forked from e0404/matRad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matRad_xiaLeafSequencing.m
273 lines (221 loc) · 10.3 KB
/
matRad_xiaLeafSequencing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
function resultGUI = matRad_xiaLeafSequencing(resultGUI,stf,dij,numOfLevels,visBool)
% multileaf collimator leaf sequencing algorithm
% for intensity modulated beams with multiple static segments according to
% Xia et al. (1998) Medical Physics
%
% call
% resultGUI = matRad_xiaLeafSequencing(resultGUI,stf,dij,numOfLevels)
% resultGUI = matRad_xiaLeafSequencing(resultGUI,stf,dij,numOfLevels,visBool)
%
% input
% resultGUI: resultGUI struct to which the output data will be added, if
% this field is empty resultGUI struct will be created
% stf: matRad steering information struct
% dij: matRad's dij matrix
% numOfLevels: number of stratification levels
% visBool: toggle on/off visualization (optional)
%
% output
% resultGUI: matRad result struct containing the new dose cube as well as
% the corresponding weights
%
% References
% [1] http://online.medphys.org/resource/1/mphya6/v25/i8/p1424_s1
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright 2015 the matRad development team.
%
% This file is part of the matRad project. It is subject to the license
% terms in the LICENSE file found in the top-level directory of this
% distribution and at https://github.com/e0404/matRad/LICENSES.txt. No part
% of the matRad project, including this file, may be copied, modified,
% propagated, or distributed except according to the terms contained in the
% LICENSE file.
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if visBool not set toogle off visualization
if nargin < 5
visBool = 0;
end
mode = 'rl'; % sliding window (sw) or reducing level (rl)
numOfBeams = numel(stf);
if visBool
% create the sequencing figure
sz = [800 1000]; % figure size
screensize = get(0,'ScreenSize');
xpos = ceil((screensize(3)-sz(2))/2); % center the figure on the screen horizontally
ypos = ceil((screensize(4)-sz(1))/2); % center the figure on the screen vertically
seqFig = figure('position',[xpos,ypos,sz(2),sz(1)]);
end
offset = 0;
for i = 1:numOfBeams
numOfRaysPerBeam = stf(i).numOfRays;
% get relevant weights for current beam
wOfCurrBeams = resultGUI.w(1+offset:numOfRaysPerBeam+offset);%REVIEW OFFSET
X = ones(numOfRaysPerBeam,1)*NaN;
Z = ones(numOfRaysPerBeam,1)*NaN;
for j=1:stf(i).numOfRays
X(j) = stf(i).ray(j).rayPos_bev(:,1);
Z(j) = stf(i).ray(j).rayPos_bev(:,3);
end
% sort bixels into matrix
minX = min(X);
maxX = max(X);
minZ = min(Z);
maxZ = max(Z);
dimOfFluenceMxX = (maxX-minX)/stf(i).bixelWidth + 1;
dimOfFluenceMxZ = (maxZ-minZ)/stf(i).bixelWidth + 1;
%Create the fluence matrix.
fluenceMx = zeros(dimOfFluenceMxZ,dimOfFluenceMxX);
% Calculate X and Z position of every fluence's matrix spot
% z axis = axis of leaf movement!
xPos = (X-minX)/stf(i).bixelWidth+1;
zPos = (Z-minZ)/stf(i).bixelWidth+1;
% Make subscripts for fluence matrix
indInFluenceMx = zPos + (xPos-1)*dimOfFluenceMxZ;
%Save weights in fluence matrix.
fluenceMx(indInFluenceMx) = wOfCurrBeams;
% Stratification
calFac = max(fluenceMx(:));
D_k = round(fluenceMx/calFac*numOfLevels);
% Save the stratification in the initial intensity matrix D_0.
D_0 = D_k;
% Save the maximun intensity (Equation 5)
L_k = max(D_k(:));
% Save the maximun initial intensity matrix value in L_0.
L_0 = L_k;
% Set k=0, this variable is used for residuals intensity matrices D_k.
k = 0;
% container to remember generated shapes; allocate space for 10000 shapes
shapes = NaN*ones(dimOfFluenceMxZ,dimOfFluenceMxX,10000);
if visBool
clf(seqFig);
colormap(seqFig,'jet');
seqSubPlots(1) = subplot(2,2,1,'parent',seqFig);
imagesc(D_k,'parent',seqSubPlots(1));
set(seqSubPlots(1),'CLim',[0 L_0],'YDir','normal');
title(seqSubPlots(1),['Beam # ' num2str(i) ': L_0 = ' num2str(L_0) ' - ' num2str(numel(unique(D_0))) ' intensity levels'])
xlabel(seqSubPlots(1),'x - direction parallel to leaf motion ')
ylabel(seqSubPlots(1),'z - direction perpendicular to leaf motion ')
colorbar;
drawnow
end
% start sequencer
while L_k > 0
k = k + 1;
%Plot residual intensity matrix.
if visBool
seqSubPlots(2) = subplot(2,2,2,'parent',seqFig);
imagesc(D_k,'parent',seqSubPlots(2));
set(seqSubPlots(2),'CLim',[0 L_0],'YDir','normal');
title(seqSubPlots(2),['k = ' num2str(k) ' - ' num2str(numel(unique(D_k))) ' intensity levels remaining...']);
xlabel(seqSubPlots(2),'x - direction parallel to leaf motion ');
ylabel(seqSubPlots(2),'z - direction perpendicular to leaf motion ');
colorbar
drawnow
end
%Rounded off integer. Equation 7.
m = floor(log2(L_k));
% Convert m=1 if is less than 1. This happens when L_k belong to ]0,2[
if m < 1
m = 1;
end
%Calculate the delivery intensity unit. Equation 6.
d_k = floor(2^(m-1));
% Opening matrix.
openingMx = D_k >= d_k;
% Plot opening matrix.
if visBool
seqSubPlots(3) = subplot(2,2,3,'parent',seqFig);
imagesc(openingMx,'parent',seqSubPlots(3));
set(seqSubPlots(3),'YDir','normal')
xlabel(seqSubPlots(3),'x - direction parallel to leaf motion ')
ylabel(seqSubPlots(3),'z - direction perpendicular to leaf motion ')
title(seqSubPlots(3),'Opening matrix');
drawnow
end
if strcmp(mode,'sw') % sliding window technique!
for j = 1:dimOfFluenceMxZ
openIx = find(openingMx(j,:) == 1,1,'first');
if ~isempty(openIx)
closeIx = find(openingMx(j,openIx+1:end) == 0,1,'first');
if ~isempty(closeIx)
openingMx(j,openIx+closeIx:end) = 0;
end
end
end
elseif strcmp(mode,'rl') % reducing levels technique!
for j = 1:dimOfFluenceMxZ
[maxVal,maxIx] = max(openingMx(j,:) .* D_k(j,:));
if maxVal > 0
closeIx = maxIx + find(openingMx(j,maxIx+1:end) == 0,1,'first');
if ~isempty(closeIx)
openingMx(j,closeIx:end) = 0;
end
openIx = find(openingMx(j,1:maxIx-1) == 0,1,'last');
if ~isempty(openIx)
openingMx(j,1:openIx) = 0;
end
end
end
end
shape_k = openingMx * d_k;
if visBool
seqSubPlots(4) = subplot(2,2,4,'parent',seqFig);
imagesc(shape_k,'parent',seqSubPlots(4));
set(seqSubPlots(4),'YDir','normal')
hold(seqSubPlots(4),'on');
xlabel(seqSubPlots(4),'x - direction parallel to leaf motion ')
ylabel(seqSubPlots(4),'z - direction perpendicular to leaf motion ')
title(seqSubPlots(4),['beam # ' num2str(i) ' shape # ' num2str(k) ' d_k = ' num2str(d_k)]);
for j = 1:dimOfFluenceMxZ
leftLeafIx = find(shape_k(j,:)>0,1,'first');
rightLeafIx = find(shape_k(j,:)>0,1,'last');
if leftLeafIx > 1
plot(seqSubPlots(4),[.5 leftLeafIx-.5],j-[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[.5 leftLeafIx-.5],j+[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[ leftLeafIx-.5 leftLeafIx-.5],j+[.5 -.5] ,'w','LineWidth',2)
end
if rightLeafIx<dimOfFluenceMxX
plot(seqSubPlots(4),[dimOfFluenceMxX+.5 rightLeafIx+.5],j-[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[dimOfFluenceMxX+.5 rightLeafIx+.5],j+[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[ rightLeafIx+.5 rightLeafIx+.5],j+[.5 -.5] ,'w','LineWidth',2)
end
if isempty(rightLeafIx) && isempty (leftLeafIx)
plot(seqSubPlots(4),[dimOfFluenceMxX+.5 .5],j-[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[dimOfFluenceMxX+.5 .5],j+[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),0.5*dimOfFluenceMxX*[1 1]+[0.5],j+[.5 -.5] ,'w','LineWidth',2)
end
end
axis(seqSubPlots(4),'tight');
drawnow
pause(1);
end
shapes(:,:,k) = shape_k;
shapesWeight(k) = d_k;
D_k = D_k - shape_k;
L_k = max(D_k(:)); % eq 5
end
sequencing.beam(i).numOfShapes = k;
sequencing.beam(i).shapes = shapes(:,:,1:k);
sequencing.beam(i).shapesWeight = shapesWeight(1:k)/numOfLevels*calFac;
sequencing.beam(i).bixelIx = 1+offset:numOfRaysPerBeam+offset;
sequencing.beam(i).fluence = D_0;
sequencing.w(1+offset:numOfRaysPerBeam+offset,1) = D_0(indInFluenceMx)/numOfLevels*calFac;
offset = offset + numOfRaysPerBeam;
end
resultGUI.w = sequencing.w;
resultGUI.wSequenced = sequencing.w;
resultGUI.sequencing = sequencing;
resultGUI.apertureInfo = matRad_sequencing2ApertureInfo(sequencing,stf);
doseSequencedDoseGrid = reshape(dij.physicalDose{1} * sequencing.w,dij.doseGrid.dimensions);
% interpolate to ct grid for visualiation & analysis
resultGUI.physicalDose = matRad_interp3(dij.doseGrid.x,dij.doseGrid.y',dij.doseGrid.z, ...
doseSequencedDoseGrid, ...
dij.ctGrid.x,dij.ctGrid.y',dij.ctGrid.z);
% if weights exists from an former DAO remove it
if isfield(resultGUI,'wDao')
resultGUI = rmfield(resultGUI,'wDao');
end
end