Summary of public functions and classes exposed in ONNX Runtime.
ONNX Runtime works with native Python data structures which are mapped into ONNX ONNX data formats : Numpy arrays (tensors), dictionaries (maps), and a list of Numpy arrays (sequences). The data backing these are on CPU.
ONNX Runtime supports a custom data structure that supports all ONNX data formats that allows users to place the data backing these on a device, for example, on a CUDA supported device. This allows for interesting IOBinding scenarios (discussed below). In addition, ONNX Runtime supports directly working with *OrtValue*(s) while inferencing a model if provided as part of the input feed.
Below is an example showing creation of an OrtValue from a Numpy array while placing its backing memory on a CUDA device:
#X is numpy array on cpu, create an OrtValue and place it on cuda device id = 0
ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
ortvalue.device_name() # 'cuda'
ortvalue.shape() # shape of the numpy array X
ortvalue.data_type() # 'tensor(float)'
ortvalue.is_tensor() # 'True'
np.array_equal(ortvalue.numpy(), X) # 'True'
#ortvalue can be provided as part of the input feed to a model
ses = onnxruntime.InferenceSession('model.onnx')
res = sess.run(["Y"], {"X": ortvalue})
By default, ONNX Runtime always places input(s) and output(s) on CPU, which is not optimal if the input or output is consumed and produced on a device other than CPU because it introduces data copy between CPU and the device. ONNX Runtime provides a feature, IO Binding, which addresses this issue by enabling users to specify which device to place input(s) and output(s) on. Here are scenarios to use this feature.
(In the following code snippets, model.onnx is the model to execute, X is the input data to feed, and Y is the output data.)
Scenario 1:
A graph is executed on a device other than CPU, for instance CUDA. Users can use IOBinding to put input on CUDA as the follows.
#X is numpy array on cpu
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
# OnnxRuntime will copy the data over to the CUDA device if 'input' is consumed by nodes on the CUDA device
io_binding.bind_cpu_input('input', X)
io_binding.bind_output('output')
session.run_with_iobinding(io_binding)
Y = io_binding.copy_outputs_to_cpu()[0]
Scenario 2:
The input data is on a device, users directly use the input. The output data is on CPU.
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
io_binding.bind_output('output')
session.run_with_iobinding(io_binding)
Y = io_binding.copy_outputs_to_cpu()[0]
Scenario 3:
The input data and output data are both on a device, users directly use the input and also place output on the device.
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
Y_ortvalue = onnxruntime.OrtValue.ortvalue_from_shape_and_type([3, 2], np.float32, 'cuda', 0) # Change the shape to the actual shape of the output being bound
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
io_binding.bind_output(name='output', device_type=Y_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=Y_ortvalue.shape(), buffer_ptr=Y_ortvalue.data_ptr())
session.run_with_iobinding(io_binding)
Scenario 4:
Users can request ONNX Runtime to allocate an output on a device. This is particularly useful for dynamic shaped outputs. Users can use the get_outputs() API to get the OrtValue*(s) corresponding to the allocated output(s). Users can thus consume the *ONNX Runtime allocated memory for the output as an OrtValue.
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
#Request ONNX Runtime to bind and allocate memory on CUDA for 'output'
io_binding.bind_output('output', 'cuda')
session.run_with_iobinding(io_binding)
# The following call returns an OrtValue which has data allocated by ONNX Runtime on CUDA
ort_output = io_binding.get_outputs()[0]
Scenario 5:
Users can bind *OrtValue*(s) directly.
#X is numpy array on cpu
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
Y_ortvalue = onnxruntime.OrtValue.ortvalue_from_shape_and_type([3, 2], np.float32, 'cuda', 0) # Change the shape to the actual shape of the output being bound
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_ortvalue_input('input', X_ortvalue)
io_binding.bind_ortvalue_output('output', Y_ortvalue)
session.run_with_iobinding(io_binding)
The package is compiled for a specific device, GPU or CPU. The CPU implementation includes optimizations such as MKL (Math Kernel Libary). The following function indicates the chosen option:
.. autofunction:: onnxruntime.get_device
The package contains a few models stored in ONNX format used in the documentation. These don't need to be downloaded as they are installed with the package.
.. autofunction:: onnxruntime.datasets.get_example
ONNX Runtime reads a model saved in ONNX format. The main class InferenceSession wraps these functionalities in a single place.
.. autoclass:: onnxruntime.ModelMetadata :members:
.. autoclass:: onnxruntime.InferenceSession :members:
.. autoclass:: onnxruntime.NodeArg :members:
.. autoclass:: onnxruntime.RunOptions :members:
.. autoclass:: onnxruntime.SessionOptions :members:
In addition to the regular API which is optimized for performance and usability, ONNX Runtime also implements the ONNX backend API for verification of ONNX specification conformance. The following functions are supported:
.. autofunction:: onnxruntime.backend.is_compatible
.. autofunction:: onnxruntime.backend.prepare
.. autofunction:: onnxruntime.backend.run
.. autofunction:: onnxruntime.backend.supports_device