forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix_class.py
366 lines (326 loc) · 11 KB
/
matrix_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# An OOP approach to representing and manipulating matrices
from __future__ import annotations
class Matrix:
"""
Matrix object generated from a 2D array where each element is an array representing
a row.
Rows can contain type int or float.
Common operations and information available.
>>> rows = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]
... ]
>>> matrix = Matrix(rows)
>>> print(matrix)
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]
Matrix rows and columns are available as 2D arrays
>>> matrix.rows
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> matrix.columns()
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Order is returned as a tuple
>>> matrix.order
(3, 3)
Squareness and invertability are represented as bool
>>> matrix.is_square
True
>>> matrix.is_invertable()
False
Identity, Minors, Cofactors and Adjugate are returned as Matrices. Inverse can be
a Matrix or Nonetype
>>> print(matrix.identity())
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
>>> print(matrix.minors())
[[-3. -6. -3.]
[-6. -12. -6.]
[-3. -6. -3.]]
>>> print(matrix.cofactors())
[[-3. 6. -3.]
[6. -12. 6.]
[-3. 6. -3.]]
>>> # won't be apparent due to the nature of the cofactor matrix
>>> print(matrix.adjugate())
[[-3. 6. -3.]
[6. -12. 6.]
[-3. 6. -3.]]
>>> matrix.inverse()
Traceback (most recent call last):
...
TypeError: Only matrices with a non-zero determinant have an inverse
Determinant is an int, float, or Nonetype
>>> matrix.determinant()
0
Negation, scalar multiplication, addition, subtraction, multiplication and
exponentiation are available and all return a Matrix
>>> print(-matrix)
[[-1. -2. -3.]
[-4. -5. -6.]
[-7. -8. -9.]]
>>> matrix2 = matrix * 3
>>> print(matrix2)
[[3. 6. 9.]
[12. 15. 18.]
[21. 24. 27.]]
>>> print(matrix + matrix2)
[[4. 8. 12.]
[16. 20. 24.]
[28. 32. 36.]]
>>> print(matrix - matrix2)
[[-2. -4. -6.]
[-8. -10. -12.]
[-14. -16. -18.]]
>>> print(matrix ** 3)
[[468. 576. 684.]
[1062. 1305. 1548.]
[1656. 2034. 2412.]]
Matrices can also be modified
>>> matrix.add_row([10, 11, 12])
>>> print(matrix)
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]
[10. 11. 12.]]
>>> matrix2.add_column([8, 16, 32])
>>> print(matrix2)
[[3. 6. 9. 8.]
[12. 15. 18. 16.]
[21. 24. 27. 32.]]
>>> print(matrix * matrix2)
[[90. 108. 126. 136.]
[198. 243. 288. 304.]
[306. 378. 450. 472.]
[414. 513. 612. 640.]]
"""
def __init__(self, rows: list[list[int]]):
error = TypeError(
"Matrices must be formed from a list of zero or more lists containing at "
"least one and the same number of values, each of which must be of type "
"int or float."
)
if len(rows) != 0:
cols = len(rows[0])
if cols == 0:
raise error
for row in rows:
if len(row) != cols:
raise error
for value in row:
if not isinstance(value, (int, float)):
raise error
self.rows = rows
else:
self.rows = []
# MATRIX INFORMATION
def columns(self) -> list[list[int]]:
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
@property
def num_rows(self) -> int:
return len(self.rows)
@property
def num_columns(self) -> int:
return len(self.rows[0])
@property
def order(self) -> tuple[int, int]:
return self.num_rows, self.num_columns
@property
def is_square(self) -> bool:
return self.order[0] == self.order[1]
def identity(self) -> Matrix:
values = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
for row_num in range(self.num_rows)
]
return Matrix(values)
def determinant(self) -> int:
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0])
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0])
)
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns)
)
def is_invertable(self) -> bool:
return bool(self.determinant())
def get_minor(self, row: int, column: int) -> int:
values = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns)
if other_column != column
]
for other_row in range(self.num_rows)
if other_row != row
]
return Matrix(values).determinant()
def get_cofactor(self, row: int, column: int) -> int:
if (row + column) % 2 == 0:
return self.get_minor(row, column)
return -1 * self.get_minor(row, column)
def minors(self) -> Matrix:
return Matrix(
[
[self.get_minor(row, column) for column in range(self.num_columns)]
for row in range(self.num_rows)
]
)
def cofactors(self) -> Matrix:
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns)
]
for row in range(self.minors().num_rows)
]
)
def adjugate(self) -> Matrix:
values = [
[self.cofactors().rows[column][row] for column in range(self.num_columns)]
for row in range(self.num_rows)
]
return Matrix(values)
def inverse(self) -> Matrix:
determinant = self.determinant()
if not determinant:
raise TypeError("Only matrices with a non-zero determinant have an inverse")
return self.adjugate() * (1 / determinant)
def __repr__(self) -> str:
return str(self.rows)
def __str__(self) -> str:
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0])) + "]]"
return (
"["
+ "\n ".join(
[
"[" + ". ".join([str(value) for value in row]) + ".]"
for row in self.rows
]
)
+ "]"
)
# MATRIX MANIPULATION
def add_row(self, row: list[int], position: int | None = None) -> None:
type_error = TypeError("Row must be a list containing all ints and/or floats")
if not isinstance(row, list):
raise type_error
for value in row:
if not isinstance(value, (int, float)):
raise type_error
if len(row) != self.num_columns:
raise ValueError(
"Row must be equal in length to the other rows in the matrix"
)
if position is None:
self.rows.append(row)
else:
self.rows = self.rows[0:position] + [row] + self.rows[position:]
def add_column(self, column: list[int], position: int | None = None) -> None:
type_error = TypeError(
"Column must be a list containing all ints and/or floats"
)
if not isinstance(column, list):
raise type_error
for value in column:
if not isinstance(value, (int, float)):
raise type_error
if len(column) != self.num_rows:
raise ValueError(
"Column must be equal in length to the other columns in the matrix"
)
if position is None:
self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
else:
self.rows = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows)
]
# MATRIX OPERATIONS
def __eq__(self, other: object) -> bool:
if not isinstance(other, Matrix):
return NotImplemented
return self.rows == other.rows
def __ne__(self, other: object) -> bool:
return not self == other
def __neg__(self) -> Matrix:
return self * -1
def __add__(self, other: Matrix) -> Matrix:
if self.order != other.order:
raise ValueError("Addition requires matrices of the same order")
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
]
)
def __sub__(self, other: Matrix) -> Matrix:
if self.order != other.order:
raise ValueError("Subtraction requires matrices of the same order")
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
]
)
def __mul__(self, other: Matrix | float) -> Matrix:
if isinstance(other, (int, float)):
return Matrix(
[[int(element * other) for element in row] for row in self.rows]
)
elif isinstance(other, Matrix):
if self.num_columns != other.num_rows:
raise ValueError(
"The number of columns in the first matrix must "
"be equal to the number of rows in the second"
)
return Matrix(
[
[Matrix.dot_product(row, column) for column in other.columns()]
for row in self.rows
]
)
else:
raise TypeError(
"A Matrix can only be multiplied by an int, float, or another matrix"
)
def __pow__(self, other: int) -> Matrix:
if not isinstance(other, int):
raise TypeError("A Matrix can only be raised to the power of an int")
if not self.is_square:
raise ValueError("Only square matrices can be raised to a power")
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
"Only invertable matrices can be raised to a negative power"
)
result = self
for _ in range(other - 1):
result *= self
return result
@classmethod
def dot_product(cls, row: list[int], column: list[int]) -> int:
return sum(row[i] * column[i] for i in range(len(row)))
if __name__ == "__main__":
import doctest
doctest.testmod()