-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathsampling_caption.py
219 lines (170 loc) · 9.15 KB
/
sampling_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python
'''
Anh Nguyen <[email protected]>
2016
'''
import os, sys
os.environ['GLOG_minloglevel'] = '2' # suprress Caffe verbose prints
import settings
sys.path.insert(0, settings.caffe_root)
import caffe
import numpy as np
from numpy.linalg import norm
import scipy.misc, scipy.io
import argparse
import util
from sampler import Sampler
if settings.gpu:
caffe.set_mode_gpu() # sampling on GPU (recommended for speed)
class CaptionConditionalSampler(Sampler):
def __init__ (self, lstm_definition, lstm_weights):
self.lstm = caffe.Net(lstm_definition, lstm_weights, caffe.TEST)
def forward_backward_from_x_to_condition(self, net, end, image, condition):
'''
Forward and backward passes through 'net', the condition model p(y|x), here an image classifier.
'''
src = net.blobs['data'] # input image
dst = net.blobs[end]
sentence = condition['sentence']
previous_word = 0
lstm_layer = "log_prob"
feature_layer = "image_features"
grad_sum = np.zeros_like(self.lstm.blobs[feature_layer].data)
probs = []
for idx, word in enumerate(sentence):
if idx > 0:
previous_word = sentence[idx - 1]
# preparing lstm feature vectors
cont = 0 if previous_word == 0 else 1
cont_input = np.array([cont])
word_input = np.array([previous_word]) # Previous word == 0 : meaning this is the start of the sentence
# 1. Get feature descriptors from fc8
net.forward(data=image, end=end)
descriptor = net.blobs[end].data
# 2. Pass this to lstm
image_features = np.zeros_like(self.lstm.blobs[feature_layer].data)
image_features[:] = descriptor
self.lstm.forward(image_features=image_features, cont_sentence=cont_input,
input_sentence=word_input, end=lstm_layer)
# Display the prediction
probs.append ( self.lstm.blobs["probs"].data[0,idx, word] )
self.lstm.blobs[lstm_layer].diff[:, :, word] = 1
diffs = self.lstm.backward(start=lstm_layer, diffs=[feature_layer])
g_word = diffs[feature_layer] # (1000,)
grad_sum += g_word # accumulate the gradient from all words
# reset objective after each step
self.lstm.blobs[lstm_layer].diff.fill(0.)
# Average softmax probabilities of all words
obj_prob = np.mean(probs)
# Backpropagate the gradient from LSTM to the feature extractor convnet
dst.diff[...] = grad_sum[0]
net.backward(start=end)
g = src.diff.copy()
dst.diff.fill(0.) # reset objective after each step
# Info to be printed out in the below 'print_progress' method
info = { }
return g, obj_prob, info
def get_label(self, condition):
return None
def print_progress(self, i, info, condition, prob, grad):
print "step: %04d\t %s [%.2f]\t norm: [%.2f]" % ( i, condition['readable'], prob, norm(grad) )
def main():
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--sentence', metavar='w', type=str, default="", nargs='?', help='Sentence to condition on')
parser.add_argument('--n_iters', metavar='iter', type=int, default=10, help='Number of sampling steps per each unit')
parser.add_argument('--threshold', metavar='w', type=float, default=-1.0, nargs='?', help='The probability threshold to decide whether to keep an image')
parser.add_argument('--save_every', metavar='save_iter', type=int, default=1, help='Save a sample every N iterations. 0 to disable saving')
parser.add_argument('--reset_every', metavar='reset_iter', type=int, default=0, help='Reset the code every N iterations')
parser.add_argument('--lr', metavar='lr', type=float, default=2.0, nargs='?', help='Learning rate')
parser.add_argument('--lr_end', metavar='lr', type=float, default=-1.0, nargs='?', help='Ending Learning rate')
parser.add_argument('--epsilon2', metavar='lr', type=float, default=1.0, nargs='?', help='Ending Learning rate')
parser.add_argument('--epsilon1', metavar='lr', type=float, default=1.0, nargs='?', help='Ending Learning rate')
parser.add_argument('--epsilon3', metavar='lr', type=float, default=1.0, nargs='?', help='Ending Learning rate')
parser.add_argument('--seed', metavar='n', type=int, default=0, nargs='?', help='Random seed')
parser.add_argument('--xy', metavar='n', type=int, default=0, nargs='?', help='Spatial position for conv units')
parser.add_argument('--opt_layer', metavar='s', type=str, help='Layer at which we optimize a code')
parser.add_argument('--act_layer', metavar='s', type=str, default="fc8", help='Layer at which we activate a neuron')
parser.add_argument('--init_file', metavar='s', type=str, default="None", help='Init image')
parser.add_argument('--write_labels', action='store_true', default=False, help='Write class labels to images')
parser.add_argument('--output_dir', metavar='b', type=str, default=".", help='Output directory for saving results')
parser.add_argument('--net_weights', metavar='b', type=str, default=settings.encoder_weights, help='Weights of the net being visualized')
parser.add_argument('--net_definition', metavar='b', type=str, default=settings.encoder_definition, help='Definition of the net being visualized')
parser.add_argument('--captioner_definition', metavar='b', type=str, help='Definition of the net being visualized')
args = parser.parse_args()
# Default to constant learning rate
if args.lr_end < 0:
args.lr_end = args.lr
# summary
print "-------------"
print " sentence: %s" % args.sentence
print " n_iters: %s" % args.n_iters
print " reset_every: %s" % args.reset_every
print " save_every: %s" % args.save_every
print " threshold: %s" % args.threshold
print " epsilon1: %s" % args.epsilon1
print " epsilon2: %s" % args.epsilon2
print " epsilon3: %s" % args.epsilon3
print " start learning rate: %s" % args.lr
print " end learning rate: %s" % args.lr_end
print " seed: %s" % args.seed
print " opt_layer: %s" % args.opt_layer
print " act_layer: %s" % args.act_layer
print " init_file: %s" % args.init_file
print "-------------"
print " output dir: %s" % args.output_dir
print " net weights: %s" % args.net_weights
print " net definition: %s" % args.net_definition
print " captioner definition: %s" % args.captioner_definition
print "-------------"
# encoder and generator for images
encoder = caffe.Net(settings.encoder_definition, settings.encoder_weights, caffe.TEST)
generator = caffe.Net(settings.generator_definition, settings.generator_weights, caffe.TEST)
# condition network, here an image classification net
# this LRCN image captioning net has 1 binary weights but 2 definitions: 1 for feature extractor (AlexNet), 1 for LSTM
net = caffe.Net(args.net_definition, args.net_weights, caffe.TEST)
# Fix the seed
np.random.seed(args.seed)
if args.init_file != "None":
start_code, start_image = get_code(encoder=encoder, path=args.init_file, layer=args.opt_layer)
print "Loaded start code: ", start_code.shape
else:
# shape of the code being optimized
shape = generator.blobs[settings.generator_in_layer].data.shape
start_code = np.random.normal(0, 1, shape)
# Split the sentence into words
words = args.sentence.split("_")
sentence = util.convert_words_into_numbers(settings.vocab_file, words)
# Condition here is the sentence
conditions = [ { "sentence": sentence, "readable": args.sentence.replace("_", " ")} ]
# Optimize a code via gradient ascent
sampler = CaptionConditionalSampler(args.captioner_definition, args.net_weights)
output_image, list_samples = sampler.sampling( condition_net=net, image_encoder=encoder, image_generator=generator,
gen_in_layer=settings.generator_in_layer, gen_out_layer=settings.generator_out_layer, start_code=start_code,
n_iters=args.n_iters, lr=args.lr, lr_end=args.lr_end, threshold=args.threshold,
layer=args.act_layer, conditions=conditions,
epsilon1=args.epsilon1, epsilon2=args.epsilon2, epsilon3=args.epsilon3,
output_dir=args.output_dir,
reset_every=args.reset_every, save_every=args.save_every)
# Output image
filename = "%s/%s_%04d_%s_h_%s_%s_%s__%s.jpg" % (
args.output_dir,
args.act_layer,
args.n_iters,
args.lr,
str(args.epsilon1),
str(args.epsilon2),
str(args.epsilon3),
args.seed
)
# Save the final image
util.save_image(output_image, filename)
print "%s/%s" % (os.getcwd(), filename)
# Write labels to images
print "Saving images..."
for p in list_samples:
img, name, label = p
util.save_image(img, name)
if args.write_labels:
util.write_label_to_img(name, label)
if __name__ == '__main__':
main()