forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
perfect_cube.py
55 lines (48 loc) · 1.32 KB
/
perfect_cube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def perfect_cube(n: int) -> bool:
"""
Check if a number is a perfect cube or not.
>>> perfect_cube(27)
True
>>> perfect_cube(4)
False
"""
val = n ** (1 / 3)
return (val * val * val) == n
def perfect_cube_binary_search(n: int) -> bool:
"""
Check if a number is a perfect cube or not using binary search.
Time complexity : O(Log(n))
Space complexity: O(1)
>>> perfect_cube_binary_search(27)
True
>>> perfect_cube_binary_search(64)
True
>>> perfect_cube_binary_search(4)
False
>>> perfect_cube_binary_search("a")
Traceback (most recent call last):
...
TypeError: perfect_cube_binary_search() only accepts integers
>>> perfect_cube_binary_search(0.1)
Traceback (most recent call last):
...
TypeError: perfect_cube_binary_search() only accepts integers
"""
if not isinstance(n, int):
raise TypeError("perfect_cube_binary_search() only accepts integers")
if n < 0:
n = -n
left = 0
right = n
while left <= right:
mid = left + (right - left) // 2
if mid * mid * mid == n:
return True
elif mid * mid * mid < n:
left = mid + 1
else:
right = mid - 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()