should consider skipping - "shift" during fitting: - - >>> data = range(5) - >>> norm = BoxCoxShift(shift=0.5) - >>> norm.fit(data, skip=["shift"]) - {'shift': 0.5, 'lmbda': 0.6747515267420799} - - References - ---------- - .. [Box1964] G.E.P. Box and D.R. Cox, - "An Analysis of Transformations", - Journal of the Royal Statistical Society B, 26, 211-252, (1964) - """ - - default_parameter = {"shift": 0, "lmbda": 1} - """:class:`dict`: Default parameters of the BoxCoxShift-Normalizer.""" - - @property - def normalize_range(self): - """:class:`tuple`: Valid range for input data depending on shift. - - `(-shift, inf)` - """ - return (-self.shift, np.inf) - - @property - def denormalize_range(self): - """:class:`tuple`: Valid range for output data depending on lmbda. - - `(-1/lmbda, inf)` or `(-inf, -1/lmbda)` - """ - if np.isclose(self.lmbda, 0): - return (-np.inf, np.inf) - if self.lmbda < 0: - return (-np.inf, -np.divide(1, self.lmbda)) - return (-np.divide(1, self.lmbda), np.inf) - - def _denormalize(self, data): - if np.isclose(self.lmbda, 0): - return np.exp(data) - self.shift - return (1 + np.multiply(data, self.lmbda)) ** ( - 1 / self.lmbda - ) - self.shift - - def _normalize(self, data): - if np.isclose(self.lmbda, 0): - return np.log(np.add(data, self.shift)) - return (np.add(data, self.shift) ** self.lmbda - 1) / self.lmbda - - def _derivative(self, data): - return np.power(np.add(data, self.shift), self.lmbda - 1) - - -class YeoJohnson(Normalizer): - r"""Yeo-Johnson (2000) transformed fields. - - Parameters - ---------- - data : array_like, optional - Input data to fit the transformation in order to gain normality. - The default is None. - lmbda : :class:`float`, optional - Shape parameter. Default: 1 - - Notes - ----- - This transformation is given by [Yeo2000]_: - - .. math:: - y=\begin{cases} - \frac{(x+1)^{\lambda} - 1}{\lambda} - & x\geq 0,\, \lambda\neq 0 \\ - \log(x+1) - & x\geq 0,\, \lambda = 0 \\ - -\frac{(|x|+1)^{2-\lambda} - 1}{2-\lambda} - & x<0,\, \lambda\neq 2 \\ - -\log(|x|+1) - & x<0,\, \lambda = 2 - \end{cases} - - - References - ---------- - .. [Yeo2000] I.K. Yeo and R.A. Johnson, - "A new family of power transformations to improve normality or - symmetry." Biometrika, 87(4), pp.954-959, (2000). - """ - - default_parameter = {"lmbda": 1} - """:class:`dict`: Default parameter of the YeoJohnson-Normalizer.""" - - def _denormalize(self, data): - data = np.asanyarray(data) - res = np.zeros_like(data, dtype=np.double) - pos = data >= 0 - # when data >= 0 - if np.isclose(self.lmbda, 0): - res[pos] = np.expm1(data[pos]) - else: # self.lmbda != 0 - res[pos] = np.power(data[pos] * self.lmbda + 1, 1 / self.lmbda) - 1 - # when data < 0 - if np.isclose(self.lmbda, 2): - res[~pos] = -np.expm1(-data[~pos]) - else: # self.lmbda != 2 - res[~pos] = 1 - np.power( - -(2 - self.lmbda) * data[~pos] + 1, 1 / (2 - self.lmbda) - ) - return res - - def _normalize(self, data): - data = np.asanyarray(data) - res = np.zeros_like(data, dtype=np.double) - pos = data >= 0 - # when data >= 0 - if np.isclose(self.lmbda, 0): - res[pos] = np.log1p(data[pos]) - else: # self.lmbda != 0 - res[pos] = (np.power(data[pos] + 1, self.lmbda) - 1) / self.lmbda - # when data < 0 - if np.isclose(self.lmbda, 2): - res[~pos] = -np.log1p(-data[~pos]) - else: # self.lmbda != 2 - res[~pos] = -(np.power(-data[~pos] + 1, 2 - self.lmbda) - 1) / ( - 2 - self.lmbda - ) - return res - - def _derivative(self, data): - return (np.abs(data) + 1) ** (np.sign(data) * (self.lmbda - 1)) - - -class Modulus(Normalizer): - r"""Modulus or John-Draper (1980) transformed fields. - - Parameters - ---------- - data : array_like, optional - Input data to fit the transformation in order to gain normality. - The default is None. - lmbda : :class:`float`, optional - Shape parameter. Default: 1 - - Notes - ----- - This transformation is given by [John1980]_: - - .. math:: - y=\begin{cases} - \mathrm{sgn}(x)\frac{(|x|+1)^{\lambda} - 1}{\lambda} & \lambda\neq 0 \\ - \mathrm{sgn}(x)\log(|x|+1) & \lambda = 0 - \end{cases} - - References - ---------- - .. [John1980] J. A. John, and N. R. Draper, - "An Alternative Family of Transformations." Journal - of the Royal Statistical Society C, 29.2, 190-197, (1980) - """ - - default_parameter = {"lmbda": 1} - """:class:`dict`: Default parameter of the Modulus-Normalizer.""" - - def _denormalize(self, data): - if np.isclose(self.lmbda, 0): - return np.sign(data) * np.expm1(np.abs(data)) - return np.sign(data) * ( - (1 + self.lmbda * np.abs(data)) ** (1 / self.lmbda) - 1 - ) - - def _normalize(self, data): - if np.isclose(self.lmbda, 0): - return np.sign(data) * np.log1p(np.abs(data)) - return ( - np.sign(data) * ((np.abs(data) + 1) ** self.lmbda - 1) / self.lmbda - ) - - def _derivative(self, data): - return np.power(np.abs(data) + 1, self.lmbda - 1) - - -class Manly(Normalizer): - r"""Manly (1971) transformed fields. - - Parameters - ---------- - data : array_like, optional - Input data to fit the transformation in order to gain normality. - The default is None. - lmbda : :class:`float`, optional - Shape parameter. Default: 1 - - Notes - ----- - This transformation is given by [Manly1976]_: - - .. math:: - y=\begin{cases} - \frac{\exp(\lambda x) - 1}{\lambda} & \lambda\neq 0 \\ - x & \lambda = 0 - \end{cases} - - References - ---------- - .. [Manly1976] B. F. J. Manly, "Exponential data transformations.", - Journal of the Royal Statistical Society D, 25.1, 37-42 (1976). - """ - - default_parameter = {"lmbda": 1} - """:class:`dict`: Default parameter of the Manly-Normalizer.""" - - @property - def denormalize_range(self): - """:class:`tuple`: Valid range for output data depending on lmbda. - - `(-1/lmbda, inf)` or `(-inf, -1/lmbda)` - """ - if np.isclose(self.lmbda, 0): - return (-np.inf, np.inf) - if self.lmbda < 0: - return (-np.inf, np.divide(1, self.lmbda)) - return (-np.divide(1, self.lmbda), np.inf) - - def _denormalize(self, data): - if np.isclose(self.lmbda, 0): - return data - return np.log1p(np.multiply(data, self.lmbda)) / self.lmbda - - def _normalize(self, data): - if np.isclose(self.lmbda, 0): - return data - return np.expm1(np.multiply(data, self.lmbda)) / self.lmbda - - def _derivative(self, data): - return np.exp(np.multiply(data, self.lmbda)) diff --git a/src/gstools/normalizer/tools.py b/src/gstools/normalizer/tools.py deleted file mode 100644 index 3e395d290..000000000 --- a/src/gstools/normalizer/tools.py +++ /dev/null @@ -1,186 +0,0 @@ -""" -GStools subpackage providing tools for Normalizers. - -.. currentmodule:: gstools.normalizer.tools - -The following classes and functions are provided - -.. autosummary:: - apply_mean_norm_trend - remove_trend_norm_mean -""" - -import numpy as np - -from gstools.normalizer.base import Normalizer -from gstools.tools.geometric import ( - format_struct_pos_shape, - format_unstruct_pos_shape, -) -from gstools.tools.misc import eval_func - -__all__ = ["apply_mean_norm_trend", "remove_trend_norm_mean"] - - -def _check_normalizer(normalizer): - if isinstance(normalizer, type) and issubclass(normalizer, Normalizer): - normalizer = normalizer() - elif normalizer is None: - normalizer = Normalizer() - elif not isinstance(normalizer, Normalizer): - raise ValueError("Check: 'normalizer' not of type 'Normalizer'.") - return normalizer - - -def apply_mean_norm_trend( - pos, - field, - mean=None, - normalizer=None, - trend=None, - mesh_type="unstructured", - value_type="scalar", - check_shape=True, - stacked=False, -): - """ - Apply mean, de-normalization and trend to given field. - - Parameters - ---------- - pos : :any:`iterable` - Position tuple, containing main direction and transversal directions. - field : :class:`numpy.ndarray` or :class:`list` of :class:`numpy.ndarray` - The spatially distributed data. - You can pass a list of fields, that will be used simultaneously. - Then you need to set ``stacked=True``. - mean : :any:`None` or :class:`float` or :any:`callable`, optional - Mean of the field if wanted. Could also be a callable. - The default is None. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the field. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - Trend of the denormalized fields. If no normalizer is applied, - this behaves equal to 'mean'. - The default is None. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: 'unstructured' - value_type : :class:`str`, optional - Value type of the field. Either "scalar" or "vector". - The default is "scalar". - check_shape : :class:`bool`, optional - Whether to check pos and field shapes. The default is True. - stacked : :class:`bool`, optional - Whether the field is stacked or not. The default is False. - - Returns - ------- - field : :class:`numpy.ndarray` - The transformed field. - """ - normalizer = _check_normalizer(normalizer) - if check_shape: - if mesh_type != "unstructured": - pos, shape, dim = format_struct_pos_shape( - pos, field.shape, check_stacked_shape=stacked - ) - else: - pos, shape, dim = format_unstruct_pos_shape( - pos, field.shape, check_stacked_shape=stacked - ) - field = np.asarray(field, dtype=np.double).reshape(shape) - else: - dim = len(pos) - if not stacked: - field = [field] - field_cnt = len(field) - for i in range(field_cnt): - field[i] += eval_func(mean, pos, dim, mesh_type, value_type, True) - field = normalizer.denormalize(field) - for i in range(field_cnt): - field[i] += eval_func(trend, pos, dim, mesh_type, value_type, True) - return field if stacked else field[0] - - -def remove_trend_norm_mean( - pos, - field, - mean=None, - normalizer=None, - trend=None, - mesh_type="unstructured", - value_type="scalar", - check_shape=True, - stacked=False, - fit_normalizer=False, -): - """ - Remove trend, de-normalization and mean from given field. - - Parameters - ---------- - pos : :any:`iterable` - Position tuple, containing main direction and transversal directions. - field : :class:`numpy.ndarray` or :class:`list` of :class:`numpy.ndarray` - The spatially distributed data. - You can pass a list of fields, that will be used simultaneously. - Then you need to set ``stacked=True``. - mean : :any:`None` or :class:`float` or :any:`callable`, optional - Mean of the field if wanted. Could also be a callable. - The default is None. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the field. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - Trend of the denormalized fields. If no normalizer is applied, - this behaves equal to 'mean'. - The default is None. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: 'unstructured' - value_type : :class:`str`, optional - Value type of the field. Either "scalar" or "vector". - The default is "scalar". - check_shape : :class:`bool`, optional - Whether to check pos and field shapes. The default is True. - stacked : :class:`bool`, optional - Whether the field is stacked or not. The default is False. - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given (detrended) field. - Default: False - - Returns - ------- - field : :class:`numpy.ndarray` - The cleaned field. - normalizer : :any:`Normalizer`, optional - The fitted normalizer for the given data. - Only provided if `fit_normalizer` is True. - """ - normalizer = _check_normalizer(normalizer) - if check_shape: - if mesh_type != "unstructured": - pos, shape, dim = format_struct_pos_shape( - pos, field.shape, check_stacked_shape=stacked - ) - else: - pos, shape, dim = format_unstruct_pos_shape( - pos, field.shape, check_stacked_shape=stacked - ) - field = np.asarray(field, dtype=np.double).reshape(shape) - else: - dim = len(pos) - if not stacked: - field = [field] - field_cnt = len(field) - for i in range(field_cnt): - field[i] -= eval_func(trend, pos, dim, mesh_type, value_type, True) - if fit_normalizer: - normalizer.fit(field) - field = normalizer.normalize(field) - for i in range(field_cnt): - field[i] -= eval_func(mean, pos, dim, mesh_type, value_type, True) - out = field if stacked else field[0] - return (out, normalizer) if fit_normalizer else out diff --git a/src/gstools/random/__init__.py b/src/gstools/random/__init__.py deleted file mode 100644 index af8f73786..000000000 --- a/src/gstools/random/__init__.py +++ /dev/null @@ -1,36 +0,0 @@ -""" -GStools subpackage for random number generation. - -.. currentmodule:: gstools.random - -Random Number Generator -^^^^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - RNG - -Seed Generator -^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - MasterRNG - -Distribution factory -^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - dist_gen - ----- -""" - -from gstools.random.rng import RNG -from gstools.random.tools import MasterRNG, dist_gen - -__all__ = ["RNG", "MasterRNG", "dist_gen"] diff --git a/src/gstools/random/rng.py b/src/gstools/random/rng.py deleted file mode 100644 index ad07c6aab..000000000 --- a/src/gstools/random/rng.py +++ /dev/null @@ -1,221 +0,0 @@ -""" -GStools subpackage providing the core of the spatial random field generation. - -.. currentmodule:: gstools.random.rng - -The following classes are provided - -.. autosummary:: - RNG -""" - -# pylint: disable=E1101 -import emcee as mc -import numpy as np -import numpy.random as rand -from emcee.state import State - -from gstools.random.tools import MasterRNG, dist_gen - -__all__ = ["RNG"] - - -class RNG: - """ - A random number generator for different distributions and multiple streams. - - Parameters - ---------- - seed : :class:`int` or :any:`None`, optional - The seed of the master RNG, if ``None``, - a random seed is used. Default: ``None`` - """ - - def __init__(self, seed=None): - # set seed - self._master_rng = None - self.seed = seed - - def sample_ln_pdf( - self, - ln_pdf, - size=None, - sample_around=1.0, - nwalkers=50, - burn_in=20, - oversampling_factor=10, - ): - """Sample from a distribution given by ln(pdf). - - This algorithm uses the :class:`emcee.EnsembleSampler` - - Parameters - ---------- - ln_pdf : :any:`callable` - The logarithm of the Probability density function - of the given distribution, that takes a single argument - size : :class:`int` or :any:`None`, optional - sample size. Default: None - sample_around : :class:`float`, optional - Starting point for initial guess Default: 1. - nwalkers : :class:`int`, optional - The number of walkers in the mcmc sampler. Used for the - emcee.EnsembleSampler class. - Default: 50 - burn_in : :class:`int`, optional - Number of burn-in runs in the mcmc algorithm. - Default: 20 - oversampling_factor : :class:`int`, optional - To guess the sample number needed for proper results, we use a - factor for oversampling. The intern used sample-size is - calculated by - - ``sample_size = max(burn_in, (size/nwalkers)*oversampling_factor)`` - - So at least, as much as the burn-in runs. - Default: 10 - """ - if size is None: # pragma: no cover - sample_size = burn_in - else: - sample_size = max(burn_in, (size / nwalkers) * oversampling_factor) - # sample_size needs to be integer for emcee >= 3.1 - sample_size = int(sample_size) - # initial guess - init_guess = ( - self.random.rand(nwalkers).reshape((nwalkers, 1)) * sample_around - ) - # initialize the sampler - sampler = mc.EnsembleSampler(nwalkers, 1, ln_pdf, vectorize=True) - # burn in phase with saving of last position - initial_state = State(init_guess, copy=True) - initial_state.random_state = self.random.get_state() - burn_in_state = sampler.run_mcmc( - initial_state=initial_state, nsteps=burn_in - ) - # reset after burn_in - sampler.reset() - # actual sampling - initial_state = State(burn_in_state, copy=True) - initial_state.random_state = self.random.get_state() - sampler.run_mcmc(initial_state=initial_state, nsteps=sample_size) - samples = sampler.get_chain(flat=True)[:, 0] - - # choose samples according to size - return self.random.choice(samples, size) - - def sample_dist(self, pdf=None, cdf=None, ppf=None, size=None, **kwargs): - """Sample from a distribution given by pdf, cdf and/or ppf. - - Parameters - ---------- - pdf : :any:`callable` or :any:`None`, optional - Probability density function of the given distribution, - that takes a single argument - Default: ``None`` - cdf : :any:`callable` or :any:`None`, optional - Cumulative distribution function of the given distribution, that - takes a single argument - Default: ``None`` - ppf : :any:`callable` or :any:`None`, optional - Percent point function of the given distribution, that - takes a single argument - Default: ``None`` - size : :class:`int` or :any:`None`, optional - sample size. Default: None - **kwargs - Keyword-arguments that are forwarded to - :any:`scipy.stats.rv_continuous`. - - Returns - ------- - samples : :class:`float` or :class:`numpy.ndarray` - the samples from the given distribution - - Notes - ----- - At least pdf or cdf needs to be given. - """ - kwargs["seed"] = self.random - dist = dist_gen(pdf_in=pdf, cdf_in=cdf, ppf_in=ppf, **kwargs) - return dist.rvs(size=size) - - def sample_sphere(self, dim, size=None): - """Uniform sampling on a d-dimensional sphere. - - Parameters - ---------- - dim : :class:`int` - Dimension of the sphere. Just 1, 2, and 3 supported. - size : :class:`int`, optional - sample size - - Returns - ------- - coord : :class:`numpy.ndarray` - x[, y[, z]] coordinates on the sphere with shape (dim, size) - """ - if size is None: # pragma: no cover - coord = np.empty((dim, 1), dtype=np.double) - else: - coord = np.empty( # saver conversion of size to resulting shape - (dim,) + tuple(np.atleast_1d(size)), dtype=np.double - ) - if dim == 1: - coord[0] = self.random.choice([-1, 1], size=size) - elif dim == 2: - ang1 = self.random.uniform(0.0, 2 * np.pi, size) - coord[0] = np.cos(ang1) - coord[1] = np.sin(ang1) - elif dim == 3: - ang1 = self.random.uniform(0.0, 2 * np.pi, size) - ang2 = self.random.uniform(-1.0, 1.0, size) - coord[0] = np.sqrt(1.0 - ang2**2) * np.cos(ang1) - coord[1] = np.sqrt(1.0 - ang2**2) * np.sin(ang1) - coord[2] = ang2 - else: # pragma: no cover - # http://corysimon.github.io/articles/uniformdistn-on-sphere/ - coord = self.random.normal(size=coord.shape) - while True: # loop until all norms are non-zero - norm = np.linalg.norm(coord, axis=0) - # check for zero norms - zero_norms = np.isclose(norm, 0) - # exit the loop if all norms are non-zero - if not np.any(zero_norms): - break - # transpose, since the next transpose reverses axis order - zero_samples = zero_norms.T.nonzero() - # need to transpose to have dim-axis last - new_shape = coord.T[zero_samples].shape - # resample the zero norm samples - coord.T[zero_samples] = self.random.normal(size=new_shape) - # project onto sphere - coord = coord / norm - return np.reshape(coord, dim) if size is None else coord - - @property - def random(self): - """:any:`numpy.random.RandomState`: Randomstate. - - Get a stream to the numpy Random number generator. - You can use this, to call any provided distribution - from :any:`numpy.random.RandomState`. - """ - return rand.RandomState(self._master_rng()) - - @property # pragma: no cover - def seed(self): - """:class:`int`: Seed of the master RNG. - - The setter property not only saves the new seed, but also creates - a new master RNG function with the new seed. - """ - return self._master_rng.seed - - @seed.setter - def seed(self, new_seed=None): - self._master_rng = MasterRNG(new_seed) - - def __repr__(self): - """Return String representation.""" - return f"RNG(seed={self.seed})" diff --git a/src/gstools/random/tools.py b/src/gstools/random/tools.py deleted file mode 100644 index d61327ea7..000000000 --- a/src/gstools/random/tools.py +++ /dev/null @@ -1,183 +0,0 @@ -""" -GStools subpackage providing tools for random sampling. - -.. currentmodule:: gstools.random.tools - -The following classes are provided - -.. autosummary:: - MasterRNG - dist_gen -""" - -import numpy.random as rand -from scipy.stats import rv_continuous - -__all__ = ["MasterRNG", "dist_gen"] - - -class MasterRNG: - """Master random number generator for generating seeds. - - Parameters - ---------- - seed : :class:`int` or :any:`None`, optional - The seed of the master RNG, if ``None``, - a random seed is used. Default: ``None`` - - """ - - def __init__(self, seed): - self._seed = seed - self._master_rng_fct = rand.RandomState(seed) - self._master_rng = lambda: self._master_rng_fct.randint(1, 2**16) - - def __call__(self): - """Return a random seed.""" - return self._master_rng() - - @property # pragma: no cover - def seed(self): - """:class:`int`: Seed of the master RNG. - - The setter property not only saves the new seed, but also creates - a new master RNG function with the new seed. - """ - return self._seed - - def __repr__(self): - """Return String representation.""" - return f"MasterRNG(seed={self.seed})" - - -def dist_gen(pdf_in=None, cdf_in=None, ppf_in=None, **kwargs): - """Distribution Factory. - - Parameters - ---------- - pdf_in : :any:`callable` or :any:`None`, optional - Probability distribution function of the given distribution, that - takes a single argument - Default: ``None`` - cdf_in : :any:`callable` or :any:`None`, optional - Cumulative distribution function of the given distribution, that - takes a single argument - Default: ``None`` - ppf_in : :any:`callable` or :any:`None`, optional - Percent point function of the given distribution, that - takes a single argument - Default: ``None`` - **kwargs - Keyword-arguments forwarded to :any:`scipy.stats.rv_continuous`. - - Returns - ------- - dist : :class:`scipy.stats.rv_continuous` - The constructed distribution. - - Notes - ----- - At least pdf or cdf needs to be given. - """ - if ppf_in is None: - if pdf_in is not None and cdf_in is None: - return DistPdf(pdf_in, **kwargs) - if pdf_in is None and cdf_in is not None: - return DistCdf(cdf_in, **kwargs) - if pdf_in is not None and cdf_in is not None: - return DistPdfCdf(pdf_in, cdf_in, **kwargs) - raise ValueError("Either pdf or cdf must be given") - - if pdf_in is not None and cdf_in is None: - return DistPdfPpf(pdf_in, ppf_in, **kwargs) - if pdf_in is None and cdf_in is not None: - return DistCdfPpf(cdf_in, ppf_in, **kwargs) - if pdf_in is not None and cdf_in is not None: - return DistPdfCdfPpf(pdf_in, cdf_in, ppf_in, **kwargs) - raise ValueError("pdf or cdf must be given along with the ppf") - - -class DistPdf(rv_continuous): - """Generate distribution from pdf.""" - - def __init__(self, pdf_in, **kwargs): - self.pdf_in = pdf_in - super().__init__(**kwargs) - - def _pdf(self, x, *args): - return self.pdf_in(x) - - -class DistCdf(rv_continuous): - """Generate distribution from cdf.""" - - def __init__(self, cdf_in, **kwargs): - self.cdf_in = cdf_in - super().__init__(**kwargs) - - def _cdf(self, x, *args): - return self.cdf_in(x) - - -class DistPdfCdf(rv_continuous): - """Generate distribution from pdf and cdf.""" - - def __init__(self, pdf_in, cdf_in, **kwargs): - self.pdf_in = pdf_in - self.cdf_in = cdf_in - super().__init__(**kwargs) - - def _pdf(self, x, *args): - return self.pdf_in(x) - - def _cdf(self, x, *args): - return self.cdf_in(x) - - -class DistPdfPpf(rv_continuous): - """Generate distribution from pdf and ppf.""" - - def __init__(self, pdf_in, ppf_in, **kwargs): - self.pdf_in = pdf_in - self.ppf_in = ppf_in - super().__init__(**kwargs) - - def _pdf(self, x, *args): - return self.pdf_in(x) - - def _ppf(self, q, *args): - return self.ppf_in(q) - - -class DistCdfPpf(rv_continuous): - """Generate distribution from cdf and ppf.""" - - def __init__(self, cdf_in, ppf_in, **kwargs): - self.cdf_in = cdf_in - self.ppf_in = ppf_in - super().__init__(**kwargs) - - def _cdf(self, x, *args): - return self.cdf_in(x) - - def _ppf(self, q, *args): - return self.ppf_in(q) - - -class DistPdfCdfPpf(rv_continuous): - """Generate distribution from pdf, cdf and ppf.""" - - def __init__(self, pdf_in, cdf_in, ppf_in, **kwargs): - self.pdf_in = pdf_in - self.cdf_in = cdf_in - self.ppf_in = ppf_in - super().__init__(**kwargs) - - def _pdf(self, x, *args): - return self.pdf_in(x) - - def _cdf(self, x, *args): - return self.cdf_in(x) - - def _ppf(self, q, *args): - return self.ppf_in(q) diff --git a/src/gstools/tools/__init__.py b/src/gstools/tools/__init__.py deleted file mode 100644 index 1f68dbaf1..000000000 --- a/src/gstools/tools/__init__.py +++ /dev/null @@ -1,159 +0,0 @@ -""" -GStools subpackage providing miscellaneous tools. - -.. currentmodule:: gstools.tools - -Export -^^^^^^ - -.. autosummary:: - :toctree: - - vtk_export - vtk_export_structured - vtk_export_unstructured - to_vtk - to_vtk_structured - to_vtk_unstructured - -Special functions -^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - confidence_scaling - inc_gamma - inc_gamma_low - exp_int - inc_beta - tplstable_cor - tpl_exp_spec_dens - tpl_gau_spec_dens - -Geometric -^^^^^^^^^ - -.. autosummary:: - :toctree: - - rotated_main_axes - set_angles - set_anis - no_of_angles - rotation_planes - givens_rotation - matrix_rotate - matrix_derotate - matrix_isotropify - matrix_anisotropify - matrix_isometrize - matrix_anisometrize - ang2dir - generate_grid - generate_st_grid - -Misc -^^^^ - -.. autosummary:: - EARTH_RADIUS - KM_SCALE - DEGREE_SCALE - RADIAN_SCALE - ----- - -.. autodata:: EARTH_RADIUS - -.. autodata:: KM_SCALE - -.. autodata:: DEGREE_SCALE - -.. autodata:: RADIAN_SCALE -""" - -from gstools.tools.export import ( - to_vtk, - to_vtk_structured, - to_vtk_unstructured, - vtk_export, - vtk_export_structured, - vtk_export_unstructured, -) -from gstools.tools.geometric import ( - ang2dir, - generate_grid, - generate_st_grid, - givens_rotation, - matrix_anisometrize, - matrix_anisotropify, - matrix_derotate, - matrix_isometrize, - matrix_isotropify, - matrix_rotate, - no_of_angles, - rotated_main_axes, - rotation_planes, - set_angles, - set_anis, -) -from gstools.tools.special import ( - confidence_scaling, - exp_int, - inc_beta, - inc_gamma, - inc_gamma_low, - tpl_exp_spec_dens, - tpl_gau_spec_dens, - tplstable_cor, -) - -EARTH_RADIUS = 6371.0 -"""float: earth radius for WGS84 ellipsoid in km""" - -KM_SCALE = 6371.0 -"""float: earth radius for WGS84 ellipsoid in km""" - -DEGREE_SCALE = 57.29577951308232 -"""float: radius for unit sphere in degree""" - -RADIAN_SCALE = 1.0 -"""float: radius for unit sphere""" - - -__all__ = [ - "vtk_export", - "vtk_export_structured", - "vtk_export_unstructured", - "to_vtk", - "to_vtk_structured", - "to_vtk_unstructured", - "confidence_scaling", - "inc_gamma", - "inc_gamma_low", - "exp_int", - "inc_beta", - "tplstable_cor", - "tpl_exp_spec_dens", - "tpl_gau_spec_dens", - "set_angles", - "set_anis", - "no_of_angles", - "rotation_planes", - "givens_rotation", - "matrix_rotate", - "matrix_derotate", - "matrix_isotropify", - "matrix_anisotropify", - "matrix_isometrize", - "matrix_anisometrize", - "rotated_main_axes", - "ang2dir", - "generate_grid", - "generate_st_grid", - "EARTH_RADIUS", - "KM_SCALE", - "DEGREE_SCALE", - "RADIAN_SCALE", -] diff --git a/src/gstools/tools/export.py b/src/gstools/tools/export.py deleted file mode 100644 index 38254cebe..000000000 --- a/src/gstools/tools/export.py +++ /dev/null @@ -1,236 +0,0 @@ -""" -GStools subpackage providing export routines. - -.. currentmodule:: gstools.tools.export - -The following functions are provided - -.. autosummary:: - vtk_export - vtk_export_structured - vtk_export_unstructured - to_vtk - to_vtk_structured - to_vtk_unstructured -""" - -# pylint: disable=C0103, E1101 -import numpy as np -from pyevtk.hl import gridToVTK, pointsToVTK - -try: - import pyvista as pv -except ImportError: - pv = None - -__all__ = [ - "to_vtk_structured", - "vtk_export_structured", - "to_vtk_unstructured", - "vtk_export_unstructured", - "to_vtk", - "vtk_export", -] - - -# export routines ############################################################# - - -def _vtk_structured_helper(pos, fields): - """Extract field info for vtk rectilinear grid.""" - if not isinstance(fields, dict): - fields = {"field": fields} - if len(pos) > 3: - raise ValueError( - "gstools.vtk_export_structured: " - "vtk export only possible for dim=1,2,3" - ) - x = pos[0] - y = pos[1] if len(pos) > 1 else np.array([0]) - z = pos[2] if len(pos) > 2 else np.array([0]) - # need fortran order in VTK - for field in fields: - fields[field] = fields[field].reshape(-1, order="F") - if len(fields[field]) != len(x) * len(y) * len(z): - raise ValueError( - "gstools.vtk_export_structured: " - "field shape doesn't match the given mesh" - ) - return x, y, z, fields - - -def to_vtk_structured(pos, fields): # pragma: no cover - """Create a vtk structured rectilinear grid from a field. - - Parameters - ---------- - pos : :class:`list` - the position tuple, containing main direction and transversal - directions - fields : :class:`dict` or :class:`numpy.ndarray` - Structured fields to be saved. - Either a single numpy array as returned by SRF, - or a dictionary of fields with theirs names as keys. - - Returns - ------- - :class:`pyvista.RectilinearGrid` - A PyVista rectilinear grid of the structured field data. Data arrays - live on the point data of this PyVista dataset. - """ - x, y, z, fields = _vtk_structured_helper(pos=pos, fields=fields) - if pv is not None: - grid = pv.RectilinearGrid(x, y, z) - grid.point_data.update(fields) - else: - raise ImportError("Please install PyVista to create VTK datasets.") - return grid - - -def vtk_export_structured(filename, pos, fields): # pragma: no cover - """Export a field to vtk structured rectilinear grid file. - - Parameters - ---------- - filename : :class:`str` - Filename of the file to be saved, including the path. Note that an - ending (.vtr) will be added to the name. - pos : :class:`list` - the position tuple, containing main direction and transversal - directions - fields : :class:`dict` or :class:`numpy.ndarray` - Structured fields to be saved. - Either a single numpy array as returned by SRF, - or a dictionary of fields with theirs names as keys. - """ - x, y, z, fields = _vtk_structured_helper(pos=pos, fields=fields) - return gridToVTK(filename, x, y, z, pointData=fields) - - -def _vtk_unstructured_helper(pos, fields): - if not isinstance(fields, dict): - fields = {"field": fields} - if len(pos) > 3: - raise ValueError( - "gstools.vtk_export_structured: " - "vtk export only possible for dim=1,2,3" - ) - x = pos[0] - y = pos[1] if len(pos) > 1 else np.zeros_like(x) - z = pos[2] if len(pos) > 2 else np.zeros_like(x) - for field in fields: - fields[field] = fields[field].reshape(-1) - if ( - len(fields[field]) != len(x) - or len(fields[field]) != len(y) - or len(fields[field]) != len(z) - ): - raise ValueError( - "gstools.vtk_export_unstructured: " - "field shape doesn't match the given mesh" - ) - return x, y, z, fields - - -def to_vtk_unstructured(pos, fields): # pragma: no cover - """Export a field to vtk structured rectilinear grid file. - - Parameters - ---------- - pos : :class:`list` - the position tuple, containing main direction and transversal - directions - fields : :class:`dict` or :class:`numpy.ndarray` - Unstructured fields to be saved. - Either a single numpy array as returned by SRF, - or a dictionary of fields with theirs names as keys. - - Returns - ------- - :class:`pyvista.UnstructuredGrid` - A PyVista unstructured grid of the unstructured field data. Data arrays - live on the point data of this PyVista dataset. This is essentially - a point cloud with no topology. - """ - x, y, z, fields = _vtk_unstructured_helper(pos=pos, fields=fields) - if pv is not None: - grid = pv.PolyData(np.c_[x, y, z]).cast_to_unstructured_grid() - grid.point_data.update(fields) - else: - raise ImportError("Please install PyVista to create VTK datasets.") - return grid - - -def vtk_export_unstructured(filename, pos, fields): # pragma: no cover - """Export a field to vtk unstructured grid file. - - Parameters - ---------- - filename : :class:`str` - Filename of the file to be saved, including the path. Note that an - ending (.vtu) will be added to the name. - pos : :class:`list` - the position tuple, containing main direction and transversal - directions - fields : :class:`dict` or :class:`numpy.ndarray` - Unstructured fields to be saved. - Either a single numpy array as returned by SRF, - or a dictionary of fields with theirs names as keys. - """ - x, y, z, fields = _vtk_unstructured_helper(pos=pos, fields=fields) - return pointsToVTK(filename, x, y, z, data=fields) - - -def to_vtk(pos, fields, mesh_type="unstructured"): # pragma: no cover - """Create a VTK/PyVista grid. - - Parameters - ---------- - pos : :class:`list` - the position tuple, containing main direction and transversal - directions - fields : :class:`dict` or :class:`numpy.ndarray` - [Un]structured fields to be saved. - Either a single numpy array as returned by SRF, - or a dictionary of fields with theirs names as keys. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured'. Default: structured - - Returns - ------- - :class:`pyvista.RectilinearGrid` or :class:`pyvista.UnstructuredGrid` - This will return a PyVista object for the given field data in its - appropriate type. Structured meshes will return a - :class:`pyvista.RectilinearGrid` and unstructured meshes will return - an :class:`pyvista.UnstructuredGrid` object. - """ - if mesh_type != "unstructured": - grid = to_vtk_structured(pos=pos, fields=fields) - else: - grid = to_vtk_unstructured(pos=pos, fields=fields) - return grid - - -def vtk_export( - filename, pos, fields, mesh_type="unstructured" -): # pragma: no cover - """Export a field to vtk. - - Parameters - ---------- - filename : :class:`str` - Filename of the file to be saved, including the path. Note that an - ending (.vtr or .vtu) will be added to the name. - pos : :class:`list` - the position tuple, containing main direction and transversal - directions - fields : :class:`dict` or :class:`numpy.ndarray` - [Un]structured fields to be saved. - Either a single numpy array as returned by SRF, - or a dictionary of fields with theirs names as keys. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured'. Default: structured - """ - if mesh_type != "unstructured": - return vtk_export_structured(filename=filename, pos=pos, fields=fields) - return vtk_export_unstructured(filename=filename, pos=pos, fields=fields) diff --git a/src/gstools/tools/geometric.py b/src/gstools/tools/geometric.py deleted file mode 100644 index 55408965e..000000000 --- a/src/gstools/tools/geometric.py +++ /dev/null @@ -1,754 +0,0 @@ -""" -GStools subpackage providing geometric tools. - -.. currentmodule:: gstools.tools.geometric - -The following functions are provided - -.. autosummary:: - set_angles - set_anis - no_of_angles - rotation_planes - givens_rotation - matrix_rotate - matrix_derotate - matrix_isotropify - matrix_anisotropify - matrix_isometrize - matrix_anisometrize - rotated_main_axes - generate_grid - generate_st_grid - format_struct_pos_dim - format_struct_pos_shape - format_unstruct_pos_shape - ang2dir - latlon2pos - pos2latlon - chordal_to_great_circle - great_circle_to_chordal -""" - -# pylint: disable=C0103 -import numpy as np - -__all__ = [ - "set_angles", - "set_anis", - "no_of_angles", - "rotation_planes", - "givens_rotation", - "matrix_rotate", - "matrix_derotate", - "matrix_isotropify", - "matrix_anisotropify", - "matrix_isometrize", - "matrix_anisometrize", - "rotated_main_axes", - "generate_grid", - "generate_st_grid", - "format_struct_pos_dim", - "format_struct_pos_shape", - "format_unstruct_pos_shape", - "ang2dir", - "latlon2pos", - "pos2latlon", - "chordal_to_great_circle", -] - - -# Geometric functions ######################################################### - - -def set_angles(dim, angles): - """Set the angles for the given dimension. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the angles of the SRF - - Returns - ------- - angles : :class:`float` - the angles fitting to the dimension - - Notes - ----- - If too few angles are given, they are filled up with `0`. - """ - out_angles = np.asarray(angles, dtype=np.double) - out_angles = np.atleast_1d(out_angles)[: no_of_angles(dim)] - # fill up the rotation angle array with zeros - out_angles = np.pad( - out_angles, - (0, no_of_angles(dim) - len(out_angles)), - "constant", - constant_values=0.0, - ) - return out_angles - - -def set_anis(dim, anis): - """Set the anisotropy ratios for the given dimension. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - anis : :class:`list` of :class:`float` - the anisotropy of length scales along the transversal directions - - Returns - ------- - anis : :class:`list` of :class:`float` - the anisotropy of length scales fitting the dimensions - - Notes - ----- - If too few anisotropy ratios are given, they are filled up with `1`. - """ - out_anis = np.asarray(anis, dtype=np.double) - out_anis = np.atleast_1d(out_anis)[: dim - 1] - if len(out_anis) < dim - 1: - # fill up the anisotropies with ones, such that len()==dim-1 - out_anis = np.pad( - out_anis, - (dim - len(out_anis) - 1, 0), - "constant", - constant_values=1.0, - ) - return out_anis - - -def no_of_angles(dim): - """Calculate number of rotation angles depending on the dimension. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - - Returns - ------- - :class:`int` - Number of angles. - """ - return (dim * (dim - 1)) // 2 - - -def rotation_planes(dim): - """Get all 2D sub-planes for rotation. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - - Returns - ------- - :class:`list` of :class:`tuple` of :class:`int` - All 2D sub-planes for rotation. - """ - return [(i, j) for j in range(1, dim) for i in range(j)] - - -def givens_rotation(dim, plane, angle): - """Givens rotation matrix in arbitrary dimensions. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - plane : :class:`list` of :class:`int` - the plane to rotate in, given by the indices of the two defining axes. - For example the xy plane is defined by `(0,1)` - angle : :class:`float` or :class:`list` - the rotation angle in the given plane - - Returns - ------- - :class:`numpy.ndarray` - Rotation matrix. - """ - result = np.eye(dim, dtype=np.double) - result[plane[0], plane[0]] = np.cos(angle) - result[plane[1], plane[1]] = np.cos(angle) - result[plane[0], plane[1]] = -np.sin(angle) - result[plane[1], plane[0]] = np.sin(angle) - return result - - -def matrix_rotate(dim, angles): - """Create a matrix to rotate points to the target coordinate-system. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the rotation angles of the target coordinate-system - - Returns - ------- - :class:`numpy.ndarray` - Rotation matrix. - """ - angles = set_angles(dim, angles) - planes = rotation_planes(dim) - result = np.eye(dim, dtype=np.double) - for i, (angle, plane) in enumerate(zip(angles, planes)): - # angles have alternating signs to match tait-bryan - result = np.matmul( - givens_rotation(dim, plane, (-1) ** i * angle), result - ) - return result - - -def matrix_derotate(dim, angles): - """Create a matrix to derotate points to the initial coordinate-system. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the rotation angles of the target coordinate-system - - Returns - ------- - :class:`numpy.ndarray` - Rotation matrix. - """ - # derotating by taking negative angles - angles = -set_angles(dim, angles) - planes = rotation_planes(dim) - result = np.eye(dim, dtype=np.double) - for i, (angle, plane) in enumerate(zip(angles, planes)): - # angles have alternating signs to match tait bryan - result = np.matmul( - result, givens_rotation(dim, plane, (-1) ** i * angle) - ) - return result - - -def matrix_isotropify(dim, anis): - """Create a stretching matrix to make things isotrope. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - anis : :class:`list` of :class:`float` - the anisotropy of length scales along the transversal directions - - Returns - ------- - :class:`numpy.ndarray` - Stretching matrix. - """ - anis = set_anis(dim, anis) - return np.diag(np.concatenate(([1.0], 1.0 / anis))) - - -def matrix_anisotropify(dim, anis): - """Create a stretching matrix to make things anisotrope. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - anis : :class:`list` of :class:`float` - the anisotropy of length scales along the transversal directions - - Returns - ------- - :class:`numpy.ndarray` - Stretching matrix. - """ - anis = set_anis(dim, anis) - return np.diag(np.concatenate(([1.0], anis))) - - -def matrix_isometrize(dim, angles, anis): - """Create a matrix to derotate points and make them isotrope. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the rotation angles of the target coordinate-system - anis : :class:`list` of :class:`float` - the anisotropy of length scales along the transversal directions - - Returns - ------- - :class:`numpy.ndarray` - Transformation matrix. - """ - return np.matmul( - matrix_isotropify(dim, anis), matrix_derotate(dim, angles) - ) - - -def matrix_anisometrize(dim, angles, anis): - """Create a matrix to rotate points and make them anisotrope. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the rotation angles of the target coordinate-system - anis : :class:`list` of :class:`float` - the anisotropy of length scales along the transversal directions - - Returns - ------- - :class:`numpy.ndarray` - Transformation matrix. - """ - return np.matmul( - matrix_rotate(dim, angles), matrix_anisotropify(dim, anis) - ) - - -def rotated_main_axes(dim, angles): - """Create list of the main axis defined by the given system rotations. - - Parameters - ---------- - dim : :class:`int` - spatial dimension - angles : :class:`float` or :class:`list` - the rotation angles of the target coordinate-system - - Returns - ------- - :class:`numpy.ndarray` - Main axes of the target coordinate-system. - """ - return matrix_rotate(dim, angles).T - - -# grid routines ############################################################### - - -def generate_grid(pos): - """ - Generate grid from a structured position tuple. - - Parameters - ---------- - pos : :class:`tuple` of :class:`numpy.ndarray` - The structured position tuple. - - Returns - ------- - :class:`numpy.ndarray` - Unstructured position tuple. - """ - return np.asarray( - np.meshgrid(*pos, indexing="ij"), dtype=np.double - ).reshape((len(pos), -1)) - - -def generate_st_grid(pos, time, mesh_type="unstructured"): - """ - Generate spatio-temporal grid from a position tuple and time array. - - Parameters - ---------- - pos : :class:`tuple` of :class:`numpy.ndarray` - The (un-)structured position tuple. - time : :any:`iterable` - The time array. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: `"unstructured"` - - Returns - ------- - :class:`numpy.ndarray` - Unstructured spatio-temporal point tuple. - - Notes - ----- - Time dimension will be the last one. - """ - time = np.asarray(time, dtype=np.double).reshape(-1) - if mesh_type != "unstructured": - pos = generate_grid(pos) - else: - pos = np.atleast_2d(np.asarray(pos, dtype=np.double)) - out = [np.repeat(p.reshape(-1), np.size(time)) for p in pos] - out.append(np.tile(time, np.size(pos[0]))) - return np.asarray(out, dtype=np.double) - - -# conversion ################################################################## - - -def format_struct_pos_dim(pos, dim): - """ - Format a structured position tuple with given dimension. - - Parameters - ---------- - pos : :any:`iterable` - Position tuple, containing main direction and transversal directions. - dim : :class:`int` - Spatial dimension. - - Raises - ------ - ValueError - When position tuple doesn't match the given dimension. - - Returns - ------- - pos : :class:`tuple` of :class:`numpy.ndarray` - The formatted structured position tuple. - shape : :class:`tuple` - Shape of the resulting field. - """ - if dim == 1: - pos = (np.asarray(pos, dtype=np.double).reshape(-1),) - elif len(pos) != dim: - raise ValueError("Formatting: position tuple doesn't match dimension.") - else: - pos = tuple(np.asarray(p, dtype=np.double).reshape(-1) for p in pos) - shape = tuple(len(p) for p in pos) - return pos, shape - - -def format_struct_pos_shape(pos, shape, check_stacked_shape=False): - """ - Format a structured position tuple with given shape. - - Shape could be stacked, when multiple fields are given. - - Parameters - ---------- - pos : :any:`iterable` - Position tuple, containing main direction and transversal directions. - shape : :class:`tuple` - Shape of the input field. - check_stacked_shape : :class:`bool`, optional - Whether to check if given shape comes from stacked fields. - Default: False. - - Raises - ------ - ValueError - When position tuple doesn't match the given dimension. - - Returns - ------- - pos : :class:`tuple` of :class:`numpy.ndarray` - The formatted structured position tuple. - shape : :class:`tuple` - Shape of the resulting field. - dim : :class:`int` - Spatial dimension. - """ - # some help from the given shape - shape_size = np.prod(shape) - stacked_shape_size = np.prod(shape[1:]) - wrong_shape = False - # now we try to be smart - try: - # if this works we have either: - # - a 1D array - # - nD array where all axes have same length (corner case) - check_pos = np.array(pos, dtype=np.double, ndmin=2) - except ValueError: - # if it doesn't work, we have a tuple of differently sized axes (easy) - dim = len(pos) - pos, pos_shape = format_struct_pos_dim(pos, dim) - # determine if we have a stacked field if wanted - if check_stacked_shape and stacked_shape_size == np.prod(pos_shape): - shape = (shape[0],) + pos_shape - # check if we have a single field with matching size - elif shape_size == np.prod(pos_shape): - shape = (1,) + pos_shape if check_stacked_shape else pos_shape - # if nothing works, we raise an error - else: - wrong_shape = True - else: - struct_size = np.prod([p.size for p in check_pos]) - # case: 1D unstacked - if check_pos.size == shape_size: - dim = 1 - pos, pos_shape = format_struct_pos_dim(check_pos, dim) - shape = (1,) + pos_shape if check_stacked_shape else pos_shape - # case: 1D and stacked - elif check_pos.size == stacked_shape_size: - dim = 1 - pos, pos_shape = format_struct_pos_dim(check_pos, dim) - cnt = shape[0] - shape = (cnt,) + pos_shape - wrong_shape = not check_stacked_shape - # case: nD unstacked - elif struct_size == shape_size: - dim = len(check_pos) - pos, pos_shape = format_struct_pos_dim(pos, dim) - shape = (1,) + pos_shape if check_stacked_shape else pos_shape - # case: nD and stacked - elif struct_size == stacked_shape_size: - dim = len(check_pos) - pos, pos_shape = format_struct_pos_dim(pos, dim) - cnt = shape[0] - shape = (cnt,) + pos_shape - wrong_shape = not check_stacked_shape - # if nothing works, we raise an error - else: - wrong_shape = True - - # if shape was wrong at one point we raise an error - if wrong_shape: - raise ValueError("Formatting: position tuple doesn't match dimension.") - - return pos, shape, dim - - -def format_unstruct_pos_shape(pos, shape, check_stacked_shape=False): - """ - Format an unstructured position tuple with given shape. - - Shape could be stacked, when multiple fields were given. - - Parameters - ---------- - pos : :any:`iterable` - Position tuple, containing point coordinates. - shape : :class:`tuple` - Shape of the input field. - check_stacked_shape : :class:`bool`, optional - Whether to check if given shape comes from stacked fields. - Default: False. - - Raises - ------ - ValueError - When position tuple doesn't match the given dimension. - - Returns - ------- - pos : :class:`tuple` of :class:`numpy.ndarray` - The formatted structured position tuple. - shape : :class:`tuple` - Shape of the resulting field. - dim : :class:`int` - Spatial dimension. - """ - # some help from the given shape - shape_size = np.prod(shape) - stacked_shape_size = np.prod(shape[1:]) - wrong_shape = False - # now we try to be smart - pre_len = len(np.atleast_1d(pos)) - # care about 1D: pos can be given as 1D array here -> convert to 2D array - pos = np.atleast_2d(np.asarray(pos, dtype=np.double)) - post_len = len(pos) - # first array dimension should be spatial dimension (1D is special case) - dim = post_len if pre_len == post_len else 1 - pnt_cnt = pos[0].size - # case: 1D unstacked - if dim == 1 and pos.size == shape_size: - shape = (1, pos.size) if check_stacked_shape else (pos.size,) - # case: 1D and stacked - elif dim == 1 and pos.size == stacked_shape_size: - shape = (shape[0], pos.size) - wrong_shape = not check_stacked_shape - # case: nD unstacked - elif pnt_cnt == shape_size: - shape = (1, pnt_cnt) if check_stacked_shape else pnt_cnt - # case: nD and stacked - elif pnt_cnt == stacked_shape_size: - shape = (shape[0], pnt_cnt) - wrong_shape = not check_stacked_shape - # if nothing works, we raise an error - else: - wrong_shape = True - - # if shape was wrong at one point we raise an error - if wrong_shape: - raise ValueError("Formatting: position tuple doesn't match dimension.") - - pos = pos.reshape((dim, -1)) - - return pos, shape, dim - - -def ang2dir(angles, dtype=np.double, dim=None): - """Convert n-D spherical coordinates to Euclidean direction vectors. - - Parameters - ---------- - angles : :class:`list` of :class:`numpy.ndarray` - spherical coordinates given as angles. - dtype : data-type, optional - The desired data-type for the array. - If not given, then the type will be determined as the minimum type - required to hold the objects in the sequence. Default: None - dim : :class:`int`, optional - Cut of information above the given dimension. - Otherwise, dimension is determined by number of angles - Default: None - - Returns - ------- - :class:`numpy.ndarray` - the array of direction vectors - """ - pre_dim = np.asanyarray(angles).ndim - angles = np.atleast_2d(np.asarray(angles, dtype=dtype)) - if len(angles.shape) > 2: - raise ValueError(f"Can't interpret angles array {angles}") - dim = angles.shape[1] + 1 if dim is None else dim - if dim == 2 and angles.shape[0] == 1 and pre_dim < 2: - # fix for 2D where only one angle per direction is given - angles = angles.T # can't be interpreted if dim=None is given - if dim != angles.shape[1] + 1 or dim == 1: - raise ValueError(f"Wrong dim. ({dim}) for angles {angles}") - vec = np.empty((angles.shape[0], dim), dtype=dtype) - vec[:, 0] = np.prod(np.sin(angles), axis=1) - for i in range(1, dim): - vec[:, i] = np.prod(np.sin(angles[:, i:]), axis=1) # empty prod = 1 - vec[:, i] *= np.cos(angles[:, (i - 1)]) - if dim in [2, 3]: - vec[:, [0, 1]] = vec[:, [1, 0]] # to match convention in 2D and 3D - return vec - - -def latlon2pos( - latlon, radius=1.0, dtype=np.double, temporal=False, time_scale=1.0 -): - """Convert lat-lon geo coordinates to 3D position tuple. - - Parameters - ---------- - latlon : :class:`list` of :class:`numpy.ndarray` - latitude and longitude given in degrees. - May includes an appended time axis if `time=True`. - radius : :class:`float`, optional - Sphere radius. Default: `1.0` - dtype : data-type, optional - The desired data-type for the array. - If not given, then the type will be determined as the minimum type - required to hold the objects in the sequence. Default: None - temporal : :class:`bool`, optional - Whether latlon includes an appended time axis. - Default: False - time_scale : :class:`float`, optional - Scaling factor (e.g. anisotropy) for the time axis. - Default: `1.0` - - Returns - ------- - :class:`numpy.ndarray` - the 3D position array - """ - latlon = np.asarray(latlon, dtype=dtype).reshape( - (3 if temporal else 2, -1) - ) - lat, lon = np.deg2rad(latlon[:2]) - pos_tuple = ( - radius * np.cos(lat) * np.cos(lon), - radius * np.cos(lat) * np.sin(lon), - radius * np.sin(lat) * np.ones_like(lon), - ) - if temporal: - return np.array(pos_tuple + (latlon[2] / time_scale,), dtype=dtype) - return np.array(pos_tuple, dtype=dtype) - - -def pos2latlon( - pos, radius=1.0, dtype=np.double, temporal=False, time_scale=1.0 -): - """Convert 3D position tuple from sphere to lat-lon geo coordinates. - - Parameters - ---------- - pos : :class:`list` of :class:`numpy.ndarray` - The position tuple containing points on a unit-sphere. - May includes an appended time axis if `time=True`. - radius : :class:`float`, optional - Sphere radius. Default: `1.0` - dtype : data-type, optional - The desired data-type for the array. - If not given, then the type will be determined as the minimum type - required to hold the objects in the sequence. Default: None - temporal : :class:`bool`, optional - Whether latlon includes an appended time axis. - Default: False - time_scale : :class:`float`, optional - Scaling factor (e.g. anisotropy) for the time axis. - Default: `1.0` - - Returns - ------- - :class:`numpy.ndarray` - the 3D position array - """ - pos = np.asarray(pos, dtype=dtype).reshape((4 if temporal else 3, -1)) - # prevent numerical errors in arcsin - lat = np.arcsin(np.maximum(np.minimum(pos[2] / radius, 1.0), -1.0)) - lon = np.arctan2(pos[1], pos[0]) - latlon = np.rad2deg((lat, lon), dtype=dtype) - if temporal: - return np.array( - (latlon[0], latlon[1], pos[3] * time_scale), dtype=dtype - ) - return latlon - - -def chordal_to_great_circle(dist, radius=1.0): - """ - Calculate great circle distance corresponding to given chordal distance. - - Parameters - ---------- - dist : array_like - Chordal distance of two points on the sphere. - radius : :class:`float`, optional - Sphere radius. Default: `1.0` - - Returns - ------- - :class:`numpy.ndarray` - Great circle distance corresponding to given chordal distance. - - Notes - ----- - If given values are not in [0, 2 * radius], they will be truncated. - """ - diameter = 2 * radius - return diameter * np.arcsin( - np.maximum(np.minimum(np.divide(dist, diameter), 1), 0) - ) - - -def great_circle_to_chordal(dist, radius=1.0): - """ - Calculate chordal distance corresponding to given great circle distance. - - Parameters - ---------- - dist : array_like - Great circle distance of two points on the sphere. - radius : :class:`float`, optional - Sphere radius. Default: `1.0` - - Returns - ------- - :class:`numpy.ndarray` - Chordal distance corresponding to given great circle distance. - """ - diameter = 2 * radius - return diameter * np.sin(np.divide(dist, diameter)) diff --git a/src/gstools/tools/misc.py b/src/gstools/tools/misc.py deleted file mode 100755 index aaba1501e..000000000 --- a/src/gstools/tools/misc.py +++ /dev/null @@ -1,143 +0,0 @@ -""" -GStools subpackage providing miscellaneous tools. - -.. currentmodule:: gstools.tools.misc - -The following functions are provided - -.. autosummary:: - get_fig_ax - list_format - eval_func -""" - -# pylint: disable=C0103, C0415 -import numpy as np - -from gstools.tools.geometric import format_struct_pos_dim, generate_grid - -__all__ = ["get_fig_ax", "list_format", "eval_func"] - - -def get_fig_ax(fig=None, ax=None, ax_name="rectilinear"): # pragma: no cover - """ - Get correct matplotlib figure and axes. - - Parameters - ---------- - fig : figure or :any:`None` - desired figure. - ax : axis or :any:`None` - desired axis. - ax_name : :class:`str`, optional - Axis type name. The default is "rectilinear". - - Returns - ------- - fig : figure - desired figure. - ax : axis - desired axis. - """ - try: - from matplotlib import pyplot as plt - except ImportError as exc: - raise ImportError("Plotting: Matplotlib not installed.") from exc - - if fig is None and ax is None: - fig = plt.figure() - ax = fig.add_subplot(111, projection=ax_name) - elif ax is None: - ax = fig.add_subplot(111, projection=ax_name) - elif fig is None: - fig = ax.get_figure() - assert ax.name == ax_name - else: - assert ax.name == ax_name - assert ax.get_figure() == fig - return fig, ax - - -def list_format(lst, prec): # pragma: no cover - """Format a list of floats.""" - return f"[{', '.join(f'{float(x):.{prec}}' for x in lst)}]" - - -def eval_func( - func_val, - pos, - dim, - mesh_type="unstructured", - value_type="scalar", - broadcast=False, -): - """ - Evaluate a function on a mesh. - - Parameters - ---------- - func_val : :any:`callable` or :class:`float` or :any:`None` - Function to be called or single value to be filled. - Should have the signature f(x, [y, z, ...]) in case of callable. - In case of a float, the field will be filled with a single value and - in case of None, this value will be set to 0. - pos : :class:`list` - The position tuple, containing main direction and transversal - directions (x, [y, z, ...]). - dim : :class:`int` - The spatial dimension. - mesh_type : :class:`str`, optional - 'structured' / 'unstructured' - Default: 'unstructured' - value_type : :class:`str`, optional - Value type of the field. Either "scalar" or "vector". - The default is "scalar". - broadcast : :class:`bool`, optional - Whether to return a single value, if a single value was given. - Default: False - - Returns - ------- - :class:`numpy.ndarray` - Function values at the given points. - """ - # care about scalar inputs - func_val = 0 if func_val is None else func_val - if broadcast and not callable(func_val) and np.size(func_val) == 1: - return np.asarray(func_val, dtype=np.double).item() - if not callable(func_val): - func_val = _func_from_single_val(func_val, dim, value_type=value_type) - # care about mesh and function call - if mesh_type != "unstructured": - pos, shape = format_struct_pos_dim(pos, dim) - pos = generate_grid(pos) - else: - pos = np.asarray(pos, dtype=np.double).reshape(dim, -1) - shape = np.shape(pos[0]) - # prepend dimension if we have a vector field - if value_type == "vector": - shape = (dim,) + shape - return np.reshape(func_val(*pos), shape) - - -def _func_from_single_val(value, dim=None, value_type="scalar"): - # care about broadcasting vector values for each dim - v_d = dim if value_type == "vector" else 1 # value dim - if v_d is None: # pragma: no cover - raise ValueError("_func_from_single_val: dim needed for vector value.") - value = np.asarray(value, dtype=np.double).ravel()[:v_d] - # fill up vector valued output to dimension with last value - value = np.pad( - value, (0, v_d - len(value)), "constant", constant_values=value[-1] - ) - - def _f(*pos): - # zip uses shortest len of iterables given (correct for scalar value) - return np.concatenate( - [ - np.full_like(p, val, dtype=np.double) - for p, val in zip(pos, value) - ] - ) - - return _f diff --git a/src/gstools/tools/special.py b/src/gstools/tools/special.py deleted file mode 100644 index 1457b736e..000000000 --- a/src/gstools/tools/special.py +++ /dev/null @@ -1,257 +0,0 @@ -""" -GStools subpackage providing special functions. - -.. currentmodule:: gstools.tools.special - -The following functions are provided - -.. autosummary:: - inc_gamma - inc_gamma_low - exp_int - inc_beta - tplstable_cor - tpl_exp_spec_dens - tpl_gau_spec_dens -""" - -# pylint: disable=C0103, E1101 -import numpy as np -from scipy import special as sps - -__all__ = [ - "confidence_scaling", - "inc_gamma", - "inc_gamma_low", - "exp_int", - "inc_beta", - "tplstable_cor", - "tpl_exp_spec_dens", - "tpl_gau_spec_dens", -] - - -# special functions ########################################################### - - -def confidence_scaling(per=0.95): - """ - Scaling of standard deviation to get the desired confidence interval. - - Parameters - ---------- - per : :class:`float`, optional - Confidence level. The default is 0.95. - - Returns - ------- - :class:`float` - Scale to multiply the standard deviation with. - """ - return np.sqrt(2) * sps.erfinv(per) - - -def inc_gamma(s, x): - r"""Calculate the (upper) incomplete gamma function. - - Given by: :math:`\Gamma(s,x) = \int_x^{\infty} t^{s-1}\,e^{-t}\,{\rm d}t` - - Parameters - ---------- - s : :class:`float` - exponent in the integral - x : :class:`numpy.ndarray` - input values - """ - if np.isclose(s, 0): - return sps.exp1(x) - if np.isclose(s, np.around(s)) and s < -0.5: - return x**s * sps.expn(int(1 - np.around(s)), x) - if s < 0: - return (inc_gamma(s + 1, x) - x**s * np.exp(-x)) / s - return sps.gamma(s) * sps.gammaincc(s, x) - - -def inc_gamma_low(s, x): - r"""Calculate the lower incomplete gamma function. - - Given by: :math:`\gamma(s,x) = \int_0^x t^{s-1}\,e^{-t}\,{\rm d}t` - - Parameters - ---------- - s : :class:`float` - exponent in the integral - x : :class:`numpy.ndarray` - input values - """ - if np.isclose(s, np.around(s)) and s < 0.5: - return np.full_like(x, np.inf, dtype=np.double) - if s < 0: - return (inc_gamma_low(s + 1, x) + x**s * np.exp(-x)) / s - return sps.gamma(s) * sps.gammainc(s, x) - - -def exp_int(s, x): - r"""Calculate the exponential integral :math:`E_s(x)`. - - Given by: :math:`E_s(x) = \int_1^\infty \frac{e^{-xt}}{t^s}\,\mathrm dt` - - Parameters - ---------- - s : :class:`float` - exponent in the integral (should be > -100) - x : :class:`numpy.ndarray` - input values - """ - if np.isclose(s, 1): - return sps.exp1(x) - if np.isclose(s, np.around(s)) and s > -0.5: - return sps.expn(int(np.around(s)), x) - x = np.asarray(x, dtype=np.double) - x_neg = x < 0 - x = np.abs(x) - x_compare = x ** min((10, max(((1 - s), 1)))) - res = np.empty_like(x) - # use asymptotic behavior for zeros - x_zero = np.isclose(x_compare, 0, atol=1e-20) - x_inf = x > max(30, -s / 2) # function is like exp(-x)*(1/x + s/x^2) - x_fin = np.logical_not(np.logical_or(x_zero, x_inf)) - x_fin_pos = np.logical_and(x_fin, np.logical_not(x_neg)) - if s > 1.0: # limit at x=+0 - res[x_zero] = 1.0 / (s - 1.0) - else: - res[x_zero] = np.inf - res[x_inf] = np.exp(-x[x_inf]) * (x[x_inf] ** -1 - s * x[x_inf] ** -2) - res[x_fin_pos] = inc_gamma(1 - s, x[x_fin_pos]) * x[x_fin_pos] ** (s - 1) - res[x_neg] = np.nan # nan for x < 0 - return res - - -def inc_beta(a, b, x): - r"""Calculate the incomplete Beta function. - - Given by: :math:`B(a,b;\,x) = \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt` - - Parameters - ---------- - a : :class:`float` - first exponent in the integral - b : :class:`float` - second exponent in the integral - x : :class:`numpy.ndarray` - input values - """ - return sps.betainc(a, b, x) * sps.beta(a, b) - - -def tplstable_cor(r, len_scale, hurst, alpha): - r"""Calculate the correlation function of the TPLStable model. - - Given by the following correlation function: - - .. math:: - \rho(r) = - \frac{2H}{\alpha} \cdot - E_{1+\frac{2H}{\alpha}} - \left(\left(\frac{r}{\ell}\right)^{\alpha} \right) - - - Parameters - ---------- - r : :class:`numpy.ndarray` - input values - len_scale : :class:`float` - length-scale of the model. - hurst : :class:`float` - Hurst coefficient of the power law. - alpha : :class:`float`, optional - Shape parameter of the stable model. - """ - r = np.asarray(np.abs(r / len_scale), dtype=np.double) - r[np.isclose(r, 0)] = 0 # hack to prevent numerical errors - res = np.ones_like(r) - res[r > 0] = (2 * hurst / alpha) * exp_int( - 1 + 2 * hurst / alpha, (r[r > 0]) ** alpha - ) - return res - - -def tpl_exp_spec_dens(k, dim, len_scale, hurst, len_low=0.0): - r""" - Spectral density of the TPLExponential covariance model. - - Parameters - ---------- - k : :class:`float` - Radius of the phase: :math:`k=\left\Vert\mathbf{k}\right\Vert` - dim : :class:`int` - Dimension of the model. - len_scale : :class:`float` - Length scale of the model. - hurst : :class:`float` - Hurst coefficient of the power law. - len_low : :class:`float`, optional - The lower length scale truncation of the model. - Default: 0.0 - - Returns - ------- - :class:`float` - spectral density of the TPLExponential model - """ - if np.isclose(len_low, 0.0): - k = np.asarray(k, dtype=np.double) - z = (k * len_scale) ** 2 - a = hurst + dim / 2.0 - b = hurst + 0.5 - c = hurst + dim / 2.0 + 1.0 - d = dim / 2.0 + 0.5 - fac = len_scale**dim * hurst * sps.gamma(d) / (np.pi**d * a) - return fac / (1.0 + z) ** a * sps.hyp2f1(a, b, c, z / (1.0 + z)) - fac_up = (len_scale + len_low) ** (2 * hurst) - spec_up = tpl_exp_spec_dens(k, dim, len_scale + len_low, hurst) - fac_low = len_low ** (2 * hurst) - spec_low = tpl_exp_spec_dens(k, dim, len_low, hurst) - return (fac_up * spec_up - fac_low * spec_low) / (fac_up - fac_low) - - -def tpl_gau_spec_dens(k, dim, len_scale, hurst, len_low=0.0): - r""" - Spectral density of the TPLGaussian covariance model. - - Parameters - ---------- - k : :class:`float` - Radius of the phase: :math:`k=\left\Vert\mathbf{k}\right\Vert` - dim : :class:`int` - Dimension of the model. - len_scale : :class:`float` - Length scale of the model. - hurst : :class:`float` - Hurst coefficient of the power law. - len_low : :class:`float`, optional - The lower length scale truncation of the model. - Default: 0.0 - - Returns - ------- - :class:`float` - spectral density of the TPLExponential model - """ - if np.isclose(len_low, 0.0): - k = np.asarray(k, dtype=np.double) - z = np.array((k * len_scale / 2.0) ** 2) - res = np.empty_like(z) - z_gz = z > 0.1 # greater zero - z_nz = np.logical_not(z_gz) # near zero - a = hurst + dim / 2.0 - fac = (len_scale / 2.0) ** dim * hurst / np.pi ** (dim / 2.0) - res[z_gz] = fac * inc_gamma_low(a, z[z_gz]) / z[z_gz] ** a - # first order approximation for z near zero - res[z_nz] = fac * (1.0 / a - z[z_nz] / (a + 1.0)) - return res - fac_up = (len_scale + len_low) ** (2 * hurst) - spec_up = tpl_gau_spec_dens(k, dim, len_scale + len_low, hurst) - fac_low = len_low ** (2 * hurst) - spec_low = tpl_gau_spec_dens(k, dim, len_low, hurst) - return (fac_up * spec_up - fac_low * spec_low) / (fac_up - fac_low) diff --git a/src/gstools/transform/__init__.py b/src/gstools/transform/__init__.py deleted file mode 100644 index b2e6ce4f2..000000000 --- a/src/gstools/transform/__init__.py +++ /dev/null @@ -1,93 +0,0 @@ -""" -GStools subpackage providing transformations to post-process normal fields. - -.. currentmodule:: gstools.transform - -Wrapper -^^^^^^^ - -.. autosummary:: - :toctree: - - apply - -Field Transformations -^^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - binary - discrete - boxcox - zinnharvey - normal_force_moments - normal_to_lognormal - normal_to_uniform - normal_to_arcsin - normal_to_uquad - apply_function - -Array Transformations -^^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - array_discrete - array_boxcox - array_zinnharvey - array_force_moments - array_to_lognormal - array_to_uniform - array_to_arcsin - array_to_uquad - ----- -""" - -from gstools.transform.array import ( - array_boxcox, - array_discrete, - array_force_moments, - array_to_arcsin, - array_to_lognormal, - array_to_uniform, - array_to_uquad, - array_zinnharvey, -) -from gstools.transform.field import ( - apply, - apply_function, - binary, - boxcox, - discrete, - normal_force_moments, - normal_to_arcsin, - normal_to_lognormal, - normal_to_uniform, - normal_to_uquad, - zinnharvey, -) - -__all__ = [ - "apply", - "apply_function", - "binary", - "discrete", - "boxcox", - "zinnharvey", - "normal_force_moments", - "normal_to_lognormal", - "normal_to_uniform", - "normal_to_arcsin", - "normal_to_uquad", - "array_discrete", - "array_boxcox", - "array_zinnharvey", - "array_force_moments", - "array_to_lognormal", - "array_to_uniform", - "array_to_arcsin", - "array_to_uquad", -] diff --git a/src/gstools/transform/array.py b/src/gstools/transform/array.py deleted file mode 100644 index 87564edf0..000000000 --- a/src/gstools/transform/array.py +++ /dev/null @@ -1,360 +0,0 @@ -""" -GStools subpackage providing array transformations. - -.. currentmodule:: gstools.transform.array - -The following functions are provided - -Transformations -^^^^^^^^^^^^^^^ - -.. autosummary:: - array_discrete - array_boxcox - array_zinnharvey - array_force_moments - array_to_lognormal - array_to_uniform - array_to_arcsin - array_to_uquad -""" - -# pylint: disable=C0103, C0123, R0911 -from warnings import warn - -import numpy as np -from scipy.special import erf, erfinv - -__all__ = [ - "array_discrete", - "array_boxcox", - "array_zinnharvey", - "array_force_moments", - "array_to_lognormal", - "array_to_uniform", - "array_to_arcsin", - "array_to_uquad", -] - - -def array_discrete( - field, values, thresholds="arithmetic", mean=None, var=None -): - """ - Discrete transformation. - - After this transformation, the field has only `len(values)` discrete - values. - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - values : :any:`numpy.ndarray` - The discrete values the field will take - thresholds : :class:`str` or :any:`numpy.ndarray`, optional - the thresholds, where the value classes are separated - possible values are: - * "arithmetic": the mean of the 2 neighbouring values - * "equal": divide the field into equal parts - * an array of explicitly given thresholds - Default: "arithmetic" - mean : :class:`float`or :any:`None` - Mean of the field for "equal" thresholds. Default: np.mean(field) - var : :class:`float`or :any:`None` - Variance of the field for "equal" thresholds. Default: np.var(field) - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - field = np.asarray(field) - if thresholds == "arithmetic": - # just in case, sort the values - values = np.sort(values) - thresholds = (values[1:] + values[:-1]) / 2 - elif thresholds == "equal": - mean = np.mean(field) if mean is None else float(mean) - var = np.var(field) if var is None else float(var) - values = np.asarray(values) - n = len(values) - p = np.arange(1, n) / n # n-1 equal subdivisions of [0, 1] - rescale = np.sqrt(var * 2) - # use quantile of the normal distribution to get equal ratios - thresholds = mean + rescale * erfinv(2 * p - 1) - else: - if len(values) != len(thresholds) + 1: - raise ValueError( - "discrete transformation: len(values) != len(thresholds) + 1" - ) - values = np.asarray(values) - thresholds = np.asarray(thresholds) - # check thresholds - if not np.all(thresholds[:-1] < thresholds[1:]): - raise ValueError( - "discrete transformation: thresholds need to be ascending" - ) - # use a separate result so the intermediate results are not affected - result = np.empty_like(field) - # handle edge cases - result[field <= thresholds[0]] = values[0] - result[field > thresholds[-1]] = values[-1] - for i, value in enumerate(values[1:-1]): - result[ - np.logical_and(thresholds[i] < field, field <= thresholds[i + 1]) - ] = value - return result - - -def array_boxcox(field, lmbda=1, shift=0): - """ - (Inverse) Box-Cox transformation to denormalize data. - - After this transformation, the again Box-Cox transformed field is normal - distributed. - - See: https://en.wikipedia.org/wiki/Power_transform#Box%E2%80%93Cox_transformation - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - lmbda : :class:`float`, optional - The lambda parameter of the Box-Cox transformation. - For ``lmbda=0`` one obtains the log-normal transformation. - Default: ``1`` - shift : :class:`float`, optional - The shift parameter from the two-parametric Box-Cox transformation. - The field will be shifted by that value before transformation. - Default: ``0`` - """ - field = np.asarray(field) - result = field + shift - if np.isclose(lmbda, 0): - return array_to_lognormal(result) - if np.min(result) < -1 / lmbda: - warn("Box-Cox: Some values will be cut off!") - return (np.maximum(lmbda * result + 1, 0)) ** (1 / lmbda) - - -def array_zinnharvey(field, conn="high", mean=None, var=None): - """ - Zinn and Harvey transformation to connect low or high values. - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - conn : :class:`str`, optional - Desired connectivity. Either "low" or "high". - Default: "high" - mean : :class:`float` or :any:`None`, optional - Mean of the given field. If None is given, the mean will be calculated. - Default: :any:`None` - var : :class:`float` or :any:`None`, optional - Variance of the given field. - If None is given, the variance will be calculated. - Default: :any:`None` - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - field = np.asarray(field) - mean = np.mean(field) if mean is None else float(mean) - var = np.var(field) if var is None else float(var) - result = np.abs((field - mean) / np.sqrt(var)) - result = np.sqrt(2) * erfinv(2 * erf(result / np.sqrt(2)) - 1) - if conn == "high": - result = -result - return result * np.sqrt(var) + mean - - -def array_force_moments(field, mean=0, var=1): - """ - Force moments of a normal distributed field. - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - mean : :class:`float`, optional - Desired mean of the field. - Default: 0 - var : :class:`float` or :any:`None`, optional - Desired variance of the field. - Default: 1 - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - field = np.asarray(field) - var_in = np.var(field) - mean_in = np.mean(field) - rescale = np.sqrt(var / var_in) - return rescale * (field - mean_in) + mean - - -def array_to_lognormal(field): - """ - Transform normal distribution to log-normal distribution. - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - return np.exp(field) - - -def array_to_uniform(field, mean=None, var=None, low=0.0, high=1.0): - """ - Transform normal distribution to uniform distribution on [low, high]. - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - mean : :class:`float` or :any:`None`, optional - Mean of the given field. If None is given, the mean will be calculated. - Default: :any:`None` - var : :class:`float` or :any:`None`, optional - Variance of the given field. - If None is given, the variance will be calculated. - Default: :any:`None` - low : :class:`float`, optional - Lower bound for the uniform distribution. - Default: 0.0 - high : :class:`float`, optional - Upper bound for the uniform distribution. - Default: 1.0 - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - field = np.asarray(field) - mean = np.mean(field) if mean is None else float(mean) - var = np.var(field) if var is None else float(var) - return ( - 0.5 * (1 + erf((field - mean) / np.sqrt(2 * var))) * (high - low) + low - ) - - -def array_to_arcsin(field, mean=None, var=None, a=None, b=None): - """ - Transform normal distribution to arcsin distribution. - - See: https://en.wikipedia.org/wiki/Arcsine_distribution - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - mean : :class:`float` or :any:`None`, optional - Mean of the given field. If None is given, the mean will be calculated. - Default: :any:`None` - var : :class:`float` or :any:`None`, optional - Variance of the given field. - If None is given, the mean will be calculated. - Default: :any:`None` - a : :class:`float`, optional - Parameter a of the arcsin distribution (lower bound). - Default: keep mean and variance - b : :class:`float`, optional - Parameter b of the arcsin distribution (upper bound). - Default: keep mean and variance - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - field = np.asarray(field) - mean = np.mean(field) if mean is None else float(mean) - var = np.var(field) if var is None else float(var) - a = mean - np.sqrt(2.0 * var) if a is None else float(a) - b = mean + np.sqrt(2.0 * var) if b is None else float(b) - return _uniform_to_arcsin(array_to_uniform(field, mean, var), a, b) - - -def array_to_uquad(field, mean=None, var=None, a=None, b=None): - """ - Transform normal distribution to U-quadratic distribution. - - See: https://en.wikipedia.org/wiki/U-quadratic_distribution - - Parameters - ---------- - field : :class:`numpy.ndarray` - Normal distributed values. - mean : :class:`float` or :any:`None`, optional - Mean of the given field. If None is given, the mean will be calculated. - Default: :any:`None` - var : :class:`float` or :any:`None`, optional - Variance of the given field. - If None is given, the variance will be calculated. - Default: :any:`None` - a : :class:`float`, optional - Parameter a of the U-quadratic distribution (lower bound). - Default: keep mean and variance - b : :class:`float`, optional - Parameter b of the U-quadratic distribution (upper bound). - Default: keep mean and variance - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - field = np.asarray(field) - mean = np.mean(field) if mean is None else float(mean) - var = np.var(field) if var is None else float(var) - a = mean - np.sqrt(5.0 / 3.0 * var) if a is None else float(a) - b = mean + np.sqrt(5.0 / 3.0 * var) if b is None else float(b) - return _uniform_to_uquad(array_to_uniform(field, mean, var), a, b) - - -def _uniform_to_arcsin(field, a=0, b=1): - """ - PPF of your desired distribution. - - The PPF is the inverse of the CDF and is used to sample a distribution - from uniform distributed values on [0, 1] - - in this case: the arcsin distribution - See: https://en.wikipedia.org/wiki/Arcsine_distribution - """ - field = np.asarray(field) - return (b - a) * np.sin(np.pi * 0.5 * field) ** 2 + a - - -def _uniform_to_uquad(field, a=0, b=1): - """ - PPF of your desired distribution. - - The PPF is the inverse of the CDF and is used to sample a distribution - from uniform distributed values on [0, 1] - - in this case: the U-quadratic distribution - See: https://en.wikipedia.org/wiki/U-quadratic_distribution - """ - field = np.asarray(field) - al = 12 / (b - a) ** 3 - be = (a + b) / 2 - ga = (a - b) ** 3 / 8 - y_raw = 3 * field / al + ga - result = np.zeros_like(y_raw) - result[y_raw > 0] = y_raw[y_raw > 0] ** (1 / 3) - result[y_raw < 0] = -((-y_raw[y_raw < 0]) ** (1 / 3)) - return result + be diff --git a/src/gstools/transform/field.py b/src/gstools/transform/field.py deleted file mode 100644 index a123e7987..000000000 --- a/src/gstools/transform/field.py +++ /dev/null @@ -1,725 +0,0 @@ -""" -GStools subpackage providing field transformations. - -.. currentmodule:: gstools.transform.field - -The following functions are provided - -Wrapper -^^^^^^^ - -.. autosummary:: - apply - -Transformations -^^^^^^^^^^^^^^^ - -.. autosummary:: - apply_function - binary - discrete - boxcox - zinnharvey - normal_force_moments - normal_to_lognormal - normal_to_uniform - normal_to_arcsin - normal_to_uquad -""" - -# pylint: disable=C0103, C0123, R0911, R1735 -import numpy as np - -from gstools.normalizer import ( - Normalizer, - apply_mean_norm_trend, - remove_trend_norm_mean, -) -from gstools.transform.array import ( - array_boxcox, - array_discrete, - array_force_moments, - array_to_arcsin, - array_to_lognormal, - array_to_uniform, - array_to_uquad, - array_zinnharvey, -) - -__all__ = [ - "apply", - "apply_function", - "binary", - "discrete", - "boxcox", - "zinnharvey", - "normal_force_moments", - "normal_to_lognormal", - "normal_to_uniform", - "normal_to_arcsin", - "normal_to_uquad", -] - - -def _pre_process(fld, data, keep_mean): - return remove_trend_norm_mean( - pos=fld.pos, - field=data, - mean=None if keep_mean else fld.mean, - normalizer=fld.normalizer, - trend=fld.trend, - mesh_type=fld.mesh_type, - value_type=fld.value_type, - check_shape=False, - ) - - -def _post_process(fld, data, keep_mean): - return apply_mean_norm_trend( - pos=fld.pos, - field=data, - mean=None if keep_mean else fld.mean, - normalizer=fld.normalizer, - trend=fld.trend, - mesh_type=fld.mesh_type, - value_type=fld.value_type, - check_shape=False, - ) - - -def _check_for_default_normal(fld): - if not type(fld.normalizer) == Normalizer: - raise ValueError( - "transform: need a normal field but there is a normalizer defined" - ) - if fld.trend is not None: - raise ValueError( - "transform: need a normal field but there is a trend defined" - ) - if callable(fld.mean) or fld.mean is None: - raise ValueError( - "transform: need a normal field but mean is not constant" - ) - - -def apply(fld, method, field="field", store=True, process=False, **kwargs): - """ - Apply field transformation. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - method : :class:`str` - Method to use. - See :py:mod:`gstools.transform` for available transformations. - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or with a specified name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - **kwargs - Keyword arguments forwarded to selected method. - - Raises - ------ - ValueError - When method is unknown. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - kwargs["field"] = field - kwargs["store"] = store - kwargs["process"] = process - method = str(method) # ensure method is a string - if method == "binary": - return binary(fld, **kwargs) - if method == "discrete": - return discrete(fld, **kwargs) - if method == "boxcox": - return boxcox(fld, **kwargs) - if method == "zinnharvey": - return zinnharvey(fld, **kwargs) - if method.endswith("force_moments"): - return normal_force_moments(fld, **kwargs) - if method.endswith("lognormal"): - return normal_to_lognormal(fld, **kwargs) - if method.endswith("uniform"): - return normal_to_uniform(fld, **kwargs) - if method.endswith("arcsin"): - return normal_to_arcsin(fld, **kwargs) - if method.endswith("uquad"): - return normal_to_uquad(fld, **kwargs) - if method.endswith("function"): - return apply_function(fld, **kwargs) - raise ValueError(f"transform.apply: unknown method '{method}'") - - -def apply_function( - fld, - function, - field="field", - store=True, - process=False, - keep_mean=True, - **kwargs, -): - """ - Apply function as field transformation. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - function : :any:`callable` - Function to use. - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - **kwargs - Keyword arguments forwarded to given function. - - Raises - ------ - ValueError - When function is not callable. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not callable(function): - raise ValueError("transform.apply_function: function not a 'callable'") - data = fld[field] - name, save = fld.get_store_config(store, default=field) - if process: - data = _pre_process(fld, data, keep_mean=keep_mean) - data = function(data, **kwargs) - if process: - data = _post_process(fld, data, keep_mean=keep_mean) - return fld.post_field(data, name=name, process=False, save=save) - - -def binary( - fld, - divide=None, - upper=None, - lower=None, - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Binary transformation. - - After this transformation, the field only has two values. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - divide : :class:`float`, optional - The dividing value. - Default: ``fld.mean`` - upper : :class:`float`, optional - The resulting upper value of the field. - Default: ``mean + sqrt(fld.model.sill)`` - lower : :class:`float`, optional - The resulting lower value of the field. - Default: ``mean - sqrt(fld.model.sill)`` - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not process and divide is None: - _check_for_default_normal(fld) - mean = 0.0 if process and not keep_mean else fld.mean - divide = mean if divide is None else divide - upper = mean + np.sqrt(fld.model.sill) if upper is None else upper - lower = mean - np.sqrt(fld.model.sill) if lower is None else lower - kw = dict( - values=[lower, upper], - thresholds=[divide], - ) - return apply_function( - fld=fld, - function=array_discrete, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def discrete( - fld, - values, - thresholds="arithmetic", - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Discrete transformation. - - After this transformation, the field has only `len(values)` discrete - values. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - values : :any:`numpy.ndarray` - The discrete values the field will take - thresholds : :class:`str` or :any:`numpy.ndarray`, optional - the thresholds, where the value classes are separated - possible values are: - * "arithmetic": the mean of the 2 neighbouring values - * "equal": divide the field into equal parts - * an array of explicitly given thresholds - Default: "arithmetic" - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not process and thresholds == "equal": - _check_for_default_normal(fld) - kw = dict( - values=values, - thresholds=thresholds, - mean=0.0 if process and not keep_mean else fld.mean, - var=fld.model.sill, - ) - return apply_function( - fld=fld, - function=array_discrete, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def boxcox( - fld, - lmbda=1, - shift=0, - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - (Inverse) Box-Cox transformation to denormalize data. - - After this transformation, the again Box-Cox transformed field is normal - distributed. - - See: https://en.wikipedia.org/wiki/Power_transform#Box%E2%80%93Cox_transformation - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - lmbda : :class:`float`, optional - The lambda parameter of the Box-Cox transformation. - For ``lmbda=0`` one obtains the log-normal transformation. - Default: ``1`` - shift : :class:`float`, optional - The shift parameter from the two-parametric Box-Cox transformation. - The field will be shifted by that value before transformation. - Default: ``0`` - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - kw = dict(lmbda=lmbda, shift=shift) - return apply_function( - fld=fld, - function=array_boxcox, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def zinnharvey( - fld, - conn="high", - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Zinn and Harvey transformation to connect low or high values. - - After this transformation, the field is still normal distributed. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - conn : :class:`str`, optional - Desired connectivity. Either "low" or "high". - Default: "high" - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not process: - _check_for_default_normal(fld) - kw = dict( - conn=conn, - mean=0.0 if process and not keep_mean else fld.mean, - var=fld.model.sill, - ) - return apply_function( - fld=fld, - function=array_zinnharvey, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def normal_force_moments( - fld, - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Force moments of a normal distributed field. - - After this transformation, the field is still normal distributed. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not process: - _check_for_default_normal(fld) - kw = dict( - mean=0.0 if process and not keep_mean else fld.mean, var=fld.model.sill - ) - return apply_function( - fld=fld, - function=array_force_moments, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def normal_to_lognormal( - fld, field="field", store=True, process=False, keep_mean=True -): - """ - Transform normal distribution to log-normal distribution. - - After this transformation, the field is log-normal distributed. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - return apply_function( - fld=fld, - function=array_to_lognormal, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - ) - - -def normal_to_uniform( - fld, - low=0.0, - high=1.0, - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Transform normal distribution to uniform distribution on [0, 1]. - - After this transformation, the field is uniformly distributed on [0, 1]. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - low : :class:`float`, optional - Lower bound for the uniform distribution. - Default: 0.0 - high : :class:`float`, optional - Upper bound for the uniform distribution. - Default: 1.0 - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - """ - if not process: - _check_for_default_normal(fld) - kw = dict( - mean=0.0 if process and not keep_mean else fld.mean, - var=fld.model.sill, - low=low, - high=high, - ) - return apply_function( - fld=fld, - function=array_to_uniform, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def normal_to_arcsin( - fld, - a=None, - b=None, - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Transform normal distribution to the bimodal arcsin distribution. - - See: https://en.wikipedia.org/wiki/Arcsine_distribution - - After this transformation, the field is arcsin-distributed on [a, b]. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - a : :class:`float`, optional - Parameter a of the arcsin distribution (lower bound). - Default: keep mean and variance - b : :class:`float`, optional - Parameter b of the arcsin distribution (upper bound). - Default: keep mean and variance - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not process: - _check_for_default_normal(fld) - kw = dict( - mean=0.0 if process and not keep_mean else fld.mean, - var=fld.model.sill, - a=a, - b=b, - ) - return apply_function( - fld=fld, - function=array_to_arcsin, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) - - -def normal_to_uquad( - fld, - a=None, - b=None, - field="field", - store=True, - process=False, - keep_mean=True, -): - """ - Transform normal distribution to U-quadratic distribution. - - See: https://en.wikipedia.org/wiki/U-quadratic_distribution - - After this transformation, the field is U-quadratic-distributed on [a, b]. - - Parameters - ---------- - fld : :any:`Field` - Field class containing a generated field. - a : :class:`float`, optional - Parameter a of the U-quadratic distribution (lower bound). - Default: keep mean and variance - b : :class:`float`, optional - Parameter b of the U-quadratic distribution (upper bound). - Default: keep mean and variance - field : :class:`str`, optional - Name of field to be transformed. The default is "field". - store : :class:`str` or :class:`bool`, optional - Whether to store field inplace (True/False) or under a given name. - The default is True. - process : :class:`bool`, optional - Whether to process in/out fields with trend, normalizer and mean - of given Field instance. The default is False. - keep_mean : :class:`bool`, optional - Whether to keep the mean of the field if process=True. - The default is True. - - Returns - ------- - :class:`numpy.ndarray` - Transformed field. - """ - if not process: - _check_for_default_normal(fld) - kw = dict( - mean=0.0 if process and not keep_mean else fld.mean, - var=fld.model.sill, - a=a, - b=b, - ) - return apply_function( - fld=fld, - function=array_to_uquad, - field=field, - store=store, - process=process, - keep_mean=keep_mean, - **kw, - ) diff --git a/src/gstools/variogram/__init__.py b/src/gstools/variogram/__init__.py deleted file mode 100644 index d8a5b238d..000000000 --- a/src/gstools/variogram/__init__.py +++ /dev/null @@ -1,40 +0,0 @@ -""" -GStools subpackage providing tools for estimating and fitting variograms. - -.. currentmodule:: gstools.variogram - -Variogram estimation -^^^^^^^^^^^^^^^^^^^^ - -.. autosummary:: - :toctree: - - vario_estimate - vario_estimate_axis - -Binning -^^^^^^^ - -.. autosummary:: - :toctree: - - standard_bins - ----- -""" - -from gstools.variogram.binning import standard_bins -from gstools.variogram.variogram import ( - vario_estimate, - vario_estimate_axis, - vario_estimate_structured, - vario_estimate_unstructured, -) - -__all__ = [ - "vario_estimate", - "vario_estimate_axis", - "vario_estimate_unstructured", - "vario_estimate_structured", - "standard_bins", -] diff --git a/src/gstools/variogram/binning.py b/src/gstools/variogram/binning.py deleted file mode 100644 index 86d4fdc27..000000000 --- a/src/gstools/variogram/binning.py +++ /dev/null @@ -1,104 +0,0 @@ -""" -GStools subpackage providing binning routines. - -.. currentmodule:: gstools.variogram.binning - -The following functions are provided - -.. autosummary:: - standard_bins -""" - -import numpy as np - -from gstools.tools import RADIAN_SCALE -from gstools.tools.geometric import ( - chordal_to_great_circle, - format_struct_pos_dim, - generate_grid, - latlon2pos, -) - -__all__ = ["standard_bins"] - - -def _sturges(pnt_cnt): - return int(np.ceil(2 * np.log2(pnt_cnt) + 1)) - - -def standard_bins( - pos=None, - dim=2, - latlon=False, - mesh_type="unstructured", - bin_no=None, - max_dist=None, - geo_scale=RADIAN_SCALE, -): - r""" - Get standard binning. - - Parameters - ---------- - pos : :class:`list`, optional - the position tuple, containing either the point coordinates (x, y, ...) - or the axes descriptions (for mesh_type='structured') - dim : :class:`int`, optional - Field dimension. - latlon : :class:`bool`, optional - Whether the data is representing 2D fields on earths surface described - by latitude and longitude. When using this, the estimator will - use great-circle distance for variogram estimation. - Note, that only an isotropic variogram can be estimated and a - ValueError will be raised, if a direction was specified. - Bin edges need to be given in radians in this case. - Default: False - mesh_type : :class:`str`, optional - 'structured' / 'unstructured', indicates whether the pos tuple - describes the axis or the point coordinates. - Default: `'unstructured'` - bin_no: :class:`int`, optional - number of bins to create. If None is given, will be determined by - Sturges' rule from the number of points. - Default: None - max_dist: :class:`float`, optional - Cut of length for the bins. If None is given, it will be set to one - third of the box-diameter from the given points. - Default: None - geo_scale : :class:`float`, optional - Geographic unit scaling in case of latlon coordinates to get a - meaningful bins unit. - By default, bins are assumed to be in radians with latlon=True. - Can be set to :any:`KM_SCALE` to have bins in km or - :any:`DEGREE_SCALE` to have bins in degrees. - Default: :any:`RADIAN_SCALE` - - Returns - ------- - :class:`numpy.ndarray` - The generated bin edges. - - Notes - ----- - Internally uses double precision and also returns doubles. - """ - dim = 2 if latlon else int(dim) - if bin_no is None or max_dist is None: - if pos is None: - raise ValueError("standard_bins: no pos tuple given.") - if mesh_type != "unstructured": - pos = generate_grid(format_struct_pos_dim(pos, dim)[0]) - else: - pos = np.asarray(pos, dtype=np.double).reshape(dim, -1) - pos = latlon2pos(pos, radius=geo_scale) if latlon else pos - pnt_cnt = len(pos[0]) - box = [] - for axis in pos: - box.append([np.min(axis), np.max(axis)]) - box = np.asarray(box) - diam = np.linalg.norm(box[:, 0] - box[:, 1]) - # convert diameter to great-circle distance if using latlon - diam = chordal_to_great_circle(diam, geo_scale) if latlon else diam - bin_no = _sturges(pnt_cnt) if bin_no is None else int(bin_no) - max_dist = diam / 3 if max_dist is None else float(max_dist) - return np.linspace(0, max_dist, num=bin_no + 1, dtype=np.double) diff --git a/src/gstools/variogram/variogram.py b/src/gstools/variogram/variogram.py deleted file mode 100644 index afcf336f4..000000000 --- a/src/gstools/variogram/variogram.py +++ /dev/null @@ -1,499 +0,0 @@ -""" -GStools subpackage providing tools for estimating and fitting variograms. - -.. currentmodule:: gstools.variogram.variogram - -The following functions are provided - -.. autosummary:: - vario_estimate - vario_estimate_axis -""" - -# pylint: disable=C0412 -import numpy as np - -from gstools import config -from gstools.normalizer.tools import remove_trend_norm_mean -from gstools.tools import RADIAN_SCALE -from gstools.tools.geometric import ( - ang2dir, - format_struct_pos_shape, - format_unstruct_pos_shape, - generate_grid, -) -from gstools.variogram.binning import standard_bins - -if config.USE_RUST: # pragma: no cover - # pylint: disable=E0401 - from gstools_core import variogram_directional as directional - from gstools_core import variogram_ma_structured as ma_structured - from gstools_core import variogram_structured as structured - from gstools_core import variogram_unstructured as unstructured -else: - from gstools.variogram.estimator import ( - directional, - ma_structured, - structured, - unstructured, - ) - -__all__ = [ - "vario_estimate", - "vario_estimate_axis", - "vario_estimate_unstructured", - "vario_estimate_structured", -] - - -AXIS = ["x", "y", "z"] -AXIS_DIR = {"x": 0, "y": 1, "z": 2} - - -def _set_estimator(estimator): - """Translate the verbose Python estimator identifier to single char.""" - if estimator.lower() == "matheron": - cython_estimator = "m" - elif estimator.lower() == "cressie": - cython_estimator = "c" - else: - raise ValueError(f"Unknown variogram estimator function: {estimator}") - return cython_estimator - - -def _separate_dirs_test(direction, angles_tol): - """Check if given directions are separated.""" - if direction is None or direction.shape[0] < 2: - return True - separate_dirs = True - for i in range(direction.shape[0] - 1): - for j in range(i + 1, direction.shape[0]): - s_prod = np.minimum(np.abs(np.dot(direction[i], direction[j])), 1) - separate_dirs &= np.arccos(s_prod) >= 2 * angles_tol - # gstools-core doesn't like the type `numpy.bool_` - return bool(separate_dirs) - - -def vario_estimate( - pos, - field, - bin_edges=None, - sampling_size=None, - sampling_seed=None, - estimator="matheron", - latlon=False, - direction=None, - angles=None, - angles_tol=np.pi / 8, - bandwidth=None, - no_data=np.nan, - mask=np.ma.nomask, - mesh_type="unstructured", - return_counts=False, - mean=None, - normalizer=None, - trend=None, - fit_normalizer=False, - geo_scale=RADIAN_SCALE, - **std_bins, -): - r""" - Estimates the empirical variogram. - - The algorithm calculates following equation: - - .. math:: - \gamma(r_k) = \frac{1}{2 N(r_k)} \sum_{i=1}^{N(r_k)} (z(\mathbf x_i) - - z(\mathbf x_i'))^2 \; , - - with :math:`r_k \leq \| \mathbf x_i - \mathbf x_i' \| < r_{k+1}` - being the bins. - - Or if the estimator "cressie" was chosen: - - .. math:: - \gamma(r_k) = \frac{\frac{1}{2}\left(\frac{1}{N(r_k)}\sum_{i=1}^{N(r_k)} - \left|z(\mathbf x_i) - z(\mathbf x_i')\right|^{0.5}\right)^4} - {0.457 + 0.494 / N(r_k) + 0.045 / N^2(r_k)} \; , - - with :math:`r_k \leq \| \mathbf x_i - \mathbf x_i' \| < r_{k+1}` - being the bins. - The Cressie estimator is more robust to outliers [Webster2007]_. - - By providing `direction` vector[s] or angles, a directional variogram - can be calculated. If multiple directions are given, a set of variograms - will be returned. - Directional bining is controlled by a given angle tolerance (`angles_tol`) - and an optional `bandwidth`, that truncates the width of the search band - around the given direction[s]. - - To reduce the calculation time, `sampling_size` could be passed to sample - down the number of field points. - - Parameters - ---------- - pos : :class:`list` - the position tuple, containing either the point coordinates (x, y, ...) - or the axes descriptions (for mesh_type='structured') - field : :class:`numpy.ndarray` or :class:`list` of :class:`numpy.ndarray` - The spatially distributed data. - Can also be of type :class:`numpy.ma.MaskedArray` to use masked values. - You can pass a list of fields, that will be used simultaneously. - This could be helpful, when there are multiple realizations at the - same points, with the same statistical properties. - bin_edges : :class:`numpy.ndarray`, optional - the bins on which the variogram will be calculated. - If :any:`None` are given, standard bins provided by the - :any:`standard_bins` routine will be used. Default: :any:`None` - sampling_size : :class:`int` or :any:`None`, optional - for large input data, this method can take a long - time to compute the variogram, therefore this argument specifies - the number of data points to sample randomly - Default: :any:`None` - sampling_seed : :class:`int` or :any:`None`, optional - seed for samples if sampling_size is given. - Default: :any:`None` - estimator : :class:`str`, optional - the estimator function, possible choices: - - * "matheron": the standard method of moments of Matheron - * "cressie": an estimator more robust to outliers - - Default: "matheron" - latlon : :class:`bool`, optional - Whether the data is representing 2D fields on earths surface described - by latitude and longitude. When using this, the estimator will - use great-circle distance for variogram estimation. - Note, that only an isotropic variogram can be estimated and a - ValueError will be raised, if a direction was specified. - Bin edges need to be given in radians in this case. - Default: False - direction : :class:`list` of :class:`numpy.ndarray`, optional - directions to evaluate a directional variogram. - Angular tolerance is given by `angles_tol`. - bandwidth to cut off how wide the search for point pairs should be - is given by `bandwidth`. - You can provide multiple directions at once to get one variogram - for each direction. - For a single direction you can also use the `angles` parameter, - to provide the direction by its spherical coordinates. - Default: :any:`None` - angles : :class:`numpy.ndarray`, optional - the angles of the main axis to calculate the variogram for in radians - angle definitions from ISO standard 80000-2:2009 - for 1d this parameter will have no effect at all - for 2d supply one angle which is - azimuth :math:`\varphi` (ccw from +x in xy plane) - for 3d supply two angles which are - azimuth :math:`\varphi` (ccw from +x in xy plane) - and inclination :math:`\theta` (cw from +z). - Can be used instead of direction. - Default: :any:`None` - angles_tol : class:`float`, optional - the tolerance around the variogram angle to count a point as being - within this direction from another point (the angular tolerance around - the directional vector given by angles) - Default: `np.pi/8` = 22.5° - bandwidth : class:`float`, optional - bandwidth to cut off the angular tolerance for directional variograms. - If None is given, only the `angles_tol` parameter will control the - point selection. - Default: :any:`None` - no_data : :class:`float`, optional - Value to identify missing data in the given field. - Default: `numpy.nan` - mask : :class:`numpy.ndarray` of :class:`bool`, optional - Mask to deselect data in the given field. - Default: :any:`numpy.ma.nomask` - mesh_type : :class:`str`, optional - 'structured' / 'unstructured', indicates whether the pos tuple - describes the axis or the point coordinates. - Default: `'unstructured'` - return_counts: :class:`bool`, optional - if set to true, this function will also return the number of data - points found at each lag distance as a third return value - Default: False - mean : :class:`float`, optional - mean value used to shift normalized input data. - Can also be a callable. The default is None. - normalizer : :any:`None` or :any:`Normalizer`, optional - Normalizer to be applied to the input data to gain normality. - The default is None. - trend : :any:`None` or :class:`float` or :any:`callable`, optional - A callable trend function. Should have the signature: f(x, [y, z, ...]) - If no normalizer is applied, this behaves equal to 'mean'. - The default is None. - fit_normalizer : :class:`bool`, optional - Whether to fit the data-normalizer to the given (detrended) field. - Default: False - geo_scale : :class:`float`, optional - Geographic unit scaling in case of latlon coordinates to get a - meaningful bins unit. - By default, bins are assumed to be in radians with latlon=True. - Can be set to :any:`KM_SCALE` to have bins in km or - :any:`DEGREE_SCALE` to have bins in degrees. - Default: :any:`RADIAN_SCALE` - **std_bins - Optional arguments that are forwarded to the :any:`standard_bins` routine - if no bins are given (bin_no, max_dist). - - Returns - ------- - bin_centers : (n), :class:`numpy.ndarray` - The bin centers. - gamma : (n) or (d, n), :class:`numpy.ndarray` - The estimated variogram values at bin centers. - Is stacked if multiple `directions` (d>1) are given. - counts : (n) or (d, n), :class:`numpy.ndarray`, optional - The number of point pairs found for each bin. - Is stacked if multiple `directions` (d>1) are given. - Only provided if `return_counts` is True. - normalizer : :any:`Normalizer`, optional - The fitted normalizer for the given data. - Only provided if `fit_normalizer` is True. - - Notes - ----- - Internally uses double precision and also returns doubles. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - if bin_edges is not None: - bin_edges = np.atleast_1d(np.asarray(bin_edges, dtype=np.double)) - bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0 - # allow multiple fields at same positions (ndmin=2: first axis -> field ID) - # need to convert to ma.array, since list of ma.array is not recognised - field = np.ma.array(field, ndmin=2, dtype=np.double, copy=True) - masked = np.ma.is_masked(field) or np.any(mask) - # catch special case if everything is masked - if masked and np.all(mask): - bin_centers = np.empty(0) if bin_edges is None else bin_centers - estimates = np.zeros_like(bin_centers) - if return_counts: - return bin_centers, estimates, np.zeros_like(estimates, dtype=int) - return bin_centers, estimates - if not masked: - field = field.filled() - # check mesh shape - if mesh_type != "unstructured": - pos, __, dim = format_struct_pos_shape( - pos, field.shape, check_stacked_shape=True - ) - pos = generate_grid(pos) - else: - pos, __, dim = format_unstruct_pos_shape( - pos, field.shape, check_stacked_shape=True - ) - if latlon and dim != 2: - raise ValueError("Variogram: given field needs to be 2D for lat-lon.") - # prepare the field - pnt_cnt = len(pos[0]) - field = field.reshape((-1, pnt_cnt)) - # apply mask if wanted - if masked: - # if fields have different masks, take the minimal common mask - # given mask will be applied in addition - # selected region is the inverted masked (unmasked values) - if np.size(mask) > 1: # not only np.ma.nomask - select = np.invert( - np.logical_or( - np.reshape(mask, pnt_cnt), np.all(field.mask, axis=0) - ) - ) - else: - select = np.invert(np.all(field.mask, axis=0)) - pos = pos[:, select] - field.fill_value = np.nan # use no-data val. for remaining masked vals - field = field[:, select].filled() # convert to ndarray - select = mask = None # free space - # set no_data values - if not np.isnan(no_data): - field[np.isclose(field, float(no_data))] = np.nan - # set directions - dir_no = 0 - if direction is not None and dim > 1: - direction = np.atleast_2d(np.asarray(direction, dtype=np.double)) - if len(direction.shape) > 2: - raise ValueError(f"Can't interpret directions: {direction}") - if direction.shape[1] != dim: - raise ValueError(f"Can't interpret directions: {direction}") - dir_no = direction.shape[0] - # convert given angles to direction vector - if angles is not None and direction is None and dim > 1: - direction = ang2dir(angles=angles, dtype=np.double, dim=dim) - dir_no = direction.shape[0] - # prepare directional variogram - if dir_no > 0: - if latlon: - raise ValueError("Directional variogram not allowed for lat-lon.") - norms = np.linalg.norm(direction, axis=1) - if np.any(np.isclose(norms, 0)): - raise ValueError(f"Zero length directions: {direction}") - # only unit-vectors for directions - direction = np.divide(direction, norms[:, np.newaxis]) - # negative bandwidth to turn it off - bandwidth = float(bandwidth) if bandwidth is not None else -1.0 - angles_tol = float(angles_tol) - # prepare sampled variogram - if sampling_size is not None and sampling_size < pnt_cnt: - sampled_idx = np.random.RandomState(sampling_seed).choice( - np.arange(pnt_cnt), sampling_size, replace=False - ) - field = field[:, sampled_idx] - pos = pos[:, sampled_idx] - # create bins - if bin_edges is None: - bin_edges = standard_bins( - pos, dim, latlon, geo_scale=geo_scale, **std_bins - ) - bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0 - if latlon: - # internally we always use radians - bin_edges /= geo_scale - # normalize field - norm_field_out = remove_trend_norm_mean( - *(pos, field, mean, normalizer, trend), - check_shape=False, - stacked=True, - fit_normalizer=fit_normalizer, - ) - field = norm_field_out[0] if fit_normalizer else norm_field_out - norm_out = (norm_field_out[1],) if fit_normalizer else () - # select variogram estimator - cython_estimator = _set_estimator(estimator) - # run - if dir_no == 0: - # "h"aversine or "e"uclidean distance type - distance_type = "h" if latlon else "e" - estimates, counts = unstructured( - field, - bin_edges, - pos, - estimator_type=cython_estimator, - distance_type=distance_type, - num_threads=config.NUM_THREADS, - ) - else: - estimates, counts = directional( - field, - bin_edges, - pos, - direction, - angles_tol, - bandwidth, - separate_dirs=_separate_dirs_test(direction, angles_tol), - estimator_type=cython_estimator, - num_threads=config.NUM_THREADS, - ) - if dir_no == 1: - estimates, counts = estimates[0], counts[0] - est_out = (estimates, counts) - return (bin_centers,) + est_out[: 2 if return_counts else 1] + norm_out - - -def vario_estimate_axis( - field, direction="x", estimator="matheron", no_data=np.nan -): - r"""Estimates the variogram along array axis. - - The indices of the given direction are used for the bins. - Uniform spacings along the given axis are assumed. - - The algorithm calculates following equation: - - .. math:: - \gamma(r_k) = \frac{1}{2 N(r_k)} \sum_{i=1}^{N(r_k)} (z(\mathbf x_i) - - z(\mathbf x_i'))^2 \; , - - with :math:`r_k \leq \| \mathbf x_i - \mathbf x_i' \| < r_{k+1}` - being the bins. - - Or if the estimator "cressie" was chosen: - - .. math:: - \gamma(r_k) = \frac{\frac{1}{2}\left(\frac{1}{N(r_k)}\sum_{i=1}^{N(r_k)} - \left|z(\mathbf x_i) - z(\mathbf x_i')\right|^{0.5}\right)^4} - {0.457 + 0.494 / N(r_k) + 0.045 / N^2(r_k)} \; , - - with :math:`r_k \leq \| \mathbf x_i - \mathbf x_i' \| < r_{k+1}` - being the bins. - The Cressie estimator is more robust to outliers [Webster2007]_. - - Parameters - ---------- - field : :class:`numpy.ndarray` or :class:`numpy.ma.MaskedArray` - the spatially distributed data (can be masked) - direction : :class:`str` or :class:`int` - the axis over which the variogram will be estimated (x, y, z) - or (0, 1, 2, ...) - estimator : :class:`str`, optional - the estimator function, possible choices: - - * "matheron": the standard method of moments of Matheron - * "cressie": an estimator more robust to outliers - - Default: "matheron" - - no_data : :class:`float`, optional - Value to identify missing data in the given field. - Default: `numpy.nan` - - Returns - ------- - :class:`numpy.ndarray` - the estimated variogram along the given direction. - - Warnings - -------- - It is assumed that the field is defined on an equidistant Cartesian grid. - - Notes - ----- - Internally uses double precision and also returns doubles. - - References - ---------- - .. [Webster2007] Webster, R. and Oliver, M. A. - "Geostatistics for environmental scientists.", - John Wiley & Sons. (2007) - """ - missing_mask = ( - np.isnan(field) if np.isnan(no_data) else np.isclose(field, no_data) - ) - missing = np.any(missing_mask) - masked = np.ma.is_masked(field) or missing - if masked: - field = np.ma.array(field, ndmin=1, dtype=np.double) - if missing: - field.mask = np.logical_or(field.mask, missing_mask) - mask = np.ma.getmaskarray(field) - if not config.USE_RUST: - mask = np.asarray(mask, dtype=np.int32) - else: - field = np.atleast_1d(np.asarray(field, dtype=np.double)) - missing_mask = None # free space - - axis_to_swap = AXIS_DIR[direction] if direction in AXIS else int(direction) - # desired axis first, convert to 2D array afterwards - field = field.swapaxes(0, axis_to_swap) - field = field.reshape((field.shape[0], -1)) - if masked: - mask = mask.swapaxes(0, axis_to_swap) - mask = mask.reshape((mask.shape[0], -1)) - - cython_estimator = _set_estimator(estimator) - - if masked: - return ma_structured( - field, mask, cython_estimator, num_threads=config.NUM_THREADS - ) - return structured(field, cython_estimator, num_threads=config.NUM_THREADS) - - -# for backward compatibility -vario_estimate_unstructured = vario_estimate -vario_estimate_structured = vario_estimate_axis diff --git a/src/gstools_cython/__init__.py b/src/gstools_cython/__init__.py new file mode 100644 index 000000000..e4adec986 --- /dev/null +++ b/src/gstools_cython/__init__.py @@ -0,0 +1,33 @@ +""" +Purpose +======= + +GeoStatTools is a library providing geostatistical tools +for random field generation, conditioned field generation, +kriging and variogram estimation +based on a list of provided or even user-defined covariance models. + +This package provides the Cython backend implementations for GSTools. + +Subpackages +=========== + +.. autosummary:: + :toctree: api + + field + krige + variogram +""" + +# Hooray! +from . import field, krige, variogram + +try: + from ._version import __version__ +except ModuleNotFoundError: # pragma: no cover + # package is not installed + __version__ = "unknown" + +__all__ = ["__version__"] +__all__ += ["field", "krige", "variogram"] diff --git a/src/gstools/field/summator.pyx b/src/gstools_cython/field.pyx similarity index 64% rename from src/gstools/field/summator.pyx rename to src/gstools_cython/field.pyx index 8f6c6f7f8..489a211b0 100644 --- a/src/gstools/field/summator.pyx +++ b/src/gstools_cython/field.pyx @@ -1,6 +1,17 @@ # cython: language_level=3, boundscheck=False, wraparound=False, cdivision=True """ This is the randomization method summator, implemented in cython. + +.. currentmodule:: gstools_cython.field + +Functions +^^^^^^^^^ + +.. autosummary:: + :toctree: + + summate + summate_incompr """ import numpy as np @@ -33,6 +44,27 @@ def summate( const double[:, :] pos, num_threads=None, ): + """ + Fourier summator for random field generation using the randomization method. + + Parameters + ---------- + cov_samples : double[:, :] + samples from the spectral density distribution of the covariance model + z_1 : double[:] + random samples from a normal distribution + z_2 : double[:] + random samples from a normal distribution + pos : double[:, :] + the position (d,n) tuple with d dimensions and n points. + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + summed_modes : double[:] + summed random modes + """ cdef int i, j, d cdef double phase cdef int dim = pos.shape[0] @@ -71,6 +103,27 @@ def summate_incompr( const double[:, :] pos, num_threads=None, ): + """ + Fourier summator for random vector field generation using the randomization method. + + Parameters + ---------- + cov_samples : double[:, :] + samples from the spectral density distribution of the covariance model + z_1 : double[:] + random samples from a normal distribution + z_2 : double[:] + random samples from a normal distribution + pos : double[:, :] + the position (d,n) tuple with d dimensions and n points. + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + summed_modes : double[:, :] + summed random modes + """ cdef int i, j, d cdef double phase cdef double k_2 diff --git a/src/gstools/krige/krigesum.pyx b/src/gstools_cython/krige.pyx similarity index 66% rename from src/gstools/krige/krigesum.pyx rename to src/gstools_cython/krige.pyx index 7611f4a0a..5d943e2c6 100644 --- a/src/gstools/krige/krigesum.pyx +++ b/src/gstools_cython/krige.pyx @@ -1,6 +1,17 @@ # cython: language_level=3, boundscheck=False, wraparound=False, cdivision=True """ This is a summator for the kriging routines + +.. currentmodule:: gstools_cython.krige + +Functions +^^^^^^^^^ + +.. autosummary:: + :toctree: + + calc_field_krige_and_variance + calc_field_krige """ import numpy as np @@ -31,7 +42,27 @@ def calc_field_krige_and_variance( const double[:] cond, num_threads=None, ): - + """ + Calculate kriging field and error variance. + + Parameters + ---------- + krig_mat : double[:, :] + kriging matrix + krig_vecs : double[:, :] + RHS of the kriging equation + cond : double[:] + values at the conditioning points + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + field : double[:] + kriging field + error : double[:] + kriging error variance + """ cdef int mat_i = krig_mat.shape[0] cdef int res_i = krig_vecs.shape[1] @@ -60,9 +91,27 @@ def calc_field_krige( const double[:, :] krig_mat, const double[:, :] krig_vecs, const double[:] cond, - const int num_threads=1, + num_threads=None, ): - + """ + Calculate kriging field without error variance. + + Parameters + ---------- + krig_mat : double[:, :] + kriging matrix + krig_vecs : double[:, :] + RHS of the kriging equation + cond : double[:] + values at the conditioning points + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + field : double[:] + kriging field + """ cdef int mat_i = krig_mat.shape[0] cdef int res_i = krig_vecs.shape[1] diff --git a/src/gstools/variogram/estimator.pyx b/src/gstools_cython/variogram.pyx similarity index 76% rename from src/gstools/variogram/estimator.pyx rename to src/gstools_cython/variogram.pyx index e00824be7..ff4c41d4a 100644 --- a/src/gstools/variogram/estimator.pyx +++ b/src/gstools_cython/variogram.pyx @@ -2,6 +2,19 @@ # distutils: language = c++ """ This is the variogram estimater, implemented in cython. + +.. currentmodule:: gstools_cython.variogram + +Functions +^^^^^^^^^ + +.. autosummary:: + :toctree: + + directional + unstructured + structured + ma_structured """ import numpy as np @@ -199,6 +212,43 @@ def directional( str estimator_type='m', num_threads=None, ): + """ + Directional variogram estimator. + + Parameters + ---------- + f : double[:, :] + unstructured random field + bin_edges : double[:] + edges for the variogram bins + pos : double[:, :] + the position (d,n) tuple with d dimensions and n points. + directions : double[:, :] + vectors specifying the directions + angles_tol : double, optional + angle tolerance around direction vectors in radians, default: PI/8.0 + bandwidth : double, optional + maximal distance to direction vector. + negative values used to turn of bandwidth search. Default: -1.0 + separate_dirs : bint, optional + whether the direction bands shouldn't overlap, default: False + estimator_type : str, optional + the estimator function, possible choices: + + * "m": the standard method of moments of Matheron + * "c": an estimator more robust to outliers by Cressie + + Default: "m" + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + variogram : double[:, :] + estimated variogram per direction + counts : np.int64_t[:, :] + counts of samples per bin and direciton + """ if pos.shape[1] != f.shape[1]: raise ValueError(f'len(pos) = {pos.shape[1]} != len(f) = {f.shape[1])}') @@ -260,6 +310,41 @@ def unstructured( str distance_type='e', num_threads=None, ): + """ + Omnidirectional variogram estimator. + + Parameters + ---------- + f : double[:, :] + unstructured random field + bin_edges : double[:] + edges for the variogram bins + pos : double[:, :] + the position (d,n) tuple with d dimensions and n points. + estimator_type : str, optional + the estimator function, possible choices: + + * "m": the standard method of moments of Matheron + * "c": an estimator more robust to outliers by Cressie + + Default: "m" + distance_type : str, optional + dinstance function type, possible choices: + + * "e": euclidean distance + * "h": haversine distance for lat-lon coordinates + + Default: "e" + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + variogram : double[:] + estimated variogram + counts : np.int64_t[:] + counts of samples per bin + """ cdef int dim = pos.shape[0] cdef _dist_func distance @@ -314,6 +399,28 @@ def structured( str estimator_type='m', num_threads=None, ): + """ + Variogram estimator for structured fields. + + Parameters + ---------- + f : double[:, :] + structured random field + estimator_type : str, optional + the estimator function, possible choices: + + * "m": the standard method of moments of Matheron + * "c": an estimator more robust to outliers by Cressie + + Default: "m" + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + variogram : double[:] + estimated variogram + """ cdef _estimator_func estimator_func = choose_estimator_func(estimator_type) cdef _normalization_func normalization_func = ( choose_estimator_normalization(estimator_type) @@ -346,6 +453,30 @@ def ma_structured( str estimator_type='m', num_threads=None, ): + """ + Variogram estimator for masked structured fields. + + Parameters + ---------- + f : double[:, :] + structured random field + mask : bint[:, :] + mask for the structured random field + estimator_type : str, optional + the estimator function, possible choices: + + * "m": the standard method of moments of Matheron + * "c": an estimator more robust to outliers by Cressie + + Default: "m" + num_threads : None or int, optional + number of OpenMP threads, default: None + + Returns + ------- + variogram : double[:] + estimated variogram + """ cdef _estimator_func estimator_func = choose_estimator_func(estimator_type) cdef _normalization_func normalization_func = ( choose_estimator_normalization(estimator_type) diff --git a/tests/test_condition.py b/tests/test_condition.py deleted file mode 100644 index 8d5d0535e..000000000 --- a/tests/test_condition.py +++ /dev/null @@ -1,159 +0,0 @@ -"""This is the unittest of CondSRF class.""" - -import unittest -from copy import copy - -import numpy as np - -import gstools as gs - - -class TestCondition(unittest.TestCase): - def setUp(self): - self.cov_models = [ - gs.Gaussian, - gs.Exponential, - ] - self.dims = range(1, 4) - self.data = np.array( - [ - [0.3, 1.2, 0.5, 0.47], - [1.9, 0.6, 1.0, 0.56], - [1.1, 3.2, 1.5, 0.74], - [3.3, 4.4, 2.0, 1.47], - [4.7, 3.8, 2.5, 1.74], - ] - ) - self.cond_pos = (self.data[:, 0], self.data[:, 1], self.data[:, 2]) - self.cond_val = self.data[:, 3] - self.mean = np.mean(self.cond_val) - grid = np.linspace(5, 20, 10) - self.grid_x = np.concatenate((self.cond_pos[0], grid)) - self.grid_y = np.concatenate((self.cond_pos[1], grid)) - self.grid_z = np.concatenate((self.cond_pos[2], grid)) - self.pos = (self.grid_x, self.grid_y, self.grid_z) - - def test_simple(self): - for Model in self.cov_models: - model = Model( - dim=1, var=0.5, len_scale=2, anis=[0.1, 1], angles=[0.5, 0, 0] - ) - krige = gs.krige.Simple( - model, self.cond_pos[0], self.cond_val, self.mean - ) - crf = gs.CondSRF(krige, seed=19970221) - field_1 = crf.unstructured(self.pos[0]) - field_2 = crf.structured(self.pos[0]) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual(val, field_1[i], places=2) - self.assertAlmostEqual(val, field_2[(i,)], places=2) - - for dim in self.dims[1:]: - model = Model( - dim=dim, - var=0.5, - len_scale=2, - anis=[0.1, 1], - angles=[0.5, 0, 0], - ) - krige = gs.krige.Simple( - model, self.cond_pos[:dim], self.cond_val, self.mean - ) - crf = gs.CondSRF(krige, seed=19970221) - field_1 = crf.unstructured(self.pos[:dim]) - field_2 = crf.structured(self.pos[:dim]) - # check reuse - raw_kr2 = copy(crf["raw_krige"]) - crf(seed=19970222) - self.assertTrue(np.allclose(raw_kr2, crf["raw_krige"])) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual(val, field_1[i], places=2) - self.assertAlmostEqual(val, field_2[dim * (i,)], places=2) - - def test_ordinary(self): - for Model in self.cov_models: - model = Model( - dim=1, var=0.5, len_scale=2, anis=[0.1, 1], angles=[0.5, 0, 0] - ) - krige = gs.krige.Ordinary(model, self.cond_pos[0], self.cond_val) - crf = gs.CondSRF(krige, seed=19970221) - field_1 = crf.unstructured(self.pos[0]) - field_2 = crf.structured(self.pos[0]) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual(val, field_1[i], places=2) - self.assertAlmostEqual(val, field_2[(i,)], places=2) - - for dim in self.dims[1:]: - model = Model( - dim=dim, - var=0.5, - len_scale=2, - anis=[0.1, 1], - angles=[0.5, 0, 0], - ) - krige = gs.krige.Ordinary( - model, self.cond_pos[:dim], self.cond_val - ) - crf = gs.CondSRF(krige, seed=19970221) - field_1 = crf.unstructured(self.pos[:dim]) - field_2 = crf.structured(self.pos[:dim]) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual(val, field_1[i], places=2) - self.assertAlmostEqual(val, field_2[dim * (i,)], places=2) - - def test_raise_error(self): - self.assertRaises(ValueError, gs.CondSRF, gs.Gaussian()) - krige = gs.krige.Ordinary(gs.Stable(), self.cond_pos, self.cond_val) - self.assertRaises(ValueError, gs.CondSRF, krige, generator="unknown") - - def test_nugget(self): - model = gs.Gaussian( - nugget=0.01, - var=0.5, - len_scale=2, - anis=[0.1, 1], - angles=[0.5, 0, 0], - ) - krige = gs.krige.Ordinary( - model, self.cond_pos, self.cond_val, exact=True - ) - crf = gs.CondSRF(krige, seed=19970221) - field_1 = crf.unstructured(self.pos) - field_2 = crf.structured(self.pos) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual(val, field_1[i], places=2) - self.assertAlmostEqual(val, field_2[3 * (i,)], places=2) - - def test_setter(self): - krige1 = gs.krige.Krige(gs.Exponential(), self.cond_pos, self.cond_val) - krige2 = gs.krige.Krige( - gs.Gaussian(var=2), - self.cond_pos, - self.cond_val, - mean=-1, - trend=-2, - normalizer=gs.normalizer.YeoJohnson(), - ) - crf1 = gs.CondSRF(krige1) - crf2 = gs.CondSRF(krige2, seed=19970221) - # update settings - crf1.model = gs.Gaussian(var=2) - crf1.mean = -1 - crf1.trend = -2 - # also checking correctly setting uninitialized normalizer - crf1.normalizer = gs.normalizer.YeoJohnson - # check if setting went right - self.assertTrue(crf1.model == crf2.model) - self.assertTrue(crf1.normalizer == crf2.normalizer) - self.assertAlmostEqual(crf1.mean, crf2.mean) - self.assertAlmostEqual(crf1.trend, crf2.trend) - # reset kriging - crf1.krige.set_condition() - # compare fields - field1 = crf1(self.pos, seed=19970221) - field2 = crf2(self.pos) - self.assertTrue(np.all(np.isclose(field1, field2))) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_covmodel.py b/tests/test_covmodel.py deleted file mode 100644 index a2729dd68..000000000 --- a/tests/test_covmodel.py +++ /dev/null @@ -1,424 +0,0 @@ -""" -This is the unittest of CovModel class. -""" - -import unittest - -import numpy as np - -from gstools import ( - Circular, - CovModel, - Cubic, - Exponential, - Gaussian, - HyperSpherical, - Integral, - JBessel, - Linear, - Matern, - Rational, - Spherical, - Stable, - SuperSpherical, - TPLExponential, - TPLGaussian, - TPLSimple, - TPLStable, -) -from gstools.covmodel.tools import ( - AttributeWarning, - check_arg_in_bounds, - check_bounds, -) - - -class Gau_var(CovModel): - def variogram(self, r): - h = np.abs(r) / self.len_rescaled - return self.var * (1.0 - np.exp(-(h**2))) + self.nugget - - -class Gau_cov(CovModel): - def covariance(self, r): - h = np.abs(r) / self.len_rescaled - return self.var * np.exp(-(h**2)) - - -class Gau_cor(CovModel): - def correlation(self, r): - h = np.abs(r) / self.len_rescaled - return np.exp(-(h**2)) - - -class Gau_fix(CovModel): - def cor(self, h): - return np.exp(-(h**2)) - - def fix_dim(self): - return 2 - - -class Mod_add(CovModel): - def cor(self, h): - return 1.0 - - def default_opt_arg(self): - return {"alpha": 1} - - -class TestCovModel(unittest.TestCase): - def setUp(self): - self.std_cov_models = [ - Gaussian, - Exponential, - Stable, - Rational, - Cubic, - Matern, - Linear, - Circular, - Spherical, - HyperSpherical, - SuperSpherical, - JBessel, - TPLSimple, - Integral, - ] - self.tpl_cov_models = [ - TPLGaussian, - TPLExponential, - TPLStable, - ] - self.cov_models = self.std_cov_models + self.tpl_cov_models - self.dims = range(1, 4) - self.lens = [[10, 5, 2]] - self.anis = [[0.5, 0.2]] - self.nuggets = [0, 1] - self.vars = [1, 2] - self.angles = [[1, 2, 3]] - - self.gamma_x = [1.0, 3.0, 5.0, 7.0, 9.0, 11.0] - self.gamma_y = [0.2, 0.5, 0.6, 0.8, 0.8, 0.9] - - def test_creation(self): - with self.assertRaises(TypeError): - CovModel() - - class User(CovModel): - def cor(self, h): - return np.exp(-(h**2)) - - user = User(len_scale=2) - self.assertAlmostEqual(user.correlation(1), np.exp(-0.25)) - - for Model in self.cov_models: - for dim in self.dims: - for angles in self.angles: - for nugget in self.nuggets: - for len_scale, anis in zip(self.lens, self.anis): - model = Model( - dim=dim, len_scale=len_scale, angles=angles - ) - model1 = Model( - dim=dim, len_scale=10, anis=anis, angles=angles - ) - self.assertTrue(model == model1) - self.assertAlmostEqual( - model.variogram(1), - model.var + model.nugget - model.covariance(1), - ) - self.assertAlmostEqual( - model.covariance(1), - model.var * model.correlation(1), - ) - self.assertAlmostEqual( - model.covariance(1), - model.var * model.correlation(1), - ) - self.assertAlmostEqual( - model.vario_spatial(([1], [2], [3])[:dim])[0], - model.var - + model.nugget - - model.cov_spatial(([1], [2], [3])[:dim])[0], - ) - self.assertAlmostEqual( - model.cor_spatial(([1], [2], [3])[:dim])[0], - model.cov_spatial(([1], [2], [3])[:dim])[0] - / model.var, - ) - for d in range(dim): - self.assertAlmostEqual( - model.vario_axis(1, axis=d), - model.var - + model.nugget - - model.cov_axis(1, axis=d), - ) - self.assertAlmostEqual( - model.cor_axis(1, axis=d), - model.cov_axis(1, axis=d) / model.var, - ) - self.assertAlmostEqual( - model.cov_nugget(0), model.sill - ) - self.assertAlmostEqual(model.vario_nugget(0), 0.0) - self.assertAlmostEqual( - model.cov_nugget(1), model.covariance(1) - ) - self.assertAlmostEqual(model.vario_nugget(0), 0.0) - self.assertAlmostEqual( - model.vario_nugget(1), model.variogram(1) - ) - # check if callable - model.vario_spatial((1, 2, 3)[:dim]) - model.spectral_density([0, 1]) - model.spectrum([0, 1]) - model.spectral_rad_pdf([0, 1]) - model.ln_spectral_rad_pdf([0, 1]) - model.integral_scale_vec - model.percentile_scale(0.9) - if model.has_cdf: - model.spectral_rad_cdf([0, 1]) - if model.has_ppf: - model.spectral_rad_ppf([0.0, 0.99]) - model.pykrige_kwargs - # check arg bound setting - model.set_arg_bounds( - var=[2, np.inf], nugget=[1, 2] - ) - self.assertAlmostEqual(model.var, 3) - self.assertAlmostEqual(model.nugget, 1.5) - - def test_tpl_models(self): - for Model in self.tpl_cov_models: - for dim in self.dims: - model = Model(dim=dim, len_scale=9, len_low=1, rescale=2) - self.assertAlmostEqual(model.len_up_rescaled, 5) - model.len_low = 0.0 - self.assertAlmostEqual(model.cor(2), model.correlation(9)) - # also check resetting of var when sill is given lower - model.fit_variogram( - self.gamma_x, self.gamma_y, sill=1.1, nugget=False - ) - self.assertAlmostEqual(model.var, 1.1, delta=1e-5) - # check var_raw handling - model = Model(var_raw=1, len_low=0, integral_scale=10) - var_save = model.var - model.var_raw = 1.1 - self.assertAlmostEqual(model.var, var_save * 1.1) - self.assertAlmostEqual(model.integral_scale, 10) - # integral scale is not setable when len_low is not 0 - with self.assertRaises(ValueError): - Model(var_raw=1, len_low=5, integral_scale=10) - - def test_fitting(self): - for Model in self.std_cov_models: - for dim in self.dims: - model = Model(dim=dim) - model.fit_variogram(self.gamma_x, self.gamma_y, nugget=False) - self.assertAlmostEqual(model.nugget, 0.0) - model = Model(dim=dim) - # also check resetting of var when sill is given lower - model.fit_variogram(self.gamma_x, self.gamma_y, sill=0.9) - self.assertAlmostEqual(model.nugget + model.var, 0.9) - model = Model(dim=dim) - # more detailed checks - model.fit_variogram( - self.gamma_x, self.gamma_y, sill=2, nugget=False - ) - self.assertAlmostEqual(model.var, 2.0) - model = Model(dim=dim) - model.fit_variogram( - self.gamma_x, self.gamma_y, sill=2, nugget=1 - ) - self.assertAlmostEqual(model.var, 1) - model = Model(dim=dim) - ret = model.fit_variogram( - self.gamma_x, - self.gamma_y, - loss="linear", - return_r2=True, - weights="inv", - init_guess="current", - ) - self.assertEqual(len(ret), 3) - - # treatment of sill/var/nugget by fitting - model = Stable() - model.fit_variogram( - self.gamma_x, self.gamma_y, nugget=False, var=False, sill=2 - ) - self.assertAlmostEqual(model.var, 1) - self.assertAlmostEqual(model.nugget, 1) - model.fit_variogram(self.gamma_x, self.gamma_y, var=2, sill=3) - self.assertAlmostEqual(model.var, 2) - self.assertAlmostEqual(model.nugget, 1) - model.var = 3 - model.fit_variogram( - self.gamma_x, self.gamma_y, nugget=False, var=False, sill=2 - ) - self.assertAlmostEqual(model.var, 2) - self.assertAlmostEqual(model.nugget, 0) - model.fit_variogram(self.gamma_x, self.gamma_y, weights="inv") - len_save = model.len_scale - model.fit_variogram( - self.gamma_x, self.gamma_y, weights=lambda x: 1 / (1 + x) - ) - self.assertAlmostEqual(model.len_scale, len_save, places=6) - # check ValueErrors - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, self.gamma_y, sill=2, var=3) - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, self.gamma_y, sill=2, nugget=3) - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, self.gamma_y, method="wrong") - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, self.gamma_y, wrong=False) - model.var_bounds = [0, 1] - model.nugget_bounds = [0, 1] - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, self.gamma_y, sill=3) - # init guess - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, self.gamma_y, init_guess="wrong") - with self.assertRaises(ValueError): - model.fit_variogram( - self.gamma_x, self.gamma_y, init_guess={"wrong": 1} - ) - # sill fixing - model.var_bounds = [0, np.inf] - model.fit_variogram( - self.gamma_x, np.array(self.gamma_y) + 1, sill=2, alpha=False - ) - self.assertAlmostEqual(model.var + model.nugget, 2) - # check isotropicity for latlon models - model = Stable(latlon=True) - with self.assertRaises(ValueError): - model.fit_variogram(self.gamma_x, 3 * [self.gamma_y]) - - def test_covmodel_class(self): - model_std = Gaussian(rescale=3, var=1.1, nugget=1.2, len_scale=1.3) - model_var = Gau_var(rescale=3, var=1.1, nugget=1.2, len_scale=1.3) - model_cov = Gau_cov(rescale=3, var=1.1, nugget=1.2, len_scale=1.3) - model_cor = Gau_cor(rescale=3, var=1.1, nugget=1.2, len_scale=1.3) - var = model_std.variogram(2.5) - cov = model_std.covariance(2.5) - corr = model_std.correlation(2.5) - cor = model_std.cor(2.5) - - self.assertFalse(check_bounds(bounds=[0])) - self.assertFalse(check_bounds(bounds=[1, -1])) - self.assertFalse(check_bounds(bounds=[0, 1, 2, 3])) - self.assertFalse(check_bounds(bounds=[0, 1, "kk"])) - self.assertRaises(ValueError, model_std.set_arg_bounds, wrong_arg=[1]) - self.assertRaises( - ValueError, model_std.set_arg_bounds, wrong_arg=[-1, 1] - ) - - # checking some properties - model_par = Stable() - self.assertFalse(model_par.do_rotation) - self.assertEqual(len(model_par.arg), len(model_par.arg_list)) - self.assertEqual(len(model_par.iso_arg), len(model_par.iso_arg_list)) - self.assertEqual(len(model_par.arg), len(model_par.iso_arg) + 2) - self.assertEqual(len(model_par.len_scale_vec), model_par.dim) - self.assertFalse(Gaussian() == Stable()) - model_par.hankel_kw = {"N": 300} - self.assertEqual(model_par.hankel_kw["N"], 300) - - # arg in bounds check - model_std.set_arg_bounds(var=[0.5, 1.5]) - with self.assertRaises(ValueError): - model_std.var = 0.4 - with self.assertRaises(ValueError): - model_std.var = 1.6 - model_std.set_arg_bounds(var=[0.5, 1.5, "oo"]) - with self.assertRaises(ValueError): - model_std.var = 0.5 - with self.assertRaises(ValueError): - model_std.var = 1.5 - with self.assertRaises(ValueError): - model_std.var_bounds = [1, -1] - with self.assertRaises(ValueError): - model_std.len_scale_bounds = [1, -1] - with self.assertRaises(ValueError): - model_std.nugget_bounds = [1, -1] - with self.assertRaises(ValueError): - model_std.anis_bounds = [1, -1] - # reset the standard model - model_std = Gaussian(rescale=3, var=1.1, nugget=1.2, len_scale=1.3) - # std value from bounds with neg. inf and finit bound - model_add = Mod_add() - model_add.set_arg_bounds(alpha=[-np.inf, 0]) - self.assertAlmostEqual(model_add.alpha, -1) - # special treatment of anis check - model_std.set_arg_bounds(anis=[2, 4, "oo"]) - self.assertTrue(np.all(np.isclose(model_std.anis, 3))) - # dim specific checks - with self.assertWarns(AttributeWarning): - Gau_fix(dim=1) - self.assertRaises(ValueError, Gaussian, dim=0) - self.assertRaises(ValueError, Gau_fix, latlon=True) - # check inputs - self.assertRaises(ValueError, model_std.percentile_scale, per=-1.0) - self.assertRaises(ValueError, Gaussian, anis=-1.0) - self.assertRaises(ValueError, Gaussian, len_scale=[1, -1]) - self.assertRaises(ValueError, check_arg_in_bounds, model_std, "wrong") - self.assertWarns(AttributeWarning, Gaussian, wrong_arg=1.0) - with self.assertWarns(AttributeWarning): - self.assertRaises(ValueError, Gaussian, len_rescaled=1.0) - - # check correct subclassing - with self.assertRaises(TypeError): - - class Gau_err(CovModel): - pass - - self.assertAlmostEqual(var, model_var.variogram(2.5)) - self.assertAlmostEqual(var, model_cov.variogram(2.5)) - self.assertAlmostEqual(var, model_cor.variogram(2.5)) - self.assertAlmostEqual(cov, model_var.covariance(2.5)) - self.assertAlmostEqual(cov, model_cov.covariance(2.5)) - self.assertAlmostEqual(cov, model_cor.covariance(2.5)) - self.assertAlmostEqual(corr, model_var.correlation(2.5)) - self.assertAlmostEqual(corr, model_cov.correlation(2.5)) - self.assertAlmostEqual(corr, model_cor.correlation(2.5)) - self.assertAlmostEqual(cor, model_var.cor(2.5)) - self.assertAlmostEqual(cor, model_cov.cor(2.5)) - self.assertAlmostEqual(cor, model_cor.cor(2.5)) - - def test_rescale(self): - model1 = Exponential() - model2 = Exponential(rescale=2.1) - model3 = Exponential(rescale=2.1, len_scale=2.1) - - self.assertAlmostEqual( - model1.integral_scale, 2.1 * model2.integral_scale - ) - self.assertAlmostEqual(model1.integral_scale, model3.integral_scale) - - def test_special_models(self): - # Matern and Integral converge to gaussian - model0 = Integral(rescale=0.5) - model0.set_arg_bounds(nu=[0, 1001]) - model0.nu = 1000 - model1 = Matern() - model1.set_arg_bounds(nu=[0, 101]) - model1.nu = 100 - model2 = Gaussian(rescale=0.5) - self.assertAlmostEqual(model0.variogram(1), model2.variogram(1), 2) - self.assertAlmostEqual(model0.spectrum(1), model2.spectrum(1), 2) - self.assertAlmostEqual(model1.variogram(1), model2.variogram(1)) - self.assertAlmostEqual(model1.spectrum(1), model2.spectrum(1), 2) - # stable model gets unstable for alpha < 0.3 - with self.assertWarns(AttributeWarning): - Stable(alpha=0.2) - with self.assertWarns(AttributeWarning): - TPLStable(alpha=0.2) - # corner case for JBessel model - with self.assertWarns(AttributeWarning): - JBessel(dim=3, nu=0.5) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_export.py b/tests/test_export.py deleted file mode 100644 index b32898f45..000000000 --- a/tests/test_export.py +++ /dev/null @@ -1,64 +0,0 @@ -"""Test the PyVista/VTK export methods""" - -import os -import shutil -import tempfile -import unittest - -import numpy as np - -from gstools import SRF, Exponential, Gaussian -from gstools.random import MasterRNG - -HAS_PYVISTA = False -try: - import pyvista as pv - - HAS_PYVISTA = True -except ImportError: - pass - - -class TestExport(unittest.TestCase): - def setUp(self): - self.test_dir = tempfile.mkdtemp() - # structured field with a size 100x100x100 and a grid-size of 1x1x1 - x = y = z = range(50) - model = Gaussian(dim=3, var=0.6, len_scale=20) - self.srf_structured = SRF(model) - self.srf_structured((x, y, z), mesh_type="structured") - # unstrucutred field - seed = MasterRNG(19970221) - rng = np.random.RandomState(seed()) - x = rng.randint(0, 100, size=1000) - y = rng.randint(0, 100, size=1000) - model = Exponential( - dim=2, var=1, len_scale=[12.0, 3.0], angles=np.pi / 8.0 - ) - self.srf_unstructured = SRF(model, seed=20170519) - self.srf_unstructured([x, y]) - - def tearDown(self): - # Remove the test data directory after the test - shutil.rmtree(self.test_dir) - - @unittest.skipIf(not HAS_PYVISTA, "PyVista is not installed.") - def test_pyvista(self): - mesh = self.srf_structured.to_pyvista() - self.assertIsInstance(mesh, pv.RectilinearGrid) - mesh = self.srf_unstructured.to_pyvista() - self.assertIsInstance(mesh, pv.UnstructuredGrid) - - def test_pyevtk_export(self): - # Structured - sfilename = os.path.join(self.test_dir, "structured") - self.srf_structured.vtk_export(sfilename) - self.assertTrue(os.path.isfile(sfilename + ".vtr")) - # Unstructured - ufilename = os.path.join(self.test_dir, "unstructured") - self.srf_unstructured.vtk_export(ufilename) - self.assertTrue(os.path.isfile(ufilename + ".vtu")) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_field.py b/tests/test_field.py index cdb0365d6..bf18db113 100644 --- a/tests/test_field.py +++ b/tests/test_field.py @@ -7,114 +7,169 @@ import numpy as np -import gstools as gs +import gstools_cython as gs_cy class TestField(unittest.TestCase): - def setUp(self): - self.cov_model = gs.Gaussian(dim=2, var=1.5, len_scale=4.0) - rng = np.random.RandomState(123018) - x = rng.uniform(0.0, 10, 100) - y = rng.uniform(0.0, 10, 100) - self.field = rng.uniform(0.0, 10, 100) - self.pos = np.array([x, y]) + def test_summate(self): + # x = np.linspace(0,1,5) + # mod = gs.Gaussian(dim=1) + # srf = gs.SRF(mod, mode_no=10, seed=1234) + # srf(x) + cov_samples = np.array( + [ + [ + -0.49995807783373075, + -0.7820163721559825, + 1.690118803237597, + 1.9756208177659687, + 0.03945771863093044, + 2.127277879098216, + -1.4576342168089562, + 0.5947643837384975, + 0.09811641644885175, + -0.003565139481429214, + ] + ], + dtype=np.double, + ) + z_1 = np.array( + [ + 0.9946988048718556, + 1.814210031079757, + 1.1686180785678166, + -0.374250826058506, + 1.208282071166948, + 1.044190549877576, + -1.7850832797400267, + 1.1341225325719555, + 0.005871108068883179, + 0.4918288313002647, + ], + dtype=np.double, + ) + z_2 = np.array( + [ + 0.38320431788616655, + -0.6158908046660203, + -1.5221152986631148, + 0.4213284409858781, + -1.2858750366939806, + -0.1286138436420879, + -0.031244435678407644, + 0.16914501403169677, + -0.04578215996092473, + -0.48668407941054204, + ], + dtype=np.double, + ) + pos = np.array([[0.0, 0.25, 0.5, 0.75, 1.0]], dtype=np.double) + summed_modes = np.array( + [5.7024879, 5.16758284, 4.46056939, 3.73413573, 3.14911511], dtype=np.double + ) + summed = gs_cy.field.summate(cov_samples, z_1, z_2, pos) + np.testing.assert_allclose(summed_modes, summed) - def test_standalone(self): - fld = gs.field.Field(dim=2) - fld_cov = gs.field.Field(model=self.cov_model) - field1 = fld(self.pos, self.field) - field2 = fld_cov(self.pos, self.field) - self.assertTrue(np.all(np.isclose(field1, field2))) - self.assertTrue(np.all(np.isclose(field1, self.field))) - - def test_raise(self): - # vector field on latlon - fld = gs.field.Field(gs.Gaussian(latlon=True), value_type="vector") - self.assertRaises(ValueError, fld, [1, 2], [1, 2]) - # no pos tuple present - fld = gs.field.Field(dim=2) - self.assertRaises(ValueError, fld.post_field, [1, 2]) - # wrong model type - with self.assertRaises(ValueError): - gs.field.Field(model=3.1415) - # no model and no dim given - with self.assertRaises(ValueError): - gs.field.Field() - # wrong value type - with self.assertRaises(ValueError): - gs.field.Field(dim=2, value_type="complex") - # wrong mean shape - with self.assertRaises(ValueError): - gs.field.Field(dim=3, mean=[1, 2]) - - def test_pos_compare(self): - fld = gs.field.Field(dim=1) - fld.set_pos([1, 2]) - fld._dim = 2 - info = fld.set_pos([[1], [2]], info=True) - self.assertTrue(info["deleted"]) - info = fld.set_pos([[2], [3]], info=True) - self.assertTrue(info["deleted"]) - - def test_magic(self): - fld = gs.field.Field(dim=1) - f1 = np.array([0, 0], dtype=np.double) - f2 = np.array([2, 3], dtype=np.double) - fld([1, 2], store="f1") # default field with zeros - fld([1, 2], f2, store="f2") - fields1 = fld[:] - fields2 = fld[[0, 1]] - fields3 = fld[["f1", "f2"]] - fields4 = fld.all_fields - self.assertTrue(np.allclose([f1, f2], fields1)) - self.assertTrue(np.allclose([f1, f2], fields2)) - self.assertTrue(np.allclose([f1, f2], fields3)) - self.assertTrue(np.allclose([f1, f2], fields4)) - self.assertEqual(len(fld), 2) - self.assertTrue("f1" in fld) - self.assertTrue("f2" in fld) - self.assertFalse("f3" in fld) - # subscription - with self.assertRaises(KeyError): - fld["f3"] - with self.assertRaises(KeyError): - del fld["f3"] - with self.assertRaises(KeyError): - del fld[["f3"]] - del fld["f1"] - self.assertFalse("f1" in fld) - fld([1, 2], f1, store="f1") - del fld[-1] - self.assertFalse("f1" in fld) - fld([1, 2], f1, store="f1") - del fld[:] - self.assertEqual(len(fld), 0) - fld([1, 2], f1, store="f1") - del fld.field_names - self.assertEqual(len(fld), 0) - # store config (missing check) - name, save = fld.get_store_config(store="fld", fld_cnt=1) - self.assertEqual(name, ["fld"]) - self.assertTrue(save[0]) - - def test_reuse(self): - fld = gs.field.Field(dim=1) - # no pos tuple - with self.assertRaises(ValueError): - fld() - # no field shape - with self.assertRaises(ValueError): - fld.post_field([1, 2]) - # bad name - fld.set_pos([1, 2]) - with self.assertRaises(ValueError): - fld.post_field([1, 2], process=False, name=0) - # incompatible reuse - with self.assertRaises(ValueError): - fld.structured() - fld.set_pos([1, 2], "structured") - with self.assertRaises(ValueError): - fld.unstructured() + def test_summate_incompr(self): + # x = y = np.linspace(0,1,3) + # mod = gs.Gaussian(dim=2) + # srf = gs.SRF(mod, generator="VectorField", mode_no=10, seed=1234) + # srf.structured((x, y)) + cov_samples = np.array( + [ + [ + -1.024970238789004, + -0.8240580540129643, + 2.2180425521549676, + -0.3936617167321944, + 0.27486363934743613, + 2.0706439558766294, + 0.14405381961860603, + -0.13186433446921356, + -0.39813741816987425, + -0.009242543307168134, + ], + [ + -0.3396282286113363, + -1.1400706088519987, + -0.7152472598352912, + -2.5770200983873353, + 0.06603124248012006, + 1.8138240750039616, + -2.097665482523384, + -1.1869215683139556, + -0.2095286706436547, + 0.08398183470003417, + ], + ], + dtype=np.double, + ) + z_1 = np.array( + [ + 0.9946988048718556, + 1.814210031079757, + 1.1686180785678166, + -0.374250826058506, + 1.208282071166948, + 1.044190549877576, + -1.7850832797400267, + 1.1341225325719555, + 0.005871108068883179, + 0.4918288313002647, + ], + dtype=np.double, + ) + z_2 = np.array( + [ + 0.38320431788616655, + -0.6158908046660203, + -1.5221152986631148, + 0.4213284409858781, + -1.2858750366939806, + -0.1286138436420879, + -0.031244435678407644, + 0.16914501403169677, + -0.04578215996092473, + -0.48668407941054204, + ], + dtype=np.double, + ) + pos = np.array( + [ + [0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0], + [0.0, 0.5, 1.0, 0.0, 0.5, 1.0, 0.0, 0.5, 1.0], + ], + dtype=np.double, + ) + summed_modes = np.array( + [ + [ + 1.38449093, + 1.71111119, + 2.74104654, + 0.86548576, + 0.71454466, + 1.75446747, + 0.04791079, + -0.21360334, + 1.06275366, + ], + [ + -1.74849962, + -1.24325646, + -0.32330441, + -1.9262243, + -0.95014749, + 0.07508429, + -1.41925949, + -0.67520382, + -0.10531391, + ], + ], + dtype=np.double, + ) + summed = gs_cy.field.summate_incompr(cov_samples, z_1, z_2, pos) + np.testing.assert_allclose(summed_modes, summed) if __name__ == "__main__": diff --git a/tests/test_incomprrandmeth.py b/tests/test_incomprrandmeth.py deleted file mode 100644 index 9156b1b17..000000000 --- a/tests/test_incomprrandmeth.py +++ /dev/null @@ -1,63 +0,0 @@ -""" -This is the unittest of the RandMeth class. -""" - -import copy -import unittest - -import numpy as np - -import gstools as gs -from gstools.field.generator import IncomprRandMeth - - -class TestIncomprRandMeth(unittest.TestCase): - def setUp(self): - self.cov_model_2d = gs.Gaussian(dim=2, var=1.5, len_scale=2.5) - self.cov_model_3d = copy.deepcopy(self.cov_model_2d) - self.cov_model_3d.dim = 3 - self.seed = 19031977 - self.x_grid = np.linspace(0.0, 10.0, 9) - self.y_grid = np.linspace(-5.0, 5.0, 16) - self.z_grid = np.linspace(-6.0, 7.0, 8) - self.x_tuple = np.linspace(0.0, 10.0, 10) - self.y_tuple = np.linspace(-5.0, 5.0, 10) - self.z_tuple = np.linspace(-6.0, 8.0, 10) - - self.rm_2d = IncomprRandMeth( - self.cov_model_2d, mode_no=100, seed=self.seed - ) - self.rm_3d = IncomprRandMeth( - self.cov_model_3d, mode_no=100, seed=self.seed - ) - - def test_unstruct_2d(self): - modes = self.rm_2d((self.x_tuple, self.y_tuple)) - self.assertAlmostEqual(modes[0, 0], 0.50751115) - self.assertAlmostEqual(modes[0, 1], 1.03291018) - self.assertAlmostEqual(modes[1, 1], -0.22003005) - - def test_unstruct_3d(self): - modes = self.rm_3d((self.x_tuple, self.y_tuple, self.z_tuple)) - self.assertAlmostEqual(modes[0, 0], 0.7924546333550331) - self.assertAlmostEqual(modes[0, 1], 1.660747056686244) - self.assertAlmostEqual(modes[1, 0], -0.28049855754819514) - - def test_assertions(self): - cov_model_1d = gs.Gaussian(dim=1, var=1.5, len_scale=2.5) - self.assertRaises(ValueError, IncomprRandMeth, cov_model_1d) - - def test_vector_mean(self): - srf = gs.SRF( - self.cov_model_2d, - mean=(0.5, 0), - generator="VectorField", - seed=198412031, - ) - srf.structured((self.x_grid, self.y_grid)) - self.assertAlmostEqual(np.mean(srf.field[0]), 1.3025621393180298) - self.assertAlmostEqual(np.mean(srf.field[1]), -0.04729596839446052) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_krige.py b/tests/test_krige.py index d702b0eef..e07fde3ad 100644 --- a/tests/test_krige.py +++ b/tests/test_krige.py @@ -6,285 +6,48 @@ import numpy as np -import gstools as gs - - -def trend(*xyz): - return xyz[0] - - -def mean_func(*xyz): - return 2 * xyz[0] +import gstools_cython as gs_cy class TestKrige(unittest.TestCase): def setUp(self): - self.cov_models = [gs.Gaussian, gs.Exponential, gs.Spherical] - self.dims = range(1, 4) - self.data = np.array( + # cond_pos = [0.3, 1.9, 1.1] + # cond_val = [0.47, 0.56, 0.74] + # x = [0.5, 1.5] + # model = Gaussian(dim=1, var=0.5, len_scale=2) + # krig = krige.Simple(model, mean=1, cond_pos=cond_pos, cond_val=cond_val) + # field, error = krig(x) + self.krig_mat = np.array( [ - [0.3, 1.2, 0.5, 0.47], - [1.9, 0.6, 1.0, 0.56], - [1.1, 3.2, 1.5, 0.74], - [3.3, 4.4, 2.0, 1.47], - [4.7, 3.8, 2.5, 1.74], - ] + [22.779309008408386, 17.71701030060681, -35.714164777816634], + [17.717010300606795, 22.779309008408426, -35.714164777816656], + [-35.71416477781662, -35.71416477781667, 64.9934565679449], + ], + dtype=np.double, ) - # redundant data for pseudo-inverse - self.p_data = np.zeros((3, 3)) - self.p_vals = np.array([1.0, 2.0, 6.0]) - self.p_meth = [1, 2, 3] # method selector - # indices for the date in the grid - self.data_idx = tuple(np.array(self.data[:, :3] * 10, dtype=int).T) - # x, y, z componentes for the conditon position - self.cond_pos = (self.data[:, 0], self.data[:, 1], self.data[:, 2]) - # condition values - self.cond_val = self.data[:, 3] - self.cond_err = np.array([0.01, 0.0, 0.1, 0.05, 0]) - # the arithmetic mean of the conditions - self.mean = np.mean(self.cond_val) - # the grid - self.x = np.linspace(0, 5, 51) - self.y = np.linspace(0, 6, 61) - self.z = np.linspace(0, 7, 71) - self.pos = (self.x, self.y, self.z) - self.grids = [self.x] - self.grids.append(np.meshgrid(self.x, self.y, indexing="ij")) - self.grids.append(np.meshgrid(self.x, self.y, self.z, indexing="ij")) - self.grid_shape = [51, 61, 71] - - def test_simple(self): - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=2, - len_scale=2, - anis=[0.9, 0.8], - angles=[2, 1, 0.5], - ) - simple = gs.krige.Simple( - model, self.cond_pos[:dim], self.cond_val, self.mean - ) - field_1, __ = simple.unstructured(self.grids[dim - 1]) - field_1 = field_1.reshape(self.grid_shape[:dim]) - field_2, __ = simple.structured(self.pos[:dim]) - self.assertAlmostEqual( - np.max(np.abs(field_1 - field_2)), 0.0, places=2 - ) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual( - field_1[self.data_idx[:dim]][i], val, places=2 - ) - - def test_ordinary(self): - for trend_func in [None, trend]: - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=5, - len_scale=10, - anis=[0.9, 0.8], - angles=[2, 1, 0.5], - ) - ordinary = gs.krige.Ordinary( - model, - self.cond_pos[:dim], - self.cond_val, - trend=trend_func, - ) - field_1, __ = ordinary.unstructured(self.grids[dim - 1]) - field_1 = field_1.reshape(self.grid_shape[:dim]) - field_2, __ = ordinary.structured(self.pos[:dim]) - self.assertAlmostEqual( - np.max(np.abs(field_1 - field_2)), 0.0, places=2 - ) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual( - field_1[self.data_idx[:dim]][i], val, places=2 - ) - - def test_universal(self): - # "quad" -> to few conditional points - for drift in ["linear", 0, 1, trend]: - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=2, - len_scale=10, - anis=[0.9, 0.8], - angles=[2, 1, 0.5], - ) - universal = gs.krige.Universal( - model, self.cond_pos[:dim], self.cond_val, drift - ) - field_1, __ = universal.unstructured(self.grids[dim - 1]) - field_1 = field_1.reshape(self.grid_shape[:dim]) - field_2, __ = universal.structured(self.pos[:dim]) - self.assertAlmostEqual( - np.max(np.abs(field_1 - field_2)), 0.0, places=2 - ) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual( - field_2[self.data_idx[:dim]][i], val, places=2 - ) - - def test_detrended(self): - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=2, - len_scale=10, - anis=[0.5, 0.2], - angles=[0.4, 0.2, 0.1], - ) - detrended = gs.krige.Detrended( - model, self.cond_pos[:dim], self.cond_val, trend - ) - field_1, __ = detrended.unstructured(self.grids[dim - 1]) - field_1 = field_1.reshape(self.grid_shape[:dim]) - field_2, __ = detrended.structured(self.pos[:dim]) - # detrended.plot() - self.assertAlmostEqual( - np.max(np.abs(field_1 - field_2)), 0.0, places=2 - ) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual( - field_2[self.data_idx[:dim]][i], val, places=2 - ) - - def test_extdrift(self): - ext_drift = [] - cond_drift = [] - for i, grid in enumerate(self.grids): - dim = i + 1 - model = gs.Exponential( - dim=dim, - var=2, - len_scale=10, - anis=[0.9, 0.8], - angles=[2, 1, 0.5], - ) - srf = gs.SRF(model) - field = srf(grid) - ext_drift.append(field) - field = field.reshape(self.grid_shape[:dim]) - cond_drift.append(field[self.data_idx[:dim]]) - - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=2, - len_scale=10, - anis=[0.5, 0.2], - angles=[0.4, 0.2, 0.1], - ) - extdrift = gs.krige.ExtDrift( - model, - self.cond_pos[:dim], - self.cond_val, - cond_drift[dim - 1], - ) - field_1, __ = extdrift.unstructured( - self.grids[dim - 1], ext_drift=ext_drift[dim - 1] - ) - field_1 = field_1.reshape(self.grid_shape[:dim]) - field_2, __ = extdrift.structured( - self.pos[:dim], ext_drift=ext_drift[dim - 1] - ) - # extdrift.plot() - self.assertAlmostEqual( - np.max(np.abs(field_1 - field_2)), 0.0, places=2 - ) - for i, val in enumerate(self.cond_val): - self.assertAlmostEqual( - field_2[self.data_idx[:dim]][i], val, places=2 - ) - - def test_pseudo(self): - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=2, - len_scale=10, - anis=[0.5, 0.2], - angles=[0.4, 0.2, 0.1], - ) - for meth in self.p_meth: - krig = gs.krige.Krige( - model, self.p_data[:dim], self.p_vals, unbiased=False - ) - field, __ = krig([0, 0, 0][:dim]) - # with the pseudo-inverse, the estimated value - # should be the mean of the 3 redundant input values - self.assertAlmostEqual( - field[0], np.mean(self.p_vals), places=2 - ) - - def test_error(self): - for Model in self.cov_models: - for dim in self.dims: - model = Model( - dim=dim, - var=5, - len_scale=10, - nugget=0.1, - anis=[0.9, 0.8], - angles=[2, 1, 0.5], - ) - ordinary = gs.krige.Ordinary( - model, - self.cond_pos[:dim], - self.cond_val, - exact=False, - cond_err=self.cond_err, - ) - field, err = ordinary(self.cond_pos[:dim]) - # when the given measurement error is 0, the kriging-var - # should equal the nugget of the model - self.assertAlmostEqual(err[1], model.nugget, places=2) - self.assertAlmostEqual(err[4], model.nugget, places=2) + self.krig_vecs = np.array( + [ + [0.49608839014628076, 0.37685660597823356], + [0.34027802306393057, 0.4845362131524053], + [0.4658772855496882, 0.4845362131524053], + ], + dtype=np.double, + ) + self.cond = np.array([-0.53, -0.43999999999999995, -0.26], dtype=np.double) - def test_raise(self): - # no cond_pos/cond_val given - self.assertRaises(ValueError, gs.krige.Krige, gs.Stable(), None, None) + self.field_ref = np.array([-0.42936306, -0.29739613], dtype=np.double) + self.error_ref = np.array([0.49987232, 0.49982352], dtype=np.double) - def test_krige_mean(self): - # check for constant mean (simple kriging) - krige = gs.krige.Simple(gs.Gaussian(), self.cond_pos, self.cond_val) - mean_f = krige.structured(self.pos, only_mean=True) - self.assertTrue(np.all(np.isclose(mean_f, 0))) - krige = gs.krige.Simple( - gs.Gaussian(), - self.cond_pos, - self.cond_val, - mean=mean_func, - normalizer=gs.normalizer.YeoJohnson, - trend=trend, + def test_calc_field_krige_and_variance(self): + field, error = gs_cy.krige.calc_field_krige_and_variance( + self.krig_mat, self.krig_vecs, self.cond ) - # check applying mean, norm, trend - mean_f1 = krige.structured(self.pos, only_mean=True) - mean_f2 = gs.normalizer.tools.apply_mean_norm_trend( - self.pos, - np.zeros(tuple(map(len, self.pos))), - mean=mean_func, - normalizer=gs.normalizer.YeoJohnson, - trend=trend, - mesh_type="structured", - ) - self.assertTrue(np.all(np.isclose(mean_f1, mean_f2))) - krige = gs.krige.Simple(gs.Gaussian(), self.cond_pos, self.cond_val) - mean_f = krige.structured(self.pos, only_mean=True) - self.assertTrue(np.all(np.isclose(mean_f, 0))) - # check for constant mean (ordinary kriging) - krige = gs.krige.Ordinary(gs.Gaussian(), self.cond_pos, self.cond_val) - mean_f = krige.structured(self.pos, only_mean=True) - self.assertTrue(np.all(np.isclose(mean_f, krige.get_mean()))) + np.testing.assert_allclose(field, self.field_ref) + np.testing.assert_allclose(error, self.error_ref) + + def test_calc_field_krige(self): + field = gs_cy.krige.calc_field_krige(self.krig_mat, self.krig_vecs, self.cond) + np.testing.assert_allclose(field, self.field_ref) if __name__ == "__main__": diff --git a/tests/test_latlon.py b/tests/test_latlon.py deleted file mode 100644 index 98088db85..000000000 --- a/tests/test_latlon.py +++ /dev/null @@ -1,172 +0,0 @@ -""" -This is the unittest for latlon related routines. -""" - -import unittest - -import numpy as np - -import gstools as gs - - -def _rel_err(a, b): - return np.abs(a / ((a + b) / 2) - 1) - - -class ErrMod(gs.CovModel): - def cor(self, h): - return np.exp(-(h**2)) - - def fix_dim(self): - return 2 - - -class TestLatLon(unittest.TestCase): - def setUp(self): - self.cmod = gs.Gaussian( - latlon=True, var=2, len_scale=777, geo_scale=gs.KM_SCALE - ) - self.lat = self.lon = range(-80, 81) - - self.data = np.array( - [ - [52.9336, 8.237, 15.7], - [48.6159, 13.0506, 13.9], - [52.4853, 7.9126, 15.1], - [50.7446, 9.345, 17.0], - [52.9437, 12.8518, 21.9], - [53.8633, 8.1275, 11.9], - [47.8342, 10.8667, 11.4], - [51.0881, 12.9326, 17.2], - [48.406, 11.3117, 12.9], - [49.7273, 8.1164, 17.2], - [49.4691, 11.8546, 13.4], - [48.0197, 12.2925, 13.9], - [50.4237, 7.4202, 18.1], - [53.0316, 13.9908, 21.3], - [53.8412, 13.6846, 21.3], - [54.6792, 13.4343, 17.4], - [49.9694, 9.9114, 18.6], - [51.3745, 11.292, 20.2], - [47.8774, 11.3643, 12.7], - [50.5908, 12.7139, 15.8], - ] - ) - - def test_conv(self): - p_ll = gs.tools.geometric.latlon2pos((self.lat, self.lon), 2.56) - ll_p = gs.tools.geometric.pos2latlon(p_ll, 2.56) - for i, v in enumerate(self.lat): - self.assertAlmostEqual(v, ll_p[0, i]) - self.assertAlmostEqual(v, ll_p[1, i]) - self.assertAlmostEqual( - 8, self.cmod.anisometrize(self.cmod.isometrize((8, 6)))[0, 0] - ) - self.assertAlmostEqual( - 6, self.cmod.anisometrize(self.cmod.isometrize((8, 6)))[1, 0] - ) - self.assertAlmostEqual( - gs.EARTH_RADIUS, - self.cmod.isometrize( - self.cmod.anisometrize((gs.EARTH_RADIUS, 0, 0)) - )[0, 0], - ) - - def test_cov_model(self): - self.assertAlmostEqual( - self.cmod.vario_yadrenko(1.234), - self.cmod.sill - self.cmod.cov_yadrenko(1.234), - ) - self.assertAlmostEqual( - self.cmod.cov_yadrenko(1.234), - self.cmod.var * self.cmod.cor_yadrenko(1.234), - ) - # test if correctly handling tries to set anisotropy - self.cmod.anis = [1, 2] - self.cmod.angles = [1, 2, 3] - self.assertAlmostEqual(self.cmod.anis[0], 1) - self.assertAlmostEqual(self.cmod.anis[1], 1) - self.assertAlmostEqual(self.cmod.angles[0], 0) - self.assertAlmostEqual(self.cmod.angles[1], 0) - self.assertAlmostEqual(self.cmod.angles[2], 0) - - def test_vario_est(self): - srf = gs.SRF(self.cmod, seed=12345) - field = srf.structured((self.lat, self.lon)) - - bin_edges = np.linspace(0, 3 * 777, 30) - bin_center, emp_vario = gs.vario_estimate( - *((self.lat, self.lon), field, bin_edges), - latlon=True, - mesh_type="structured", - sampling_size=2000, - sampling_seed=12345, - geo_scale=gs.KM_SCALE, - ) - mod = gs.Gaussian(latlon=True, geo_scale=gs.KM_SCALE) - mod.fit_variogram(bin_center, emp_vario, nugget=False) - # allow 10 percent relative error - self.assertLess(_rel_err(mod.var, self.cmod.var), 0.1) - self.assertLess(_rel_err(mod.len_scale, self.cmod.len_scale), 0.1) - - def test_krige(self): - bin_max = np.deg2rad(8) - bin_edges = np.linspace(0, bin_max, 5) - emp_vario = gs.vario_estimate( - (self.data[:, 0], self.data[:, 1]), - self.data[:, 2], - bin_edges, - latlon=True, - ) - mod = gs.Spherical(latlon=True, geo_scale=gs.KM_SCALE) - mod.fit_variogram(*emp_vario, nugget=False) - kri = gs.krige.Ordinary( - mod, - (self.data[:, 0], self.data[:, 1]), - self.data[:, 2], - ) - field, var = kri((self.data[:, 0], self.data[:, 1])) - for i, dat in enumerate(self.data[:, 2]): - self.assertAlmostEqual(field[i], dat) - - def test_cond_srf(self): - bin_max = np.deg2rad(8) - bin_edges = np.linspace(0, bin_max, 5) - emp_vario = gs.vario_estimate( - (self.data[:, 0], self.data[:, 1]), - self.data[:, 2], - bin_edges, - latlon=True, - ) - mod = gs.Spherical(latlon=True, geo_scale=gs.KM_SCALE) - mod.fit_variogram(*emp_vario, nugget=False) - krige = gs.krige.Ordinary( - mod, (self.data[:, 0], self.data[:, 1]), self.data[:, 2] - ) - crf = gs.CondSRF(krige) - field = crf((self.data[:, 0], self.data[:, 1])) - for i, dat in enumerate(self.data[:, 2]): - self.assertAlmostEqual(field[i], dat, 3) - - def test_error(self): - # try fitting directional variogram - mod = gs.Gaussian(latlon=True) - with self.assertRaises(ValueError): - mod.fit_variogram([0, 1], [[0, 1], [0, 1], [0, 1]]) - # try to use fixed dim=2 with latlon - with self.assertRaises(ValueError): - ErrMod(latlon=True) - # try to estimate latlon vario on wrong dim - with self.assertRaises(ValueError): - gs.vario_estimate([[1], [1], [1]], [1], [0, 1], latlon=True) - # try to estimate directional vario with latlon - with self.assertRaises(ValueError): - gs.vario_estimate([[1], [1]], [1], [0, 1], latlon=True, angles=1) - # try to create a vector field with latlon - with self.assertRaises(ValueError): - srf = gs.SRF(mod, generator="VectorField", mode_no=2) - srf([1, 2]) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_normalizer.py b/tests/test_normalizer.py deleted file mode 100644 index 9ab0f45e0..000000000 --- a/tests/test_normalizer.py +++ /dev/null @@ -1,223 +0,0 @@ -""" -This is the unittest of the Normalizer class. -""" - -import unittest - -import numpy as np - -import gstools as gs - - -def _rel_err(a, b): - return np.abs(a / ((a + b) / 2) - 1) - - -class TestNormalizer(unittest.TestCase): - def setUp(self): - self.seed = 20210111 - self.rng = gs.random.RNG(self.seed) - self.mean = 11.1 - self.std = 2.25 - self.smp = self.rng.random.normal(self.mean, self.std, 1000) - self.lmb = 1.5 - - def test_fitting(self): - # boxcox with given data to init - bc_samples = gs.normalizer.BoxCox(lmbda=self.lmb).denormalize(self.smp) - bc_norm = gs.normalizer.BoxCox(data=bc_samples) - self.assertLess(_rel_err(self.lmb, bc_norm.lmbda), 1e-2) - self.assertAlmostEqual( - bc_norm.likelihood(bc_samples), - np.exp(bc_norm.loglikelihood(bc_samples)), - ) - # yeo-johnson with calling fit - yj_norm = gs.normalizer.YeoJohnson(lmbda=self.lmb) - yj_samples = yj_norm.denormalize(self.smp) - yj_norm.fit(yj_samples) - self.assertLess(_rel_err(self.lmb, yj_norm.lmbda), 1e-2) - self.assertAlmostEqual( - yj_norm.likelihood(yj_samples), - np.exp(yj_norm.loglikelihood(yj_samples)), - ) - # modulus with calling fit - mo_norm = gs.normalizer.Modulus(lmbda=self.lmb) - mo_samples = mo_norm.denormalize(self.smp) - mo_norm.fit(mo_samples) - self.assertLess(_rel_err(self.lmb, mo_norm.lmbda), 1e-2) - self.assertAlmostEqual( - mo_norm.likelihood(mo_samples), - np.exp(mo_norm.loglikelihood(mo_samples)), - ) - # manly with calling fit - ma_norm = gs.normalizer.Manly(lmbda=self.lmb) - ma_samples = ma_norm.denormalize(self.smp) - ma_norm.fit(ma_samples) - self.assertLess(_rel_err(self.lmb, ma_norm.lmbda), 1e-2) - # self.assertAlmostEqual( - # ma_norm.likelihood(ma_samples), - # np.exp(ma_norm.loglikelihood(ma_samples)), - # ) # this is comparing infs - - def test_boxcox(self): - # without shift - bc = gs.normalizer.BoxCox(lmbda=0) - self.assertTrue( - np.all( - np.isclose(self.smp, bc.normalize(bc.denormalize(self.smp))) - ) - ) - bc.lmbda = self.lmb - self.assertTrue( - np.all( - np.isclose(self.smp, bc.normalize(bc.denormalize(self.smp))) - ) - ) - # with shift - bc = gs.normalizer.BoxCoxShift(lmbda=0, shift=1.1) - self.assertTrue( - np.all( - np.isclose(self.smp, bc.normalize(bc.denormalize(self.smp))) - ) - ) - bc.lmbda = self.lmb - self.assertTrue( - np.all( - np.isclose(self.smp, bc.normalize(bc.denormalize(self.smp))) - ) - ) - - def test_yeojohnson(self): - yj = gs.normalizer.YeoJohnson(lmbda=0) - self.assertTrue( - np.all( - np.isclose( - self.smp - self.mean, - yj.normalize(yj.denormalize(self.smp - self.mean)), - ) - ) - ) - yj.lmbda = 2 - self.assertTrue( - np.all( - np.isclose( - self.smp - self.mean, - yj.normalize(yj.denormalize(self.smp - self.mean)), - ) - ) - ) - # with shift - yj.lmbda = self.lmb - self.assertTrue( - np.all( - np.isclose( - self.smp - self.mean, - yj.normalize(yj.denormalize(self.smp - self.mean)), - ) - ) - ) - - def test_modulus(self): - mo = gs.normalizer.Modulus(lmbda=0) - self.assertTrue( - np.all( - np.isclose(self.smp, mo.normalize(mo.denormalize(self.smp))) - ) - ) - mo.lmbda = self.lmb - self.assertTrue( - np.all( - np.isclose(self.smp, mo.normalize(mo.denormalize(self.smp))) - ) - ) - - def test_manly(self): - ma = gs.normalizer.Manly(lmbda=0) - self.assertTrue( - np.all( - np.isclose(self.smp, ma.normalize(ma.denormalize(self.smp))) - ) - ) - ma.lmbda = self.lmb - self.assertTrue( - np.all( - np.isclose(self.smp, ma.normalize(ma.denormalize(self.smp))) - ) - ) - - def test_parameterless(self): - no = gs.normalizer.LogNormal() - self.assertTrue( - np.all( - np.isclose(self.smp, no.normalize(no.denormalize(self.smp))) - ) - ) - no = gs.normalizer.Normalizer() - self.assertTrue( - np.all( - np.isclose(self.smp, no.normalize(no.denormalize(self.smp))) - ) - ) - - def test_compare(self): - norm1 = gs.normalizer.BoxCox() - norm2 = gs.normalizer.BoxCox(lmbda=0.5) - norm3 = gs.normalizer.YeoJohnson() - norm4 = "this is not a normalizer" - # check campare - self.assertTrue(norm1 == norm1) - self.assertTrue(norm1 != norm2) - self.assertTrue(norm1 != norm3) - self.assertTrue(norm1 != norm4) - - def test_check(self): - self.assertRaises(ValueError, gs.field.Field, gs.Cubic(), normalizer=5) - - def test_auto_fit(self): - x = y = range(60) - pos = gs.generate_grid([x, y]) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF( - model, seed=20170519, normalizer=gs.normalizer.LogNormal() - ) - srf(pos) - ids = np.arange(srf.field.size) - samples = np.random.RandomState(20210201).choice( - ids, size=60, replace=False - ) - # sample conditioning points from generated field - cond_pos = pos[:, samples] - cond_val = srf.field[samples] - krige = gs.krige.Ordinary( - model=gs.Stable(dim=2), - cond_pos=cond_pos, - cond_val=cond_val, - normalizer=gs.normalizer.BoxCox(), - fit_normalizer=True, - fit_variogram=True, - ) - # test fitting during kriging - self.assertTrue(np.abs(krige.normalizer.lmbda - 0.0) < 1e-1) - self.assertAlmostEqual(krige.model.len_scale, 10.2677, places=4) - self.assertAlmostEqual( - krige.model.sill, - krige.normalizer.normalize(cond_val).var(), - places=4, - ) - # test fitting during vario estimate - bin_center, gamma, normalizer = gs.vario_estimate( - cond_pos, - cond_val, - normalizer=gs.normalizer.BoxCox, - fit_normalizer=True, - ) - model = gs.Stable(dim=2) - model.fit_variogram(bin_center, gamma) - self.assertAlmostEqual(model.var, 0.6426670183, places=4) - self.assertAlmostEqual(model.len_scale, 9.635193952, places=4) - self.assertAlmostEqual(model.nugget, 0.001617908408, places=4) - self.assertAlmostEqual(model.alpha, 2.0, places=4) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_randmeth.py b/tests/test_randmeth.py deleted file mode 100644 index 7cbb962fb..000000000 --- a/tests/test_randmeth.py +++ /dev/null @@ -1,75 +0,0 @@ -""" -This is the unittest of the RandMeth class. -""" - -import copy -import unittest - -import numpy as np - -from gstools import Gaussian -from gstools.field.generator import RandMeth - - -class TestRandMeth(unittest.TestCase): - def setUp(self): - self.cov_model_1d = Gaussian(dim=1, var=1.5, len_scale=3.5) - self.cov_model_2d = copy.deepcopy(self.cov_model_1d) - self.cov_model_2d.dim = 2 - self.cov_model_3d = copy.deepcopy(self.cov_model_1d) - self.cov_model_3d.dim = 3 - self.seed = 19031977 - self.x_grid = np.linspace(0.0, 10.0, 9) - self.y_grid = np.linspace(-5.0, 5.0, 16) - self.z_grid = np.linspace(-6.0, 7.0, 8) - self.x_tuple = np.linspace(0.0, 10.0, 10) - self.y_tuple = np.linspace(-5.0, 5.0, 10) - self.z_tuple = np.linspace(-6.0, 8.0, 10) - - self.rm_1d = RandMeth(self.cov_model_1d, mode_no=100, seed=self.seed) - self.rm_2d = RandMeth(self.cov_model_2d, mode_no=100, seed=self.seed) - self.rm_3d = RandMeth(self.cov_model_3d, mode_no=100, seed=self.seed) - - def test_unstruct_1d(self): - modes = self.rm_1d((self.x_tuple,)) - self.assertAlmostEqual(modes[0], 3.19799030) - self.assertAlmostEqual(modes[1], 2.44848295) - - def test_unstruct_2d(self): - modes = self.rm_2d((self.x_tuple, self.y_tuple)) - self.assertAlmostEqual(modes[0], 1.67318010) - self.assertAlmostEqual(modes[1], 2.12310269) - - def test_unstruct_3d(self): - modes = self.rm_3d((self.x_tuple, self.y_tuple, self.z_tuple)) - self.assertAlmostEqual(modes[0], 1.3240234883187239) - self.assertAlmostEqual(modes[1], 1.6367244277732766) - - def test_reset(self): - modes = self.rm_2d((self.x_tuple, self.y_tuple)) - self.assertAlmostEqual(modes[0], 1.67318010) - self.assertAlmostEqual(modes[1], 2.12310269) - - self.rm_2d.seed = self.rm_2d.seed - modes = self.rm_2d((self.x_tuple, self.y_tuple)) - self.assertAlmostEqual(modes[0], 1.67318010) - self.assertAlmostEqual(modes[1], 2.12310269) - - self.rm_2d.seed = 74893621 - modes = self.rm_2d((self.x_tuple, self.y_tuple)) - self.assertAlmostEqual(modes[0], -1.94278053) - self.assertAlmostEqual(modes[1], -1.12401651) - - self.rm_1d.model = self.cov_model_3d - modes = self.rm_1d((self.x_tuple, self.y_tuple, self.z_tuple)) - self.assertAlmostEqual(modes[0], 1.3240234883187239) - self.assertAlmostEqual(modes[1], 1.6367244277732766) - - self.rm_2d.mode_no = 800 - modes = self.rm_2d((self.x_tuple, self.y_tuple)) - self.assertAlmostEqual(modes[0], -3.20809251) - self.assertAlmostEqual(modes[1], -2.62032778) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_rng.py b/tests/test_rng.py deleted file mode 100644 index 8fe167281..000000000 --- a/tests/test_rng.py +++ /dev/null @@ -1,116 +0,0 @@ -""" -This is the unittest of the RNG class. -""" - -import unittest - -import numpy as np -from scipy.stats import kurtosis, normaltest, skew - -from gstools import Gaussian, TPLStable -from gstools.random.rng import RNG - - -class TestRNG(unittest.TestCase): - def setUp(self): - self.seed = 19031977 - self.rng = RNG(self.seed) - self.many_modes = 1000000 - self.few_modes = 100 - - def test_rng_normal_consistency(self): - rng = RNG(21021997) - z1_refs = [-1.93013270, 0.46330478] - z2_refs = [-0.25536086, 0.98298696] - - z1 = self.rng.random.normal(size=self.few_modes) - z2 = self.rng.random.normal(size=self.few_modes) - self.assertAlmostEqual(z1[0], z1_refs[0]) - self.assertAlmostEqual(z1[1], z1_refs[1]) - self.assertAlmostEqual(z2[0], z2_refs[0]) - self.assertAlmostEqual(z2[1], z2_refs[1]) - self.rng.seed = self.seed - z1 = self.rng.random.normal(size=self.few_modes) - z2 = self.rng.random.normal(size=self.few_modes) - self.assertAlmostEqual(z1[0], z1_refs[0]) - self.assertAlmostEqual(z1[1], z1_refs[1]) - self.assertAlmostEqual(z2[0], z2_refs[0]) - self.assertAlmostEqual(z2[1], z2_refs[1]) - - def test_sample_sphere_1d(self): - dim = 1 - sphere_coord = self.rng.sample_sphere(dim, self.few_modes) - self.assertEqual(sphere_coord.shape, (dim, self.few_modes)) - sphere_coord = self.rng.sample_sphere(dim, self.many_modes) - self.assertAlmostEqual(np.mean(sphere_coord), 0.0, places=3) - - def test_sample_sphere_2d(self): - dim = 2 - sphere_coord = self.rng.sample_sphere(dim, self.few_modes) - np.testing.assert_allclose( - np.ones(self.few_modes), - sphere_coord[0, :] ** 2 + sphere_coord[1, :] ** 2, - ) - sphere_coord = self.rng.sample_sphere(dim, self.many_modes) - self.assertAlmostEqual(np.mean(sphere_coord), 0.0, places=3) - - def test_sample_sphere_3d(self): - dim = 3 - sphere_coord = self.rng.sample_sphere(dim, self.few_modes) - self.assertEqual(sphere_coord.shape, (dim, self.few_modes)) - np.testing.assert_allclose( - np.ones(self.few_modes), - sphere_coord[0, :] ** 2 - + sphere_coord[1, :] ** 2 - + sphere_coord[2, :] ** 2, - ) - sphere_coord = self.rng.sample_sphere(dim, self.many_modes) - self.assertAlmostEqual(np.mean(sphere_coord), 0.0, places=3) - - def test_sample_dist(self): - model = Gaussian(dim=1, var=3.5, len_scale=8.0) - pdf, cdf, ppf = model.dist_func - rad = self.rng.sample_dist( - size=self.few_modes, pdf=pdf, cdf=cdf, ppf=ppf, a=0 - ) - self.assertEqual(rad.shape[0], self.few_modes) - - model = Gaussian(dim=2, var=3.5, len_scale=8.0) - pdf, cdf, ppf = model.dist_func - rad = self.rng.sample_dist( - size=self.few_modes, pdf=pdf, cdf=cdf, ppf=ppf, a=0 - ) - self.assertEqual(rad.shape[0], self.few_modes) - - model = Gaussian(dim=3, var=3.5, len_scale=8.0) - pdf, cdf, ppf = model.dist_func - rad = self.rng.sample_dist( - size=self.few_modes, pdf=pdf, cdf=cdf, ppf=ppf, a=0 - ) - self.assertEqual(rad.shape[0], self.few_modes) - - # model = Gaussian(dim=2, var=3.5, len_scale=8.) - # pdf, cdf, ppf = model.dist_func - # rad = self.rng.sample_dist( - # size=self.many_modes, pdf=pdf, cdf=cdf, ppf=ppf, a=0) - # import matplotlib.pyplot as pt - # pt.hist(rad, bins=30) - # print(rad) - # pt.show() - - # TODO test with different models - - # TODO rework this - # def test_gau(self): - # for d in range(len(self.rngs)): - # Z, k = self.rngs[d]('gau', self.len_scale, self.many_modes) - # self.assertEqual(k.shape, (d+1, self.many_modes)) - # self.assertAlmostEqual(np.mean(k), 0., places=2) - # self.assertAlmostEqual(np.std(k), 1/self.len_scale, places=2) - # self.assertAlmostEqual(skew(k[0, :]), 0., places=2) - # self.assertAlmostEqual(kurtosis(k[0, :]), 0., places=1) - # self.assertLess(normaltest(k[0, :])[1], 0.05) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_srf.py b/tests/test_srf.py deleted file mode 100644 index eb9468ca4..000000000 --- a/tests/test_srf.py +++ /dev/null @@ -1,334 +0,0 @@ -#!/usr/bin/env python -""" -This is the unittest of SRF class. -""" - -import unittest - -import meshio -import numpy as np - -import gstools as gs -from gstools import transform as tf - -HAS_PYVISTA = False -try: - import pyvista as pv - - HAS_PYVISTA = True -except ImportError: - pass - - -class TestSRF(unittest.TestCase): - def setUp(self): - self.cov_model = gs.Gaussian(dim=2, var=1.5, len_scale=4.0) - self.mean = 0.3 - self.mode_no = 100 - - self.seed = 825718662 - self.x_grid = np.linspace(0.0, 12.0, 48) - self.y_grid = np.linspace(0.0, 10.0, 46) - self.z_grid = np.linspace(0.0, 10.0, 40) - - self.x_grid_c = np.linspace(-6.0, 6.0, 8) - self.y_grid_c = np.linspace(-6.0, 6.0, 8) - self.z_grid_c = np.linspace(-6.0, 6.0, 8) - - rng = np.random.RandomState(123018) - self.x_tuple = rng.uniform(0.0, 10, 100) - self.y_tuple = rng.uniform(0.0, 10, 100) - self.z_tuple = rng.uniform(0.0, 10, 100) - - def test_shape_1d(self): - self.cov_model.dim = 1 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_str = srf([self.x_grid], seed=self.seed, mesh_type="structured") - field_unstr = srf( - [self.x_tuple], seed=self.seed, mesh_type="unstructured" - ) - self.assertEqual(field_str.shape, (len(self.x_grid),)) - self.assertEqual(field_unstr.shape, (len(self.x_tuple),)) - - def test_shape_2d(self): - self.cov_model.dim = 2 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_str = srf( - (self.x_grid, self.y_grid), seed=self.seed, mesh_type="structured" - ) - field_unstr = srf( - (self.x_tuple, self.y_tuple), - seed=self.seed, - mesh_type="unstructured", - ) - self.assertEqual(field_str.shape, (len(self.x_grid), len(self.y_grid))) - self.assertEqual(field_unstr.shape, (len(self.x_tuple),)) - - def test_shape_3d(self): - self.cov_model.dim = 3 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_str = srf( - (self.x_grid, self.y_grid, self.z_grid), - seed=self.seed, - mesh_type="structured", - ) - field_unstr = srf( - (self.x_tuple, self.y_tuple, self.z_tuple), - seed=987654, - mesh_type="unstructured", - ) - self.assertEqual( - field_str.shape, - (len(self.x_grid), len(self.y_grid), len(self.z_grid)), - ) - self.assertEqual(field_unstr.shape, (len(self.x_tuple),)) - - def test_anisotropy_2d(self): - self.cov_model.dim = 2 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_iso = srf( - (self.x_grid, self.y_grid), seed=self.seed, mesh_type="structured" - ) - self.cov_model.anis = 0.5 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_aniso = srf( - (self.x_grid, self.y_grid), seed=self.seed, mesh_type="structured" - ) - self.assertAlmostEqual(field_iso[0, 0], field_aniso[0, 0]) - self.assertAlmostEqual(field_iso[0, 4], field_aniso[0, 2]) - self.assertAlmostEqual(field_iso[0, 10], field_aniso[0, 5]) - - def test_anisotropy_3d(self): - self.cov_model.dim = 3 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_iso = srf( - (self.x_grid, self.y_grid, self.z_grid), - seed=self.seed, - mesh_type="structured", - ) - self.cov_model.anis = (0.5, 4.0) - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_aniso = srf( - (self.x_grid, self.y_grid, self.z_grid), - seed=self.seed, - mesh_type="structured", - ) - self.assertAlmostEqual(field_iso[0, 0, 0], field_aniso[0, 0, 0]) - self.assertAlmostEqual(field_iso[0, 4, 0], field_aniso[0, 2, 0]) - self.assertAlmostEqual(field_iso[0, 10, 0], field_aniso[0, 5, 0]) - self.assertAlmostEqual(field_iso[0, 0, 0], field_aniso[0, 0, 0]) - self.assertAlmostEqual(field_iso[0, 0, 1], field_aniso[0, 0, 4]) - self.assertAlmostEqual(field_iso[0, 0, 3], field_aniso[0, 0, 12]) - - def test_rotation_unstruct_2d(self): - self.cov_model.dim = 2 - x_len = len(self.x_grid_c) - y_len = len(self.y_grid_c) - x_u, y_u = np.meshgrid(self.x_grid_c, self.y_grid_c) - x_u = np.reshape(x_u, x_len * y_len) - y_u = np.reshape(y_u, x_len * y_len) - - self.cov_model.anis = 0.25 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - - field = srf((x_u, y_u), seed=self.seed, mesh_type="unstructured") - field_str = np.reshape(field, (y_len, x_len)) - - self.cov_model.angles = -np.pi / 2.0 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_rot = srf((x_u, y_u), seed=self.seed, mesh_type="unstructured") - field_rot_str = np.reshape(field_rot, (y_len, x_len)) - - self.assertAlmostEqual(field_str[0, 0], field_rot_str[-1, 0]) - self.assertAlmostEqual(field_str[1, 2], field_rot_str[-3, 1]) - - def test_rotation_struct_2d(self): - self.cov_model.dim = 2 - self.cov_model.anis = 0.25 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field = srf( - (self.x_grid_c, self.y_grid_c), - seed=self.seed, - mesh_type="structured", - ) - - self.cov_model.angles = -np.pi / 2.0 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_rot = srf( - (self.x_grid_c, self.y_grid_c), - seed=self.seed, - mesh_type="structured", - ) - - self.assertAlmostEqual(field[0, 0], field_rot[0, -1]) - self.assertAlmostEqual(field[1, 2], field_rot[2, 6]) - - def test_rotation_unstruct_3d(self): - self.cov_model = gs.Gaussian( - dim=3, var=1.5, len_scale=4.0, anis=(0.25, 0.5) - ) - x_len = len(self.x_grid_c) - y_len = len(self.y_grid_c) - z_len = len(self.z_grid_c) - x_u, y_u, z_u = np.meshgrid( - self.x_grid_c, self.y_grid_c, self.z_grid_c - ) - x_u = np.reshape(x_u, x_len * y_len * z_len) - y_u = np.reshape(y_u, x_len * y_len * z_len) - z_u = np.reshape(z_u, x_len * y_len * z_len) - - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field = srf((x_u, y_u, z_u), seed=self.seed, mesh_type="unstructured") - field_str = np.reshape(field, (y_len, x_len, z_len)) - - self.cov_model.angles = (-np.pi / 2.0, -np.pi / 2.0) - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_rot = srf( - (x_u, y_u, z_u), seed=self.seed, mesh_type="unstructured" - ) - field_rot_str = np.reshape(field_rot, (y_len, x_len, z_len)) - - self.assertAlmostEqual(field_str[0, 0, 0], field_rot_str[-1, -1, 0]) - self.assertAlmostEqual(field_str[1, 2, 0], field_rot_str[-3, -1, 1]) - self.assertAlmostEqual(field_str[0, 0, 1], field_rot_str[-1, -2, 0]) - - def test_rotation_struct_3d(self): - self.cov_model.dim = 3 - self.cov_model.anis = 0.25 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field = srf( - (self.x_grid_c, self.y_grid_c, self.z_grid_c), - seed=self.seed, - mesh_type="structured", - ) - - self.cov_model.angles = -np.pi / 2.0 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_rot = srf( - (self.x_grid_c, self.y_grid_c, self.z_grid_c), - seed=self.seed, - mesh_type="structured", - ) - - self.assertAlmostEqual(field[0, 0, 0], field_rot[0, 7, 0]) - self.assertAlmostEqual(field[0, 0, 1], field_rot[0, 7, 1]) - - self.cov_model.angles = (0, -np.pi / 2.0) - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field_rot = srf( - (self.x_grid_c, self.y_grid_c, self.z_grid_c), - seed=self.seed, - mesh_type="structured", - ) - - self.assertAlmostEqual(field[0, 0, 0], field_rot[7, 0, 0]) - self.assertAlmostEqual(field[0, 1, 0], field_rot[7, 1, 0]) - self.assertAlmostEqual(field[1, 1, 0], field_rot[7, 1, 1]) - - def test_calls(self): - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - field = srf((self.x_tuple, self.y_tuple), seed=self.seed) - field2 = srf.unstructured((self.x_tuple, self.y_tuple), seed=self.seed) - self.assertAlmostEqual(field[0], srf.field[0]) - self.assertAlmostEqual(field[0], field2[0]) - field = srf( - (self.x_tuple, self.y_tuple), - seed=self.seed, - mesh_type="structured", - ) - field2 = srf.structured((self.x_tuple, self.y_tuple), seed=self.seed) - self.assertAlmostEqual(field[0, 0], srf.field[0, 0]) - self.assertAlmostEqual(field[0, 0], field2[0, 0]) - - @unittest.skipIf(not HAS_PYVISTA, "PyVista is not installed") - def test_mesh_pyvista(self): - """Test the `.mesh` call with various PyVista meshes.""" - # Create model - self.cov_model.dim = 3 - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - # Get the field the normal way for comparison - field = srf((self.x_tuple, self.y_tuple, self.z_tuple), seed=self.seed) - # Create mesh space with PyVista - pv_mesh = pv.PolyData(np.c_[self.x_tuple, self.y_tuple, self.z_tuple]) - # Run the helper - _ = srf.mesh(pv_mesh, seed=self.seed, points="centroids") - self.assertTrue(np.allclose(field, pv_mesh["field"])) - # points="centroids" - _ = srf.mesh(pv_mesh, seed=self.seed, points="points") - self.assertTrue(np.allclose(field, pv_mesh["field"])) - - def test_incomprrandmeth(self): - self.cov_model = gs.Gaussian(dim=2, var=0.5, len_scale=1.0) - srf = gs.SRF( - self.cov_model, - mean=self.mean, - mode_no=self.mode_no, - generator="IncomprRandMeth", - mean_velocity=0.5, - ) - field = srf((self.x_tuple, self.y_tuple), seed=476356) - self.assertAlmostEqual(field[0, 0], 1.23693272) - self.assertAlmostEqual(field[0, 1], 0.89242284) - field = srf( - (self.x_grid, self.y_grid), seed=4734654, mesh_type="structured" - ) - self.assertAlmostEqual(field[0, 0, 0], 1.07812013) - self.assertAlmostEqual(field[0, 1, 0], 1.06180674) - - # TODO put these checks into test_cov_model - def test_assertions(self): - # self.cov_model.dim = 0 - # self.assertRaises(ValueError, gs.SRF, self.cov_model, self.mean, self.mode_no) - # self.cov_model.dim = 4 - # self.assertRaises(ValueError, gs.SRF, self.cov_model, self.mean, self.mode_no) - self.cov_model.dim = 3 - self.cov_model.anis = (0.25, 0.5) - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - self.assertRaises(ValueError, srf, [self.x_tuple]) - self.assertRaises(ValueError, srf, [self.x_grid, self.y_grid]) - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - self.assertRaises(ValueError, srf, [self.x_tuple, self.y_tuple]) - self.assertRaises( - ValueError, srf, [self.x_grid, self.y_grid, self.z_grid] - ) - # everything not "unstructured" is treated as "structured" - # self.assertRaises( - # ValueError, - # srf, - # [self.x_tuple, self.y_tuple, self.z_tuple], - # self.seed, - # mesh_type="hyper_mesh", - # ) - - def test_meshio(self): - points = np.array( - [ - [0.0, 0.0, 0.0], - [0.0, 1.0, 0.0], - [0.0, 0.0, 1.0], - [1.0, 0.0, 0.0], - ] - ) - cells = [("tetra", np.array([[0, 1, 2, 3]]))] - mesh = meshio.Mesh(points, cells) - model = gs.Gaussian(dim=3, len_scale=0.1) - srf = gs.SRF(model) - srf.mesh(mesh, points="points") - self.assertEqual(len(srf.field), 4) - srf.mesh(mesh, points="centroids") - self.assertEqual(len(srf.field), 1) - - def test_grid_generation(self): - pos1 = [self.x_grid, self.y_grid, self.z_grid] - pos2 = gs.generate_grid(pos1) - time = np.arange(10) - grid1 = gs.generate_grid(pos1 + [time]) - grid2 = gs.generate_st_grid(pos1, time, mesh_type="structured") - grid3 = gs.generate_st_grid(pos2, time, mesh_type="unstructured") - self.assertTrue(np.all(np.isclose(grid1, grid2))) - self.assertTrue(np.all(np.isclose(grid1, grid3))) - self.assertTrue(np.all(np.isclose(grid2, grid3))) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_temporal.py b/tests/test_temporal.py deleted file mode 100644 index c179db1c2..000000000 --- a/tests/test_temporal.py +++ /dev/null @@ -1,78 +0,0 @@ -""" -This is the unittest for temporal related routines. -""" - -import unittest - -import numpy as np - -import gstools as gs - - -class TestTemporal(unittest.TestCase): - def setUp(self): - self.mod = gs.Gaussian( - latlon=True, - temporal=True, - len_scale=1000, - anis=0.5, - geo_scale=gs.KM_SCALE, - ) - - def test_latlon(self): - mod = gs.Gaussian( - latlon=True, temporal=True, angles=[1, 2, 3, 4, 5, 6] - ) - self.assertEqual(mod.dim, 4) - self.assertEqual(mod.field_dim, 3) - self.assertEqual(mod.spatial_dim, 2) - self.assertTrue(np.allclose(mod.angles, 0)) - - mod1 = gs.Gaussian(latlon=True, temporal=True, len_scale=[10, 5]) - mod2 = gs.Gaussian(latlon=True, temporal=True, len_scale=10, anis=0.5) - - self.assertTrue(np.allclose(mod1.anis, mod2.anis)) - self.assertAlmostEqual(mod1.len_scale, mod2.len_scale) - - def test_latlon2pos(self): - self.assertAlmostEqual( - 8, self.mod.anisometrize(self.mod.isometrize((8, 6, 9)))[0, 0] - ) - self.assertAlmostEqual( - 6, self.mod.anisometrize(self.mod.isometrize((8, 6, 9)))[1, 0] - ) - self.assertAlmostEqual( - 9, self.mod.anisometrize(self.mod.isometrize((8, 6, 9)))[2, 0] - ) - self.assertAlmostEqual( - gs.EARTH_RADIUS, - self.mod.isometrize( - self.mod.anisometrize((gs.EARTH_RADIUS, 0, 0, 10)) - )[0, 0], - ) - self.assertAlmostEqual( - 10, - self.mod.isometrize( - self.mod.anisometrize((gs.EARTH_RADIUS, 0, 0, 10)) - )[3, 0], - ) - - def test_rotation(self): - mod = gs.Gaussian( - spatial_dim=3, temporal=True, angles=[1, 2, 3, 4, 5, 6] - ) - self.assertTrue(np.allclose(mod.angles, [1, 2, 3, 0, 0, 0])) - self.assertEqual(mod.dim, 4) - - def test_krige(self): - # auto-fitting latlon-temporal model in kriging not possible - with self.assertRaises(ValueError): - kri = gs.Krige(self.mod, 3 * [[1, 2]], [1, 2], fit_variogram=True) - - def test_field(self): - srf = gs.SRF(self.mod) - self.assertTrue(srf.temporal) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_transform.py b/tests/test_transform.py deleted file mode 100644 index abc5505b0..000000000 --- a/tests/test_transform.py +++ /dev/null @@ -1,189 +0,0 @@ -"""This is the unittest of the transform submodule.""" - -import unittest - -import numpy as np - -import gstools as gs - - -class TestTransform(unittest.TestCase): - def setUp(self): - self.cov_model = gs.Gaussian(dim=2, var=1.5, len_scale=4.0) - self.mean = 0.3 - self.mode_no = 100 - - self.seed = 825718662 - self.x_grid = np.linspace(0.0, 12.0, 48) - self.y_grid = np.linspace(0.0, 10.0, 46) - - self.methods = [ - "binary", - "boxcox", - "zinnharvey", - "normal_force_moments", - "normal_to_lognormal", - "normal_to_uniform", - "normal_to_arcsin", - "normal_to_uquad", - ] - - def test_transform_normal(self): - srf = gs.SRF(self.cov_model, mean=self.mean, mode_no=self.mode_no) - srf((self.x_grid, self.y_grid), seed=self.seed, mesh_type="structured") - for method in self.methods: - srf.transform(method, store=method) - std = np.sqrt(srf.model.var) - self.assertTrue(set(self.methods) == set(srf.field_names[1:])) - # force moments - self.assertAlmostEqual(srf["normal_force_moments"].mean(), srf.mean) - self.assertAlmostEqual(srf["normal_force_moments"].var(), std**2) - # binary - np.testing.assert_allclose( - np.unique(srf.binary), srf.mean + np.array([-std, std]) - ) - # boxcox - np.testing.assert_allclose( - srf.field, gs.normalizer.BoxCox().normalize(srf.boxcox) - ) - with self.assertWarns(Warning): - srf.transform("boxcox", store="boxcox_warn", lmbda=2) - # lognormal - np.testing.assert_allclose(srf.field, np.log(srf.normal_to_lognormal)) - srf.transform("boxcox", store="boxcox2", lmbda=0) - np.testing.assert_allclose(srf.boxcox2, srf.normal_to_lognormal) - # unifrom - self.assertTrue(np.all(srf.normal_to_uniform < 1)) - self.assertTrue(np.all(srf.normal_to_uniform > 0)) - # how to test arcsin and uquad?! - - # discrete - values = [-1, 0, 1] - thresholds = [-0.9, 0.1] - srf.transform( - "discrete", values=values, thresholds=thresholds, store="f1" - ) - np.testing.assert_allclose(np.unique(srf.f1), [-1, 0, 1]) - - values = [-1, 0, 1] - srf.transform( - "discrete", values=values, thresholds="arithmetic", store="f2" - ) - np.testing.assert_allclose(np.unique(srf.f2), [-1.0, 0.0, 1.0]) - - values = [-1, 0, 0.5, 1] - srf.transform( - "discrete", values=values, thresholds="equal", store="f3" - ) - np.testing.assert_allclose(np.unique(srf.f3), values) - # checks - with self.assertRaises(ValueError): - srf.transform("discrete", values=values, thresholds=[1]) - with self.assertRaises(ValueError): - srf.transform("discrete", values=values, thresholds=[1, 3, 2]) - - # function - srf.transform("function", function=lambda x: 2 * x, store="f4") - np.testing.assert_allclose(2 * srf.field, srf.f4) - with self.assertRaises(ValueError): - srf.transform("function", function=None) - - # unknown method - with self.assertRaises(ValueError): - srf.transform("foobar") - - def test_transform_denormal(self): - srf_fail = gs.SRF( - model=self.cov_model, - mean=self.mean, - mode_no=self.mode_no, - trend=lambda x, y: x, - ) - srf_fail((self.x_grid, self.y_grid), mesh_type="structured") - with self.assertRaises(ValueError): - srf_fail.transform("zinnharvey") - - srf_fail = gs.SRF( - model=self.cov_model, - mean=lambda x, y: x, - mode_no=self.mode_no, - ) - srf_fail((self.x_grid, self.y_grid), mesh_type="structured") - with self.assertRaises(ValueError): - srf_fail.transform("zinnharvey") - - srf = gs.SRF( - model=self.cov_model, - mean=self.mean, - mode_no=self.mode_no, - normalizer=gs.normalizer.LogNormal, - ) - srf((self.x_grid, self.y_grid), seed=self.seed, mesh_type="structured") - - for method in self.methods: - if method in ("normal_to_lognormal", "boxcox"): - continue - with self.assertRaises(ValueError): - srf.transform(method, store=method) - - for method in self.methods: - srf.transform(method, store=method, process=True) - std = np.sqrt(srf.model.var) - self.assertTrue(set(self.methods) == set(srf.field_names[1:])) - # force moments - self.assertAlmostEqual( - np.log(srf["normal_force_moments"]).mean(), srf.mean - ) - self.assertAlmostEqual( - np.log(srf["normal_force_moments"]).var(), std**2 - ) - # binary - np.testing.assert_allclose( - np.unique(np.log(srf.binary)), srf.mean + np.array([-std, std]) - ) - # boxcox - np.testing.assert_allclose( - np.log(srf.field), - gs.normalizer.BoxCox().normalize(np.log(srf.boxcox)), - ) - # lognormal - np.testing.assert_allclose(srf.field, np.log(srf.normal_to_lognormal)) - # unifrom - self.assertTrue(np.all(np.log(srf.normal_to_uniform) < 1)) - self.assertTrue(np.all(np.log(srf.normal_to_uniform) > 0)) - - # discrete - values = [-1, 0, 1] - thresholds = [-0.9, 0.1] - srf.transform( - "discrete", - values=values, - thresholds=thresholds, - store="f1", - process=True, - ) - np.testing.assert_allclose(np.unique(np.log(srf.f1)), [-1, 0, 1]) - - values = [-1, 0, 1] - srf.transform( - "discrete", - values=values, - thresholds="arithmetic", - store="f2", - process=True, - ) - np.testing.assert_allclose(np.unique(np.log(srf.f2)), [-1.0, 0.0, 1.0]) - - values = [-1, 0, 0.5, 1] - srf.transform( - "discrete", - values=values, - thresholds="equal", - store="f3", - process=True, - ) - np.testing.assert_allclose(np.unique(np.log(srf.f3)), values) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_variogram.py b/tests/test_variogram.py new file mode 100644 index 000000000..4580b231e --- /dev/null +++ b/tests/test_variogram.py @@ -0,0 +1,144 @@ +""" +This is a unittest of the variogram module. +""" + +import unittest + +import numpy as np + +import gstools_cython as gs_cy + + +class TestVariogram(unittest.TestCase): + def test_directional(self): + x_c = np.linspace(0.0, 100.0, 30) + y_c = np.linspace(0.0, 100.0, 30) + x, y = np.meshgrid(x_c, y_c) + x = np.reshape(x, len(x_c) * len(y_c)) + y = np.reshape(y, len(x_c) * len(y_c)) + pos = np.array((x, y), dtype=np.double) + dirs = np.array(((1, 0), (0, 1)), dtype=np.double) + + rng = np.random.RandomState(1479373475) + field = np.asarray([rng.rand(len(x))], dtype=np.double) + bins = np.arange(0, 100, 10, dtype=np.double) + + var = 1.0 / 12.0 + + gamma, counts = gs_cy.variogram.directional(field, bins, pos, dirs) + print(counts) + self.assertAlmostEqual(gamma[0, 0], var, places=2) + self.assertAlmostEqual(gamma[0, len(gamma[0]) // 2], var, places=2) + self.assertAlmostEqual(gamma[0, -1], var, places=2) + self.assertAlmostEqual(gamma[1, 0], var, places=2) + self.assertAlmostEqual(gamma[1, len(gamma[0]) // 2], var, places=2) + self.assertAlmostEqual(gamma[1, -1], var, places=2) + + def test_unstructured(self): + x = np.arange(1, 11, 1, dtype=np.double) + z = np.array( + (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), + dtype=np.double, + ) + bins = np.arange(1, 11, 1, dtype=np.double) + x = np.atleast_2d(x) + z = np.atleast_2d(z) + + gamma, counts = gs_cy.variogram.unstructured(z, bins, x) + self.assertAlmostEqual(gamma[0], 0.4917, places=4) + self.assertEqual(counts[0], 9) + + x_c = np.linspace(0.0, 100.0, 30) + y_c = np.linspace(0.0, 100.0, 30) + x, y = np.meshgrid(x_c, y_c) + x = np.reshape(x, len(x_c) * len(y_c)) + y = np.reshape(y, len(x_c) * len(y_c)) + pos = np.array((x, y), dtype=np.double) + + rng = np.random.RandomState(1479373475) + field = np.asarray([rng.rand(len(x))], dtype=np.double) + bins = np.arange(0, 100, 10, dtype=np.double) + + var = 1.0 / 12.0 + + gamma, counts = gs_cy.variogram.unstructured(field, bins, pos) + self.assertAlmostEqual(gamma[0], var, places=2) + self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) + self.assertAlmostEqual(gamma[-1], var, places=2) + + gamma, counts = gs_cy.variogram.unstructured( + field, bins, pos, estimator_type="c" + ) + self.assertAlmostEqual(gamma[0], var, places=2) + self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) + self.assertAlmostEqual(gamma[-1], var, places=2) + + def test_structured(self): + z = np.array( + (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), + dtype=np.double, + ) + # need 2d arrays + z = z.reshape((z.shape[0], -1)) + + gamma = gs_cy.variogram.structured(z) + self.assertAlmostEqual(gamma[1], 0.4917, places=4) + + gamma = gs_cy.variogram.structured(z, estimator_type="c") + self.assertAlmostEqual(gamma[1], 1.546 / 2.0, places=3) + + rng = np.random.RandomState(1479373475) + field = np.asarray(rng.rand(80, 60), dtype=np.double) + + gamma = gs_cy.variogram.structured(field) + var = 1.0 / 12.0 + self.assertAlmostEqual(gamma[0], 0.0, places=2) + self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) + self.assertAlmostEqual(gamma[-1], var, places=2) + + gamma = gs_cy.variogram.structured(field, estimator_type="c") + var = 1.0 / 12.0 + self.assertAlmostEqual(gamma[0], 0.0, places=2) + self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) + self.assertAlmostEqual(gamma[-1], var, places=1) + + def test_ma_structured(self): + z = np.array( + (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), + dtype=np.double, + ) + mask = np.array((1, 0, 0, 0, 0, 0, 0, 0, 0, 0), dtype=np.int32) + # need 2d arrays + z = z.reshape((z.shape[0], -1)) + mask = mask.reshape((mask.shape[0], -1)) + + gamma = gs_cy.variogram.ma_structured(z, mask) + self.assertAlmostEqual(gamma[0], 0.0000, places=4) + self.assertAlmostEqual(gamma[1], 0.4906, places=4) + self.assertAlmostEqual(gamma[2], 0.7107, places=4) + + gamma = gs_cy.variogram.ma_structured(z, mask, estimator_type="c") + self.assertAlmostEqual(gamma[0], 0.0000, places=4) + self.assertAlmostEqual(gamma[1], 0.7399, places=4) + self.assertAlmostEqual(gamma[2], 0.8660, places=4) + + rng = np.random.RandomState(1479373475) + field = np.asarray(rng.rand(80, 60), dtype=np.double) + mask = np.zeros_like(field, dtype=np.int32) + mask[0, 0] = 1 + + gamma = gs_cy.variogram.ma_structured(field, mask) + var = 1.0 / 12.0 + self.assertAlmostEqual(gamma[0], 0.0, places=2) + self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) + self.assertAlmostEqual(gamma[-1], var, places=2) + + gamma = gs_cy.variogram.ma_structured(field, mask, estimator_type="c") + var = 1.0 / 12.0 + self.assertAlmostEqual(gamma[0], 0.0, places=2) + self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) + self.assertAlmostEqual(gamma[-1], var, places=2) + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/test_variogram_structured.py b/tests/test_variogram_structured.py deleted file mode 100644 index e0a3525aa..000000000 --- a/tests/test_variogram_structured.py +++ /dev/null @@ -1,278 +0,0 @@ -""" -This is a unittest of the variogram module. -""" - -import unittest - -import numpy as np - -import gstools as gs - - -class TestVariogramStructured(unittest.TestCase): - def setUp(self): - pass - - def test_doubles(self): - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - gamma = gs.vario_estimate_axis(z) - self.assertAlmostEqual(gamma[1], 0.4917, places=4) - - def test_ints(self): - z = np.array((10, 20, 30, 40), dtype=int) - gamma = gs.vario_estimate_axis(z) - self.assertAlmostEqual(gamma[1], 50.0, places=4) - - def test_mixed(self): - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - gamma = gs.vario_estimate_axis(z) - self.assertAlmostEqual(gamma[1], 0.4917, places=4) - - z = np.array((10, 20, 30, 40), dtype=int) - - gamma = gs.vario_estimate_axis(z) - self.assertAlmostEqual(gamma[1], 50.0, places=4) - - def test_list(self): - z = [41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3] - gamma = gs.vario_estimate_axis(z) - self.assertAlmostEqual(gamma[1], 0.4917, places=4) - - def test_cressie_1d(self): - z = [41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3] - gamma = gs.vario_estimate_axis(z, estimator="cressie") - self.assertAlmostEqual(gamma[1], 1.546 / 2.0, places=3) - - def test_1d(self): - # literature values - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - gamma = gs.vario_estimate_axis(z) - self.assertAlmostEqual(gamma[0], 0.0000, places=4) - self.assertAlmostEqual(gamma[1], 0.4917, places=4) - self.assertAlmostEqual(gamma[2], 0.7625, places=4) - - def test_masked_1d(self): - # literature values - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - z_ma = np.ma.masked_array(z, mask=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) - gamma = gs.vario_estimate_axis(z_ma) - self.assertAlmostEqual(gamma[0], 0.0000, places=4) - self.assertAlmostEqual(gamma[1], 0.4917, places=4) - self.assertAlmostEqual(gamma[2], 0.7625, places=4) - z_ma = np.ma.masked_array(z, mask=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]) - gamma = gs.vario_estimate_axis(z_ma) - self.assertAlmostEqual(gamma[0], 0.0000, places=4) - self.assertAlmostEqual(gamma[1], 0.4906, places=4) - self.assertAlmostEqual(gamma[2], 0.7107, places=4) - - def test_masked_2d(self): - rng = np.random.RandomState(1479373475) - field = rng.rand(80, 60) - mask = np.zeros_like(field) - field_ma = np.ma.masked_array(field, mask=mask) - - gamma_x = gs.vario_estimate_axis(field_ma, direction="x") - gamma_y = gs.vario_estimate_axis(field_ma, direction="y") - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma_x[0], 0.0, places=2) - self.assertAlmostEqual(gamma_x[len(gamma_x) // 2], var, places=2) - self.assertAlmostEqual(gamma_x[-1], var, places=2) - self.assertAlmostEqual(gamma_y[0], 0.0, places=2) - self.assertAlmostEqual(gamma_y[len(gamma_y) // 2], var, places=2) - self.assertAlmostEqual(gamma_y[-1], var, places=2) - - mask = np.zeros_like(field) - mask[0, 0] = 1 - field = np.ma.masked_array(field, mask=mask) - gamma_x = gs.vario_estimate_axis(field_ma, direction="x") - gamma_y = gs.vario_estimate_axis(field_ma, direction="y") - self.assertAlmostEqual(gamma_x[0], 0.0, places=2) - self.assertAlmostEqual(gamma_y[0], 0.0, places=2) - - def test_masked_3d(self): - rng = np.random.RandomState(1479373475) - field = rng.rand(30, 30, 30) - mask = np.zeros_like(field) - field_ma = np.ma.masked_array(field, mask=mask) - - gamma_x = gs.vario_estimate_axis(field_ma, direction="x") - gamma_y = gs.vario_estimate_axis(field_ma, direction="y") - gamma_z = gs.vario_estimate_axis(field_ma, direction="z") - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma_x[0], 0.0, places=2) - self.assertAlmostEqual(gamma_x[len(gamma_x) // 2], var, places=2) - self.assertAlmostEqual(gamma_x[-1], var, places=2) - self.assertAlmostEqual(gamma_y[0], 0.0, places=2) - self.assertAlmostEqual(gamma_y[len(gamma_y) // 2], var, places=2) - self.assertAlmostEqual(gamma_y[-1], var, places=2) - self.assertAlmostEqual(gamma_z[0], 0.0, places=2) - self.assertAlmostEqual(gamma_z[len(gamma_y) // 2], var, places=2) - self.assertAlmostEqual(gamma_z[-1], var, places=2) - - mask = np.zeros_like(field) - mask[0, 0, 0] = 1 - field = np.ma.masked_array(field, mask=mask) - gamma_x = gs.vario_estimate_axis(field_ma, direction="x") - gamma_y = gs.vario_estimate_axis(field_ma, direction="y") - gamma_z = gs.vario_estimate_axis(field_ma, direction="z") - self.assertAlmostEqual(gamma_x[0], 0.0, places=2) - self.assertAlmostEqual(gamma_y[0], 0.0, places=2) - self.assertAlmostEqual(gamma_z[0], 0.0, places=2) - - def test_uncorrelated_2d(self): - x = np.linspace(0.0, 100.0, 80) - y = np.linspace(0.0, 100.0, 60) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x), len(y)) - - gamma_x = gs.vario_estimate_axis(field, direction="x") - gamma_y = gs.vario_estimate_axis(field, direction="y") - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma_x[0], 0.0, places=2) - self.assertAlmostEqual(gamma_x[len(gamma_x) // 2], var, places=2) - self.assertAlmostEqual(gamma_x[-1], var, places=2) - self.assertAlmostEqual(gamma_y[0], 0.0, places=2) - self.assertAlmostEqual(gamma_y[len(gamma_y) // 2], var, places=2) - self.assertAlmostEqual(gamma_y[-1], var, places=2) - - def test_uncorrelated_cressie_2d(self): - x = np.linspace(0.0, 100.0, 80) - y = np.linspace(0.0, 100.0, 60) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x), len(y)) - - gamma_x = gs.vario_estimate_axis( - field, direction="x", estimator="cressie" - ) - gamma_y = gs.vario_estimate_axis( - field, direction="y", estimator="cressie" - ) - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma_x[0], 0.0, places=1) - self.assertAlmostEqual(gamma_x[len(gamma_x) // 2], var, places=1) - self.assertAlmostEqual(gamma_y[0], 0.0, places=1) - self.assertAlmostEqual(gamma_y[len(gamma_y) // 2], var, places=1) - - def test_uncorrelated_3d(self): - x = np.linspace(0.0, 100.0, 30) - y = np.linspace(0.0, 100.0, 30) - z = np.linspace(0.0, 100.0, 30) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x), len(y), len(z)) - - gamma = gs.vario_estimate_axis(field, "x") - gamma = gs.vario_estimate_axis(field, "y") - gamma = gs.vario_estimate_axis(field, "z") - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma[0], 0.0, places=2) - self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) - self.assertAlmostEqual(gamma[-1], var, places=2) - - def test_directions_2d(self): - x = np.linspace(0.0, 20.0, 100) - y = np.linspace(0.0, 15.0, 80) - rng = np.random.RandomState(1479373475) - x_rand = rng.rand(len(x)) - y_rand = rng.rand(len(y)) - # random values repeated along y-axis - field_x = np.tile(x_rand, (len(y), 1)).T - # random values repeated along x-axis - field_y = np.tile(y_rand, (len(x), 1)) - - # gamma_x_x = gs.vario_estimate_axis(field_x, direction="x") - gamma_x_y = gs.vario_estimate_axis(field_x, direction="y") - - gamma_y_x = gs.vario_estimate_axis(field_y, direction="x") - # gamma_y_y = gs.vario_estimate_axis(field_y, direction="y") - - self.assertAlmostEqual(gamma_x_y[1], 0.0) - self.assertAlmostEqual(gamma_x_y[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_x_y[-1], 0.0) - self.assertAlmostEqual(gamma_y_x[1], 0.0) - self.assertAlmostEqual(gamma_y_x[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_y_x[-1], 0.0) - - def test_directions_3d(self): - x = np.linspace(0.0, 10.0, 20) - y = np.linspace(0.0, 15.0, 25) - z = np.linspace(0.0, 20.0, 30) - rng = np.random.RandomState(1479373475) - x_rand = rng.rand(len(x)) - y_rand = rng.rand(len(y)) - z_rand = rng.rand(len(z)) - - field_x = np.tile(x_rand.reshape((len(x), 1, 1)), (1, len(y), len(z))) - field_y = np.tile(y_rand.reshape((1, len(y), 1)), (len(x), 1, len(z))) - field_z = np.tile(z_rand.reshape((1, 1, len(z))), (len(x), len(y), 1)) - - # gamma_x_x = gs.vario_estimate_axis(field_x, direction="x") - gamma_x_y = gs.vario_estimate_axis(field_x, direction="y") - gamma_x_z = gs.vario_estimate_axis(field_x, direction="z") - - gamma_y_x = gs.vario_estimate_axis(field_y, direction="x") - # gamma_y_y = gs.vario_estimate_axis(field_y, direction="y") - gamma_y_z = gs.vario_estimate_axis(field_y, direction="z") - - gamma_z_x = gs.vario_estimate_axis(field_z, direction="x") - gamma_z_y = gs.vario_estimate_axis(field_z, direction="y") - # gamma_z_z = gs.vario_estimate_axis(field_z, direction="z") - - self.assertAlmostEqual(gamma_x_y[1], 0.0) - self.assertAlmostEqual(gamma_x_y[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_x_y[-1], 0.0) - self.assertAlmostEqual(gamma_x_z[1], 0.0) - self.assertAlmostEqual(gamma_x_z[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_x_z[-1], 0.0) - self.assertAlmostEqual(gamma_y_x[1], 0.0) - self.assertAlmostEqual(gamma_y_x[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_y_x[-1], 0.0) - self.assertAlmostEqual(gamma_y_z[1], 0.0) - self.assertAlmostEqual(gamma_y_z[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_y_z[-1], 0.0) - self.assertAlmostEqual(gamma_z_x[1], 0.0) - self.assertAlmostEqual(gamma_z_x[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_z_x[-1], 0.0) - self.assertAlmostEqual(gamma_z_y[1], 0.0) - self.assertAlmostEqual(gamma_z_y[len(gamma_x_y) // 2], 0.0) - self.assertAlmostEqual(gamma_z_y[-1], 0.0) - - def test_exceptions(self): - x = np.linspace(0.0, 10.0, 20) - # rng = np.random.RandomState(1479373475) - # x_rand = rng.rand(len(x)) - self.assertRaises(ValueError, gs.vario_estimate_axis, x, "a") - - def test_missing(self): - x = np.linspace(0.0, 10.0, 10) - x_nan = x.copy() - x_nan[0] = np.nan - x_mask = np.isnan(x_nan) - x = np.ma.array(x, mask=x_mask) - v1 = gs.vario_estimate_axis(x_nan) - v2 = gs.vario_estimate_axis(x) - for i in range(len(v1)): - self.assertAlmostEqual(v1[i], v2[i]) - - -if __name__ == "__main__": - unittest.main() diff --git a/tests/test_variogram_unstructured.py b/tests/test_variogram_unstructured.py deleted file mode 100644 index 10b085bf0..000000000 --- a/tests/test_variogram_unstructured.py +++ /dev/null @@ -1,409 +0,0 @@ -""" -This is a unittest of the variogram module. -""" - -import unittest - -import numpy as np - -import gstools as gs - - -class TestVariogramUnstructured(unittest.TestCase): - def setUp(self): - model = gs.Exponential(dim=3, len_scale=[12, 6, 3]) - x = y = z = range(10) - self.pos = (x, y, z) - srf = gs.SRF(model, seed=123456) - self.field = srf((x, y, z), mesh_type="structured") - - def test_doubles(self): - x = np.arange(1, 11, 1, dtype=np.double) - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - bins = np.arange(1, 11, 1, dtype=np.double) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[0], 0.4917, places=4) - - def test_ints(self): - x = np.arange(1, 5, 1, dtype=int) - z = np.array((10, 20, 30, 40), dtype=int) - bins = np.arange(1, 11, 1, dtype=int) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[0], 50.0, places=4) - - def test_mixed(self): - x = np.arange(1, 11, 1, dtype=np.double) - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - bins = np.arange(1, 11, 1, dtype=int) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[0], 0.4917, places=4) - - x = np.arange(1, 5, 1, dtype=np.double) - z = np.array((10, 20, 30, 40), dtype=int) - bins = np.arange(1, 11, 1, dtype=int) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[0], 50.0, places=4) - - x = np.arange(1, 5, 1, dtype=np.double) - z = np.array((10, 20, 30, 40), dtype=int) - bins = np.arange(1, 11, 1, dtype=np.double) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[0], 50.0, places=4) - - def test_list(self): - x = np.arange(1, 11, 1, dtype=np.double) - z = [41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3] - bins = np.arange(1, 11, 1, dtype=np.double) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[1], 0.7625, places=4) - - def test_1d(self): - x = np.arange(1, 11, 1, dtype=np.double) - # literature values - z = np.array( - (41.2, 40.2, 39.7, 39.2, 40.1, 38.3, 39.1, 40.0, 41.1, 40.3), - dtype=np.double, - ) - bins = np.arange(1, 11, 1, dtype=np.double) - bin_centres, gamma = gs.vario_estimate([x], z, bins) - self.assertAlmostEqual(gamma[0], 0.4917, places=4) - self.assertAlmostEqual(gamma[1], 0.7625, places=4) - - def test_uncorrelated_2d(self): - x_c = np.linspace(0.0, 100.0, 60) - y_c = np.linspace(0.0, 100.0, 60) - x, y = np.meshgrid(x_c, y_c) - x = np.reshape(x, len(x_c) * len(y_c)) - y = np.reshape(y, len(x_c) * len(y_c)) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x)) - - bins = np.arange(0, 100, 10) - - bin_centres, gamma = gs.vario_estimate((x, y), field, bins) - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma[0], var, places=2) - self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) - self.assertAlmostEqual(gamma[-1], var, places=2) - - def test_uncorrelated_3d(self): - x_c = np.linspace(0.0, 100.0, 15) - y_c = np.linspace(0.0, 100.0, 15) - z_c = np.linspace(0.0, 100.0, 15) - x, y, z = np.meshgrid(x_c, y_c, z_c) - x = np.reshape(x, len(x_c) * len(y_c) * len(z_c)) - y = np.reshape(y, len(x_c) * len(y_c) * len(z_c)) - z = np.reshape(z, len(x_c) * len(y_c) * len(z_c)) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x)) - - bins = np.arange(0, 100, 10) - - bin_centres, gamma = gs.vario_estimate((x, y, z), field, bins) - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma[0], var, places=2) - self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) - self.assertAlmostEqual(gamma[-1], var, places=2) - - def test_sampling_1d(self): - x = np.linspace(0.0, 100.0, 21000) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x)) - - bins = np.arange(0, 100, 10) - - bin_centres, gamma = gs.vario_estimate( - [x], field, bins, sampling_size=5000, sampling_seed=1479373475 - ) - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma[0], var, places=2) - self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) - self.assertAlmostEqual(gamma[-1], var, places=2) - - def test_sampling_2d(self): - x_c = np.linspace(0.0, 100.0, 600) - y_c = np.linspace(0.0, 100.0, 600) - x, y = np.meshgrid(x_c, y_c) - x = np.reshape(x, len(x_c) * len(y_c)) - y = np.reshape(y, len(x_c) * len(y_c)) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x)) - - bins = np.arange(0, 100, 10) - - bin_centres, gamma = gs.vario_estimate( - (x, y), field, bins, sampling_size=2000, sampling_seed=1479373475 - ) - - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma[0], var, places=2) - self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) - self.assertAlmostEqual(gamma[-1], var, places=2) - - def test_sampling_3d(self): - x_c = np.linspace(0.0, 100.0, 100) - y_c = np.linspace(0.0, 100.0, 100) - z_c = np.linspace(0.0, 100.0, 100) - x, y, z = np.meshgrid(x_c, y_c, z_c) - x = np.reshape(x, len(x_c) * len(y_c) * len(z_c)) - y = np.reshape(y, len(x_c) * len(y_c) * len(z_c)) - z = np.reshape(z, len(x_c) * len(y_c) * len(z_c)) - - rng = np.random.RandomState(1479373475) - field = rng.rand(len(x)) - - bins = np.arange(0, 100, 10) - - bin_centres, gamma = gs.vario_estimate( - (x, y, z), - field, - bins, - sampling_size=2000, - sampling_seed=1479373475, - ) - var = 1.0 / 12.0 - self.assertAlmostEqual(gamma[0], var, places=2) - self.assertAlmostEqual(gamma[len(gamma) // 2], var, places=2) - self.assertAlmostEqual(gamma[-1], var, places=2) - - def test_assertions(self): - x = np.arange(0, 10) - x_e = np.arange(0, 11) - y = np.arange(0, 11) - y_e = np.arange(0, 12) - z = np.arange(0, 12) - z_e = np.arange(0, 15) - bins = np.arange(0, 3) - # bins_e = np.arange(0, 1) - field = np.arange(0, 10) - field_e = np.arange(0, 9) - - self.assertRaises(ValueError, gs.vario_estimate, [x_e], field, bins) - self.assertRaises(ValueError, gs.vario_estimate, (x, y_e), field, bins) - self.assertRaises( - ValueError, gs.vario_estimate, (x, y_e, z), field, bins - ) - self.assertRaises( - ValueError, gs.vario_estimate, (x, y, z_e), field, bins - ) - self.assertRaises( - ValueError, gs.vario_estimate, (x_e, y, z), field, bins - ) - self.assertRaises( - ValueError, gs.vario_estimate, (x, y, z), field_e, bins - ) - self.assertRaises(ValueError, gs.vario_estimate, [x], field_e, bins) - self.assertRaises( - ValueError, gs.vario_estimate, [x], field, bins, estimator="bla" - ) - - def test_multi_field(self): - x = np.random.RandomState(19970221).rand(100) * 100.0 - model = gs.Exponential(dim=1, var=2, len_scale=10) - srf = gs.SRF(model) - field1 = srf(x, seed=19970221) - field2 = srf(x, seed=20011012) - bins = np.arange(20) * 2 - bin_center, gamma1 = gs.vario_estimate(x, field1, bins) - bin_center, gamma2 = gs.vario_estimate(x, field2, bins) - bin_center, gamma = gs.vario_estimate(x, [field1, field2], bins) - gamma_mean = 0.5 * (gamma1 + gamma2) - for i in range(len(gamma)): - self.assertAlmostEqual(gamma[i], gamma_mean[i], places=2) - - def test_no_data(self): - x1 = np.random.RandomState(19970221).rand(100) * 100.0 - field1 = np.random.RandomState(20011012).rand(100) * 100.0 - field1[:10] = np.nan - x2 = x1[10:] - field2 = field1[10:] - bins = np.arange(20) * 2 - bin_center, gamma1 = gs.vario_estimate(x1, field1, bins) - bin_center, gamma2 = gs.vario_estimate(x2, field2, bins) - for i in range(len(gamma1)): - self.assertAlmostEqual(gamma1[i], gamma2[i], places=2) - - def test_direction_axis(self): - field = np.ma.array(self.field) - field.mask = np.abs(field) < 0.1 - bins = range(10) - __, vario_u = gs.vario_estimate( - *(self.pos, field, bins), - direction=((1, 0, 0), (0, 1, 0), (0, 0, 1)), # x-, y- and z-axis - bandwidth=0.25, # bandwith small enough to only match lines - mesh_type="structured", - ) - vario_s_x = gs.vario_estimate_axis(field, "x") - vario_s_y = gs.vario_estimate_axis(field, "y") - vario_s_z = gs.vario_estimate_axis(field, "z") - for i in range(len(bins) - 1): - self.assertAlmostEqual(vario_u[0][i], vario_s_x[i]) - self.assertAlmostEqual(vario_u[1][i], vario_s_y[i]) - self.assertAlmostEqual(vario_u[2][i], vario_s_z[i]) - - def test_direction_angle(self): - bins = range(0, 10, 2) - __, v2, c2 = gs.vario_estimate( - *(self.pos[:2], self.field[0], bins), - angles=np.pi / 4, # 45 deg - mesh_type="structured", - return_counts=True, - ) - __, v1, c1 = gs.vario_estimate( - *(self.pos[:2], self.field[0], bins), - direction=(1, 1), # 45 deg - mesh_type="structured", - return_counts=True, - ) - for i in range(len(bins) - 1): - self.assertAlmostEqual(v1[i], v2[i]) - self.assertEqual(c1[i], c2[i]) - - def test_direction_assertion(self): - pos = [[1, 2, 3], [1, 2, 3]] - bns = [1, 2] - fld = np.ma.array([1, 2, 3]) - self.assertRaises( # degenerated direction - ValueError, gs.vario_estimate, pos, fld, bns, direction=[0, 0] - ) - self.assertRaises( # wrong shape of direction - ValueError, gs.vario_estimate, pos, fld, bns, direction=[[[3, 1]]] - ) - self.assertRaises( # wrong dimension of direction - ValueError, gs.vario_estimate, pos, fld, bns, direction=[[3, 1, 2]] - ) - self.assertRaises( # wrong shape of angles - ValueError, gs.vario_estimate, pos, fld, bns, angles=[[[1]]] - ) - self.assertRaises( # wrong dimension of angles - ValueError, gs.vario_estimate, pos, fld, bns, angles=[[1, 1]] - ) - self.assertRaises( # direction on latlon - ValueError, - gs.vario_estimate, - pos, - fld, - bns, - direction=[1, 0], - latlon=True, - ) - - def test_mask_no_data(self): - pos = [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]] - bns = [0, 4] - fld1 = np.ma.array([1, 2, 3, 4, 5]) - fld2 = np.ma.array([np.nan, 2, 3, 4, 5]) - fld3 = np.ma.array([1, 2, 3, 4, 5]) - mask = [False, False, True, False, False] - fld1.mask = [True, False, False, False, False] - fld2.mask = mask - __, v1, c1 = gs.vario_estimate( - *(pos, fld1, bns), - mask=mask, - return_counts=True, - ) - __, v2, c2 = gs.vario_estimate(*(pos, fld2, bns), return_counts=True) - __, v3, c3 = gs.vario_estimate( - *(pos, fld3, bns), - no_data=1, - mask=mask, - return_counts=True, - ) - __, v4, c4 = gs.vario_estimate( - *(pos, fld3, bns), - mask=True, - return_counts=True, - ) - __, v5 = gs.vario_estimate(*(pos, fld3, bns), mask=True) - - self.assertAlmostEqual(v1[0], v2[0]) - self.assertAlmostEqual(v1[0], v3[0]) - self.assertEqual(c1[0], c2[0]) - self.assertEqual(c1[0], c3[0]) - self.assertAlmostEqual(v4[0], 0.0) - self.assertEqual(c4[0], 0) - self.assertAlmostEqual(v5[0], 0.0) - - def test_fit_directional(self): - model = gs.Stable(dim=3) - bins = [0, 3, 6, 9, 12] - model.len_scale_bounds = [0, 20] - bin_center, emp_vario, counts = gs.vario_estimate( - *(self.pos, self.field, bins), - direction=model.main_axes(), - mesh_type="structured", - return_counts=True, - ) - # check if this succeeds - model.fit_variogram(bin_center, emp_vario, sill=1, return_r2=True) - self.assertTrue(1 > model.anis[0] > model.anis[1]) - model.fit_variogram(bin_center, emp_vario, sill=1, anis=[0.5, 0.25]) - self.assertTrue(15 > model.len_scale) - model.fit_variogram(bin_center, emp_vario, sill=1, weights=counts) - len_save = model.len_scale - model.fit_variogram(bin_center, emp_vario, sill=1, weights=counts[0]) - self.assertAlmostEqual(len_save, model.len_scale) - # catch wrong dim for dir.-vario - with self.assertRaises(ValueError): - model.fit_variogram(bin_center, emp_vario[:2]) - - def test_auto_binning(self): - # structured mesh - bin_center, emp_vario = gs.vario_estimate( - self.pos, - self.field, - mesh_type="structured", - ) - self.assertEqual(len(bin_center), 21) - self.assertTrue(np.all(bin_center[1:] > bin_center[:-1])) - self.assertTrue(np.all(bin_center > 0)) - # unstructured mesh - bin_center, emp_vario = gs.vario_estimate( - self.pos, - self.field[:, 0, 0], - ) - self.assertEqual(len(bin_center), 8) - self.assertTrue(np.all(bin_center[1:] > bin_center[:-1])) - self.assertTrue(np.all(bin_center > 0)) - # latlon coords - bin_center, emp_vario = gs.vario_estimate( - self.pos[:2], - self.field[..., 0], - mesh_type="structured", - latlon=True, - ) - self.assertEqual(len(bin_center), 15) - self.assertTrue(np.all(bin_center[1:] > bin_center[:-1])) - self.assertTrue(np.all(bin_center > 0)) - - def test_standard_bins(self): - # structured mesh - bins = gs.standard_bins(self.pos, dim=3, mesh_type="structured") - self.assertEqual(len(bins), 22) - self.assertTrue(np.all(bins[1:] > bins[:-1])) - self.assertTrue(np.all(bins[1:] > 0)) - # no pos given - self.assertRaises(ValueError, gs.standard_bins) - - def test_raise(self): - # 1d field given for latlon estimation -> needs 2d - self.assertRaises( - ValueError, gs.vario_estimate, [[1, 2]], [1, 2], latlon=True - ) - - -if __name__ == "__main__": - unittest.main()