forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
levenshtein_distance.py
125 lines (101 loc) · 4.18 KB
/
levenshtein_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from collections.abc import Callable
def levenshtein_distance(first_word: str, second_word: str) -> int:
"""
Implementation of the Levenshtein distance in Python.
:param first_word: the first word to measure the difference.
:param second_word: the second word to measure the difference.
:return: the levenshtein distance between the two words.
Examples:
>>> levenshtein_distance("planet", "planetary")
3
>>> levenshtein_distance("", "test")
4
>>> levenshtein_distance("book", "back")
2
>>> levenshtein_distance("book", "book")
0
>>> levenshtein_distance("test", "")
4
>>> levenshtein_distance("", "")
0
>>> levenshtein_distance("orchestration", "container")
10
"""
# The longer word should come first
if len(first_word) < len(second_word):
return levenshtein_distance(second_word, first_word)
if len(second_word) == 0:
return len(first_word)
previous_row = list(range(len(second_word) + 1))
for i, c1 in enumerate(first_word):
current_row = [i + 1]
for j, c2 in enumerate(second_word):
# Calculate insertions, deletions, and substitutions
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
# Get the minimum to append to the current row
current_row.append(min(insertions, deletions, substitutions))
# Store the previous row
previous_row = current_row
# Returns the last element (distance)
return previous_row[-1]
def levenshtein_distance_optimized(first_word: str, second_word: str) -> int:
"""
Compute the Levenshtein distance between two words (strings).
The function is optimized for efficiency by modifying rows in place.
:param first_word: the first word to measure the difference.
:param second_word: the second word to measure the difference.
:return: the Levenshtein distance between the two words.
Examples:
>>> levenshtein_distance_optimized("planet", "planetary")
3
>>> levenshtein_distance_optimized("", "test")
4
>>> levenshtein_distance_optimized("book", "back")
2
>>> levenshtein_distance_optimized("book", "book")
0
>>> levenshtein_distance_optimized("test", "")
4
>>> levenshtein_distance_optimized("", "")
0
>>> levenshtein_distance_optimized("orchestration", "container")
10
"""
if len(first_word) < len(second_word):
return levenshtein_distance_optimized(second_word, first_word)
if len(second_word) == 0:
return len(first_word)
previous_row = list(range(len(second_word) + 1))
for i, c1 in enumerate(first_word):
current_row = [i + 1] + [0] * len(second_word)
for j, c2 in enumerate(second_word):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row[j + 1] = min(insertions, deletions, substitutions)
previous_row = current_row
return previous_row[-1]
def benchmark_levenshtein_distance(func: Callable) -> None:
"""
Benchmark the Levenshtein distance function.
:param str: The name of the function being benchmarked.
:param func: The function to be benchmarked.
"""
from timeit import timeit
stmt = f"{func.__name__}('sitting', 'kitten')"
setup = f"from __main__ import {func.__name__}"
number = 25_000
result = timeit(stmt=stmt, setup=setup, number=number)
print(f"{func.__name__:<30} finished {number:,} runs in {result:.5f} seconds")
if __name__ == "__main__":
# Get user input for words
first_word = input("Enter the first word for Levenshtein distance:\n").strip()
second_word = input("Enter the second word for Levenshtein distance:\n").strip()
# Calculate and print Levenshtein distances
print(f"{levenshtein_distance(first_word, second_word) = }")
print(f"{levenshtein_distance_optimized(first_word, second_word) = }")
# Benchmark the Levenshtein distance functions
benchmark_levenshtein_distance(levenshtein_distance)
benchmark_levenshtein_distance(levenshtein_distance_optimized)