-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutlier_detect.py
105 lines (79 loc) · 4.01 KB
/
outlier_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.font_manager
# Import models
from pyod.models.abod import ABOD
from pyod.models.cblof import CBLOF
from pyod.models.feature_bagging import FeatureBagging
from pyod.models.hbos import HBOS
from pyod.models.iforest import IForest
from pyod.models.knn import KNN
from pyod.models.lof import LOF
# reading the big mart sales training data
df = pd.read_csv("train.csv")
df.plot.scatter('Item_MRP','Item_Outlet_Sales')
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
df[['Item_MRP','Item_Outlet_Sales']] = scaler.fit_transform(df[['Item_MRP','Item_Outlet_Sales']])
df[['Item_MRP','Item_Outlet_Sales']].head()
X1 = df['Item_MRP'].values.reshape(-1,1)
X2 = df['Item_Outlet_Sales'].values.reshape(-1,1)
X = np.concatenate((X1,X2),axis=1)
random_state = np.random.RandomState(42)
outliers_fraction = 0.05
# Define seven outlier detection tools to be compared
classifiers = {
'Angle-based Outlier Detector (ABOD)': ABOD(contamination=outliers_fraction),
'Cluster-based Local Outlier Factor (CBLOF)':CBLOF(contamination=outliers_fraction,check_estimator=False, random_state=random_state),
'Feature Bagging':FeatureBagging(LOF(n_neighbors=35),contamination=outliers_fraction,check_estimator=False,random_state=random_state),
'Histogram-base Outlier Detection (HBOS)': HBOS(contamination=outliers_fraction),
'Isolation Forest': IForest(contamination=outliers_fraction,random_state=random_state),
'K Nearest Neighbors (KNN)': KNN(contamination=outliers_fraction),
'Average KNN': KNN(method='mean',contamination=outliers_fraction)
}
xx , yy = np.meshgrid(np.linspace(0,1 , 200), np.linspace(0, 1, 200))
for i, (clf_name, clf) in enumerate(classifiers.items()):
clf.fit(X)
# predict raw anomaly score
scores_pred = clf.decision_function(X) * -1
# prediction of a datapoint category outlier or inlier
y_pred = clf.predict(X)
n_inliers = len(y_pred) - np.count_nonzero(y_pred)
n_outliers = np.count_nonzero(y_pred == 1)
plt.figure(figsize=(10, 10))
# copy of dataframe
dfx = df
dfx['outlier'] = y_pred.tolist()
# IX1 - inlier feature 1, IX2 - inlier feature 2
IX1 = np.array(dfx['Item_MRP'][dfx['outlier'] == 0]).reshape(-1,1)
IX2 = np.array(dfx['Item_Outlet_Sales'][dfx['outlier'] == 0]).reshape(-1,1)
# OX1 - outlier feature 1, OX2 - outlier feature 2
OX1 = dfx['Item_MRP'][dfx['outlier'] == 1].values.reshape(-1,1)
OX2 = dfx['Item_Outlet_Sales'][dfx['outlier'] == 1].values.reshape(-1,1)
print('OUTLIERS : ',n_outliers,'INLIERS : ',n_inliers, clf_name)
# threshold value to consider a datapoint inlier or outlier
threshold = stats.scoreatpercentile(scores_pred,100 * outliers_fraction)
# decision function calculates the raw anomaly score for every point
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) * -1
Z = Z.reshape(xx.shape)
# fill blue map colormap from minimum anomaly score to threshold value
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),cmap=plt.cm.Blues_r)
# draw red contour line where anomaly score is equal to thresold
a = plt.contour(xx, yy, Z, levels=[threshold],linewidths=2, colors='red')
# fill orange contour lines where range of anomaly score is from threshold to maximum anomaly score
plt.contourf(xx, yy, Z, levels=[threshold, Z.max()],colors='orange')
b = plt.scatter(IX1,IX2, c='white',s=20, edgecolor='k')
c = plt.scatter(OX1,OX2, c='black',s=20, edgecolor='k')
plt.axis('tight')
# loc=2 is used for the top left corner
plt.legend(
[a.collections[0], b,c],
['learned decision function', 'inliers','outliers'],
prop=matplotlib.font_manager.FontProperties(size=20),
loc=2)
plt.xlim((0, 1))
plt.ylim((0, 1))
plt.title(clf_name)
plt.show()