forked from lrq3000/csg_dicoms_anonymizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
72 lines (65 loc) · 2.59 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
import sys
from io import open as io_open
# Main setup.py config #
# Get version from csg_dicoms_anonymizer/_version.py
__version__ = None
version_file = os.path.join(os.path.dirname(__file__), 'csg_dicoms_anonymizer', '_version.py')
with io_open(version_file, mode='r') as fd:
exec(fd.read())
# Python package config #
README_rst = ''
fndoc = os.path.join(os.path.dirname(__file__), 'README.rst')
with io_open(fndoc, mode='r', encoding='utf-8') as fd:
README_rst = fd.read()
setup(
name='csg_dicoms_anonymizer',
version=__version__,
description='Robust and easy to use generic dicoms anonymizer with demographics csv spreadsheet anonymization by hashed ids',
license='MIT Licence',
author='Stephen Larroque',
author_email='[email protected]',
url='https://github.com/LRQ3000/csg_dicoms_anonymizer',
maintainer='Stephen Larroque',
maintainer_email='[email protected]',
platforms=['any'],
entry_points={'console_scripts': ['csg_dicoms_anonymizer=csg_dicoms_anonymizer.csg_dicoms_anonymizer:main'], },
packages=['csg_dicoms_anonymizer'],
long_description=README_rst,
classifiers=[
# Trove classifiers
# (https://pypi.python.org/pypi?%3Aaction=list_classifiers)
'Development Status :: 4 - Beta',
'License :: OSI Approved :: MIT License',
'Environment :: Console',
'Environment :: Win32 (MS Windows)',
'Environment :: MacOS X',
'Environment :: X11 Applications',
'Operating System :: Microsoft :: Windows',
'Operating System :: MacOS :: MacOS X',
'Operating System :: POSIX',
'Operating System :: POSIX :: Linux',
'Operating System :: POSIX :: BSD',
'Operating System :: POSIX :: BSD :: FreeBSD',
'Operating System :: POSIX :: SunOS/Solaris',
'Programming Language :: Python',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: Implementation :: PyPy',
'Topic :: Scientific/Engineering :: Medical Science Apps.',
'Topic :: Software Development :: Libraries',
'Topic :: Utilities',
'Intended Audience :: End Users/Desktop',
'Intended Audience :: Science/Research',
'Intended Audience :: Healthcare Industry',
],
keywords='dicom neuroimage neuroimagery utility anonymizer fuzzy matching',
test_suite='nose.collector',
tests_require=['nose', 'coverage'],
)