-
Notifications
You must be signed in to change notification settings - Fork 36
/
uart.c
567 lines (486 loc) · 14.8 KB
/
uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*****************************************************************************
* *
* DFU/SD/SDHC Bootloader for LPC17xx *
* *
* by Triffid Hunter *
* *
* *
* This firmware is Copyright (C) 2009-2010 Michael Moon aka Triffid_Hunter *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *
* *
*****************************************************************************/
#include "uart.h"
#include "LPC17xx.h"
#include "lpc17xx_pinsel.h"
#include "lpc17xx_gpio.h"
#include "lpc17xx_clkpwr.h"
#include "config.h"
// #include "debug.h"
// void dbgled(int l);
// void setled(int, int);
#ifndef ENTER_ISR
#define ENTER_ISR() do {} while (0)
#endif
#ifndef LEAVE_ISR
#define LEAVE_ISR() do {} while (0)
#endif
/* Buf mask */
#define __BUF_MASK (UART_RING_BUFSIZE-1)
/* Check buf is full or not */
#define __BUF_IS_FULL(head, tail) ((tail&__BUF_MASK)==((head+1)&__BUF_MASK))
/* Check buf will be full in next receiving or not */
#define __BUF_WILL_FULL(head, tail) ((tail&__BUF_MASK)==((head+2)&__BUF_MASK))
/* Check buf is empty */
#define __BUF_IS_EMPTY(head, tail) ((head&__BUF_MASK)==(tail&__BUF_MASK))
/* Reset buf */
#define __BUF_RESET(bufidx) (bufidx=0)
#define __BUF_INCR(bufidx) (bufidx=(bufidx+1)&__BUF_MASK)
#define RB_MASK (UART_RINGBUFFER_SIZE - 1)
#define RB_FULL(rb) ((rb.tail & RB_MASK) == ((rb.head + 1) & RB_MASK))
#define RB_EMPTY(rb) ((rb.head & RB_MASK) == ( rb.tail & RB_MASK))
#define RB_ZERO(rb) do { rb.head = rb.tail = 0; } while (0)
#define RB_INCR(ht) do { ht = (ht + 1) & RB_MASK; } while (0)
#define RB_PUSH(rb, val) do { rb.data[rb.head++] = val; rb.head &= RB_MASK; } while (0)
#define RB_POP( rb, val) do { val = rb.data[rb.tail++]; rb.tail &= RB_MASK; } while (0)
#define RB_PEEK(rb, val) do { val = rb.data[rb.tail++]; } while (0)
#define RB_DROP(rb) do { rb.tail = (rb.tail + 1) & RB_MASK; } while (0)
#define RB_CANREAD(rb) (((UART_RINGBUFFER_SIZE + rb.head) - rb.tail ) & RB_MASK)
#define RB_CANWRITE(rb) (((UART_RINGBUFFER_SIZE + rb.tail) - (rb.head + 1)) & RB_MASK)
LPC_UART_TypeDef * u;
// UART Ring buffers
UART_RINGBUFFER_T txbuf;
UART_RINGBUFFER_T rxbuf;
// Current Tx Interrupt enable state
__IO FlagStatus TxIntStat;
volatile uint8_t blocking;
#define true 1
#define false 0
int port;
void UART_init(PinName rxpin, PinName txpin, int baud)
{
UART_pin_init(rxpin, txpin);
UART_baud(baud);
}
void UART_pin_init(PinName rxpin, PinName txpin)
{
blocking = true;
PINSEL_CFG_Type PinCfg;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
if (txpin == P0_2 && rxpin == P0_3) {
port = 0;
u = LPC_UART0;
PinCfg.Funcnum = 1;
}
else if (txpin == P0_0 && rxpin == P0_1) {
port = 3;
u = LPC_UART3;
PinCfg.Funcnum = 2;
}
else if (txpin == P0_10 && rxpin == P0_11) {
port = 2;
u = LPC_UART2;
PinCfg.Funcnum = 1;
}
else if (txpin == P0_15 && rxpin == P0_16) {
port = 1;
u = (LPC_UART_TypeDef *) LPC_UART1;
PinCfg.Funcnum = 1;
}
else if (txpin == P0_25 && rxpin == P0_26) {
port = 3;
u = LPC_UART3;
PinCfg.Funcnum = 3;
}
else if (txpin == P2_0 && rxpin == P2_1) {
port = 1;
u = (LPC_UART_TypeDef *) LPC_UART1;
PinCfg.Funcnum = 2;
}
else if (txpin == P2_8 && rxpin == P2_9) {
port = 2;
u = LPC_UART2;
PinCfg.Funcnum = 2;
}
else if (txpin == P4_28 && rxpin == P4_29) {
port = 3;
u = LPC_UART3;
PinCfg.Funcnum = 3;
}
else {
//TODO: software serial
port = -1;
return;
}
PinCfg.Portnum = (txpin >> 5) & 7;
PinCfg.Pinnum = (txpin & 0x1F);
PINSEL_ConfigPin(&PinCfg);
PinCfg.Portnum = (rxpin >> 5) & 7;
PinCfg.Pinnum = (rxpin & 0x1F);
PINSEL_ConfigPin(&PinCfg);
}
typedef struct {
uint32_t baud;
uint8_t pd;
uint16_t dl;
uint8_t mulval;
uint8_t divaddval;
} uart_regs;
// prevent system_LPC17xx from polluting our namespace
#undef __LPC17XX__
// pull in system_LPC17xx so we can see __CORE_CLK
#include <system_LPC17xx.c>
#define __LPC17XX__
// check if we can use precalculated values
#if ((defined APPBAUD) && (__CORE_CLK == 120000000) && (APPBAUD == 2000000))
static inline int baud_space_search(uint32_t target_baud, uart_regs *r)
{
r->baud = 2000000;
r->pd = 0;
r->dl = 3;
r->mulval = 4;
r->divaddval = 1;
return 0;
}
#else
/* definition to expand macro then apply to pragma message */
// #define _STR(x) #x
// #define STR(x) _STR(x)
// #pragma message STR(APPBAUD)
// #pragma message STR(__CORE_CLK)
static uint32_t const uabs(const uint32_t a, const uint32_t b)
{
if (a>=b)
return a-b;
return b-a;
}
static uint32_t const calc_baud(uint32_t pclk, uint32_t dl, uint32_t divaddval, uint32_t mulval)
{
// 65535 * 14 * 16 is less than 2**24 so we have a spare 8 bits of precision
// we can use them to increase our accuracy quite a bit
// pclk is less than 2**27, so we have 5 spare bits for the numerator
// this means we can do (numerator * 2**5) / (denominator * 2**8) * 2**3 to get the highest accuracy possible with 32 bit integers
// denominator is 16 * (dl * (1 + (divadd / mul)) which can be expanded to
// dl*16 + dl*16*divadd/mul which gives far more opportunity for using all our precision
uint32_t dx = ((dl * 16 * 32 * 8) + ((dl * 16 * divaddval * 32 * 8) / mulval));
return ((pclk * 32) / dx) * 8;
}
static int baud_space_search(uint32_t target_baud, uart_regs *r)
{
uint32_t pd, dl, mulval, divaddval;
int i = 0;
r->baud = 0;
for (pd = ((target_baud < 1000000)?3:1); pd < 4; pd--)
{
uint32_t pclk = SystemCoreClock / (1<<pd);
for (mulval = 1; mulval < 16; mulval++)
{
for (divaddval = 0; divaddval < mulval; divaddval++)
{
i++;
// baud = pclk / (16 * dl * (1 + (DivAdd / Mul))
// solving for dl, we get dl = mul * pclk / (16 * baud * (divadd + mul))
// we double the numerator, add 1 to the result then halve to effectivel round up when dl % 1 > 0.5
dl = (((2 * mulval * pclk) / (16 * target_baud * (divaddval + mulval))) + 1) / 2;
// dl is a 16 bit field, if result needs more then we search again
if (dl > 65535)
continue;
// datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood
if (dl == 0)
dl = 1;
// datasheet says if DIVADDVAL > 0 then DL must be >= 2
if ((divaddval > 0) && (dl < 2))
dl = 2;
uint32_t b = calc_baud(pclk, dl, divaddval, mulval);
if (uabs(b, target_baud) < uabs(r->baud, target_baud))
{
r->baud = b;
r->pd = pd;
r->dl = dl;
r->mulval = mulval;
r->divaddval = divaddval;
// printf("\t\t{%7d,%4d,%6d,%3d,%3d},\t// Actual baud: %7d, error %c%4.2f%%, %d iterations\n", target_baud, 1<<best.pd, best.dl, best.mulval, best.divaddval, b, ((b > target_baud)?'+':((b < target_baud)?'-':' ')), (uabs(target_baud, b) * 100.0) / target_baud, i);
if (b == target_baud)
return i;
// within 0.08%
if ((uabs(r->baud, target_baud) * 1536 / target_baud) < 1)
return i;
}
}
}
// don't check higher pclk if we're within 0.5%
if ((uabs(r->baud, target_baud) * 200 / target_baud) < 1)
return i;
}
return i;
}
#endif
int UART_baud(int baud)
{
TxIntStat = RESET;
RB_ZERO(txbuf);
RB_ZERO(rxbuf);
uart_regs r = { 0, 0, 0, 0, 0 };
baud_space_search(baud, &r);
uint8_t pclkdiv;
IRQn_Type c = 255;
switch (r.pd)
{
case 0:
pclkdiv = CLKPWR_PCLKSEL_CCLK_DIV_1;
break;
case 1:
pclkdiv = CLKPWR_PCLKSEL_CCLK_DIV_2;
break;
case 2:
pclkdiv = CLKPWR_PCLKSEL_CCLK_DIV_4;
break;
default:
case 3:
pclkdiv = CLKPWR_PCLKSEL_CCLK_DIV_8;
break;
}
// PCLKSEL0
#define PCLK_UART0 6
#define PCLK_UART1 8
// PCLKSEL1
#define PCLK_UART2 16
#define PCLK_UART3 18
switch(port)
{
case 0:
LPC_SC->PCONP |= CLKPWR_PCONP_PCUART0;
LPC_SC->PCLKSEL0 = (LPC_SC->PCLKSEL0 & ~(3 << PCLK_UART0)) | pclkdiv << PCLK_UART0;
c = UART0_IRQn;
break;
case 1:
LPC_SC->PCONP |= CLKPWR_PCONP_PCUART1;
LPC_SC->PCLKSEL0 = (LPC_SC->PCLKSEL0 & ~(3 << PCLK_UART1)) | pclkdiv << PCLK_UART1;
c = UART1_IRQn;
break;
case 2:
LPC_SC->PCONP |= CLKPWR_PCONP_PCUART2;
LPC_SC->PCLKSEL1 = (LPC_SC->PCLKSEL1 & ~(3 << PCLK_UART2)) | pclkdiv << PCLK_UART2;
c = UART2_IRQn;
break;
case 3:
LPC_SC->PCONP |= CLKPWR_PCONP_PCUART3;
LPC_SC->PCLKSEL1 = (LPC_SC->PCLKSEL1 & ~(3 << PCLK_UART3)) | pclkdiv << PCLK_UART3;
c = UART3_IRQn;
break;
}
u->LCR |= UART_LCR_DLAB_EN;
u->DLM = (r.dl >> 8) & 0xFF;
u->DLL = (r.dl & 0xFF);
u->LCR &= ~(UART_LCR_DLAB_EN) & UART_LCR_BITMASK;
u->FDR = (r.divaddval & 0xF) | ((r.mulval & 0xF) << 4);
u->FCR = (UART_FCR_FIFO_EN | UART_FCR_RX_RS | UART_FCR_TX_RS);
u->LCR = UART_LCR_WLEN8;
u->ICR = 0;
u->TER |= UART_TER_TXEN;
if (c < 128)
NVIC_EnableIRQ(c);
return baud;
}
void UART_deinit(void) {
switch(port)
{
case 0:
NVIC_DisableIRQ(UART0_IRQn);
break;
case 1:
NVIC_DisableIRQ(UART1_IRQn);
break;
case 2:
NVIC_DisableIRQ(UART2_IRQn);
break;
case 3:
NVIC_DisableIRQ(UART3_IRQn);
break;
}
}
uint32_t UART_send(const uint8_t *data, uint32_t buflen) {
uint32_t bytes = 0;
// only fiddle interrupt status outside interrupt context
uint8_t intr = __get_IPSR() & 0x1F;
if (intr == 0) __disable_irq();
while ((buflen > 0) && (!RB_FULL(txbuf) || blocking))
{
if (intr == 0) __enable_irq();
if (RB_FULL(txbuf)) {
if (blocking && (intr == 0))
{
while (RB_FULL(txbuf))
__WFI();
}
else {
RB_DROP(txbuf);
}
}
if (intr == 0) __disable_irq();
RB_PUSH(txbuf, *data++);
if (intr == 0) __enable_irq();
bytes++;
buflen--;
if (intr == 0) __disable_irq();
}
if (intr == 0) __enable_irq();
if (TxIntStat == RESET) {
UART_tx_isr();
}
return bytes;
}
uint32_t UART_recv(uint8_t *buf, uint32_t buflen) {
uint32_t bytes = 0;
// only fiddle interrupt status outside interrupt context
uint8_t intr = __get_IPSR() & 0x1F;
if (intr == 0) __disable_irq();
while ((buflen > 0) && (!(RB_EMPTY(rxbuf))))
{
RB_POP(rxbuf, *buf++);
if (intr == 0) __enable_irq();
bytes++;
buflen--;
if (intr == 0) __disable_irq();
}
if (intr == 0) __enable_irq();
return bytes;
}
int UART_cansend(void) {
return RB_CANWRITE(txbuf);
}
int UART_canrecv(void) {
return RB_CANREAD(rxbuf);
}
int UART_busy(void) {
if (u->LSR & UART_LSR_TEMT)
return 0;
return RB_CANREAD(txbuf);
}
void UART_isr(void)
{
uint32_t intsrc, ls;
/* Determine the interrupt source */
intsrc = UART_GetIntId(u) & UART_IIR_INTID_MASK;
// Receive Line Status
if (intsrc == UART_IIR_INTID_RLS)
{
// Check line status
ls = UART_GetLineStatus(u);
// Mask out the Receive Ready and Transmit Holding empty status
ls &= (UART_LSR_OE | UART_LSR_PE | UART_LSR_FE | UART_LSR_BI | UART_LSR_RXFE);
// If any error exist
if (ls)
{
UART_err_isr(ls & 0xFF);
}
}
// Receive Data Available or Character time-out
if ((intsrc == UART_IIR_INTID_RDA) || (intsrc == UART_IIR_INTID_CTI))
{
UART_rx_isr();
}
// Transmit Holding Empty
if (intsrc == UART_IIR_INTID_THRE)
{
UART_tx_isr();
}
}
void UART_tx_isr(void) {
// Disable THRE interrupt
UART_IntConfig(u, UART_INTCFG_THRE, DISABLE);
/* Wait for FIFO buffer empty, transfer UART_TX_FIFO_SIZE bytes
* of data or break whenever ring buffers are empty */
/* Wait until THR empty */
while (UART_CheckBusy(u) == SET);
while (!RB_EMPTY(txbuf))
{
RB_POP(txbuf, u->THR);
}
/* If there is no more data to send, disable the transmit
* interrupt - else enable it or keep it enabled */
if (RB_EMPTY(txbuf)) {
UART_IntConfig(u, UART_INTCFG_THRE, DISABLE);
// Reset Tx Interrupt state
TxIntStat = RESET;
}
else{
// Set Tx Interrupt state
TxIntStat = SET;
UART_IntConfig(u, UART_INTCFG_THRE, ENABLE);
}
}
void UART_rx_isr(void) {
uint8_t c;
uint32_t r;
while(1){
// If data received
r = u->LSR;
if (r & UART_LSR_RDR){
c = u->RBR;
/* Check if buffer is more space
* If no more space, remaining character will be trimmed out
*/
if (!RB_FULL(rxbuf)){
RB_PUSH(rxbuf, c);
}
}
// no more data
else {
break;
}
}
}
void UART_err_isr(uint8_t bLSErrType) {
// uint8_t test;
// Loop forever
while (1){
// For testing purpose
// test = bLSErrType;
}
}
// extern "C" {
void UART0_IRQHandler(void)
{
ENTER_ISR();
// if (UART_irqrouter[0])
// UART_irqrouter[0]->isr();
UART_isr();
LEAVE_ISR();
}
/*
void UART1_IRQHandler(void)
{
ENTER_ISR();
if (UART_irqrouter[1])
UART_irqrouter[1]->isr();
LEAVE_ISR();
}
void UART2_IRQHandler(void)
{
ENTER_ISR();
if (UART_irqrouter[2])
UART_irqrouter[2]->isr();
LEAVE_ISR();
}
void UART3_IRQHandler(void)
{
ENTER_ISR();
if (UART_irqrouter[3])
UART_irqrouter[3]->isr();
LEAVE_ISR();
}
// }*/