-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.hpp
87 lines (70 loc) · 2.97 KB
/
utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/* MIT License
*
* Copyright (c) 2019 - Folke Vesterlund
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef UTILS_HPP_
#define UTILS_HPP_
#include "medianFilterParam.hpp"
namespace util{
void getPadding(size_t numCols, size_t numRows, size_t* nCols, size_t* nRows){
// Calculate padding parameters
size_t row_nCols = numCols % (ROWS_RESULT_STEPS * ROWS_BLOCKDIM_X) == 0 ?
numCols : numCols + (ROWS_RESULT_STEPS * ROWS_BLOCKDIM_X) - numCols %(ROWS_RESULT_STEPS * ROWS_BLOCKDIM_X);
size_t row_nRows = numRows % ROWS_BLOCKDIM_Y == 0 ?
numRows : numRows + ROWS_BLOCKDIM_Y - numRows % ROWS_BLOCKDIM_Y;
size_t col_nCols = numCols % COLUMNS_BLOCKDIM_X == 0 ?
numCols : numCols + COLUMNS_BLOCKDIM_X - numCols%COLUMNS_BLOCKDIM_X;
size_t col_nRows = numRows % (COLUMNS_RESULT_STEPS * COLUMNS_BLOCKDIM_Y) == 0 ?
numRows : numRows + (COLUMNS_RESULT_STEPS * COLUMNS_BLOCKDIM_Y) - numRows % (COLUMNS_RESULT_STEPS * COLUMNS_BLOCKDIM_Y);
*nCols = std::max(row_nCols, col_nCols);
*nRows = std::max(row_nRows, col_nRows);
}
unsigned int mean(const unsigned char* img, const int N){
unsigned int mean = 0;
for(int i = 0; i<N; i++){
mean += img[i];
}
mean /= N;
return mean;
}
void threshold(unsigned char* outputImg, unsigned char* inputImg, size_t mean, size_t N){
for (int i = 0; i < N; i++){
outputImg[i] = inputImg[i] > mean ? 255:0;
}
}
cv::Mat postProc(unsigned int* img, size_t numCols, size_t numRows){
// Initilise a Mat to the correct size and all zeros
cv::Mat outputImg(numRows, numCols, CV_8UC1, cv::Scalar::all(0));
for (int i = 0; i < numRows; i++){
for(int j = 0; j< numCols; j++){
size_t idx = i * numCols + j;
if (img[idx] > 0){
// The background will 0, force all labels a bit away from zero
// to be able to visualise better
outputImg.at<uchar>(i,j) = img[idx]%240+15;
}
}
}
applyColorMap(outputImg, outputImg, cv::COLORMAP_JET);
return outputImg;
}
}
#endif /* UTILS_HPP_ */