This repository has been archived by the owner on Nov 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 861
/
Copy pathedsa_recommender.py
112 lines (87 loc) · 4.45 KB
/
edsa_recommender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Streamlit webserver-based Recommender Engine.
Author: Explore Data Science Academy.
Note:
---------------------------------------------------------------------
Please follow the instructions provided within the README.md file
located within the root of this repository for guidance on how to use
this script correctly.
NB: !! Do not remove/modify the code delimited by dashes !!
This application is intended to be partly marked in an automated manner.
Altering delimited code may result in a mark of 0.
---------------------------------------------------------------------
Description: This file is used to launch a minimal streamlit web
application. You are expected to extend certain aspects of this script
and its dependencies as part of your predict project.
For further help with the Streamlit framework, see:
https://docs.streamlit.io/en/latest/
"""
# Streamlit dependencies
import streamlit as st
# Data handling dependencies
import pandas as pd
import numpy as np
# Custom Libraries
from utils.data_loader import load_movie_titles
from recommenders.collaborative_based import collab_model
from recommenders.content_based import content_model
# Data Loading
title_list = load_movie_titles('resources/data/movies.csv')
# App declaration
def main():
# DO NOT REMOVE the 'Recommender System' option below, however,
# you are welcome to add more options to enrich your app.
page_options = ["Recommender System","Solution Overview"]
# -------------------------------------------------------------------
# ----------- !! THIS CODE MUST NOT BE ALTERED !! -------------------
# -------------------------------------------------------------------
page_selection = st.sidebar.selectbox("Choose Option", page_options)
if page_selection == "Recommender System":
# Header contents
st.write('# Movie Recommender Engine')
st.write('### EXPLORE Data Science Academy Unsupervised Predict')
st.image('resources/imgs/Image_header.png',use_column_width=True)
# Recommender System algorithm selection
sys = st.radio("Select an algorithm",
('Content Based Filtering',
'Collaborative Based Filtering'))
# User-based preferences
st.write('### Enter Your Three Favorite Movies')
movie_1 = st.selectbox('Fisrt Option',title_list[14930:15200])
movie_2 = st.selectbox('Second Option',title_list[25055:25255])
movie_3 = st.selectbox('Third Option',title_list[21100:21200])
fav_movies = [movie_1,movie_2,movie_3]
# Perform top-10 movie recommendation generation
if sys == 'Content Based Filtering':
if st.button("Recommend"):
try:
with st.spinner('Crunching the numbers...'):
top_recommendations = content_model(movie_list=fav_movies,
top_n=10)
st.title("We think you'll like:")
for i,j in enumerate(top_recommendations):
st.subheader(str(i+1)+'. '+j)
except:
st.error("Oops! Looks like this algorithm does't work.\
We'll need to fix it!")
if sys == 'Collaborative Based Filtering':
if st.button("Recommend"):
try:
with st.spinner('Crunching the numbers...'):
top_recommendations = collab_model(movie_list=fav_movies,
top_n=10)
st.title("We think you'll like:")
for i,j in enumerate(top_recommendations):
st.subheader(str(i+1)+'. '+j)
except:
st.error("Oops! Looks like this algorithm does't work.\
We'll need to fix it!")
# -------------------------------------------------------------------
# ------------- SAFE FOR ALTERING/EXTENSION -------------------
if page_selection == "Solution Overview":
st.title("Solution Overview")
st.write("Describe your winning approach on this page")
# You may want to add more sections here for aspects such as an EDA,
# or to provide your business pitch.
if __name__ == '__main__':
main()