-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneural.py
884 lines (734 loc) · 28.1 KB
/
neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
"""
Simple example code for creating a neural network
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import xlogy
np.random.seed(69420)
class NeuralNetworkClassifier:
'''
This class implement a multilayer perceptron neural network.
Is possible to choose how many layers use and how many neurons
are in each layer.
This network is for classifications and the activantion function
implemented are only tanh and relu, sufficient for demonstration
purposes. The opitimizer used is adam, Loss is binary cross entropy.
In the case of classifications with multiple classes, one ot encoding
is used, and the loss is calculated as the average on each output.
'''
def __init__(self, layers, n_epoch, f_act='tanh'):
'''
Initialize the neural network for a classification problem
Parameters
----------
layers : list
list which must contain the number of neurons for each layer
the number of layers is len(layers) and layers[i] is the
number of neurons on the i-th layer. Only hidden layers must
be celaderd, input and output are read from data
n_epoch : int
number of training epochs of the network
f_act : {'tanh', 'relu'}, optional, default tanh
activation function for hidden layers
'''
# hidden and output layers
self.layers = layers
self.n_layers = len(self.layers) + 1 # plus one for output layer
# number of training epochs
self.n_epoch = n_epoch
# weights, bias and predictions for each layers
self.W = []
self.B = []
self.A = []
self.Z = []
# momenta for update
self.mw = []
self.vw = []
self.mb = []
self.vb = []
# some parameters of network
self.f_act = f_act
self.dfeat = 0 # dimension of features, number of neurons in the input layer
self.dtarg = 0 # dimension of targets, number of neurons in the output layer
# size of all data and validationm
self.N = 0 # ALL
self.M = 0 # Validation
if f_act not in ['tanh', 'relu']:
msg = 'Only tanh and relu are implemented'
raise NotImplementedError(msg)
def Loss(self, Yp, Y):
'''
loss function,
Parameters
----------
Yp : 1darray
actual prediction
Y : 1darray
Target
Returns
-------
float, loss
'''
if self.dtarg == 1:
m = len(Y) # len of data
return -np.sum(xlogy(Y, Yp) + xlogy(1 - Y, 1 - Yp)) / m
elif self.dtarg > 1:
m = len(Y) # len of data
Y = self.one_hot(Y)
L = [-np.sum(xlogy(Y[i, :], Yp[i,:]) + xlogy(1 - Y[i,:], 1 - Yp[i,:])) / m for i in range(Y.shape[0])]
return np.mean(L)
def act(self, x):
'''
Activation function for hidden layers;
Only tanh and relu are implemented
Parameters
----------
x : N x 1 matrix
iterpediate step of a layer
Returns
-------
tanh(x) or relu(x)
'''
if self.f_act == 'tanh':
return np.tanh(x)
if self.f_act == 'relu':
return np.maximum(0, x)
def d_act(self, x):
'''
Derivative of activation function for hidden layers;
Only tanh and relu are implemented
Parameters
----------
x : N x 1 matrix
iterpediate step of a layer
Returns
-------
1/cosh(x)**2 or step function
'''
if self.f_act == 'tanh':
return 1/np.cosh(x)**2
if self.f_act == 'relu':
return x > 0
def sigmoid(self, x):
'''
Activation function for output layers;
always sigmoid for a classification
Parameters
----------
x : N x 1 matrix
iterpediate step of a layer
Returns
-------
sigmoid
'''
return 1/(1+np.exp(-x))
def initialize(self):
'''
Function for the initializzation of weights and bias.
For all hidden layers we use he initializzation and
for last layer we use xavier initalization.
We also define the matrix of momenta for adam.
'''
l = [self.dfeat] + self.layers + [self.dtarg]
# he initialization for hidden layers; good for relu
for i in range(1, self.n_layers):
s = np.sqrt(2/l[i])
self.W.append(np.random.randn(l[i], l[i-1]) * s )
self.B.append(np.random.randn(l[i], 1 ) * s )
# random initialization, for output Xavier initialization
M = np.sqrt( 6 / (l[-1] + l[-2]) )
self.W.append( (2*np.random.rand(l[-1], l[-2]) - 1) * M)
self.B.append( (2*np.random.rand(l[-1], 1) - 1) * M)
# initialization of momenta for minimizzation
for i in range(self.n_layers):
self.mw.append(np.zeros(self.W[i].shape))
self.mb.append(np.zeros(self.B[i].shape))
self.vw.append(np.zeros(self.W[i].shape))
self.vb.append(np.zeros(self.B[i].shape))
def predict(self, X, train_data=False, all_data=False):
'''
Function to made prediction; feedfoward propagation
If you want predict on train data you must consider
the division beetwen train and validation
Parameters
----------
X : 2d array
matrix of featurs
train_data : bool, optional, default False
If True the propagation is done on self.A and self.Z because
for backpropagation we must use each iteration on network-
It is convenient when the method is called outside the class
so you must pass only data and get final prediction
all_data : bool, optional, default False
if True all output is returned with all values, while if False
only the predicted class is returned.
Usefull only for muticlass classifications
Returns
-------
A : 2darray
prediction of network
'''
if train_data:
self.A.append(X) # to start the iteration
for i in range(self.n_layers):
self.Z.append(self.W[i] @ self.A[i] + self.B[i])
if i == self.n_layers-1:
# activation function for last layer
self.A.append(self.sigmoid(self.Z[i]))
else:
# activation function for all other layers
self.A.append(self.act(self.Z[i]))
else :
A = np.copy(X) # to start the iteration
for i in range(self.n_layers):
Z = self.W[i] @ A + self.B[i]
if i == self.n_layers-1:
# activation function for last layer
A = self.sigmoid(Z)
else:
# activation function for all other layers
A = self.act(Z)
if self.dtarg > 1 :
if not all_data:
return np.argmax(A, 0)
else :
return A
elif self.dtarg == 1 :
return A
def one_hot(self, Y):
'''
Function for one hot encoding
Parameter
---------
Y : 1darray
target
Return
------
one_hot : 2darray
matrix that contain one on the index class
Example
-------
>>> y = np.array([1, 5, 6])
>>> one_hot(y)
>>> array([[0., 0., 0.],
[1., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
'''
one_hot = np.zeros((Y.size, np.max(Y) + 1))
one_hot[np.arange(Y.size), Y] = 1
return one_hot.T
def backpropagation(self, X, Y):
'''
Function for backward propagation.
compute de derivative of the loss function
respect to weights and bias.
Parameters
----------
X : 2darray
matrix of features
Y : 2darray
matrix of target
Returns
-------
dw : 2darray
dloss/dw gradient for update of weights
db : 2darray
dloss/db gradient for update of bias
'''
m = len(Y) # len of data
db = [np.zeros(b.shape) for b in self.B]
dw = [np.zeros(w.shape) for w in self.W]
if self.dtarg > 1: Y = self.one_hot(Y)
# output layer
delta = self.A[-1] - Y
db[-1] = np.sum(delta, axis=1, keepdims=True) / m
dw[-1] = delta @ self.A[-2].T / m
# loop over hidden layers
for l in range(2, self.n_layers):
z = self.Z[-l]
delta = (self.W[-l+1].T @ delta) * self.d_act(z)
db[-l] = np.sum(delta, axis=1, keepdims=True) / m
dw[-l] = delta @ self.A[-l-1].T / m
return dw, db
def adam(self, epoch, dW, dB, alpha, b1, b2, eps):
'''
Implementation of Adam alghoritm, Adaptive Moment Estimation for
update of weights and bias.
Parameters
----------
epoch : int
cuttente iteration
dW : 2darray
dloss/dw gradient for update of weights
dB : 2darray
dloss/db gradient for update of bias
alpha : float, optional default 0.01
size of step to do, typical value is 0.001
b1 : float, optional, default 0.9
Decay factor for first momentum
b2 : float, optional, default 0.999
Decay factor for second momentum
eps : float, optional, default 1e-8
parameter of alghoritm, to avoid division by zero
'''
for i in range(1, self.n_layers):
# udate weights
self.mw[i] = b1 * self.mw[i] + (1 - b1) * dW[i]
self.vw[i] = b2 * self.vw[i] + (1 - b2) * dW[i]**2
mw_hat = self.mw[i] / (1 - b1**(epoch + 1) )
vw_hat = self.vw[i] / (1 - b2**(epoch + 1) )
dw = alpha * mw_hat / (np.sqrt(vw_hat) + eps)
self.W[i] -= alpha * dw
# update bias
self.mb[i] = b1 * self.mb[i] + (1 - b1) * dB[i]
self.vb[i] = b2 * self.vb[i] + (1 - b2) * dB[i]**2
mb_hat = self.mb[i] / (1 - b1**(epoch + 1) )
vb_hat = self.vb[i] / (1 - b2**(epoch + 1) )
db = alpha * mb_hat / (np.sqrt(vb_hat) + eps)
self.B[i] -= alpha * db
def accuracy(self, Yp, Y):
'''
accuracy of prediction. We use for binary classifications:
accuracy = 1 - | sum ( prediction - target )/target_size |
While for more class, first we identify the predicted class
(np.argmax(prediction, 0), in prediction function) and then
compare the results with : sum(prediction == traget)/target_size
the bollean value will cast into 0 or 1
Parameters
----------
Yp : 1darray
actual prediction
Y : 1darray
Target
Returns
-------
a : float
accuracy
'''
if np.max(Y)==1:
m = len(Y)
a = 1 - abs(np.sum(Yp.ravel() - Y)/m)
else:
m = len(Y)
a = np.sum(Yp == Y)/m
return a
def train(self, X, Y, alpha=0.01, b1=0.9, b2=0.999, eps=1e-8, cut=4, verbose=False):
'''
Function for train the network,
the data are splitted to copute validation loss
Parameters
----------
X : 2darray
matrix of features (features x number of ata)
Y : 2darray
matrix of target
alpha : float, optional default 0.01
size of step to do, typical value is 0.001
b1 : float, optional, default 0.9
Decay factor for first momentum
b2 : float, optional, default 0.999
Decay factor for second momentum
eps : float, optional, default 1e-8
parameter of adam alghoritm, to avoid division by zero
cut : int, optional, default=4
fraction of input data to use for validation.
E.g. if N is the number of data, we use N/4 for validation and N-N/4 for train
verbose : bool
if True print loss and accuracy each 100 epoch
Returns
-------
result : dict
params --> weights and bias of network
train_Loss --> loss on train data
valid_Loss --> loss on validation data
'''
L_t = np.zeros(self.n_epoch) # training loss
L_v = np.zeros(self.n_epoch) # validation loss
self.N = X.shape[1] # total number of data
self.M = self.N//cut # nuber of data for validation
# first and last layers
self.dfeat = X.shape[0] # number of features
self.dtarg = np.max(Y)
if self.dtarg == 1:
pass
else:
self.dtarg += 1 # there is 0 class
# split dataset in validation and train
X_train, Y_train = X[:, :self.N-self.M ], Y[:self.N-self.M ]
X_valid, Y_valid = X[:, self.N-self.M:], Y[ self.N-self.M:]
self.initialize() # initialize weights and bias
for e in range(self.n_epoch):
# train
self.predict(X_train, train_data=True)
L_t[e] = self.Loss(self.A[-1], Y_train)
# validation
Yp = self.predict(X_valid, all_data=True)
L_v[e] = self.Loss(Yp, Y_valid)
# update
dW, dB = self.backpropagation(X_train, Y_train)
self.adam(e, dW, dB, alpha=alpha, b1=b1, b2=b2, eps=eps)
if not e % 100 and verbose:
acc = self.accuracy(np.argmax(self.A[-1], 0), Y_train)
print(f'Loss = {L_t[e]:.5f}, Valid Loss = {L_v[e]:.5f}, accuracy = {acc:.5f}, epoch = {e} \r', end='')
self.A[:] = [] # I clean the lists otherwise it
self.Z[:] = [] # continues to add to the queue
if verbose: print()
result = {'params' : (self.W, self.B),
'train_Loss' : L_t,
'valid_Loss' : L_v,
}
return result
def confmat(self, true_target, pred_target, plot=True, title='', k=0):
'''
Function for creation and plot of confusion matrix
Parameters
----------
true_target : 1darray
vaules that must be predict
pred_target : 1darray
values that the network has predict
plot : bool, optional, default True
if True the matix is plotted.
k : int, optional, default 0
number of figure, necessary in order not to overlap figures
Return
------
mat : 2darray
confusion matrix
'''
dat = np.unique(true_target) # classes
N = len(dat) # Number of classes
mat = np.zeros((N, N), dtype=int) # confusion matrix
# creation of confusion matrxi
for i in range(len(true_target)):
mat[true_target[i]][pred_target[i]] += 1
if plot :
fig = plt.figure(k, figsize=(7, 7))
ax = fig.add_subplot()
c = ax.imshow(mat, cmap=plt.cm.Blues) # plot matrix
b = fig.colorbar(c, fraction=0.046, pad=0.04)
# write on plot the value of predictions
for i in range(mat.shape[0]):
for j in range(mat.shape[1]):
ax.text(x=j, y=i, s=mat[i, j],
va='center', ha='center')
# Label
ax.set_xticks(dat, dat)
ax.set_yticks(dat, dat)
ax.tick_params(top=False, bottom=True, labeltop=False, labelbottom=True)
plt.xlabel('Predict label', fontsize=15)
plt.ylabel('True label', fontsize=15)
plt.title(title, fontsize=15)
plt.tight_layout()
return mat
#========================================================================================
#========================================================================================
#========================================================================================
class NeuralNetworkRegressor:
'''
This class implement a multilayer perceptron neural network.
Is possible to choose how many layers use and how many neurons
are in each layer.
This network is for regression and the activantion function
implemented are only tanh and relu, sufficient for demonstration
purposes. The opitimizer used is adam, Loss is mean square error.
'''
def __init__(self, layers, n_epoch, f_act='tanh'):
'''
Initialize the neural network for a classification problem
Parameters
----------
layers : list
list which must contain the number of neurons for each layer
the number of layers is len(layers) and layers[i] is the
number of neurons on the i-th layer. Only hidden layers must
be celaderd, input and output are read from data
n_epoch : int
number of training epochs of the network
f_act : {'tanh', 'relu'}, optional, default tanh
activation function for hidden layers
'''
# hidden and output layers
self.layers = layers
self.n_layers = len(self.layers) + 1 # plus one for output layer
# number of training epochs
self.n_epoch = n_epoch
# weights, bias and predictions for each layers
self.W = []
self.B = []
self.A = []
self.Z = []
# momenta for update
self.mw = []
self.vw = []
self.mb = []
self.vb = []
# some parameters of network
self.f_act = f_act
self.dfeat = 0 # dimension of features, number of neurons in the input layer
self.dtarg = 0 # dimension of targets, number of neurons in the output layer
# size of all data and validationm
self.N = 0 # ALL
self.M = 0 # Validation
if f_act not in ['tanh', 'relu']:
msg = 'Only tanh and relu are implemented'
raise NotImplementedError(msg)
def Loss(self, Yp, Y):
'''
loss function,
Parameters
----------
Yp : 1darray
actual prediction
Y : 1darray
Target
Returns
-------
float, loss
'''
return np.mean((Yp - Y)**2)
def act(self, x):
'''
Activation function for hidden layers;
Only tanh and relu are implemented
Parameters
----------
x : N x 1 matrix
iterpediate step of a layer
Returns
-------
tanh(x) or relu(x)
'''
if self.f_act == 'tanh':
return np.tanh(x)
if self.f_act == 'relu':
return np.maximum(0, x)
def d_act(self, x):
'''
Derivative of activation function for hidden layers;
Only tanh and relu are implemented
Parameters
----------
x : N x 1 matrix
iterpediate step of a layer
Returns
-------
1/cosh(x)**2 or step function
'''
if self.f_act == 'tanh':
return 1/np.cosh(x)**2
if self.f_act == 'relu':
return x > 0
def linear(self, x):
'''
Activation function for output layers;
always linear for a regressor
Parameters
----------
x : N x 1 matrix
iterpediate step of a layer
Returns
-------
linear
'''
return x
def initialize(self):
'''
Function for the initializzation of weights and bias.
For all hidden layers we use he initializzation and
for last layer we use xavier initalization.
We also define the matrix of momenta for adam.
'''
l = [self.dfeat] + self.layers + [self.dtarg]
# he initialization for hidden layers; good for relu
for i in range(1, self.n_layers):
s = np.sqrt(2/l[i])
self.W.append(np.random.randn(l[i], l[i-1]) * s )
self.B.append(np.random.randn(l[i], 1 ) * s )
# random initialization, for output Xavier initialization
M = np.sqrt( 6 / (l[-1] + l[-2]) )
self.W.append( (2*np.random.rand(l[-1], l[-2]) - 1) * M)
self.B.append( (2*np.random.rand(l[-1], 1) - 1) * M)
# initialization of momenta for minimizzation
for i in range(self.n_layers):
self.mw.append(np.zeros(self.W[i].shape))
self.mb.append(np.zeros(self.B[i].shape))
self.vw.append(np.zeros(self.W[i].shape))
self.vb.append(np.zeros(self.B[i].shape))
def predict(self, X, train_data=False, all_data=False):
'''
Function to made prediction; feedfoward propagation
If you want predict on train data you must consider
the division beetwen train and validation
Parameters
----------
X : 2d array
matrix of featurs
train_data : bool, optional, default False
If True the propagation is done on self.A and self.Z because
for backpropagation we must use each iteration on network-
It is convenient when the method is called outside the class
so you must pass only data and get final prediction
all_data : bool, optional, default False
if True all output is returned with all values, while if False
only the predicted class is returned.
Usefull only for muticlass classifications
Returns
-------
A : 2darray
prediction of network
'''
if train_data:
self.A.append(X) # to start the iteration
for i in range(self.n_layers):
self.Z.append(self.W[i] @ self.A[i] + self.B[i])
if i == self.n_layers-1:
# activation function for last layer
self.A.append(self.linear(self.Z[i]))
else:
# activation function for all other layers
self.A.append(self.act(self.Z[i]))
else :
A = np.copy(X) # to start the iteration
for i in range(self.n_layers):
Z = self.W[i] @ A + self.B[i]
if i == self.n_layers-1:
# activation function for last layer
A = self.linear(Z)
else:
# activation function for all other layers
A = self.act(Z)
return A
def backpropagation(self, X, Y):
'''
Function for backward propagation.
compute de derivative of the loss function
respect to weights and bias.
Parameters
----------
X : 2darray
matrix of features
Y : 2darray
matrix of target
Returns
-------
dw : 2darray
dloss/dw gradient for update of weights
db : 2darray
dloss/db gradient for update of bias
'''
m = len(Y) # len of data
db = [np.zeros(b.shape) for b in self.B]
dw = [np.zeros(w.shape) for w in self.W]
# output layer
delta = self.A[-1] - Y
db[-1] = np.sum(delta, axis=1, keepdims=True) / m
dw[-1] = delta @ self.A[-2].T / m
# loop over hidden layers
for l in range(2, self.n_layers):
z = self.Z[-l]
delta = (self.W[-l+1].T @ delta) * self.d_act(z)
db[-l] = np.sum(delta, axis=1, keepdims=True) / m
dw[-l] = delta @ self.A[-l-1].T / m
return dw, db
def adam(self, epoch, dW, dB, alpha, b1, b2, eps):
'''
Implementation of Adam alghoritm, Adaptive Moment Estimation for
update of weights and bias.
Parameters
----------
epoch : int
cuttente iteration
dW : 2darray
dloss/dw gradient for update of weights
dB : 2darray
dloss/db gradient for update of bias
alpha : float, optional default 0.01
size of step to do, typical value is 0.001
b1 : float, optional, default 0.9
Decay factor for first momentum
b2 : float, optional, default 0.999
Decay factor for second momentum
eps : float, optional, default 1e-8
parameter of alghoritm, to avoid division by zero
'''
for i in range(1, self.n_layers):
# udate weights
self.mw[i] = b1 * self.mw[i] + (1 - b1) * dW[i]
self.vw[i] = b2 * self.vw[i] + (1 - b2) * dW[i]**2
mw_hat = self.mw[i] / (1 - b1**(epoch + 1) )
vw_hat = self.vw[i] / (1 - b2**(epoch + 1) )
dw = alpha * mw_hat / (np.sqrt(vw_hat) + eps)
self.W[i] -= alpha * dw
# update bias
self.mb[i] = b1 * self.mb[i] + (1 - b1) * dB[i]
self.vb[i] = b2 * self.vb[i] + (1 - b2) * dB[i]**2
mb_hat = self.mb[i] / (1 - b1**(epoch + 1) )
vb_hat = self.vb[i] / (1 - b2**(epoch + 1) )
db = alpha * mb_hat / (np.sqrt(vb_hat) + eps)
self.B[i] -= alpha * db
def train(self, X, Y, alpha=0.01, b1=0.9, b2=0.999, eps=1e-8, cut=4, verbose=False):
'''
Function for train the network,
the data are splitted to copute validation loss
Parameters
----------
X : 2darray
matrix of features (features x number of ata)
Y : 2darray
matrix of target
alpha : float, optional default 0.01
size of step to do, typical value is 0.001
b1 : float, optional, default 0.9
Decay factor for first momentum
b2 : float, optional, default 0.999
Decay factor for second momentum
eps : float, optional, default 1e-8
parameter of adam alghoritm, to avoid division by zero
cut : int, optional, default=4
fraction of input data to use for validation.
E.g. if N is the number of data, we use N/4 for validation and N-N/4 for train
verbose : bool
if True print loss and accuracy each 100 epoch
Returns
-------
result : dict
params --> weights and bias of network
train_Loss --> loss on train data
valid_Loss --> loss on validation data
'''
L_t = np.zeros(self.n_epoch) # training loss
L_v = np.zeros(self.n_epoch) # validation loss
self.N = X.shape[1] # total number of data
self.M = self.N//cut # nuber of data for validation
# first and last layers
self.dfeat = X.shape[0] # number of features
self.dtarg = len(Y.shape)
# split dataset in validation and train
X_train, Y_train = X[:, :self.N-self.M ], Y[:self.N-self.M ]
X_valid, Y_valid = X[:, self.N-self.M:], Y[ self.N-self.M:]
self.initialize() # initialize weights and bias
for e in range(self.n_epoch):
# train
self.predict(X_train, train_data=True)
L_t[e] = self.Loss(self.A[-1], Y_train)
# validation
Yp = self.predict(X_valid, all_data=True)
L_v[e] = self.Loss(Yp, Y_valid)
# update
dW, dB = self.backpropagation(X_train, Y_train)
self.adam(e, dW, dB, alpha=alpha, b1=b1, b2=b2, eps=eps)
if not e % 100 and verbose:
print(f'Loss = {L_t[e]:.5f}, Valid Loss = {L_v[e]:.5f}, epoch = {e} \r', end='')
self.A[:] = [] # I clean the lists otherwise it
self.Z[:] = [] # continues to add to the queue
if verbose: print()
result = {'params' : (self.W, self.B),
'train_Loss' : L_t,
'valid_Loss' : L_v,
}
return result