-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathui_app.py
357 lines (326 loc) · 15.5 KB
/
ui_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import streamlit as st
from streamlit_chat import message
from PIL import Image
from service.query_understanding import Multi_Turn_Query_Understanding
from service.query_decomposition import query_decomposition
from init import hybrid_retriever
from service.nodes_arrangement import nodes_arrangement
from service.sub_query_response import sub_query_response
from service.extractor import extractor_paper, extractor_internet
from service.summerize import summerize
from service.self_critic import self_critic, self_refine
from service.query_internet import query_internet
import concurrent.futures
from service.query_router import query_router
from tool.bm25_tool import bm25_tool
from tool.qdrant_tool import qdrant_tool
from tool.chat_pdf_tool import chat_pdf_tool
from tool.math_tool import math_tool
from tool.code_tool import code_tool
from tool.internet_tool import internet_tool
from llama_index.core.agent import ReActAgent
from llama_index.llms.openllm import OpenLLM
from llm.chat_llm import chat
from service.add_citation import add_citation_with_retrieved_node
from streamlit.runtime.scriptrunner.script_run_context import (
add_script_run_ctx,
get_script_run_ctx,
)
from llama_index.core.schema import NodeWithScore
from threading import current_thread
from example_history.load_example import multimodal, wizard_lm, what_is_ppo
import copy
from config import agent_model, openai_api_base_url, openai_api_key, llm_chat_model, agent_model_base_url
st.set_page_config(page_title="OpenResearcher", page_icon=Image.open("images/page_icon.jpg"), layout="wide")
# Setting page title and header
st.markdown(
"<h1 style='text-align: center;'>OpenResearcher</h1>",
unsafe_allow_html=True,
)
st.divider()
st.markdown(
"<center><i>Welcome to OpenResearcher, an advanced Scientific Research Assistant designed to provide a helpful answer to a research query. <br> With access to the arXiv corpus, OpenResearcher can provide you with the latest scientific insights. <br> Explore the frontiers of science with OpenResearcher—where answers await.</i></center>",
unsafe_allow_html=True,
)
st.divider()
# Initialise session state variables
if "cnt" not in st.session_state:
st.session_state.cnt = 0
st.session_state.query = ""
st.session_state.done = False
st.session_state.llm = Multi_Turn_Query_Understanding()
st.session_state.mode = -1
st.session_state.skip_rerun = False
# Sidebar
counter_placeholder = st.sidebar.empty()
with st.sidebar:
st.markdown(
"<h3 style='text-align: center;'>Ask anything you want to know!</h3>",
unsafe_allow_html=True,
)
st.sidebar.image("images/logo.jpg", use_column_width=True)
st.write('')
st.write('')
st.write('')
st.markdown(
"<p><b>Example: </b></p>",
unsafe_allow_html=True,
)
history_ppo_button = st.sidebar.button("What is PPO?",
key="hostory::what is ppo",
use_container_width=True)
if history_ppo_button:
st.session_state.mode = -1
st.session_state.cnt = 0
st.session_state.query = ""
st.session_state.done = False
st.session_state.messages = copy.deepcopy(what_is_ppo)
st.session_state.llm = Multi_Turn_Query_Understanding()
st.session_state.skip_rerun = False
history_multimodal_button = st.sidebar.button("In multimodal pretraining, the...",
key="hostory::multimodal",
use_container_width=True)
if history_multimodal_button:
st.session_state.mode = -1
st.session_state.cnt = 0
st.session_state.query = ""
st.session_state.done = False
st.session_state.messages = copy.deepcopy(multimodal)
st.session_state.llm = Multi_Turn_Query_Understanding()
st.session_state.skip_rerun = False
history_wizardlm_button = st.sidebar.button("Search the paper and tell about...",
key="hostory::wizardlm",
use_container_width=True)
if history_wizardlm_button:
st.session_state.mode = -1
st.session_state.cnt = 0
st.session_state.query = ""
st.session_state.done = False
st.session_state.messages = copy.deepcopy(wizard_lm)
st.session_state.llm = Multi_Turn_Query_Understanding()
st.session_state.skip_rerun = False
st.write('')
st.write('')
clear_button = st.sidebar.button("Clear Chat History",
key="clear",
type="primary",
use_container_width=True)
if clear_button:
st.session_state.mode = -1
st.session_state.cnt = 0
st.session_state.query = ""
st.session_state.done = False
st.session_state.messages = []
st.session_state.llm = Multi_Turn_Query_Understanding()
st.session_state.skip_rerun = False
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
if "expanders" in message:
for i in range(0, 2):
expander_name, expander_content = message['expanders'][i]
# for expander_name, expander_content in message['expanders']:
with st.expander(expander_name, expanded=True):
st.write(expander_content)
with st.expander("Sub Answers:", expanded=True):
columns_info = message['expanders'][2]
columns_size = len(columns_info)
columns = st.columns(columns_size)
for i in range(columns_size):
column_info = columns_info[i]
with columns[i]:
tabs_info = column_info[0]
tabs = st.tabs([tabs_name for tabs_name, tabs_content in tabs_info])
for j in range(len(tabs_info)):
with tabs[j]:
st.write(tabs_info[j][1])
st.write(column_info[1])
elif "critic_expander" in message:
name, critic = message['critic_expander']
with st.expander(name, expanded=True):
st.write(critic)
st.markdown(message["content"])
llm = OpenLLM(model=agent_model,
api_base=agent_model_base_url,
api_key=openai_api_key)
agent = ReActAgent.from_tools(
[qdrant_tool,
bm25_tool,
chat_pdf_tool,
math_tool,
code_tool,
internet_tool
],
llm=llm,
verbose=True,
max_iterations=15,
)
import nltk
def split_sentences(text):
return nltk.sent_tokenize(text)
def process_content(query_str, content, row, row_ctx):
add_script_run_ctx(current_thread(), row_ctx)
with row:
st.write("RETRIEVED INFO:\n\n")
cleaned_content = st.write_stream(extractor_paper(query_str=query_str, content=content))
return cleaned_content
def dummy_write_stream(generator):
response = ""
for gen in generator:
response += gen
return response
def process_internet_content(query_str):
internet_content = query_internet(query_str)
cleaned_content = dummy_write_stream(extractor_internet(query_str=query_str, content=internet_content))
return cleaned_content
def process_sub_query(sub_query, column, ctx, result):
add_script_run_ctx(current_thread(), ctx)
query_str = sub_query
arr = nodes_arrangement(result)
context_list = []
tabs_info = []
with column:
tabs_name = [content.split("\n")[0].split(":")[-1].strip() for content in arr]
tabs = st.tabs(tabs_name)
with concurrent.futures.ThreadPoolExecutor() as executor:
row_ctx = get_script_run_ctx()
future_to_content = [executor.submit(process_content, query_str, arr[i], tabs[i], row_ctx) for i in range(len(arr))]
web_search = executor.submit(process_internet_content, query_str)
for i, future in enumerate(future_to_content):
cleaned_content = future.result(timeout=120)
context_list.append(cleaned_content)
tabs_info.append((tabs_name[i], "RETRIEVED INFO:\n\n" + cleaned_content))
web_search_result = web_search.result()
context_list.append(web_search_result)
st.write("SUB ANSWER:\n\n")
sub_response = st.write_stream(sub_query_response(query_str, context_list))
column_info = (tabs_info, "SUB ANSWER:\n\n" + sub_response)
return sub_query, sub_response, result, column_info, web_search_result
def dedup_node(retrieved_nodes):
if len(retrieved_nodes) > 0 and isinstance(retrieved_nodes[0], NodeWithScore):
dedup_nodes = []
node_id_dict = {}
for node in retrieved_nodes:
node_id = node.node.node_id
if node_id not in node_id_dict:
node_id_dict[node_id] = 1
dedup_nodes.append(node.node)
return dedup_nodes
return retrieved_nodes
def retrieve_for_sub_query(query):
return hybrid_retriever.retrieve(query)
def get_final_response():
with st.chat_message("assistant"):
expanders = []
with st.expander("Rewrited Question:", expanded=True):
rewrite = st.write_stream(st.session_state.llm.query_rewrite_according_messages(st.session_state.messages))
expanders.append(("Rewrited Question:", rewrite))
with st.spinner('Thinking...'):
with st.expander("Sub Queries:", expanded=True):
sub_queries = query_decomposition(rewrite)
st.write(sub_queries)
expanders.append(("Sub Queries:", sub_queries))
sub_res_list = []
retrieved_nodes = []
with st.expander("Sub Answers:", expanded=True):
columns = st.columns(len(sub_queries))
columns_info = []
with st.spinner('Thinking...'):
retrieve_results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_retrieve = [executor.submit(retrieve_for_sub_query, sub_queries[i]) for i in range(len(sub_queries))]
for i, future in enumerate(future_to_retrieve):
retrieve_results.append(future.result())
web_search_results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
ctx = get_script_run_ctx()
future_to_query = [executor.submit(process_sub_query, sub_queries[i], columns[i], ctx, retrieve_results[i]) for i in range(len(sub_queries))]
for i, future in enumerate(future_to_query):
sub_query, sub_response, sub_retrieved_nodes, column_info, web_search_result = future.result(timeout=120)
retrieved_nodes += sub_retrieved_nodes
sub_res_list.append((sub_query, sub_response))
columns_info.append(column_info)
web_search_results.append(web_search_result)
expanders.append(columns_info)
final_response = st.write_stream(summerize(rewrite, sub_res_list))
deduped_nodes = dedup_node(retrieved_nodes)
final_response_cite = add_citation_with_retrieved_node(deduped_nodes, final_response)
st.session_state.messages.append({"role": "assistant",
"content": final_response_cite,
"expanders": expanders})
return rewrite, retrieved_nodes, final_response, web_search_results
st.session_state.query = st.chat_input("What do you want to know? I will give your an answer.")
if st.session_state.mode == -1 and st.session_state.query:
st.session_state.mode = query_router(st.session_state.query, st.session_state.messages)
if st.session_state.mode == 0:
st.session_state.messages.append({"role": "user", "content": st.session_state.query})
with st.chat_message("user"):
st.markdown(st.session_state.query)
with st.chat_message("assistant"):
response = st.write_stream(chat(messages=st.session_state.messages,
model=llm_chat_model))
st.session_state.messages.append({"role": "assistant", "content": response})
st.session_state.mode = -1
if st.session_state.mode == 1 and st.session_state.cnt < 2 and not st.session_state.done:
st.session_state.messages.append({"role": "user", "content": st.session_state.query})
with st.chat_message("user"):
st.markdown(st.session_state.query)
if st.session_state.cnt == 0:
with st.chat_message("assistant"):
response = st.write_stream(st.session_state.llm.query_understanding_chat(st.session_state.messages))
st.session_state.cnt += 1
if not response:
st.session_state.done = True
st.rerun()
if len(response) > 0:
st.session_state.messages.append({"role": "assistant", "content": response})
elif st.session_state.cnt == 1:
st.session_state.done = True
if st.session_state.mode == 1 and st.session_state.done or st.session_state.cnt >= 2:
if not st.session_state.skip_rerun:
rewrite, retrieved_nodes, final_response, web_search_results = get_final_response()
st.session_state.skip_rerun = True
st.session_state.rerun_info = [rewrite, retrieved_nodes, final_response, web_search_results]
st.rerun()
else:
rewrite = st.session_state.rerun_info[0]
retrieved_nodes = st.session_state.rerun_info[1]
final_response = st.session_state.rerun_info[2]
web_search_results = st.session_state.rerun_info[3]
with st.spinner('Self Reflecting...'):
critic = self_critic(rewrite, final_response).strip()
if len(critic) > 0:
with st.chat_message("assistant"):
with st.expander("Self Critic:", expanded=True):
st.write(critic)
context_critic = "\n\n".join(nodes_arrangement(retrieved_nodes))
context_critic += "\n\n" + "\n\n".join(web_search_results)
refined_response = st.write_stream(self_refine(rewrite, context_critic, final_response, critic))
deduped_nodes = dedup_node(retrieved_nodes)
refined_response_cite = add_citation_with_retrieved_node(deduped_nodes, refined_response)
st.session_state.messages.append({"role": "assistant",
"content": refined_response_cite,
"critic_expander": ("Self Critic:", critic)})
st.session_state.cnt = 0
st.session_state.done = False
st.session_state.mode = -1
st.session_state.skip_rerun = False
st.session_state.rerun_info = None
st.rerun()
if st.session_state.mode == 2:
st.session_state.messages.append({"role": "user", "content": st.session_state.query})
with st.chat_message("user"):
st.markdown(st.session_state.query)
with st.chat_message("assistant"):
with st.spinner('Thinking...'):
agent_response = agent.chat(st.session_state.query).response
def streaming(content):
chunks = content.split(" ")
for chunk in chunks:
yield chunk + " "
response = st.write_stream(streaming(agent_response))
st.session_state.messages.append({"role": "assistant", "content": response})
st.session_state.mode = -1