forked from snap-research/articulated-animation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frames_dataset.py
244 lines (205 loc) · 7.89 KB
/
frames_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
from skimage import io, img_as_float32
from skimage.color import gray2rgb
from sklearn.model_selection import train_test_split
from imageio import mimread
import numpy as np
from torch.utils.data import Dataset, dataset
import pandas as pd
from augmentation import AllAugmentationTransform
import glob
def read_video(root_dir, frame_shape=None):
"""
Read video which can be:
- an image of concatenated frames
- '.mp4' and'.gif'
- folder with videos
"""
# Check if frame_shape is an integer
if frame_shape is not None and not all(isinstance(i, int) for i in frame_shape):
raise ValueError("frame_shape must be a tuple of integers")
import yaml
# Load the configuration file
with open("config.yaml", "r") as f:
config = yaml.safe_load(f)
# Get the root directory from the configuration file
root_dir = config["root_dir"]
if os.path.isdir(root_dir):
frames = sorted(os.listdir(root_dir))
num_frames = len(frames)
video_array = np.asarray(
[
img_as_float32(io.imread(os.path.join(root_dir, frames[idx])))
for idx in range(num_frames)
]
)
elif root_dir.lower().endswith(".png") or root_dir.lower().endswith(".jpg"):
image = io.imread(root_dir)
if len(image.shape) == 2 or image.shape[2] == 1:
image = gray2rgb(image)
if image.shape[2] == 4:
image = image[..., :3]
image = img_as_float32(image)
video_array = np.moveaxis(image, 1, 0)
video_array = np.asarray(video_array).reshape((-1,) + frame_shape)
video_array = np.moveaxis(video_array, 1, 2)
elif (
root_dir.lower().endswith(".gif")
or root_dir.lower().endswith(".mp4")
or root_dir.lower().endswith(".mov")
):
video = np.asarray(mimread(root_dir))
if len(video.shape) == 3:
video = np.asarray([gray2rgb(frame) for frame in video])
if video.shape[-1] == 4:
video = video[..., :3]
video_array = img_as_float32(video)
else:
raise Exception("Unknown file extensions %s" % root_dir)
return video_array
class FramesDataset(Dataset):
"""
Dataset of videos, each video can be represented as:
- an image of concatenated frames
- '.mp4' or '.gif'
- folder with all frames
"""
def __init__(
self,
root_dir,
frame_shape=(384, 384, 3),
id_sampling=False,
is_train=True,
random_seed=0,
pairs_list=None,
augmentation_params=None,
):
self.root_dir = root_dir
self.videos = os.listdir(root_dir)
self.frame_shape = tuple(frame_shape)
self.pairs_list = pairs_list
self.id_sampling = id_sampling
if os.path.exists(os.path.join(root_dir, "train")):
assert os.path.exists(os.path.join(root_dir, "test"))
print("Use predefined train-test split.")
if id_sampling:
train_videos = {
os.path.basename(video).split("#")[0]
for video in os.listdir(os.path.join(root_dir, "train"))
}
train_videos = list(train_videos)
else:
train_videos = os.listdir(os.path.join(root_dir, "train"))
test_videos = os.listdir(os.path.join(root_dir, "test"))
self.root_dir = os.path.join(self.root_dir, "train" if is_train else "test")
else:
print("Use random train-test split.")
train_videos, test_videos = train_test_split(
self.videos, random_state=random_seed, test_size=0.2
)
if is_train:
self.videos = train_videos
else:
self.videos = test_videos
self.is_train = is_train
if self.is_train:
self.transform = AllAugmentationTransform(**augmentation_params)
else:
self.transform = None
def __len__(self):
return len(self.videos)
def __getitem__(self, idx):
if self.is_train and self.id_sampling:
name = self.videos[idx]
path = np.random.choice(
glob.glob(os.path.join(self.root_dir, name + "*.mp4"))
)
else:
name = self.videos[idx]
path = os.path.join(self.root_dir, name)
video_name = os.path.basename(path)
if self.is_train and os.path.isdir(path):
frames = os.listdir(path)
num_frames = len(frames)
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2))
video_array = [
img_as_float32(io.imread(os.path.join(path, frames[idx])))
for idx in frame_idx
]
else:
video_array = read_video(path, frame_shape=self.frame_shape)
num_frames = len(video_array)
frame_idx = (
np.sort(np.random.choice(num_frames, replace=True, size=2))
if self.is_train
else range(num_frames)
)
video_array = video_array[frame_idx]
if self.transform is not None:
video_array = self.transform(video_array)
out = {}
if self.is_train:
source = np.array(video_array[0], dtype="float32")
driving = np.array(video_array[1], dtype="float32")
out["driving"] = driving.transpose((2, 0, 1))
out["source"] = source.transpose((2, 0, 1))
else:
video = np.array(video_array, dtype="float32")
out["video"] = video.transpose((3, 0, 1, 2))
out["name"] = video_name
return out
class DatasetRepeater(Dataset):
"""
Pass several times over the same dataset for better i/o performance
"""
def __init__(self, dataset, num_repeats=100):
self.dataset = dataset
self.num_repeats = num_repeats
def __len__(self):
return self.num_repeats * self.dataset.__len__()
def __getitem__(self, idx):
return self.dataset[idx % self.dataset.__len__()]
class PairedDataset(Dataset):
"""
Dataset of pairs for animation.
"""
def __init__(self, initial_dataset, number_of_pairs, seed=0):
self.initial_dataset = initial_dataset
pairs_list = self.initial_dataset.pairs_list
np.random.seed(seed)
if pairs_list is None:
max_idx = min(number_of_pairs, len(initial_dataset))
nx, ny = max_idx, max_idx
xy = np.mgrid[:nx, :ny].reshape(2, -1).T
number_of_pairs = min(xy.shape[0], number_of_pairs)
self.pairs = xy.take(
np.random.choice(xy.shape[0], number_of_pairs, replace=False), axis=0
)
else:
videos = self.initial_dataset.videos
name_to_index = {name: index for index, name in enumerate(videos)}
pairs = pd.read_csv(pairs_list)
pairs = pairs[
np.logical_and(
pairs["source"].isin(videos), pairs["driving"].isin(videos)
)
]
number_of_pairs = min(pairs.shape[0], number_of_pairs)
self.pairs = []
self.start_frames = []
for ind in range(number_of_pairs):
self.pairs.append(
(
name_to_index[pairs["driving"].iloc[ind]],
name_to_index[pairs["source"].iloc[ind]],
)
)
def __len__(self):
return len(self.pairs)
def __getitem__(self, idx):
pair = self.pairs[idx]
first = self.initial_dataset[pair[0]]
second = self.initial_dataset[pair[1]]
first = {"driving_" + key: value for key, value in first.items()}
second = {"source_" + key: value for key, value in second.items()}
return {**first, **second}