-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA Brief Introduction of Basic Category Theory.tex
1104 lines (911 loc) · 76.3 KB
/
A Brief Introduction of Basic Category Theory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%Please compile this tex in "pdfLaTeX", and check the package before you compile it!
%This tex file is released in https://github.com/Fungus-00/Mathematical-Notes. The reference of this text named "Reference.bib", and the file of a picture named "Cat.jpg" is in there; please read the file "README.md" in that website before you complie this tex with reference.
%The code was written with reference to https://github.com/wenweili/AlJabr-1/blob/master/chapter2.tex, and most of commutative diagrams are made in https://tikzcd.yichuanshen.de/.
%The note including code is 100% finished by myself.
%It's too hard to draw the commutative diagrams QAQ
\documentclass{article}
\usepackage[scheme=plain]{ctex} %For Chinese
\usepackage[dvipsnames]{xcolor} %For some special colors
\usepackage[utf8]{inputenc} \usepackage[T2A]{fontenc} %For Russian (in Reference)
\usepackage{amsthm,amsmath,amssymb,mathrsfs,tikz-cd,geometry,hyperref,enumerate,mathtools,multirow,graphicx,caption} %"tikz-cd" for commutative diagram, "enumerate" for enumerate environment, "mathtools" for underbracket, "multirow" for table, "graphicx" and "caption" for picture
\geometry{a4paper,left=1.25cm,right=1.25cm,top=1.0cm,bottom=1.20cm}
\setlength{\footskip}{18pt} %For the height of the pagination
\title{A Brief Introduction of Basic Category Theory} %基础范畴论简述
\author{Fungus} %菌
\hypersetup{colorlinks=true,linkcolor=blue,urlcolor=SkyBlue,citecolor=red}
\bibliographystyle{plain}
\begin{document}
\maketitle
\renewcommand{\thefootnote}{\color{red}{*}}
\theoremstyle{definition}
\newtheorem{defi}{Definition}
\newtheorem{thm}{Theorem}
\newtheorem{lmm}{Lemma}
\newtheorem{exm}{Example}
\newtheorem{cor}{Corollary}
\newtheorem*{Mark}{Mark}
\newcommand\Ob{\mathrm{Ob}}
\newcommand\Mor{\mathrm{Mor}}
\newcommand\Hom{\mathrm{Hom}}
\newcommand\dom{\mathrm{dom}}
\newcommand\cod{\mathrm{cod}}
\newcommand\id{\mathrm{id}}
\newcommand\op{^\mathrm{op}}
\newcommand\zfc{\mathsf{ZFC}}
\newcommand\AC{\mathsf{AC}}
\newcommand\con{\mathrm{Con}}
\newcommand\tid{\mathbf{id}}
\newcommand\ca{\mathcal{C}}
\newcommand\D{\mathcal{D}}
\newcommand\1{\mathit{1}}
\newcommand\iv{^{-1}}
\newcommand\tto{\mathop{\to}\limits^{\sim}}
\newcommand\equ{\mathop{\Rightarrow}\limits^{\sim}}
\newcommand\ev{\mathrm{ev}}
\newcommand\fct{\mathrm{Fct}}
\nocite{alg-2}\nocite{cat-3}\nocite{cat-4}\nocite{cat-5}\nocite{cat-6-1}\nocite{cat-7}\nocite{cat-8}\nocite{cat-9}\nocite{cat-10}\nocite{cat-11}\nocite{Tex-1}
\begin{figure}[ht] %The idea of inserting a picture of a cat came from "The Joy of Cats"
\centering
\includegraphics{Cat.jpg} %Please download the file to the same path as this tex
\caption*{\bf Cat}
\label{Cat}
\end{figure}
This paper is the notes of basic category theory. The category theory about which talk in this text is based on \emph{Frege-Hilbert first-order logic axiomatic system} and \emph{$\mathsf{ZF}$ axiomatic set theory} (sometimes including \emph{the Axiom of Choice} ($\AC$)); as for \emph{metacategory}, see \href{https://proofwiki.org/wiki/Definition:Metacategory}{Def:Metacategory - ProofWiki}. The main sources of this text content is \cite[第二章]{alg-1}.
The newest edition of this note (including \texttt{pdf.} file and the source code) can be downloaded from \url{https://github.com/Fungus-00/Mathematical-Notes/}. This note is seriously unfinished, for reference only.
\begin{defi}\label{category}
A \emph{category} $\ca$ consists of the following data:
\begin{itemize}
\item A collection $\Ob(\ca)$ of \emph{objects} $X,Y,Z\cdots$
\item A collection
$$\Mor(\ca)=\bigsqcup_{X\in\Ob(\ca)}{\mathrm{scr}_\ca(X)}=\bigsqcup_{Y\in\Ob(\ca)}{\mathrm{tar}_\ca(Y)}=\bigsqcup_{X,Y\in\Ob(\ca)}{\Hom_\ca(X,Y)}$$
of \emph{morphisms} $f,g,h\cdots$ with a binary operation ``$\circ$'' which is defined on the subclass of $\Mor(\ca)\times\Mor(\ca)$, where $\mathrm{scr}_\ca(X)$ is called the \emph{domain (source)} of its elements as well as $\mathrm{tar}_\ca(Y)$ is called the \emph{codomain (target)} of its elements, and \emph{hom-class} $\Hom_\ca(X,Y)$ is the intersection of both. Beyond the above definition, we define $\dom_\ca(f)=X$ and $\cod_\ca(f)=Y$ if $f\in\Hom_\ca(X,Y)$.
\footnote{\label{sign} Strictly speaking, the morphism is composed by a 3-tuple $\left<X,f,Y\right>$, otherwise, it will cause confusion. For instance, in set category $\mathsf{Set}$ (see \hyperref[exm3]{Example 3.1}), if we don't discriminate the same mapping in different homology class, i.e., which have different codomains (such as $f:\{0\}\to\{0\}$ and $g:\{0\}\to\{0,1\}$ which satisfy $f(0)=g(0)=0$), then they are the same morphism, it will contradict the disjoint of homology class. Of course, for convenience, we will omit the 3-tuples when describing morphisms.}
For $W,X,Y,Z\in\Ob(\ca)$ and $f\in\Hom_\ca(X,Y)\wedge g\in\Hom_\ca(Y,Z)$, the binary operation that defines \emph{composite morphism} $g\circ^\ca f$ (which is abbreviated as $g\circ f$) satisfies
\begin{enumerate}
\item $g\circ f\in\Hom_\ca(X,Z)$;
\item $\forall h\in\Hom_\ca(Z,W)[h\circ(g\circ f)=(h\circ g)\circ f]$;
\item $\forall h\in\Hom_\ca(Y,X)\exists \1^\ca_X\in\Hom_\ca(X,X)[f\circ\1^\ca_X=f\wedge\1^\ca_X\circ h=h]$.
\end{enumerate}
\end{itemize}
It's easy to verify that the \emph{identity morphism} $\1^\ca_X$ (which is abbreviated as $\1_X$) is unique for all $X\in\Ob(\ca)$.\\
In addition, we abbreviate $\Hom_\ca(X,X)$ as $\mathrm{End}_\ca(X)$, it's easy to see that $\left<\mathrm{End}_\ca(X),\circ,\1_X\right>$ is a monoid group.
In commutative diagram,
\[\begin{tikzcd}
X\arrow[->,>=stealth,r,"f"] & Y
\end{tikzcd}\quad\text{means}\quad f\in\Hom_\ca(X,Y),\quad
\begin{tikzcd}
X\arrow[->,>=stealth,d,"f"'] \arrow[->,>=stealth,rd,"h"] & \\
Y\arrow[->,>=stealth,r,"g"] & Z
\end{tikzcd}\quad\text{means}\quad g\circ f=h.\]
\end{defi}
\begin{Mark}
(Read the \hyperref[sign]{annotation} of this page first) Sometimes we have to define a mapping that is also a morphism, for instance, for sets $Y$ and $Z\subseteq X$, and a mapping $f:X\to Y$, we define a new mapping $g:=\{\left<x,f(x)\right>|x\in Z\}$, strictly speaking, we have defined a 3-tuple $\left<Z,g,Y\right>$ if the mapping is also a morphism, we now abbreviate it as ``$[Z\ni x\mapsto f(x)]$''. What's more, we will abbreviate the restriction $\{\left<x,f(x)\right>|\,x\in Z\}$ as ``$f\upharpoonright_Z$''.
Notice that the meanings of the above two markers are different, a classical example is, for a morphism $\beta$ and collection $M$ of some morphisms, $[M\ni\alpha\mapsto\alpha\circ\beta]$ means a new mapping (even morphism) created, but restriction $f\upharpoonright_Z$ is only a reduction of the original mapping.
\end{Mark}
\begin{defi}\label{subcategory, opposite category, small category}
$\ca'$ is a \emph{subcategory} of category $\ca$ if
\begin{itemize}
\item $\ca'$ is a category;
\item $\Ob(\ca')\subseteq\Ob(\ca)$;
\item $\forall X,Y\in\Ob(\ca')[\Hom_{\ca'}(X,Y)\subseteq\Hom_\ca(X,Y)]$;
\item $\forall f,g\in\Mor(\ca')[f\circ^{\ca'}g=f\circ^{\ca}g]$\quad(if $\dom_\ca(f)=\cod_\ca(g)$);
\item for all $X\in\Ob(\ca')$, the identity morphism $\1_X$ in $\ca'$ is also that in $\ca$.
\end{itemize}
In particular, if $\forall X,Y\in\Ob(\ca')[\Hom_{\ca'}(X,Y)=\Hom_\ca(X,Y)]$, then we say $\ca'$ is a \emph{full subcategory} of $\ca$.
The \emph{opposite} category $\ca\op$ of category $\ca$ satisfies
\begin{itemize}
\item $\Ob(\ca\op)=\Ob(\ca)$;
\item $\forall X,Y\in\Ob(\ca\op)[\Hom_{\ca\op}(X,Y)=\Hom_{\ca}(Y,X)]$;
\item $\forall f,g\in\Mor(\ca)[g\circ\op f=f\circ^\ca g]$\quad(if $\dom_\ca(f)=\cod_\ca(g)$);
\item for all $X\in\Ob(\ca\op)$, the identity morphism $\1_X$ in $\ca\op$ is also that in $\ca$.
\end{itemize}
It's easy to verify that $\ca\op$ is also a category, and we have $(\ca\op)\op=\ca$. $\ca\op$ has the symmetric algebraic properties as $\ca$.
A category $\ca$ is called \emph{small} if both $\Ob(\ca)$ and $\Mor(\ca)$ are sets in $\zfc$ but not proper class,
\footnote{``$X$ is a set in $\zfc$'' has two meanings: we can prove $X$ exists in $\zfc$, i.e., $\zfc\vdash_\mathbf{H}\exists X$; or the existence of $X$ in $\zfc$ is consistent with $\zfc$, i.e., $\vdash_\mathbf{H}\mathrm\con(\zfc)\to\con(\zfc+\exists X)$, where $\mathbf{H}$ means the Frege-Hilbert first-order logic axiomatic system. The meaning in the text is the former. Of course, to prove the consistency, we often need to add extra axioms. The provability of $\zfc$ is limited, so we can only define the set in the model $(V_\kappa,\in)$, where $\kappa$ is the least strongly inaccessible cardinal, but that's enough. See \cite{set-1} or \cite{mod-1} for more details.}
and \emph{large} otherwise. A \emph{locally small} category is a category such that for all objects $X$ and $Y$, $\Hom(X,Y)$ is a set in $\zfc$, called \emph{hom-set}.
\end{defi}
\begin{exm}
Here are some examples of category.
\begin{enumerate}
\item Consider a category $\mathsf{Rel}$ in $\mathsf{ZF}$.
\begin{itemize}
\item Objects are all sets.
\item Homomorphism between any sets $X,Y$ is the power set of binary relations $\mathscr{P}(X\times Y)$.
\item The composition of morphisms is the composition of binary relations.
\item Identity morphism $\1_X$ is the identity mapping $\id_X=\{\left<x,x\right>|\,x\in X\}$.
\end{itemize}
Obviously, it's indeed a category. This example shows that the morphisms are not only mappings, they may have looser structures. Compared to this, morphisms are more like binary relations.
\item Consider a set $S$, we can use it to construct a \emph{discrete category} $\mathsf{Disc}(S)$, which $\Ob(\mathsf{Disc}(S))=S$ and $\Mor(\mathsf{Disc}(S))=\{\1_x|\,x\in S\}$. A category without any objects and morphisms is called \emph{zero} category $\mathbf{0}$. A discrete category which has exactly one object is written as $\mathbf{1}$.
\item There are some classic examples of \emph{concrete} categories, which the objects are sets with (possible) structures, the morphisms are mappings ($\mathsf{Cat}$ is a little special) that preserve the structures, the composition of morphisms is the composition of mappings, and the identity morphisms are identity mappings:
\begin{table}[ht]\centering
\begin{tabular}{|l|l|l|}
\hline
\multicolumn{1}{|c|}{\textbf{Symbol}} & \multicolumn{1}{c|}{\textbf{Object}} & \multicolumn{1}{c|}{\textbf{Morphism}} \\ \hline
$\mathsf{Set}$ & Set & Mapping \\ \hline
$\mathsf{Ord}$ & Preordered set & \multirow{2}{*}{Order-preserving mapping} \\ \cline{1-2}
$\mathsf{On}$ & \multirow{2}{*}{Ordinal number} & \\ \cline{1-1} \cline{3-3}
$\mathsf{Cpt}$ & & Computable function \\ \hline
$\mathsf{Mon}$ & Monoid group & \multirow{3}{*}{Group homomorphism} \\ \cline{1-2}
$\mathsf{Grp}$ & Group & \\ \cline{1-2}
$\mathsf{Ab}$ & Abelian group & \\ \hline
$\mathsf{Rng}$ & Ring & Ring homomorphism \\ \hline
$\mathsf{Top}$ & Topological space & \multirow{2}{*}{Continuous mapping} \\ \cline{1-2}
$\mathsf{Met}$ & Metric space & \\ \hline
$_R\mathsf{Mod}$ & Left module over the ring $R$ & \multirow{2}{*}{$R$-homomorphism} \\ \cline{1-2}
$\mathsf{Mod}_R$ & Right module over the ring $R$ & \\ \hline
$\mathsf{Vect}_\Bbbk$ & Vector space over the field $\Bbbk$ & \multirow{2}{*}{$\Bbbk$-Linear mapping} \\ \cline{1-2}
$\mathsf{fVect}_\Bbbk$ & Finite vector space over the field $\Bbbk$ & \\ \hline
$\mathsf{Man}$ & Smooth manifolds & Smooth mapping \\ \hline
$\mathsf{Com}$ & Complex & Simplicial mapping \\ \hline
$\mathsf{Str}_\mathcal{L}$ & Structure given by the language $\mathcal{L}$ & $\mathcal{L}$-Elementary embedding \\ \hline
$\mathsf{Cat}$ & Small category & \hyperref[functor]{Functor} \\ \hline
\end{tabular}
\end{table}\\ %Making in https://table.6cm.co/
Evidently, they are all large and locally small categories. And $\mathsf{On}/\mathsf{Grp}/\mathsf{Ab}/\mathsf{Met}/\mathsf{fVect}_\Bbbk$ is the full subcategory of $\mathsf{Ord}/\mathsf{Mon}/\mathsf{Grp}/\mathsf{Top}/\mathsf{Vect}_\Bbbk$.
\item Consider a category $\ca$ and its object $I$, the \emph{slice} category $\ca/I$ satisfies
\begin{itemize}
\item Objects are all the morphisms $f\in\Mor(\ca)$ which satisfy $f\in\Hom_\ca(X,I)$;
\item $\Hom_{\ca/I}(f,g)=\{j\in\Hom_\ca(\dom_\ca(f),\dom_\ca(g))|\,g\circ^\ca j=f\}$;
\item $\1^{\ca/I}_f=\1^\ca_{\dom_\ca(f)}$;
\item if $\cod_{\ca/I}(f)=\dom_{\ca/I}(g)$ then $k\circ^{\ca/I}j=k\circ^\ca j$.
\end{itemize}
It's easy to verify that $\ca/I$ is indeed a category.\\
Similarly, we can define \emph{coslice} category $I/\ca$, whose the objects are $f\in\Mor(\ca)$ which satisfy $f\in\Hom_\ca(I,X)$, and $\Hom_{I/\ca}(f,g)=\{j\in\Hom_\ca(\cod_\ca(f),\cod_\ca(g))|\,j\circ^\ca f=g\}$.
\end{enumerate}
\end{exm}
\begin{defi}\label{functor}
A \emph{functor} $F:\ca\to\D$, between category $\ca$ and $\D$, consists the following data:
\begin{itemize}
\item Mapping $F:\Ob(\ca)\to\Ob(\D)$.
\item Mapping $F:\Mor(\ca)\to\Mor(\D)$, which satisfies:
\begin{enumerate}
\item $F[\Hom_\ca(X,Y)]\subseteq\Hom_\D(F(X),G(Y))$ for all $X,Y\in\Ob(\ca)$;
\item For all $f,g\in\Mor(\ca)$, if $\cod_\ca(f)=\dom_\ca(g)$, then $F(g\circ^\ca f)=F(g)\circ^\D F(f)$;
\item $F(\1^\ca_X)=\1^\D_{F(X)}$ for all $X\in\Ob(\ca)$.
\end{enumerate}
\end{itemize}
In commutative diagram,
\[\begin{tikzcd}
\ca\arrow[r,"F"] & \D
\end{tikzcd}\]
means that $F$ is the functor between $\ca$ and $\D$.
For functors $F:\ca_1\to\ca_2,G:\ca_2\to\ca_3$, the composition $GF:\ca_1\to\ca_3$ between both satisfies:
\[GF(X)=G(F(X))\ \text{and}\ GF(f)=G(F(f))\ \text{for all}\ X\in\Ob(\ca_1),f\in\Mor(\ca_1).\]
It's trivial to verify that the composition is also a functor and it satisfy associative law.
For any category $\ca$, there exists a \emph{identity functor} $\id_\ca:\ca\to\ca$ that satisfies
\[\id_\ca(X)=X\ \text{and}\ \id_\ca(f)=f\ \text{for all}\ X\in\Ob(\ca_1),f\in\Mor(\ca_1).\]
It's easy to verify that for all functors $F:\ca\to\D$, $G:\D\to\ca$ and $C:\ca\to\ca$, $FC=F\wedge CG=G$ if and only if $C=\id_\ca$.
\end{defi}
\begin{defi}\label{natural transformation}
The \emph{natural transformation} $\theta$ between functors $F,G:\ca\to\D$ is a mapping from $\Ob(\ca)$ to $\Mor(\D)$ whose each value satisfies $\theta_X:=\theta(X)\in\Hom_\D(F(X),G(X))$ and the commutative diagram below:
\begin{equation}\begin{tikzcd}\label{ntr}
F(X) \arrow[->,>=stealth,r,"\theta_X"] \arrow[->,>=stealth,d,"F(f)"'] & G(X) \arrow[->,>=stealth,d,"G(f)"]\\
F(Y) \arrow[->,>=stealth,r,"\theta_Y"'] & G(Y),
\end{tikzcd}\end{equation}
where $X,Y\in\Ob(\ca)$ and $f\in\Hom_\ca(X,Y)$. In other words, we can record the above natural transformation as $\theta:F\Rightarrow G$,
\footnote{Like morphism, strictly speaking, functor $F:\ca\to\D$ and natural transformation $\theta:F\to G$ are also composed by 3-tuples $\left<\ca,F,\D\right>$ and $\left<F,\theta,G\right>$, rather than simple ``mappings''. For instance, consider a category $\ca$ and its subcategory $\ca'$, category $\D$, functor $F:\D\to\ca'$, inclusion functor (see \hyperref[func]{Example 4.1}) $\iota:\ca'\to\ca$. Then the composition $\iota F:\D\to\ca$ is different from single functor $F:\D\to\ca'$, although they are the same if you regard them as mappings.}
or in such a commutative diagram:
\[\begin{tikzcd}
\ca \arrow[r, "F", bend left=50, ""' name=F] \arrow[r, "G"', bend right=50, "" name=G] & \arrow[Rightarrow, from=F, to=G, "\theta"] \D.
\end{tikzcd}\]
We may use symbol ``$F(\theta)_X$'' instead of ``$F((\theta)_X)$'' in some particular case (such as there are more than one symbols of natural transformations in the brackets).
For functor $F:\ca\to\D$, there exists a \emph{identity transformation} $\tid^F:F\to F$ that satisfies $\forall X\in\Ob(\ca)[\tid^F_X=\1_{F(X)}]$.
\end{defi}
\begin{exm}
Consider two \emph{finite} categories $\ca,\D$ where $\Ob(\ca)=\{X,Y\}$ and $\Ob(\D)=\{\{a,b\},\{1,2\},\{3,4\},\{c,d\}\}$. There are three morphisms in $\ca$: $\1_X$, $\1_Y$ and $f\in\Hom_\ca(X,Y)$. Consider four functors $F,F',G,G':\ca\to\D$ such that
\[F(X)=\{a,b\}=F'(X),G(Y)=\{c,d\}=G'(Y).\]
And consider two natural transformations $\theta,\psi:F\Rightarrow G$, and all the morphisms (mappings) in $\D$ except identity morphisms are shown below:
\[\begin{tikzcd}
& a \arrow[r,no head,dashed,"F(X)"] \arrow[->,>=stealth,ldd,color=red] \arrow[->,>=stealth,rrdd,color=green] \arrow[->,>=stealth,rrd,color=cyan] \arrow[->,>=stealth,ddd]
& b \arrow[->,>=stealth,lldd,color=red] \arrow[->,>=stealth,rd,color=cyan] \arrow[->,>=stealth,rdd,color=green] \arrow[->,>=stealth,lddd] & \\
1 \arrow[->,>=stealth,rdd,color=yellow] \arrow[->,>=stealth,rrdd,color=blue] &&
& 3 \arrow[d,no head,dashed] \arrow[->,>=stealth,lldd,color=brown]\\
2 \arrow[u,no head,dashed] \arrow[->,>=stealth,rd,color=yellow] \arrow[->,>=stealth,rd,color=blue,bend right] &&
& 4 \arrow[->,>=stealth,lld,color=brown]\\
& c
& d \arrow[l,no head,dashed,"G(Y)"] &
\end{tikzcd}\]
Where the arrows with different colors mean the different mappings, balck arrows mean the morphism $k$, and the elements connected by one dashed line belong to the same set. There are 7 isomorphisms (except identity morphisms) in $\D$ in total, it's easy to see that $\D$ is indeed a category (we just need to verify that the compositions of any morphisms in $\D$ are also morphisms in it).
\begin{itemize}
\item Consider the following combination of objects and morphisms:
\[G(X)=\{1,2\}=G'(X),F(Y)=\{3,4\}=F'(Y);\]
\centerline{\textcolor{red}{red:}$\theta_X$, \textcolor{yellow}{yellow}:$G(f)$, \textcolor{blue}{blue:}$G'(f)$, \textcolor{cyan}{cyan:}$F(f)$, \textcolor{green}{grenn:}$F'(f)$, \textcolor{brown}{brown:}$\theta_Y$.}\\
The four functors are indeed functors. What's more, it's trivial to verify that
\[\theta_Y\circ F'(f)=\theta_Y\circ F(f)=k=G(f)\circ\theta_X=G'(f)\circ\theta_X,\]
thus we know $\theta$ is indeed a natural transformation, and obviously $\theta$ have more than one ``sources'' and ``targets''.
\item Consider the following combination of objects and morphisms:
\[G(X)=\{3,4\},F(Y)=\{1,2\};\]
\centerline{\textcolor{red}{red:}$F(f)$, \textcolor{yellow}{yellow}:$\theta_Y$, \textcolor{blue}{blue:}$\psi_Y$, \textcolor{cyan}{cyan:}$\theta_X$, \textcolor{green}{grenn:}$\psi_X$, \textcolor{brown}{brown:}$G(f)$.}\\
The two functors are indeed functors. What's more, it's trivial to verify that
\[\theta_Y\circ F(f)=\psi_Y\circ F(f)=k=G(f)\circ\theta_X=G(f)\circ\psi_X,\]
thus we know $\theta$ and $\psi$ are indeed natural transformations between $F$ and $G$.
\end{itemize}
These examples show us that one natural transformation can rely on different functors, and there may be different natural transformations ``between'' two functors. Hence it is necessary to label the natural transformations as 3-tuples.
\end{exm}
\begin{defi}\label{vertical composition}
For functors $F,G,H:\ca\to\D$, natural transformations $\theta:F\Rightarrow G$ and $\psi:G\Rightarrow H$, the element of \emph{vertical composition} of the natural transformations is defined as $(\psi\odot\theta)_X=\psi_X\circ\theta_X$. In commutative diagrams forms,
\[\begin{tikzcd} %This code of diagram is a little nontrivial
& \arrow[d,Rightarrow,"\theta"] & \\
\ca \arrow[rr, "F", bend left=75] \arrow[rr, "H"', bend right=75] \arrow[rr, "G" description] &
\textcolor{white}{s} \arrow[d,Rightarrow,"\psi"] &
\D\\ & \quad &
\end{tikzcd}\quad\text{means}\quad\begin{tikzcd}
\ca
\arrow[bend left=50, rr, "F", ""' name=F]
\arrow[bend right=50, rr, "H"', "" name=H] & &
\arrow[Rightarrow, from=F, to=H, "\psi\odot\theta"] \D.
\end{tikzcd}\]
Actually, we need to prove that the definition is well-defined, i.e., to verify that $(\psi\odot\theta)_X\in\Hom_\D(F(X),H(X))$ for all $X\in\Ob(\ca)$, it's easy to do so.
\end{defi}
\begin{defi}\label{horizontal composition}
For functors $F,F':\ca_1\to\ca_2$ and $G,G':\ca_2\to\ca_3$, natural transformations $\theta:F\Rightarrow F'$ and $\psi:G\Rightarrow G'$, the element of \emph{horizontal composition} of natural transformations $(\psi\ominus\theta)_X$ is defined as $G'(\theta_X)\circ\psi_{F(X)}=\psi_{F'(X)}\circ G(\theta_X)$. In commutative diagrams forms,
\[\begin{tikzcd}
\ca_1 \arrow[bend left=50, r, "F", ""' name=F] \arrow[bend right=50, r, "F'"', "" name=F'] &
\ca_2 \arrow[bend left=50, r, "G", ""' name=G] \arrow[bend right=50, r, "G'"', "" name=G'] &
\arrow[Rightarrow, from=F, to=F', "\theta"] \arrow[Rightarrow, from=G, to=G', "\psi"]\ca_3
\end{tikzcd}\quad{means}\quad\begin{tikzcd}
\ca_1
\arrow[bend left=50, rr, "GF", ""' name=A]
\arrow[bend right=50, rr, "G'F'"', "" name=B] & &
\arrow[Rightarrow, from=A, to=B, "\psi\ominus\theta"]\ca_3,
\end{tikzcd}\]
which satisfy
\begin{equation}\begin{tikzcd}\label{hor}
GF(X) \arrow[->,>=stealth,r,"G(\theta_X)"] \arrow[->,>=stealth,d,"\psi_{F(X)}"'] & GF'(X) \arrow[->,>=stealth,d,"\psi_{F'(X)}"]\\
G'F(Y) \arrow[->,>=stealth,r,"G'(\theta_X)"'] & G'F'(Y).
\end{tikzcd}\end{equation}
Actually, we need to prove that the definition is well-defined, i.e., to verify the commutative diagram and that $(\psi\ominus\theta)_X\in\Hom_{\ca_3}(GF(X),G'F'(X))$ for all $X\in\Ob(\ca_1)$, it's easy to do so observing \hyperref[ntr]{commutative diagram 1}.
\end{defi}
\begin{thm}
The vertical and horizontal compositions of natural transformations are natural transformations, and the natural transformations satisfy the \emph{interchange law} (\hyperref[per]{formula 3}).
\end{thm}
\begin{proof}
For
\[\begin{tikzcd}
\ca_1
\arrow[bend left=75, rr, "F", ""' name=F] \arrow[rr, "G" description, "" name=G, ""' name=GG] \arrow[bend right=75, rr, "H"', "" name=H] & &
\arrow[Rightarrow, from=F, to=G, "\theta"] \arrow[Rightarrow, from=GG, to=H, "\psi"]
\ca_2 \arrow[bend left=75, rr, "F'", ""' name=F'] \arrow[rr, "G'" description, "" name=G', ""' name=GG'] \arrow[bend right=75, rr, "H'"', "" name=H'] & &
\arrow[Rightarrow, from=F', to=G', "\theta'"] \arrow[Rightarrow, from=GG', to=H', "\psi'"] \ca_3
\end{tikzcd},\]\\
we need to verify the following commutative diagrams:
\[\text{(a)}\quad\begin{tikzcd}
F(X) \arrow[->,>=stealth,dd,"F(f)"'] \arrow[->,>=stealth,rr,"(\psi\odot\theta)_X"] && H(X) \arrow[->,>=stealth,dd,"H(f)"]\\ && \\
F(y) \arrow[->,>=stealth,rr,"(\psi\odot\theta)_X"'] && H(y)
\end{tikzcd}\quad\text{and (b)}\quad\begin{tikzcd}
GF(X) \arrow[->,>=stealth,dd,"GF(f)"] \arrow[->,>=stealth,rr,"(\theta'\ominus\theta)_X"] && G'F'(X) \arrow[->,>=stealth,dd,"G'F'(f)"]\\ && \\
GF(Y) \arrow[->,>=stealth,rr,"(\theta'\ominus\theta)_Y"'] && G'F'(Y)
\end{tikzcd}.\]
From (a), we have
\begin{align*}
& H(f)\circ(\psi\odot\theta)_X\\
=& H(f)\circ\psi_X\circ\theta_X\tag{Def: vertical composition}\\
=& (\psi_Y\circ G(f))\circ\theta_X\tag{Property of natural transformation $\psi$}\\
=& \psi_Y\circ\theta_Y\circ F(f)\tag{Property of natural transformation $\theta$}\\
=& (\psi\odot\theta)_X\circ F(f),\tag{Def: vertical composition}
\end{align*}
thus $(\psi\odot\theta)$ is natural transformation.\\
From (b), we have
\begin{align*}
& G'F'(f)\circ(\theta'\ominus\theta)_X\\
=& G'F'(f)\circ\theta'_{F'(X)}\circ G(\theta_X)\tag{Def: horizontal composition}\\
=& \theta'_{F'(Y)}\circ GF'(f)\circ G(\theta_X)\tag{Property of natural transformation $\theta'$}\\
=& \theta'_{F'(Y)}\circ G(F'(f)\circ G(\theta_X))\tag{Property of functor $G$}\\
=& \theta'_{F'(Y)}\circ G(\theta_Y\circ F(f))\tag{Property of natural transformation $\theta$}\\
=& \theta'_{F'(Y)}\circ G(\theta_Y)\circ GF(f)\tag{Property of functor $G$}\\
=& (\theta'\ominus\theta)_Y\circ GF(f)\tag{Def: horizontal composition},
\end{align*}
thus $(\psi\ominus\theta)$ is natural transformation.\\
For interchange law
\begin{equation}\label{per}
(\psi\odot\theta)\ominus(\psi'\odot\theta')=(\psi'\ominus\psi)\odot(\theta'\ominus\theta),
\end{equation}
we can prove it in the below step:
\begin{align*}
& ((\psi'\odot\theta')\ominus(\psi\odot\theta))_X\\
=& (\psi'\odot\theta')_{H(X)}\circ F'(\psi\odot\theta)_X\tag{Def: horizontal composition}\\
=& \psi'_{H(X)}\circ\theta_{H(X)}\circ F'(\theta_X)\circ F'(\theta_X)\tag{Def: vertical composition, Property of functor $F'$}\\
=& \psi'_{H(X)}\circ(G'(\psi_X)\circ \theta'_{G(X)})\circ F'(\theta_X)\tag{\hyperref[hor]{Commutative diagram 2}}\\
=& (\psi'\ominus\psi)_X\circ(\theta'\ominus\theta)_X\tag{Def: horizontal composition}\\
=& ((\psi'\ominus\psi)\odot(\theta'\ominus\theta))_X,\tag{Def: vertical composition}
\end{align*}
where $X\in\Ob(\ca)$.
\end{proof}
\begin{thm}
Both vertical and horizontal compositions of natural transformations satisfy associative law.
\end{thm}
\begin{proof}
For vertical composition, observe the following commutative diagram and natural transformations:
For
\[\begin{tikzcd} %The diagram is a little askew
\ca
\arrow[rrr, bend left =80, "F", ""' name=F]
\arrow[rrr, bend left =20, "G" description, "" name=G, ""' name=GG]
\arrow[rrr, bend right=20, "H" description, "" name=H, ""' name=HH]
\arrow[rrr, bend right=80, "K"', "" name=K] & & &
\D,
\arrow[Rightarrow, "\theta", from=F, to=G]
\arrow[Rightarrow, "\psi" , from=GG, to=H]
\arrow[Rightarrow, "\phi" , from=HH, to=K]
\end{tikzcd}\]
it's trivial to prove that $((\phi\odot\psi)\odot\theta)_X=(\phi\odot(\psi\odot\theta))_X$ for all $X\in \Ob(\ca)$, thus the vertical composition satisfies associative law.
For
\begin{equation}\begin{tikzcd}\label{ass}
\ca_1 \arrow[bend left=50, r, "F", ""' name=F] \arrow[bend right=50, r, "F'"', "" name=F'] &
\ca_2 \arrow[bend left=50, r, "G", ""' name=G] \arrow[bend right=50, r, "G'"', "" name=G'] &
\ca_3 \arrow[bend left=50, r, "H", ""' name=H] \arrow[bend right=50, r, "H'"', "" name=H'] &
\arrow[Rightarrow, from=F, to=F', "\theta"]
\arrow[Rightarrow, from=G, to=G', "\psi"]
\arrow[Rightarrow, from=H, to=H', "\phi"]
\ca_4,
\end{tikzcd}\end{equation}
we have
\begin{align*}
& (\phi\ominus(\psi\ominus\theta))_X\\
=& \phi_{G'F'(X)}\circ H(\psi\ominus\theta)_X\tag{Def: horizontal composition}\\
=& \phi_{G'F'(X)}\circ H(\psi_{F'(X)}\circ G(\theta_X))\tag{Ditto}\\
=& \phi_{G'F'(X)}\circ H(\psi_{F'(X)})\circ HG(\theta_X)\tag{Property of functor $H$}\\
=& (\phi\ominus\psi)_{F'(X)}\circ HG(\theta_X)\tag{Def: horizontal composition}\\
=& ((\phi\ominus\psi)\ominus\theta)_X\tag{Ditto},
\end{align*}
thus the horizontal composition satisfies associative law.
\end{proof}
\begin{lmm}[$\mathsf{ZF}$]\label{map}
For any nonempty sets $A,B$ and mapping $f:A\to B$, we have
\[\exists g:B\to A[g\circ f=\id_A]\iff f\ \text{is a injection}\ \iff\forall C\ne\varnothing\forall h,h':C\to A[f\circ h=f\circ h'\Longrightarrow h=h'],\]
\[\exists g:B\to A[f\circ g=\id_B]\Longrightarrow f\ \text{is a surjection}\ \iff\forall C\ne\varnothing\forall h,h':B\to C[h\circ f=h'\circ f\Longrightarrow h=h'],\]
and $f$ is a surjection $\Longrightarrow \exists g:B\to A[f\circ g=\id_B]$ can be proved using $\AC$.
It's easy to see that $f$ is a bijection if and only if it has both left and right inversal mappings, and obviously the two inversal mappings are the same one, which is unique.
\end{lmm}
\begin{proof}
The proofs are shown in \cite[Theorem 3J]{set-2} (left parts) and \cite[(\S2.1) Proposition 2.2 \& Example 2.3]{cat-1} (right parts).
\end{proof}
\begin{defi}\label{inverse}
Consider $X,Y\in\Ob(\ca)$ and $f\in\Hom_\ca(X,Y)$. If there exists a morphism $g\circ f=\1_X$, then we say $f$ is a \emph{section}, and $g$ is the \emph{left inverse} of it; if $g\in\Hom_\ca(Y,X)$ that $f\circ g=\1_Y$, then we say $f$ is a \emph{retraction}, and $g$ is the \emph{right inverse} of it. If $f$ has both inverses, then we say $f$ is a \emph{isomorphism}, it's easy to verify that the two inverses are the same one, which is unique as well, so we say $f\iv:=g$ is the \emph{inverse} (\emph{inversal morphism}) of it. If there exists an isomorphism between two objects $X,Y\in\Ob(\ca)$, then we say they are \emph{isomorphic} and record it as $X\mathop{\simeq}\limits^\mathrm{M}Y$.
What's more, it's easy to verify that the composition of isomorphisms is also an isomorphism (see \hyperref[transitivity]{Theorem 3}), so we can find that the collection of \emph{automorphisms} $\mathrm{Aut}_\ca(X):=\{f\in\Hom_\ca(X,X)\,|\,f\ \text{is an isomorphism}\}$ is a group $\left<\mathrm{Aut}_\ca(X),\circ,\1_X\right>$. If $f$ satisfies the \emph{left cancellation law}: $\forall Z\in\Ob(\ca)\forall g,h\in\Hom_\ca(Z,X)[f\circ g=f\circ h\iff g=h]$, then we say $f$ is \emph{monic} (or $f$ is a \emph{monomorphism}); similarly, if $f$ satisfies the \emph{right cancellation law}, then we say $f$ is \emph{epic} (or $f$ is a \emph{epimorphism}). If $f$ is monic as well as epic, then we say $f$ is a \emph{bimorphism}. We call a category \emph{groupoid} if all the morphisms in it are isomorphisms, and call it is \emph{balanced} if all the bimorphisms in $\Mor(\ca)$ are isomorphisms.
Consider a functor $F:\ca\to\D$, we can define the inverse of functor in the same way: If there exists a functor $G:\D\to\ca$ that $GF=\id_\ca$ and $FG=\id_\D$, then we say $F$ is an \emph{functorial isomorphism} between $\ca$ and $\D$ and denote it as $F:\ca\tto\D$, and $F\iv:=G$ is the unique inverse (\emph{inversal functor}) of $F$. From \hyperref[map]{Lemma 1} we know that $F$ is a functorial isomorphism if and only if $F\upharpoonright_{\Ob(\ca)}\to\Ob(\D)$ and $F\upharpoonright_{\Mor(\ca)}\to\Mor(\D)$ are both bijection. If there exists a functorial isomorphism between two categories $\ca$ and $\D$, we say they are \emph{isomorphic} and record it as $\ca\mathop{\simeq}\limits^\mathrm{F}\D$.
(Please see \hyperref[identity transformation]{Corollary 1.1} first) Consider the following diagram:
\begin{equation}\begin{tikzcd}\label{iso}
\ca
\arrow[r, bend left =75, "F", ""' {name=U1, near start}, ""' {name=U2, near end}]
\arrow[r, bend right=75, "G"', "" {name=D1, near start}, "" {name=D2, near end}]
& \D.
\arrow[Rightarrow, "\theta", from=U1, to=D1]
\arrow[Rightarrow, "\psi" , from=D2, to=U2]
\end{tikzcd}\end{equation}
If $\psi\odot\theta=\tid^F$ and $\theta\odot\psi=\tid^G$, then we say $\theta$ is a \emph{natural isomorphism} between $F$ and $G$, and $\theta\iv:=\psi$ is the unique inverse (\emph{inversal transformation}) of $\theta$, we record it as $\theta:F\mathop{\Rightarrow}\limits^{\sim}G$. If there exists a natural isomorphism between two functors $F$ and $G$, we say they are \emph{isomorphic} and record it as $F\mathop{\simeq}\limits^\mathrm{T}G$.
For functors $F:\ca\to\D$ and $G:\D\to\ca$, if $GF\mathop{\simeq}\limits^\mathrm{T}\id_{\ca}$ and $FG\mathop{\simeq}\limits^\mathrm{T}\id_{\D}$, then we say $G$ is the \emph{quasi-inverse} of $F$, and $F$ is a \emph{equivalence} between $\ca$ and $\D$. If there exists an equivalence between two categories $\ca$ and $\D$, we say they are \emph{equivalent} and record it as $\ca\sim\D$. We say categories $\ca$ and $\D$ are \emph{dual equivalent} if $\ca\op\sim\D$.
If there is no confusion in some context, we abbrviate $\mathop{\simeq}\limits^\mathrm{M},\mathop{\simeq}\limits^\mathrm{F},\mathop{\simeq}\limits^\mathrm{T}$ as $\simeq$ and refer to ``isomorphism'', ``functorial isomorphism'' and ``natural isomorphism'' as ``isomorphism'' uniformly.
\end{defi}
\begin{cor}\label{identity transformation}
Observe \hyperref[iso]{diagram 5}, we have the following conclusion:
\begin{enumerate}
\item (For any $\theta$, $\psi$ and $\phi:F\Rightarrow F$) $\theta\odot\phi=\theta\wedge\phi\odot\psi=\psi$ if and only if $\phi=\tid^F$.
\item $\theta$ is a natural isomorphism if and only if $\theta_X$ is an isomorphism for each $X\in\Ob(\ca)$.
\item If $\theta$ is an isomorphism, then $(\theta\iv)_X=(\theta_X)\iv$ for all $X\in\Ob(\ca)$, thus we abbreviate it as $\theta\iv_X$.
\end{enumerate}
\end{cor}
\begin{proof}
It's easy to prove so using the definitions of identity transformation, vertical composition and identity morphism.
\end{proof}
\begin{lmm}
Observe \hyperref[ass]{commutative diagram 4}, we have
\begin{align}
& G(\tid^F_X)=\tid^G_{F(X)}=\tid^{GF}_X,\label{0}\\
& (\psi\ominus\tid^F)_X=\psi_{F(X)},\label{1}\\
& (\tid^H\ominus\psi)_Y=H(\psi_Y),\label{2}\\
& \tid^G\ominus\tid^F=\tid^{GF},\label{3}\\
& \text{if\ }\psi\text{\ and\ }\phi\text{\ are\ isomorphisms,\ then\ }\phi\ominus\psi\text{\ is\ also,\ and\ }(\phi\ominus\psi)\iv=\phi\iv\ominus\psi\iv,\label{4}\\
& F\simeq F'\Longrightarrow[G\simeq G'\Longrightarrow GF\simeq G'F']\wedge[H\simeq H'\Longrightarrow\wedge HG\simeq H'G'],\label{5}
\end{align}
for all $X\in\Ob(\ca_1),Y\in\Ob(\ca_2)$.
\end{lmm}
\begin{proof}
For \hyperref[0]{(6)}, using the definition of identity morphism, properties of morphism and functor we have
$$\tid^{GF}_X=\1_{GF(X)}=G(\1_{F(X)})=\tid^G_{F(X)}=G(\1_{F(X)})=G(\tid^F_X)$$
for all $X\in\Ob(\ca_1)$.
For \hyperref[1]{(7)}, we have
\begin{align*}
& (\psi\ominus\tid^F)_X\\
=& \psi_{F(X)}\circ G(\tid^F_X)\tag{Def: horizontal composition}\\
=& \psi_{F(X)}\circ \tid^G_{F(X)}\tag{\hyperref[0]{Formula 6}}\\
=& \psi_{F(X)}\tag{\hyperref[identity transformation]{Corollary 1.1}}
\end{align*}
for all $X\in\Ob(\ca_1)$.
For \hyperref[2]{(8)}, we have
\begin{align*}
& (\tid^H\ominus\psi)_Y\\
=& H(\psi_Y)\circ\tid^H_{G(Y)}\tag{Def: horizontal composition}\\
=& H(\psi_Y)\circ H(\tid^G_Y)\tag{\hyperref[0]{Formula 6}}\\
=& H(\psi_Y\circ\tid^G_Y)\tag{Property of functor $H$}\\
=& H(\psi_Y)\tag{\hyperref[identity transformation]{Corollary 1.1}}
\end{align*}
for all $Y\in\Ob(\ca_2)$.
For \hyperref[3]{(9)}, we have
\begin{align*}
& (\tid^G\ominus\tid^F)_X\\
=& G(\tid^F_X)\circ\tid^G_{F(X)}\tag{Def: horizontal composition}\\
=& \tid^{GF}_X\circ\tid^{GF}_X\tag{\hyperref[identity transformation]{Corollary 1.1}}\\
=& \tid^{GF}_X\tag{\hyperref[0]{Formula 6}}
\end{align*}
for all $X\in\Ob(\ca_1)$.
For \hyperref[4]{(10)}, we have
\begin{align*}
& (\phi\ominus\psi)\odot(\phi\iv\ominus\psi\iv)\\
=& (\phi\iv\odot\phi)\ominus(\psi\iv\odot\psi)\tag{\hyperref[per]{Interchange law}}\\
=& \tid^H\ominus\tid^G\tag{Property of inverse}\\
=& \tid^{HG}.\tag{\hyperref[3]{Formula 9}}
\end{align*}
Similarly, we can prove $(\phi\iv\ominus\psi\iv)\odot(\phi\ominus\psi)=\tid^{H'G'}$.
For \hyperref[5]{(11)}, we suppose that the three natural transformations are all isomorphisms, we claim that $\psi\ominus\theta:GF\equ G'F'$ and $\phi\ominus\psi:HG\equ H'G'$, it's trivial to prove using \hyperref[4]{formula 10}.
\end{proof}
\begin{thm}\label{transitivity}
If two particular morphisms/functors/transformations are isomorphic, than the isomorphism between them is unique. The composition of any isomorphisms/functorial isomorphism/natural isomorphism is also an isomorphism, and the composition of any equivalences are equivalence. Therefore isomorphic objects, categories, functors and equivalent categories satisfy transitivity.
\end{thm}
\begin{proof}
The uniqueness is trivial to prove.
Because the compositions of isomorphisms, functorial isomorphisms and natural isomorphisms have similar algebraic properties, we just need to prove the composition of isomorphism is an isomorphism:\\
Suppose isomorphisms $f\in\Hom_\ca(X,Y),g\in\Hom_\ca(Y,Z)$, we claim that $f\iv\circ g\iv$ is the inverse of $g\circ f\in\Hom_\ca(X,Z)$:
$$(g\circ f)\circ(f\iv\circ g\iv)=g\circ(f\circ f\iv)\circ g\iv=g\circ\1_Y
\circ g\iv=g\circ g\iv=\1_Z,$$
$$(f\iv\circ g\iv)\circ(g\circ f)=f\iv\circ(g\iv\circ g)\circ f=f\iv\circ\1_Y
\circ f=f\iv\circ f=\1_X.$$
Observe the following diagram:
\[\begin{tikzcd}
\ca_1\arrow[loop left, "\id_{\ca_1}"]\arrow[bend left=30, r, "F"] &
\ca_2 \arrow[bend left=30, l, "F'"] \arrow[bend left=30, r, "G"] &
\ca_3 \arrow[bend left=30, l, "G'"] \arrow[loop right, "\id_{\ca_3}."]
\end{tikzcd}\]
We need to prove that if $F$ and $G$ are equivalence then $GF$ is also, we now assume that $F'F\simeq\id_{\ca_1}$, $FF'\simeq\id_{\ca_2}$, $G'G\simeq\id_{\ca_2}$ and $GG'\simeq\id_{\ca_3}$. Using \hyperref[5]{formula 11} we have
$$\id_{\ca_2}\simeq G'G\Longrightarrow\id_{\ca_1}\simeq F'F=F'\id_{\ca_2}F\simeq F'(G'G)F=(F'G')(GF),$$
$$\id_{\ca_2}\simeq F'F\Longrightarrow\id_{\ca_3}\simeq GG'=G\id_{\ca_2}G'\simeq G(FF')G'=(GF)(F'G').$$
Using transitivity of functorial isomorphisms, we have $\id_{\ca_1}\simeq(F'G')(GF)$ and $\id_{\ca_3}\simeq(GF)(F'G')$. Thus $GF$ is equivalence.
\end{proof}
\begin{cor}
If functors $G,G'$ are quasi-inverses of equivalence $F:\ca\to\D$, then $G\simeq G'$.
\end{cor}
\begin{proof}
Using \hyperref[5]{formula 11}, we have
\[G'F\simeq\id_\ca\wedge FG\simeq\id_\D\Longrightarrow G'=G'\id_\D\simeq G'(FG)=(G'F)G\simeq\id_\ca G=G,\]
thus we have $G'\simeq G$ using transitivity of functorial isomorphisms.
\end{proof}
\begin{cor}\label{a natural isomorphism}
Consider two morphisms $f$ and $g$ in $\ca$ which satisfy $\cod_\ca(f)=\dom_\ca(g)$.
\begin{enumerate}
\item Every section is monic, and every retraction is epic.
\item The composition of monomorphisms is monic, and the composition of epimorphisms is epic.
\item If $g\circ f$ is monic then $f$ is monic, if $g\circ f$ is epic then $g$ is epic.
\item The following propositions are equivalent:
\begin{itemize}
\item $f$ is an isomorphism.
\item $f$ is a monomorphism as well as a retraction.
\item $f$ is an epimorphism as well as a section.
\end{itemize}
\end{enumerate}
\end{cor}
\begin{proof}
The proofs are trivial, the details are shown in \cite[\S1.4]{cat-2}.
\end{proof}
\begin{exm}\label{exm3}
There are some examples of isomorphisms.
\begin{enumerate}
\item Consider two monomorphisms $f\in\Hom_\ca(X,Z)$ and $g\in\Hom_\ca(Y,Z)$, if $f$ and $g$ are \emph{factor through} each other each other, i.e., $\exists i\in\Hom_\ca(X,Y)\exists j\in\Hom_\ca(Y,X)[f=g\circ i\,\wedge\,g=f\circ j]$, then the \emph{factors} $i$ and $j$ are both isomorphisms and they are inverses to each other. In commutative diagram:
\[\begin{tikzcd}
X \arrow[->,>=stealth, rr, "i"', shift right] \arrow[->,>=stealth, rd, "f"'] & &
Y \arrow[->,>=stealth, ll, "j"', shift right] \arrow[->,>=stealth, ld, "g"]\\ &
Z. &
\end{tikzcd}\]
\item For any concrete categories, all the morphisms in it satisfy the following implications:
\[\begin{tikzcd}
\text{section} \arrow[d, Rightarrow] &
\text{isomorphism} \arrow[r, Rightarrow] \arrow[l, Rightarrow] \arrow[d, Rightarrow] &
\text{retraction} \arrow[d, Rightarrow]\\
\text{injection} \arrow[d, Rightarrow] &
\text{bijection} \arrow[l, Rightarrow] \arrow[r, Rightarrow] \arrow[d, Rightarrow] &
\text{surjection} \arrow[d, Rightarrow]\\
\text{monomorphism} &
\text{bimorphism} \arrow[r, Rightarrow] \arrow[l, Rightarrow] &
\text{epimorphism}
\end{tikzcd}\]
\item $\mathsf{Set}$, $\mathsf{Grp}$ are balanced category.(See \cite[Theorem 2.5.2]{cat-8})\\
However, consider a morphism, an inclusion ring homomorphism $f:\mathbb{Z}\to\mathbb{Q}$ in $\Mor(\mathsf{Rng})$. We will find that it is a epimorphism but not a retraction, because there is no inverse of it in $\Mor(\mathsf{Rng})$. So $\mathsf{Rng}$ isn't a balanced category. Actually, $\mathsf{Top}$ is not neither. (See \cite[p19]{cat-8})\\
There are more detailed examples of morphisms in \cite{cat-8}:
\begin{itemize}
\item Monic but not injective [Example 2.1.2].
\item Injective but not \emph{split monic} (a section) [Example 2.2.3, 2.2.4].
\item Epic but not surjective [Example 2.3.2].
\item Surjective but not \emph{split epic} (a retraction) [Example 2.4.3, 2.4.4].
\end{itemize}
\end{enumerate}
\end{exm}
\begin{defi}\label{different functors}
For functor $F:\ca\to\D$, we add some properties:
\begin{itemize}
\item $F$ is \emph{essentially surjective} if $\forall Y\in\Ob(\D)\exists X\in\Ob(\ca)[F(X)\mathop{\simeq}\limits^\mathrm{M}F(Y)]$.
\item $F$ is \emph{faithful} if for all $X,Y\in\Ob(\ca)$, $F\upharpoonright_{\Hom_\ca(X,Y)}\to\Hom_\D(F(X),F(Y))$ is injective.
\item $F$ is \emph{full} if for all $X,Y\in\Ob(\ca)$, $F\upharpoonright_{\Hom_\ca(X,Y)}\to\Hom_\D(F(X),F(Y))$ is surjective.
\end{itemize}
\end{defi}
\begin{lmm}\label{func ppt}
Consider a functor $F:\ca\to\D$, for any $X,Y\in\Ob(\ca)$ and morphism $f\in\Hom_\ca(X,Y)$, we have the following propositions:
\begin{enumerate}
\item $F(f)$ is a section/retraction if $f$ is a section/retraction; and the left/right inverse of $F(f)$ is $F(g)$, where $g$ is the left/right inverse of $f$.
\item When $F$ is faithful and full, we have $f$ is a section/retraction if $F(f)$ is a section/retraction; and the left/right inverse of $f$ is $g$, where $F(g)$ is the left/right inverse of $F(f)$.
\item $X\simeq Y\Longrightarrow F(X)\simeq F(Y)$; if $F$ is faithful and full, we have $F(X)\simeq F(Y)\Longrightarrow X\simeq Y$.
\item The composition of faithful/full/essentially-surjective functors is also faithful/full/essentially-surjective.
\end{enumerate}
\end{lmm}
\begin{proof}
Proof of {\bf Proposition 1} is trivial.
For {\bf Proposition 2}, we only suppose that $F(f)$ is a section, the proof that $f$ is a retraction is similar:\\
Because $F(f)$ has a left inverse in $\Hom_\ca(F(Y),F(X))$ and $F$ is full, we have $F\upharpoonright_{\Hom_\ca(Y,X)}\to\Hom_\ca(F(Y),F(X))$ is surjective, so there exists $g\in\Hom_\ca(Y,X)$ that $F(g)$ is the left inverse of $F(f)$, that is,
$$F(\1^\ca_X)=\1^\D_{F(X)}=F(g)\circ^\D F(f)=F(g\circ^\ca f).$$
Because $F$ is faithful, that means, $F\upharpoonright_{\Hom_\ca(X,X)}$ is injective, then we have $\1^\ca_X=g\circ^\ca f$, thus $f$ is a section.
Proof of {\bf Proposition 3} is trivial using Propositions 1 and 2.
For {\bf Proposition 4}, it's trivial to prove that it is faithful of full, we now show that $F$ is essentially surjective:
Consider $G:\D\to\mathcal{E}$ is also essentially surjective, then we have
$$\forall e\in\Ob(\mathcal{E})\exists d\in\Ob(\D)[G(d)\simeq e].$$
What's more, there exists $c$ in $\ca$ that $F(c)\simeq d$, using proposition 3 we have $GF(c)\simeq G(d)\simeq e$. Thus we have $GF(c)\simeq e$ by the transitivity of equivalence.
\end{proof}
\begin{exm}\label{func}
Observe the following example.
\begin{enumerate}
\item For category $\ca$ and its subcategory $\ca'$, there exists an \emph{inclusion functor} $\iota:=\id_{\ca}\!\!\upharpoonright_{\ca'}:\ca'\to\ca$. It's obviously faithful, and $\iota$ is full if and only if $\ca'$ is a full subcategory. There is a classical example: inclusion functor $F:\mathsf{Vect}_\Bbbk\to\mathsf{fVect}_\Bbbk$.\\
Let $\ca$ and $\D$ be categories. A \emph{contravariant functor} $F$ from $\ca$ to $\D$ is a functor $F:\ca\op\to\D$. What's more, for functor $F:\ca\to\D$, we can define $F\op:\ca\op\to\D\op$.
\item There are some \emph{forgetful functors} such as $\mathsf{Set}\to\mathsf{Rel}$, $\mathsf{Grp}\to\mathsf{Set}$, $\mathsf{Top}\to\mathsf{Set}$, $\mathsf{Ab}\to\mathsf{Grp}$, $\mathsf{Vect}(\Bbbk)\to\mathsf{Ab}$ (which forget field $\Bbbk$) that has a feature, that is, they forget some (order, algebraic, topological, etc.) structures. The functors above are all faithful but not full.
\item For vector space category $\mathsf{Vect}_\Bbbk$, we define a functor $D:\mathsf{Vect}\op_\Bbbk\to\mathsf{Vect}_\Bbbk$:\\
For all $V\in\mathsf{Vect}_\Bbbk$, we define the \emph{dual vector space} of $V$: $D(V):=V^\vee:=\Hom_\Bbbk(V,\Bbbk)=\{\Bbbk-\text{linear mapping}\ V\to\Bbbk\}$, see \href{https://en.wikipedia.org/wiki/Dual_space#Algebraic_dual_space}{Algebraic dual space - Dual space - Wikipedia} for the operation of it. It's trivial to verify that the dual vector space is indeed a vector space.\\
For all $f\in\Hom_\Bbbk(V,U)$ we define $D(f):=f^\vee=[U^\vee\ni\lambda\mapsto\lambda\circ f]\in\Hom_\Bbbk(U^\vee,V^\vee)$, in other words, $f^\vee$ is a mapping from $U^\vee$ to $V^\vee$ which satisfies $f^\vee(\lambda)=\lambda\circ f$ for all $\lambda\in U^\vee$. It's trivial to verify that $f$ is linear.\\
We can easily verify that $D$ is indeed a functor. Consider $D\op:\mathsf{Vect}_\Bbbk\to(\mathsf{Vect}\op_\Bbbk)\op=\mathsf{Vect}_\Bbbk$, then we can define the \emph{dual space contravariant functor} $FF\op:\mathsf{Vect}_\Bbbk\to\mathsf{Vect}_\Bbbk$. Similarly, we can define the finite dual space contravariant functor $DD\op:\mathsf{fVect}_\Bbbk\to\mathsf{fVect}_\Bbbk$.
\end{enumerate}
\end{exm}
\begin{cor}\label{op}
For \begin{tikzcd}\ca_1 \arrow[r, "F"] & \ca_2 \arrow[r, "G"] & \ca_3\end{tikzcd}, we have the following conclusion
\begin{enumerate}
\item $F:\ca_1\tto\ca_2\Longrightarrow F\op:\ca\op_1\tto\ca\op_2$;
\item $(F\op)\op=F$;
\item $(FG)\op=F\op G\op$;
\item $F\simeq G\Longrightarrow F\op\simeq G\op$;
\item $\id\op_{\ca_1}=\id_{\ca\op_1}$.
\end{enumerate}
\end{cor}
\begin{defi}\label{skeleton}
A full subcategory $\ca'$ of category $\ca$ is a \emph{skeleton} of $\ca$ if $\forall X\in\Ob(\ca)\exists! Y\in\Ob(\ca')[X\mathop{\simeq}\limits^\mathrm{M}Y]$. If $\ca$ is the skeleton of itself, then we say it's a \emph{skeletal} category.
\end{defi}
\begin{exm}
Consider a topological space $(X,\mathcal{T})$, let $I=[0,1]$. We now build a homotopy in it:
\begin{itemize}
\item $f:I\to X$ is a \emph{path} from $x\in X$ to $y\in X$ if $f$ is a continuous mapping and $f(x)=0$, $f(y)=1$. We denote the collection of the paths in $X$ from $x$ to $y$ as $\mathrm{P}_X(x,y)$.
\item For $f\in\mathrm{P}_X(x,y)$ and $g\in\mathrm{P}(y,z)$, the composition of paths $f*g:I\to X$ is defined as follow:
$$f*g(t)=\left\{\begin{aligned}
& f(2t), & 0\leq t\leq\frac{1}{2},\\
& g(2t-1), & \frac{1}{2}\leq t\leq1.\\
\end{aligned}\right.$$
It's easy to see that the $f*g$ is also a path.
\item The identity path $\mathrm{Id}_x:=[I\ni t\mapsto x]\in\mathrm{P}(x,x)$. Note that $\mathrm{Id}_x*f=f=f*\mathrm{Id}_x$ is not always true.
\item The inverse of path $f$ from $x$ is defined as $f\iv:=[I\ni t\mapsto f(1-t)]$. Note that $f*f\iv=\mathrm{Id}_x=f\iv*f$ is not always true.
\item We call that the path $f$ and $g$ from $x$ to $y$ is homotopy, if there exists a continuous mapping $F:I^2\to X$ satisfies for all $s,t\in I$ that
$$F(s,0)=f(s)\wedge F(s,1)=g(s)\wedge F(0,t)=x\wedge F(1,t)=y.$$
We denote it as ``$f\mathop{\simeq}\limits^\mathrm{P}g$''.
\end{itemize}
We can verify that the homotopy relation of paths is an equivalence relation (see \cite[定理 10.1.1]{top-1}), then we can construct a category $\Pi_1(X)$ called \emph{fundamental groupoid}:
\begin{itemize}
\item $\Ob(\Pi_1(X)):=X$.
\item $\Hom_{\Pi_1(X)}(x,y):=\mathrm{P}_X(x,y)/\mathop{\simeq}\limits^\mathrm{P}$.
\item For $f\in\mathrm{P}_X(x,y)$ and $g\in\mathrm{P}(y,z)$, we define $[g]\circ^{\Pi_1(X)}[f]:=[g*f]$.
\item $\1^{\Pi_1(X)}_x:=[\mathrm{Id}_x]$ for all $x\in X$.
\item $[f]\iv:=[f\iv]$ for all $f\in\Mor(\Pi_1(X))$.
\end{itemize}
We can verify the definition is well. All the details of the content above are shown in \cite[\S10.1]{top-1}. Therefore, $\Pi_1(X)$ is indeed a groupoid. Moreover, note that the \emph {loop} $\mathrm{Aut}(x)=\Hom(x,x)$ is the fundamental group $\pi_1(X,x)$, then we can immediately find that the fundamental group $\pi_1(X,x)$ is the skeleton of $\Pi_1(X)$ for each $x\in X$. See \cite[Chapter 2]{top-2} for more details.
\end{exm}
\begin{lmm}\label{l4}
For category $\ca$, we have the following conclusion:
\begin{enumerate}
\item Suppose $\AC$,
\footnote{The Axiom of Choice in $\zfc$ provides choice functions based on sets, but not proper classes, so the categories in this proposition refer to the small categories. If you want this proposition to be true in any large categories, you need stronger axiom of choice, which is based on any class. However, it can't be discussed in $\zfc$.}
we have every nonempty category has at least one skeleton.
\item Every inclusion functor $\iota:\ca'\to\ca$ is an equivalence, where $\ca'$ is a skeleton of $\ca$; and we can find a quasi-inverse called \emph{skeletal functor} $\kappa:\ca\to\ca'$ of $\iota$, which gives the skeleton of $\ca$.
\item Any two skeletons of a category are equivalent.
\item $\ca$ is a skeletal category if and only if, for all the isomorphism $f\in\Mor(\ca)$, $\dom(f)=\cod(f)$.
\item Every faithful, full and essentially surjective functor between two skeletal categories is an isomorphism.
\end{enumerate}
\end{lmm}
\begin{proof}
Assume two categories $\ca$, $\D$ and a functor $F:\ca\to\D$.
\begin{enumerate}
\item Because the isomorphism relation among objects satisfies ref{}lexivity, symmetry and transitivity, we can divide them into an equivalence (not functor, but a simple relation) class $\ca/\mathop{\simeq}\limits^\mathrm{M}$. Using $\AC$, we can construct a choice function which selects representative element in each $[X]$ for all $X\in\Ob(\ca)$. By preserving the representative elements and all the morphisms between any two of them, they form a full subcategory $\ca'$ of category $\ca$, and it's easy to see that $\ca'$ is the skeleton of $\ca$.
\item Construct\begin{itemize}
\item $\kappa\upharpoonright_{\Ob(\ca)}$ is the choice function mentioned in Proposition 1.
\item A natural transformation (we will verify this) $\theta:\id_\ca\Rightarrow\iota\kappa$ such that $\theta_X\in\Hom_\ca(X,\iota\kappa(X))$ is the isomorphism (it's uniquely exists) for all $X\in\Ob(X)$.
\item For all $X,Y\in\Ob(X,Y)$ and $f\in\Hom_\ca(X,Y)$, because $\theta_X$ is an isomorphism, we have
\[\begin{tikzcd}
\kappa(X)=\iota\kappa(X) \arrow[->,>=stealth, r, "\theta\iv_X"] &
\id_\ca(X) \arrow[->,>=stealth, r, "\id_\ca(f)"] &
\id_\ca(Y) \arrow[->,>=stealth, r, "\theta_Y"] &
\iota\kappa(Y)=\kappa(Y),
\end{tikzcd}\]
then we can define $\kappa(f):=\theta_Y\circ f\circ\theta\iv_X\in\Hom_{\ca'}(\kappa(X),\kappa(Y))$.
\end{itemize}
Verify\begin{itemize}
\item $\kappa$ is indeed a functor, i.e., it satisfies the three factors of functor on morphisms. It's trivial.
\item $\theta$ is indeed a natural transformation , i.e., we have the following commutative diagram:
\[\begin{tikzcd}
\id_\ca(X) \arrow[->,>=stealth,r,"\theta_X"] \arrow[->,>=stealth,d,"\id_\ca(f)=f"'] &
\iota\kappa(X) \arrow[->,>=stealth,d,"\iota\kappa(f)=\kappa(f)"]\\
\id_\ca(Y) \arrow[->,>=stealth,r,"\theta_Y"'] & \iota\kappa(Y).\\
\end{tikzcd}\]
We can easily verify the diagram by substituting the definition of $\kappa(f)$.
\item $\theta:id_\ca\equ\iota\kappa$, i.e., $\theta$ is an isomorphism, obviously.
\end{itemize}
Thus $\id_\ca\simeq\iota\kappa$. On the other hand, because
$$\forall X\in\Ob(\ca')[\kappa\iota(X)=X=\id_{\ca'}(X)]\wedge\forall f\in\Mor(\ca')[\kappa\iota(f)=f=\id_{\ca'}(f)],$$
then we have $\kappa\iota=\id_{\ca'}$, that implies $\kappa\iota\simeq\id_{\ca'}$. Thus $\ca'\sim\ca$.
\item It's easy to prove so using Proposition 2 and the transitivity of equivalence (functor).
\item We can easily prove so by assuming contradiction.
\item Suppose $\ca$ and $\D$ are skeletal categories, and functor $F:\ca\to\D$ is faithful, full and essentially surjective.
\begin{itemize}
\item {\bf $F\upharpoonright_{\Ob(\ca)}\to\Ob(\D)$ is surjective:} Because $F$ is essentially surjective, for all $Y\in\Ob(\D)$ there exists $X\in\Ob(\ca)[F(X)\simeq Y]$. Since $\D$ is a skeletal category, through Proposition 4, we know that $F(X)=Y$.
\item {\bf $F\upharpoonright_{\Ob(\ca)}\to\Ob(\D)$ is injective:} For any $X,Y\in\Ob(\ca)$, because of faithful and full functor $F$, if $F(X)=F(Y)$, then we have $X\simeq Y$ using \hyperref[func ppt]{Lemma 3.3}. Since $\D$ is a skeletal category, through Proposition 4, we have $X=Y$.
\item {\bf $F\upharpoonright_{\Mor(\ca)}\to\Mor(\D)$ is bijective:} Since $F$ is full and faithful, we have $F\upharpoonright_{\Hom_\ca(X,Y)}\to\Hom_\D(F(X),F(Y))$ is bijective for each $X,Y\in\Ob(\ca)$. What's more, because $F\upharpoonright_{\Ob(\ca)}\to\Ob(\D)$ is bijective, it's easy to prove that $F\upharpoonright_{\Mor(\ca)}\to\Mor(\D)$ is bijective, too.
\end{itemize}
Because $F\upharpoonright_{\Ob(\ca)}\to\Ob(\D)$ and $F\upharpoonright_{\Mor(\ca)}\to\Mor(\D)$ are bijective, $F$ is a functorial isomorphism.
\end{enumerate}
\end{proof}
\begin{thm}\label{equ fct}
A functor between two categories is an equivalence if and only if it's faithful, full and essentially surjective.
\end{thm}
\begin{proof}
Let $F:\ca\to\D$ be a functor.
($\Longrightarrow$) Let $F$ be a equivalence and $G:\D\to\ca$ be its quasi-inverse, so that there exist natural isomorphisms $\theta:GF\mathop{\Rightarrow}\limits^{\sim}\id_\ca$ and $\psi:FG\mathop{\Rightarrow}\limits^{\sim}\id_\D$, and we assume that $X,Y\in\Ob(\ca)$.
Notice the following commutative diagram:
\[\text{(a)}\quad\begin{tikzcd}
GF(X) \arrow[->,>=stealth, d, "GF(f)=GF(g)"'] \arrow[->,>=stealth, r, "\theta_X"] &
\id_\ca(X) \arrow[->,>=stealth, d, "\id_\ca(f)", bend left, shift right=1.5] \arrow[->,>=stealth, d, "\id_\ca(g)"', bend right, shift left=1.5]\\
GF(Y) \arrow[->,>=stealth, r, "\theta_Y"'] & \id_\ca(Y)
\end{tikzcd}\quad\text{and (b)}\quad\begin{tikzcd}
GF(X) \arrow[->,>=stealth, r, "\theta_X"] \arrow[->,>=stealth, d, "GF(t)"'] &
\id_\ca(X) \arrow[->,>=stealth, d, "\id_\ca(t)=t"]\\
GF(Y) \arrow[->,>=stealth, r, "\theta_Y"'] & \id_\ca(Y).
\end{tikzcd}\]
\begin{itemize}
\item {\bf $F$ is faithful:} Let $f,g\in\Hom_\ca(X,Y)$ and $F(f)=F(g)\in\Hom_\D(F(X),F(Y))$, so $GF(f)=GF(g)$. Since $\theta:GF\mathop{\Rightarrow}\limits^{\sim}\id_\ca$, we have diagram (a), that means
$$\id_\ca(g)\circ\theta_X=\theta_Y\circ GF(g)=\theta_Y\circ GF(f)=\id_\ca(f)\circ\theta_X.$$
Because $\theta$ is a natural isomorphism, using \hyperref[identity transformation]{Corollary 1.2} we have $\theta_X$ is an isomorphism, so it's a bimorphism (by \hyperref[a natural isomorphism]{Corollary 3.1}), then we can cancel it. Thus we have $g=\id_\ca(g)=\id_\ca(f)=f$. So $F\upharpoonright_{\Hom_\ca(X,Y)}\to\Hom_\ca(F(X),F(Y))$ is injective, that means $F$ is faithful. For future reference, we observe that a similar proof shows that $G$ is faithful as well.
\item {\bf $F$ is full:} For all $\varphi\in\Hom_\D(F(X),F(Y))$, we have $G(\varphi)\in\Hom_\D(GF(X),GF(Y))$. Since $\theta$ is a natural isomorphism, we have
\[\begin{tikzcd}
X=\id_\ca(X) \arrow[->,>=stealth, r, "\theta\iv_X"] &
GF(X) \arrow[->,>=stealth, r, "G(\varphi)"] &
GF(Y) \arrow[->,>=stealth, r, "\theta_Y"] & \id_\ca(Y)=Y.
\end{tikzcd}\]
so we can assume that $t=\theta_Y\circ G(\varphi)\circ\theta\iv_X\in\Hom_\ca(X,Y)$, we claim that $F(t)=\varphi$, so that $F\upharpoonright_{\Hom_\ca(X,Y)}\to\Hom_\ca(F(X),F(Y))$ is surjective, that means $F$ is full:\\
It's easy to verify the diagram (b), thus we have
$$\theta_Y\circ G(\varphi)=\theta_Y\circ G(\varphi)\circ\theta\iv_X\circ\theta_X=t\circ\theta_X=\theta_Y\circ GF(t).$$
It's obvious that $\theta_Y$ is a bimorphism, then we can cancel it, thus we have $G(\varphi)=GF(t)$. Because $\varphi$ and $F(t)$ are in the same hom-class, and $G$ is faithful, we have $F(t)=\varphi$.
\item {\bf $F$ is essentially surjective:} For any $W\in\Ob(\D)$, since $\psi:FG\mathop{\Rightarrow}\limits^{\sim}\id_\D$, we have $\psi_W\in\Hom_\D(FG(W),\id_\D(W))$ is an isomorphism, so $F(G(W))\mathop{\simeq}\limits^\mathrm{M}\id_\D(W)=W$. Hence, $F$ is essentially surjective.
\end{itemize}
($\Longleftarrow$) (Need $\AC$) Consider the skeleton $\ca'$ of category $\ca$, the skeleton $\D'$ of category $\D$, inclusion functors $\iota_\ca:\ca'\to\ca$ and $\iota_\D:\D'\to\D$, skeletal functors $\kappa_\ca:\ca\to\ca'$ and $\kappa_\D:\D\to\D'$ (see the proof of \hyperref[l4]{Lemma 4.2} for the the methods of construction). We define $F':=\kappa_\D F\iota_\ca:\ca'\to\D'$.
Through \hyperref[l4]{Lemma 4.2} we know that $\kappa_\ca$ and $\kappa_\D$ are equivalence, so they are faithful, full and essentially surjective (we just proved this). Because $F$ and $\iota_\ca$ are faithful, full and essentially surjective as well, the functor $F'$ between skeletal categories is, too (by \hyperref[func ppt]{Lemma 3.4}). Using \hyperref[l4]{Lemma 4.5} we have $F'$ is a functorial isomorphism. Suppose $G:=\iota_\ca{F'}\iv\kappa_\D:\D\to\ca$, we claim that $G$ is the quasi-inverse of $F$:
$$GF = \underbracket{\underline{(\iota_\ca{F'}\iv\kappa_\D) F}\id_\ca \simeq \underline{\iota_\ca{F'}\iv(\kappa_\D F}\iota_\ca)\kappa_\ca}_{\text{since }\id_\ca\simeq\iota_\ca\kappa_\ca} = \iota_\ca {F'}\iv F'\kappa_\ca = \iota_\ca\kappa_\ca\simeq\id_\ca,$$
$$FG = \underbracket{\id_\D\underline{F(\iota_\ca{F'}\iv\kappa_\D)} \simeq \iota_\D(\kappa_\D\underline{F\iota_\ca){F'}\iv\kappa_\D}}_{\text{since }\id_\D\simeq\iota_\D\kappa_\D} = \iota_\D F'{F'}\iv\kappa_\D = \iota_\D\kappa_\D \simeq \id_\D.$$
Hence, $F$ is an equivalence.
\end{proof}
\begin{cor}
(Without $\AC$) Two skeletal categories are equivalent if and only if they are isomorphic, therefore two categories are equivalent if and only if they have isomorphic skeletons.
\end{cor}
\begin{proof}
For the first half of the proposition, it's easy to prove so using \hyperref[equ fct]{Theorem 4} and \hyperref[l4]{Lemma 4.5}. For the last half of the proposition, it's easy to prove so using the first half of the proposition, \hyperref[l4]{Lemma 4.3} and the transitivity of equivalence.
\end{proof}
\begin{exm}\label{dual v}
Consider vector space category $\mathsf{Vect}_\Bbbk$ and it's full subcategory $\mathsf{fVect}_\Bbbk$. We have defined the dual space contravariant functor $DD\op$ in \hyperref[func]{Example 4.3}. We now define a mapping $\ev_V:V\to DD\op(V)=(V^\vee)^\vee$ such that $\ev_V(x)=[V^\vee\ni\lambda\mapsto\lambda(x)]$ for all $x\in V$. It's easy to verify that $\ev_V$ is an injective linear mapping, and $\ev_V$ is bijective if and only if $V$ is a finite dimensional (see \cite[\S1.3 定理 2]{alg-3}).
For any $V,U\in\mathsf{Vect}_\Bbbk$, we have the following diagram:
\[\begin{tikzcd}
V \arrow[->,>=stealth,d, "f"'] \arrow[->,>=stealth,r, "\ev_V"] & (V^\vee)^\vee \arrow[->,>=stealth,d, "(f^\vee)^\vee"]\\
U \arrow[->,>=stealth,r, "\ev_U"'] & (U^\vee)^\vee.
\end{tikzcd}\]
To verify that, we just need to prove that $\forall x\in V[(f^\vee)^\vee\circ\ev_V(x)=\ev_U\circ f(x)\in\Hom_\Bbbk(U^\vee,\Bbbk)]$:
$$(f^\vee)^\vee\circ\ev_V(x)=(f^\vee)^\vee([(V^\vee)^\vee\ni\alpha\mapsto\alpha(x)])=[(V^\vee)^\vee\ni\alpha\mapsto\alpha(x)]\circ f^\vee=[U^\vee\ni\beta\mapsto\underbracket{f^\vee(\beta)}_{=\beta\circ f}(x)],$$
$$\ev_U\circ f(x)=\ev_U(f(x))=[U^\vee\ni\beta\mapsto\big(\beta\circ f\big)(x)].$$
Thus $\ev$ is a natural transformation, and when we restrict it to $\mathsf{fVect}_\Bbbk$, we have a natural isomorphism $\ev:\id_{\mathsf{fVect}_\Bbbk}\equ DD\op$, using \hyperref[op]{Corollary 4} we have $\id_{\mathsf{fVect}\op_\Bbbk}\simeq D\op D$. Thus $D:\mathsf{fVect}\op_\Bbbk\to\mathsf{fVect}_\Bbbk$ is the equivalence and $D\op$ is its quasi-inverse.
\end{exm}
\begin{defi}
For category $\ca$ and its objects $X$ and $Z$,
\begin{itemize}
\item we say $X$ is \emph{initial} if $\forall Y\in\Ob(\ca)\exists!f\in\Mor(\ca)[f\in\Hom_\ca(X,Y)]$;
\item we say $X$ is \emph{terminal} if $\forall Y\in\Ob(\ca)\exists!f\in\Mor(\ca)[f\in\Hom_\ca(Y,X)]$;
\item a initial and terminal object is called \emph{zero object};
\item suppose $0\in\Ob(\ca)$ is a zero object, if $f\in\Hom_\ca(X,0)$ and $g\in\Hom_\ca(0,Z)$, then we say $g\circ f$ is a \emph{zero morphism} and denote it as ``$0_{XZ}$''.
\end{itemize}
\end{defi}
\begin{cor}
In a category $\ca$, all the initial objects are isomorphic, and all the terminal objects are isomorphic.
\end{cor}
\begin{proof}
If $X,Y\in\Ob(\ca)$ is initial, then $\Hom_\ca(X,X)=\{\1_X\}$ and $\Hom_\ca(Y,Y)=\{\1_Y\}$. Suppose $f\in\Hom_\ca$ and $g\in\Hom_\ca(Y,X)$, there must be $g\circ f=\1_X$ and $f\circ g=1_Y$, thus $f$ and $g$ are the isomorphism.
The proof about terminal objects is similar.
\end{proof}
\begin{exm}
Here are some the example of initial and terminal objects.
\begin{enumerate}
\item For any pre-ordered set $(S,\preccurlyeq)$, we can construct a category of it, which the objects are the element in $S$, and
$$\Hom_S(x,y):=\left\{\begin{aligned} & \{\left<x,y\right>\}, & x\preccurlyeq y,\\ & \varnothing, & \text{otherwise},\\ \end{aligned}\right.$$
$$\left<x,y\right>\circ\left<y,z\right>:=\left<x,z\right>.$$
\begin{itemize}
\item If $(S,\preccurlyeq)$ is a partially ordered set, then the initial and terminal objects (if exist) in it are both unique.
\item If $(S,\preccurlyeq)$ is a linearly ordered set, it's easy to see that $x\in S$ is initial if and only if $x=\min(S)$, and $x$ is terminal if and only if $x=\max(S)$.
\item (See \cite[\S7]{cat-1}) Consider a f{}liter $(\mathbb{F},\subseteq)$ on $F$ and a ideal $(\mathbb{I},\subseteq)$ on $I$. Evidently, $F$ is the only terminal object in $\mathbb{F}$, and $\varnothing$ is the only initial object of $\mathbb{I}$; a f{}liter/ideal has initial/terminal object if and only if it is principal. What's more, any topology with inclusion relation has both objects, it has a zero object if and only if it's empty.
\end{itemize}
\item In $\mathsf{Set}$, the initial object is $\varnothing$, the terminal objects are the sets that have exact one element.
\item In $\mathsf{Rel}$, $\varnothing$ is the unique initial and unique terminal object.
\item In $\mathsf{Grp}$, trivial group ${e}$ is a zero object, the homomorphism which the codomain is a trivial group is a zero morphism.
\item In $\mathsf{Vect}_\Bbbk$, the null space is a zero object, and zero mapping is a zero morphism.
\item For $X\in\Ob(\ca)$, $\1_X$ the terminal object of slice category $\ca/X$; and is the initial object of coslice category $X/\ca$.
\end{enumerate}
\end{exm}
\begin{defi}
Consider a category $\ca$ and let $\{X_i\}_{i\in I}\subseteq\Ob(\ca)$ ($I$ is a set) be a family of objects in $\ca$, and an object $P$ in $\ca$.
For a family of morphisms $\{p_i\}_{i\in I}$ where $p_i\in\Hom_\ca(P,X_i)$ for each $i\in I$, we say the pair $\left<P,\{p_i\}_{i\in I}\right>$ is the \emph{product} of $\{X_i\}_{i\in I}$, if for all $Y\in\Ob(\ca)$, and a family of morphisms $\{f_i\}_{i\in I}$ where $f_i\in\Hom_\ca(Y,X_i)$ for each $i\in I$, there exists a unique morphism $u\in\Hom_\ca(Y,P)$ such that $\forall i\in I[f_i=p_i\circ u]$.\\
In commutative diagram (where $i,j\in I$):
\[\begin{tikzcd}
& Y \arrow[->,>=stealth, dd, "\exists!u" description, dashed] \arrow[->,>=stealth, rdd, "f_j"] \arrow[->,>=stealth, ldd, "f_i"'] & \\ & & \\
X_i & P \arrow[->,>=stealth, l, "p_i"] \arrow[->,>=stealth, r, "p_j"'] & X_j.
\end{tikzcd}\]
Each $p_i$ is called \emph{projection}.
For a family of morphisms $\{q_i\}_{i\in I}$ where $q_i\in\Hom_\ca(X_i,P)$ for each $i\in I$, we say the pair $\left<P,\{q_i\}_{i\in I}\right>$ is the \emph{coproduct} of $\{X_i\}_{i\in I}$, if for all $Y\in\Ob(\ca)$, and a family of morphisms $\{g_i\}_{i\in I}$ where $g_i\in\Hom_\ca(X_i,Y)$ for each $i\in I$, there exists a unique morphism $u\in\Hom_\ca(P,Y)$ such that $\forall i\in I[g_i=u\circ q_i]$.\\
In commutative diagram (where $i,j\in I$):
\[\begin{tikzcd}
X_i \arrow[->,>=stealth, r, "q_i"] \arrow[->,>=stealth, rdd, "g_i"'] & P \arrow[->,>=stealth, dd, "\exists!u" description, dashed] &
X_j \arrow[->,>=stealth, l, "q_j"'] \arrow[->,>=stealth, ldd, "g_j"] \\ & & \\ & Y.&
\end{tikzcd}\]
Each $q_i$ is called \emph{coprojection}.
\end{defi}
\begin{lmm}\label{id recognize}
In category $\ca$, let $\left<P,\{p_i\}_{i\in I}\right>$ be the product of $\{X_i\}_{i\in I}$ and $k\in\Hom_\ca(P,P)$ satisfies $\forall i\in I[p_i\circ k=p_i]$, then $k=\1_P$. Similarly, if $\left<P,\{q_i\}_{i\in I}\right>$ is the coproduct and $\forall i\in I[k\circ q_i=q_i]$, then $k=\1_P$.
\end{lmm}
\begin{proof}
According to the definition of product, for $P$ and $\{p_i\}_{i\in I}$ themselves, we have the following diagram:
\[\begin{tikzcd}
P \arrow[->,>=stealth, rd, "p_i"] \arrow[->,>=stealth, d, "\exists!u"', dashed] & \\
P \arrow[->,>=stealth, r, "p_i"'] & X_i.
\end{tikzcd}\]
Because $\forall i\in I[p_i\circ k=p_i=p_i\circ\1_P]$ and the morphism $u$ is unique, we have $k=u=\1_P$.
The proof about coproduct is similar.
\end{proof}
\begin{thm}
Consider a category $\ca$ and its objects $P,Q$. If $\left<P,\{p_i\}_{i\in I}\right>$ and $\left<Q,\{q_i\}_{i\in I}\right>$ are both the products/coproducts of the fixed family of objects $\{X_i\}_{i\in I}$, then $P\mathop{\simeq}\limits^\mathrm{M}Q$.
\end{thm}
\begin{proof}
According to the definition of product, for any $i\in I$ we have the following diagram: \[\begin{tikzcd}
& & P \arrow[->,>=stealth, d, "\exists!u", dashed] \arrow[->,>=stealth, lld, "p_i"']\\
X_i & & Q \arrow[->,>=stealth, d, "\exists!v", dashed] \arrow[->,>=stealth, ll, "q_i" description]\\
& & P. \arrow[->,>=stealth, llu, "p_i"]
\end{tikzcd}\]
That is $p_i=q_i\circ u$ and $q_i=p_i\circ v$, substituting each other leads to
$$\forall i\in I[p_i=p_i\circ v\circ u\wedge q_i=q_i\circ u\circ v].$$
Using Proposition 1, we get $v\circ u=\1_P$ and $u\circ v=\1_Q$, thus $u$ and $v$ are the isomorphisms between $P$ and $Q$.
The proof about coproduct is similar, just observe the following diagram:
\[\begin{tikzcd}
P \arrow[->,>=stealth, d, "\exists!u"', dashed] & & \\
Q \arrow[->,>=stealth, d, "\exists!v"', dashed] & &
X_i. \arrow[->,>=stealth, llu, "p_i"'] \arrow[->,>=stealth, ll, "q_i" description] \arrow[->,>=stealth, lld, "p_i"] \\ P & &
\end{tikzcd}\]
\end{proof}
\begin{defi}
For a family of small categories $\{\ca_i\}_{i\in I}$, we define:
\emph{Product category} $\prod_{i\in I}{\ca_i}$ (using Cartesian product):
\begin{align*}
\Ob(\prod_{i\in I}{\ca_i}) &:= \prod_{i\in I}{\Ob(\ca_i)};\\
\Hom_{\prod_{i\in I}{\ca_i}}(\{X_i\}_I,\{Y_i\}_I) &:= \prod_{i\in I}{\Hom(X_i,Y_i)};\\
\{f_i\}_I\circ^{\prod}\{g_i\}_I &:= \{f_i\circ^{\ca_i}g_i\}_I;\\
\1^{\prod}_{\{X_i\}_I} &:= \{1_{X_i}\}_I;
\end{align*}
where $\{X_i\}_I,\{Y_i\}_I\in\Ob(\prod_{i\in I}{\ca_i})$ and $\{f_i\}_I,\{g_i\}_I\in\Mor(\prod_{i\in I}{\ca_i})$.
If $\{\Ob(\ca_i)\}_{i\in I}$ is disjoint, we define the the \emph{coproduct category} $\coprod_{i\in I}{\ca_i}$ of $\{\ca_i\}_{i\in I}$ as follow:
\begin{align*}
\Ob(\coprod_{i\in I}{\ca_i}) &:= \bigsqcup_{i\in I}{\Ob(\ca_i)};\\
\Hom_{\coprod_{i\in I}{\ca_i}}(X_j,Y_k) &:= \left\{\begin{aligned} & \Hom_{\ca_j}(X_j,Y_k), & j=k, \\ & \varnothing, & j\ne k, \end{aligned}\right.
\end{align*}
where $i,j\in I$, and $X_j\in\Ob(\ca_j)$, $Y_k\in\Ob(\ca_k)$; the composition of morphisms is defined as the composition in each $\ca_i$.
It's easy to verify that the product/coproduct category is indeed a category. We can define the \emph{projection functor} $\mathbf{p}_j:\prod_{i\in I}{\ca_i}\to\ca_j$ for each $j\in I$ such that $\mathbf{p}_j(\{X_i\}_{i\in I})=X_j$ and $\mathbf{p}_j(\{f_i\}_{i\in I})=f_j$, and the definition of inclusion functor $\iota_j:\ca_j\to\coprod_{i\in I}{\ca_i}$ is obvious. Moreover, we denote $\prod\{\ca_1,\ca_2\}$ as $\ca_1\times \ca_2$.
\end{defi}
\begin{cor}
In $\mathsf{Cat}$, for a collection of small category $\{\ca_i\}_{i\in I}$, the product category with a collection of projection functor $\left<\prod_{i\in I}{\ca_i},\{\mathbf{p}_i\}_{i\in I}\right>$ is a product of $\{\ca_i\}_{i\in I}$, and the coproduct category with a collection of inclusion functor $\left<\coprod_{i\in I}{\ca_i},\{\iota_i\}_{i\in I}\right>$ is a coproduct of $\{\ca_i\}_{i\in I}$.
\end{cor}
\begin{defi}
For small categories $\ca$ and $\D$, we now define \emph{functor category} $\fct(\ca,\D)$: The objects are the functors $F:\ca\to\D$, the morphisms between $F$ and $G$ are the natural transformations $\theta:F\Rightarrow G$, the composition of morphisms is the vertical composition of natural transformations.
\footnote{Note that the functor category $\fct(\ca,\D)$ is also a small category. Because evidently $\Ob(\fct(\ca,\D))$ is a set, and for any functors $F,G:\ca\to\D$, the family of the natural transformations between $F$ and $G$ is the subset of the set $\prod_{X\in\ca}{\Hom_\D(F(X),G(X))}$.}
\end{defi}
\begin{defi}
For functor $F:\ca\to\D$ and objects $U\in\Ob(\ca)$, $A\in\Ob(\D)$, we define:
For morphism $u\in\Hom_\D(A,F(U))$, we say the pair $\left<U,u\right>$ is the \emph{universal morphism from $A$ to $F$} if it satisfies the \emph{universal property}:
$$\forall X\in\Ob(\ca)\forall f\in\Hom_\D(A,F(X))\exists!g\in\Hom_\ca(U,X)[F(g)\circ u=f],$$
i.e., the diagram (a) commutes.
For morphism $u\in\Hom_\D(F(U),A)$, we say the pair $\left<u,U\right>$ is the \emph{universal morphism from $F$ to $A$} if it satisfies the universal property:
$$\forall X\in\Ob(\ca)\forall f\in\Hom_\D(F(X),A)\exists!g\in\Hom_\ca(X,U)[u\circ F(g)=f],$$
i.e., the diagram (b) commutes.
\[\text{(a)}\quad\begin{tikzcd}
A \arrow[->,>=stealth, d, "u"'] \arrow[->,>=stealth, rd, "f"] & \\
F(U) \arrow[->,>=stealth, r, "F(g)"', dashed] & F(X)