forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bezier_curve.py
114 lines (95 loc) · 4.18 KB
/
bezier_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# https://en.wikipedia.org/wiki/B%C3%A9zier_curve
# https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm
from __future__ import annotations
from scipy.special import comb
class BezierCurve:
"""
Bezier curve is a weighted sum of a set of control points.
Generate Bezier curves from a given set of control points.
This implementation works only for 2d coordinates in the xy plane.
"""
def __init__(self, list_of_points: list[tuple[float, float]]):
"""
list_of_points: Control points in the xy plane on which to interpolate. These
points control the behavior (shape) of the Bezier curve.
"""
self.list_of_points = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
self.degree = len(list_of_points) - 1
def basis_function(self, t: float) -> list[float]:
"""
The basis function determines the weight of each control point at time t.
t: time value between 0 and 1 inclusive at which to evaluate the basis of
the curve.
returns the x, y values of basis function at time t
>>> curve = BezierCurve([(1,1), (1,2)])
>>> [float(x) for x in curve.basis_function(0)]
[1.0, 0.0]
>>> [float(x) for x in curve.basis_function(1)]
[0.0, 1.0]
"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
output_values: list[float] = []
for i in range(len(self.list_of_points)):
# basis function for each i
output_values.append(
comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t**i)
)
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(output_values), 5) == 1
return output_values
def bezier_curve_function(self, t: float) -> tuple[float, float]:
"""
The function to produce the values of the Bezier curve at time t.
t: the value of time t at which to evaluate the Bezier function
Returns the x, y coordinates of the Bezier curve at time t.
The first point in the curve is when t = 0.
The last point in the curve is when t = 1.
>>> curve = BezierCurve([(1,1), (1,2)])
>>> tuple(float(x) for x in curve.bezier_curve_function(0))
(1.0, 1.0)
>>> tuple(float(x) for x in curve.bezier_curve_function(1))
(1.0, 2.0)
"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
basis_function = self.basis_function(t)
x = 0.0
y = 0.0
for i in range(len(self.list_of_points)):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def plot_curve(self, step_size: float = 0.01):
"""
Plots the Bezier curve using matplotlib plotting capabilities.
step_size: defines the step(s) at which to evaluate the Bezier curve.
The smaller the step size, the finer the curve produced.
"""
from matplotlib import pyplot as plt
to_plot_x: list[float] = [] # x coordinates of points to plot
to_plot_y: list[float] = [] # y coordinates of points to plot
t = 0.0
while t <= 1:
value = self.bezier_curve_function(t)
to_plot_x.append(value[0])
to_plot_y.append(value[1])
t += step_size
x = [i[0] for i in self.list_of_points]
y = [i[1] for i in self.list_of_points]
plt.plot(
to_plot_x,
to_plot_y,
color="blue",
label="Curve of Degree " + str(self.degree),
)
plt.scatter(x, y, color="red", label="Control Points")
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3