forked from muellerzr/minimal-trainer-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquestion_answering.py
135 lines (113 loc) · 5.05 KB
/
question_answering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# End-to-end script running the Hugging Face Trainer
# for question/answering. Based on the Tasks documentation
# originally from: https://hf.co/docs/transformers/tasks/question_answering
import torch
from accelerate import PartialState
from datasets import load_dataset
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, DefaultDataCollator, Trainer, TrainingArguments
# Constants
model_name = "distilbert-base-uncased"
dataset_name = "squad"
# Load a subset of the dataset
print(f"Downloading dataset ({dataset_name})")
dataset = load_dataset(dataset_name, split="train[:5000]")
dataset = dataset.train_test_split(test_size=0.2)
# Tokenize the dataset
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=384,
truncation="only_second",
return_offsets_mapping=True,
padding="max_length",
)
offset_mapping = inputs.pop("offset_mapping")
answers = examples["answers"]
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
answer = answers[i]
start_char = answer["answer_start"][0]
end_char = answer["answer_start"][0] + len(answer["text"][0])
sequence_ids = inputs.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label it (0, 0)
if offset[context_start][0] > end_char or offset[context_end][1] < start_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
inputs["start_positions"] = start_positions
inputs["end_positions"] = end_positions
return inputs
print(f"Tokenizing dataset for {model_name}...")
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Use a basic collator with no preprocessing (like padding)
data_collator = DefaultDataCollator()
print(f"Instantiating model ({model_name})...")
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
# Define the hyperparameters in the TrainingArguments
print("Creating training arguments (weights are stored at `results/question_answering`)...")
training_args = TrainingArguments(
output_dir="results/question_answering", # Where weights are stored
learning_rate=2e-5, # The learning rate during training
per_device_train_batch_size=64, # Number of samples per batch during training
per_device_eval_batch_size=64, # Number of samples per batch during evaluation
num_train_epochs=3, # How many iterations through the dataloaders should be done
weight_decay=0.01, # Regularization penalization
evaluation_strategy="epoch", # How often metrics on the evaluation dataset should be computed
save_strategy="epoch", # When to try and save the best model (such as a step number or every iteration)
fp16=True, # Whether to use 16-bit precision (mixed precision) instead of 32-bit. Generally faster on T4's
)
# Create the `Trainer`, passing in the model and arguments
# the datasets to train on, how the data should be collated,
# and the method for computing our metrics
print("Creating `Trainer`...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
data_collator=data_collator,
tokenizer=tokenizer,
)
# Initiate training
print("Training...")
trainer.train()
# Performing inference
question = "How many programming languages does BLOOM support?"
context = "BLOOM has 176 billion parameters and can generate text in 46 languages natural languages and 13 programming languages."
# We need to tokenize the inputs and turn them to PyTorch tensors
encoded_input = tokenizer(question, context, return_tensors="pt")
# To move the batch to the right device automatically, use `PartialState().device`
# which will always work no matter the environment
encoded_input = encoded_input.to(PartialState().device)
# Can also be `encoded_input.to("cuda")`
# Then we can perform raw torch inference:
print("Performing inference...")
model.eval()
with torch.inference_mode():
outputs = model(**encoded_input)
# Finally, decode our outputs
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predicted_answer_tokens = encoded_input.input_ids[0, answer_start_index : answer_end_index + 1]
print(f"Prediction: {tokenizer.decode(predicted_answer_tokens)}")