From e564bda3c13fd64f9237bc73e33ab64e834e79a5 Mon Sep 17 00:00:00 2001 From: Eric Joanis Date: Mon, 7 Oct 2024 13:39:43 -0400 Subject: [PATCH] feat: display a spinner while importing expensive things --- hfgl/cli.py | 29 +++++++++++++++++------------ 1 file changed, 17 insertions(+), 12 deletions(-) diff --git a/hfgl/cli.py b/hfgl/cli.py index a42e780..9b2ca86 100644 --- a/hfgl/cli.py +++ b/hfgl/cli.py @@ -7,6 +7,7 @@ preprocess_base_command_interface, train_base_command_interface, ) +from everyvoice.utils import spinner from loguru import logger from merge_args import merge_args @@ -33,9 +34,10 @@ def preprocess( ), **kwargs, ): - from everyvoice.base_cli.helpers import preprocess_base_command + with spinner(): + from everyvoice.base_cli.helpers import preprocess_base_command - from .config import HiFiGANConfig + from .config import HiFiGANConfig preprocess_base_command( model_config=HiFiGANConfig, @@ -47,11 +49,12 @@ def preprocess( @app.command() @merge_args(train_base_command_interface) def train(**kwargs): - from everyvoice.base_cli.helpers import train_base_command + with spinner(): + from everyvoice.base_cli.helpers import train_base_command - from .config import HiFiGANConfig - from .dataset import HiFiGANDataModule - from .model import HiFiGAN + from .config import HiFiGANConfig + from .dataset import HiFiGANDataModule + from .model import HiFiGAN train_base_command( model_config=HiFiGANConfig, @@ -86,9 +89,10 @@ def export( ): import os - import torch + with spinner(): + import torch - from .utils import sizeof_fmt + from .utils import sizeof_fmt orig_size = sizeof_fmt(os.path.getsize(model_path)) vocoder_ckpt = torch.load(model_path, map_location=torch.device("cpu")) @@ -132,11 +136,12 @@ def synthesize( """Given some Mel spectrograms and a trained model, generate some audio. i.e. perform *copy synthesis*""" import sys - import torch - from pydantic import ValidationError - from scipy.io.wavfile import write + with spinner(): + import torch + from pydantic import ValidationError + from scipy.io.wavfile import write - from .utils import load_hifigan_from_checkpoint, synthesize_data + from .utils import load_hifigan_from_checkpoint, synthesize_data device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") checkpoint = torch.load(generator_path, map_location=device)