forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binomial_heap.py
401 lines (340 loc) · 12.4 KB
/
binomial_heap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
Binomial Heap
Reference: Advanced Data Structures, Peter Brass
"""
class Node:
"""
Node in a doubly-linked binomial tree, containing:
- value
- size of left subtree
- link to left, right and parent nodes
"""
def __init__(self, val):
self.val = val
# Number of nodes in left subtree
self.left_tree_size = 0
self.left = None
self.right = None
self.parent = None
def merge_trees(self, other):
"""
In-place merge of two binomial trees of equal size.
Returns the root of the resulting tree
"""
assert self.left_tree_size == other.left_tree_size, "Unequal Sizes of Blocks"
if self.val < other.val:
other.left = self.right
other.parent = None
if self.right:
self.right.parent = other
self.right = other
self.left_tree_size = self.left_tree_size * 2 + 1
return self
else:
self.left = other.right
self.parent = None
if other.right:
other.right.parent = self
other.right = self
other.left_tree_size = other.left_tree_size * 2 + 1
return other
class BinomialHeap:
r"""
Min-oriented priority queue implemented with the Binomial Heap data
structure implemented with the BinomialHeap class. It supports:
- Insert element in a heap with n elements: Guaranteed logn, amoratized 1
- Merge (meld) heaps of size m and n: O(logn + logm)
- Delete Min: O(logn)
- Peek (return min without deleting it): O(1)
Example:
Create a random permutation of 30 integers to be inserted and 19 of them deleted
>>> import numpy as np
>>> permutation = np.random.permutation(list(range(30)))
Create a Heap and insert the 30 integers
__init__() test
>>> first_heap = BinomialHeap()
30 inserts - insert() test
>>> for number in permutation:
... first_heap.insert(number)
Size test
>>> first_heap.size
30
Deleting - delete() test
>>> [int(first_heap.delete_min()) for _ in range(20)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Create a new Heap
>>> second_heap = BinomialHeap()
>>> vals = [17, 20, 31, 34]
>>> for value in vals:
... second_heap.insert(value)
The heap should have the following structure:
17
/ \
# 31
/ \
20 34
/ \ / \
# # # #
preOrder() test
>>> " ".join(str(x) for x in second_heap.pre_order())
"(17, 0) ('#', 1) (31, 1) (20, 2) ('#', 3) ('#', 3) (34, 2) ('#', 3) ('#', 3)"
printing Heap - __str__() test
>>> print(second_heap)
17
-#
-31
--20
---#
---#
--34
---#
---#
mergeHeaps() test
>>>
>>> merged = second_heap.merge_heaps(first_heap)
>>> merged.peek()
17
values in merged heap; (merge is inplace)
>>> results = []
>>> while not first_heap.is_empty():
... results.append(int(first_heap.delete_min()))
>>> results
[17, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34]
"""
def __init__(self, bottom_root=None, min_node=None, heap_size=0):
self.size = heap_size
self.bottom_root = bottom_root
self.min_node = min_node
def merge_heaps(self, other):
"""
In-place merge of two binomial heaps.
Both of them become the resulting merged heap
"""
# Empty heaps corner cases
if other.size == 0:
return None
if self.size == 0:
self.size = other.size
self.bottom_root = other.bottom_root
self.min_node = other.min_node
return None
# Update size
self.size = self.size + other.size
# Update min.node
if self.min_node.val > other.min_node.val:
self.min_node = other.min_node
# Merge
# Order roots by left_subtree_size
combined_roots_list = []
i, j = self.bottom_root, other.bottom_root
while i or j:
if i and ((not j) or i.left_tree_size < j.left_tree_size):
combined_roots_list.append((i, True))
i = i.parent
else:
combined_roots_list.append((j, False))
j = j.parent
# Insert links between them
for i in range(len(combined_roots_list) - 1):
if combined_roots_list[i][1] != combined_roots_list[i + 1][1]:
combined_roots_list[i][0].parent = combined_roots_list[i + 1][0]
combined_roots_list[i + 1][0].left = combined_roots_list[i][0]
# Consecutively merge roots with same left_tree_size
i = combined_roots_list[0][0]
while i.parent:
if (
(i.left_tree_size == i.parent.left_tree_size) and (not i.parent.parent)
) or (
i.left_tree_size == i.parent.left_tree_size
and i.left_tree_size != i.parent.parent.left_tree_size
):
# Neighbouring Nodes
previous_node = i.left
next_node = i.parent.parent
# Merging trees
i = i.merge_trees(i.parent)
# Updating links
i.left = previous_node
i.parent = next_node
if previous_node:
previous_node.parent = i
if next_node:
next_node.left = i
else:
i = i.parent
# Updating self.bottom_root
while i.left:
i = i.left
self.bottom_root = i
# Update other
other.size = self.size
other.bottom_root = self.bottom_root
other.min_node = self.min_node
# Return the merged heap
return self
def insert(self, val):
"""
insert a value in the heap
"""
if self.size == 0:
self.bottom_root = Node(val)
self.size = 1
self.min_node = self.bottom_root
else:
# Create new node
new_node = Node(val)
# Update size
self.size += 1
# update min_node
if val < self.min_node.val:
self.min_node = new_node
# Put new_node as a bottom_root in heap
self.bottom_root.left = new_node
new_node.parent = self.bottom_root
self.bottom_root = new_node
# Consecutively merge roots with same left_tree_size
while (
self.bottom_root.parent
and self.bottom_root.left_tree_size
== self.bottom_root.parent.left_tree_size
):
# Next node
next_node = self.bottom_root.parent.parent
# Merge
self.bottom_root = self.bottom_root.merge_trees(self.bottom_root.parent)
# Update Links
self.bottom_root.parent = next_node
self.bottom_root.left = None
if next_node:
next_node.left = self.bottom_root
def peek(self):
"""
return min element without deleting it
"""
return self.min_node.val
def is_empty(self):
return self.size == 0
def delete_min(self):
"""
delete min element and return it
"""
# assert not self.isEmpty(), "Empty Heap"
# Save minimal value
min_value = self.min_node.val
# Last element in heap corner case
if self.size == 1:
# Update size
self.size = 0
# Update bottom root
self.bottom_root = None
# Update min_node
self.min_node = None
return min_value
# No right subtree corner case
# The structure of the tree implies that this should be the bottom root
# and there is at least one other root
if self.min_node.right is None:
# Update size
self.size -= 1
# Update bottom root
self.bottom_root = self.bottom_root.parent
self.bottom_root.left = None
# Update min_node
self.min_node = self.bottom_root
i = self.bottom_root.parent
while i:
if i.val < self.min_node.val:
self.min_node = i
i = i.parent
return min_value
# General case
# Find the BinomialHeap of the right subtree of min_node
bottom_of_new = self.min_node.right
bottom_of_new.parent = None
min_of_new = bottom_of_new
size_of_new = 1
# Size, min_node and bottom_root
while bottom_of_new.left:
size_of_new = size_of_new * 2 + 1
bottom_of_new = bottom_of_new.left
if bottom_of_new.val < min_of_new.val:
min_of_new = bottom_of_new
# Corner case of single root on top left path
if (not self.min_node.left) and (not self.min_node.parent):
self.size = size_of_new
self.bottom_root = bottom_of_new
self.min_node = min_of_new
# print("Single root, multiple nodes case")
return min_value
# Remaining cases
# Construct heap of right subtree
new_heap = BinomialHeap(
bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new
)
# Update size
self.size = self.size - 1 - size_of_new
# Neighbour nodes
previous_node = self.min_node.left
next_node = self.min_node.parent
# Initialize new bottom_root and min_node
self.min_node = previous_node or next_node
self.bottom_root = next_node
# Update links of previous_node and search below for new min_node and
# bottom_root
if previous_node:
previous_node.parent = next_node
# Update bottom_root and search for min_node below
self.bottom_root = previous_node
self.min_node = previous_node
while self.bottom_root.left:
self.bottom_root = self.bottom_root.left
if self.bottom_root.val < self.min_node.val:
self.min_node = self.bottom_root
if next_node:
next_node.left = previous_node
# Search for new min_node above min_node
i = next_node
while i:
if i.val < self.min_node.val:
self.min_node = i
i = i.parent
# Merge heaps
self.merge_heaps(new_heap)
return int(min_value)
def pre_order(self):
"""
Returns the Pre-order representation of the heap including
values of nodes plus their level distance from the root;
Empty nodes appear as #
"""
# Find top root
top_root = self.bottom_root
while top_root.parent:
top_root = top_root.parent
# preorder
heap_pre_order = []
self.__traversal(top_root, heap_pre_order)
return heap_pre_order
def __traversal(self, curr_node, preorder, level=0):
"""
Pre-order traversal of nodes
"""
if curr_node:
preorder.append((curr_node.val, level))
self.__traversal(curr_node.left, preorder, level + 1)
self.__traversal(curr_node.right, preorder, level + 1)
else:
preorder.append(("#", level))
def __str__(self):
"""
Overwriting str for a pre-order print of nodes in heap;
Performance is poor, so use only for small examples
"""
if self.is_empty():
return ""
preorder_heap = self.pre_order()
return "\n".join(("-" * level + str(value)) for value, level in preorder_heap)
# Unit Tests
if __name__ == "__main__":
import doctest
doctest.testmod()