-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
84 lines (80 loc) · 3.17 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import equinox as eqx
import jax
import jax.experimental.mesh_utils as mesh_utils
import jax.random as jr
import jax.sharding as sharding
import logging
import ml_collections
import numpy as np
import orbax.checkpoint as obx
import wandb
from models import get_model, get_vae_fns
from utils import MetricComputer, get_translation_datasets, get_loss_builder
def evaluate(config: ml_collections.ConfigDict, workdir: str):
"""Evaluation script."""
jax.config.update("jax_threefry_partitionable", True)
# create rng keys
key = jr.PRNGKey(config.seed)
np.random.seed(config.seed)
model_key, eval_key = jr.split(key, 2)
# set up sharding
num_devices = len(jax.devices())
# shard needs to have same number of dimensions as the input
devices = mesh_utils.create_device_mesh((num_devices, 1, 1, 1))
shard = sharding.PositionalSharding(devices)
if config.model.use_vae:
logging.info("Loading VAE...")
# load vae and jitted encode/decode functions
vae_encode_fn, vae_decode_fn = get_vae_fns(shard)
if config.task == "translation":
_, _, eval_src_ds, eval_tgt_ds = get_translation_datasets(
config, shard, vae_encode_fn if config.model.use_vae else None
)
logging.info(f"num_eval_src: {eval_src_ds.length}")
logging.info(f"num_eval_tgt: {eval_tgt_ds.length}")
elif config.task == "generation":
eval_src_ds, eval_tgt_ds = None, None
# build model and optimization functions
model = get_model(config, config.model.input_shape, model_key)
loss_builder = get_loss_builder(config)
sample_fn = loss_builder.get_sample_fn()
# create checkpoint manager
mngr_options = obx.CheckpointManagerOptions(
create=True, max_to_keep=3, best_fn=lambda metric: metric, best_mode="min"
)
ckpt_mngr = obx.CheckpointManager(
directory=f"{workdir}/{config.name}/checkpoints",
checkpointers=obx.Checkpointer(obx.PyTreeCheckpointHandler()),
options=mngr_options,
)
# load saved checkpoint
if config.eval.checkpoint_step is not None:
latest_step = config.eval.checkpoint_step
else:
latest_step = ckpt_mngr.best_step()
logging.info(f"Loading model from step {latest_step}...")
params, static = eqx.partition(model, eqx.is_array)
restored_ckpt = ckpt_mngr.restore(latest_step, params)
restored_params = eqx.filter(restored_ckpt, eqx.is_array)
model = eqx.combine(restored_params, static)
inference_model = eqx.tree_inference(model, value=True)
metric_computer = MetricComputer(
config=config,
shard=shard,
eval_ds=eval_src_ds,
sample_fn=sample_fn,
vae_encode_fn=vae_encode_fn if config.model.use_vae else None,
vae_decode_fn=vae_decode_fn if config.model.use_vae else None,
)
wandb.login(key=config.wandb_key)
wandb.init(
project="uot-fm",
group=config.wandb_group,
entity=config.wandb_entity,
name=f"eval_{config.name}",
config=config,
)
logging.info(f"Computing metrics...")
eval_dict = metric_computer.compute_metrics(inference_model, eval_key)
logging.info(f"Metrics: {eval_dict}")
wandb.log(eval_dict)