Skip to content

Latest commit

ย 

History

History
561 lines (430 loc) ยท 14.6 KB

Chapter3-1.md

File metadata and controls

561 lines (430 loc) ยท 14.6 KB

3-1 Low-level API: Demonstration

The examples below use low-level APIs in TensorFlow to implement a linear regression model and a DNN binary classification model.

Low-level API includes tensor operation, graph and automatic differentiates.

import tensorflow as tf

# Time Stamp
@tf.function
def printbar():
    today_ts = tf.timestamp()%(24*60*60)

    hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
    minite = tf.cast((today_ts%3600)//60,tf.int32)
    second = tf.cast(tf.floor(today_ts%60),tf.int32)
    
    def timeformat(m):
        if tf.strings.length(tf.strings.format("{}",m))==1:
            return(tf.strings.format("0{}",m))
        else:
            return(tf.strings.format("{}",m))
    
    timestring = tf.strings.join([timeformat(hour),timeformat(minite),
                timeformat(second)],separator = ":")
    tf.print("=========="*8+timestring)

    

1. Linear Regression Model

(a) Data Preparation

import numpy as np 
import pandas as pd
from matplotlib import pyplot as plt 
import tensorflow as tf


# Number of samples
n = 400

# Generating the datasets
X = tf.random.uniform([n,2],minval=-10,maxval=10) 
w0 = tf.constant([[2.0],[-3.0]])
b0 = tf.constant([[3.0]])
Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0)  # @ is matrix multiplication; adding Gaussian noise
# Data Visualization

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b")
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)

ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g")
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()

# Creating generator of data pipeline
def data_iter(features, labels, batch_size=8):
    num_examples = len(features)
    indices = list(range(num_examples))
    np.random.shuffle(indices)  # Randomized reading order of the samples
    for i in range(0, num_examples, batch_size):
        indexs = indices[i: min(i + batch_size, num_examples)]
        yield tf.gather(X,indexs), tf.gather(Y,indexs)
        
# Testing the data pipeline
batch_size = 8
(features,labels) = next(data_iter(X,Y,batch_size))
print(features)
print(labels)
tf.Tensor(
[[ 2.6161194   0.11071014]
 [ 9.79207    -0.70180416]
 [ 9.792343    6.9149055 ]
 [-2.4186516  -9.375019  ]
 [ 9.83749    -3.4637213 ]
 [ 7.3953056   4.374569  ]
 [-0.14686584 -0.28063297]
 [ 0.49001217 -9.739792  ]], shape=(8, 2), dtype=float32)
tf.Tensor(
[[ 9.334667 ]
 [22.058844 ]
 [ 3.0695205]
 [26.736238 ]
 [35.292133 ]
 [ 4.2943544]
 [ 1.6713585]
 [34.826904 ]], shape=(8, 1), dtype=float32)

(b) Model Definition

w = tf.Variable(tf.random.normal(w0.shape))
b = tf.Variable(tf.zeros_like(b0,dtype = tf.float32))

# Defining Model
class LinearRegression:     
    # Forward propagation
    def __call__(self,x): 
        return x@w + b

    # Loss function
    def loss_func(self,y_true,y_pred):  
        return tf.reduce_mean((y_true - y_pred)**2/2)

model = LinearRegression()

(c) Model Training

# Debug in dynamic graph
def train_step(model, features, labels):
    with tf.GradientTape() as tape:
        predictions = model(features)
        loss = model.loss_func(labels, predictions)
    # Back propagation to calculate the gradients
    dloss_dw,dloss_db = tape.gradient(loss,[w,b])
    # Updating parameters using gradient descending method
    w.assign(w - 0.001*dloss_dw)
    b.assign(b - 0.001*dloss_db)
    
    return loss
 
# Test the results of train_step
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
train_step(model,features,labels)
<tf.Tensor: shape=(), dtype=float32, numpy=211.09982>
def train_model(model,epochs):
    for epoch in tf.range(1,epochs+1):
        for features, labels in data_iter(X,Y,10):
            loss = train_step(model,features,labels)

        if epoch%50==0:
            printbar()
            tf.print("epoch =",epoch,"loss = ",loss)
            tf.print("w =",w)
            tf.print("b =",b)

train_model(model,epochs = 200)
================================================================================16:35:56
epoch = 50 loss =  1.78806472
w = [[1.97554708]
 [-2.97719598]]
b = [[2.60692883]]
================================================================================16:36:00
epoch = 100 loss =  2.64588404
w = [[1.97319281]
 [-2.97810626]]
b = [[2.95525956]]
================================================================================16:36:04
epoch = 150 loss =  1.42576694
w = [[1.96466208]
 [-2.98337793]]
b = [[3.00264144]]
================================================================================16:36:08
epoch = 200 loss =  1.68992615
w = [[1.97718477]
 [-2.983814]]
b = [[3.01013041]]
## Accelerate using Autograph to transform the dynamic graph into static

@tf.function
def train_step(model, features, labels):
    with tf.GradientTape() as tape:
        predictions = model(features)
        loss = model.loss_func(labels, predictions)
    # Back propagation to calculate the gradients
    dloss_dw,dloss_db = tape.gradient(loss,[w,b])
    # Updating parameters using gradient descending method
    w.assign(w - 0.001*dloss_dw)
    b.assign(b - 0.001*dloss_db)
    
    return loss

def train_model(model,epochs):
    for epoch in tf.range(1,epochs+1):
        for features, labels in data_iter(X,Y,10):
            loss = train_step(model,features,labels)
        if epoch%50==0:
            printbar()
            tf.print("epoch =",epoch,"loss = ",loss)
            tf.print("w =",w)
            tf.print("b =",b)

train_model(model,epochs = 200)
================================================================================16:36:35
epoch = 50 loss =  0.894210339
w = [[1.96927285]
 [-2.98914337]]
b = [[3.00987792]]
================================================================================16:36:36
epoch = 100 loss =  1.58621466
w = [[1.97566223]
 [-2.98550248]]
b = [[3.00998402]]
================================================================================16:36:37
epoch = 150 loss =  2.2695992
w = [[1.96664226]
 [-2.99248481]]
b = [[3.01028705]]
================================================================================16:36:38
epoch = 200 loss =  1.90848124
w = [[1.98000824]
 [-2.98888135]]
b = [[3.01085401]]
# Visualizing the results

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
ax1.plot(X[:,0],w[0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)


ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
ax2.plot(X[:,1],w[1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)

plt.show()

2. DNN Binary Classification Model

(a) Data Preparation

import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt
import tensorflow as tf
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

# Number of the positive/negative samples
n_positive,n_negative = 2000,2000

# Generating the positive samples with a distribution on a smaller ring
r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0)
theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi) 
Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
Yp = tf.ones_like(r_p)

# Generating the negative samples with a distribution on a larger ring
r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi) 
Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
Yn = tf.zeros_like(r_n)

# Assembling all samples
X = tf.concat([Xp,Xn],axis = 0)
Y = tf.concat([Yp,Yn],axis = 0)


# Visualizing the data
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
plt.legend(["positive","negative"]);

# Create the generator of the data pipeline
def data_iter(features, labels, batch_size=8):
    num_examples = len(features)
    indices = list(range(num_examples))
    np.random.shuffle(indices)  # Randomizing the reading order of the samples
    for i in range(0, num_examples, batch_size):
        indexs = indices[i: min(i + batch_size, num_examples)]
        yield tf.gather(X,indexs), tf.gather(Y,indexs)
        
# Testing data pipeline
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
print(features)
print(labels)
tf.Tensor(
[[ 0.03732629  3.5783494 ]
 [ 0.542919    5.035079  ]
 [ 5.860281   -2.4476354 ]
 [ 0.63657564  3.194231  ]
 [-3.5072308   2.5578873 ]
 [-2.4109735  -3.6621518 ]
 [ 4.0975413  -2.4172943 ]
 [ 1.9393908  -6.782317  ]
 [-4.7453732  -0.5176727 ]
 [-1.4057113  -7.9775257 ]], shape=(10, 2), dtype=float32)
tf.Tensor(
[[1.]
 [1.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [0.]
 [1.]
 [0.]], shape=(10, 1), dtype=float32)

(b) Model Definition

Here the tf.Module is used for organizing the parameters in the model. You may refer to the last section of Chapter 4 (AutoGraph and tf.Module) for more details of tf.Module.

class DNNModel(tf.Module):
    def __init__(self,name = None):
        super(DNNModel, self).__init__(name=name)
        self.w1 = tf.Variable(tf.random.truncated_normal([2,4]),dtype = tf.float32)
        self.b1 = tf.Variable(tf.zeros([1,4]),dtype = tf.float32)
        self.w2 = tf.Variable(tf.random.truncated_normal([4,8]),dtype = tf.float32)
        self.b2 = tf.Variable(tf.zeros([1,8]),dtype = tf.float32)
        self.w3 = tf.Variable(tf.random.truncated_normal([8,1]),dtype = tf.float32)
        self.b3 = tf.Variable(tf.zeros([1,1]),dtype = tf.float32)

     
    # Forward propagation
    @tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])  
    def __call__(self,x):
        x = tf.nn.relu(x@self.w1 + self.b1)
        x = tf.nn.relu(x@self.w2 + self.b2)
        y = tf.nn.sigmoid(x@self.w3 + self.b3)
        return y
    
    # Loss function (binary cross entropy)
    @tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
                              tf.TensorSpec(shape = [None,1], dtype = tf.float32)])  
    def loss_func(self,y_true,y_pred):  
        # Limiting the prediction between 1e-7 and 1 - 1e-7 to avoid the error at log(0)
        eps = 1e-7
        y_pred = tf.clip_by_value(y_pred,eps,1.0-eps)
        bce = - y_true*tf.math.log(y_pred) - (1-y_true)*tf.math.log(1-y_pred)
        return  tf.reduce_mean(bce)
    
    # Metric (Accuracy)
    @tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
                              tf.TensorSpec(shape = [None,1], dtype = tf.float32)]) 
    def metric_func(self,y_true,y_pred):
        y_pred = tf.where(y_pred>0.5,tf.ones_like(y_pred,dtype = tf.float32),
                          tf.zeros_like(y_pred,dtype = tf.float32))
        acc = tf.reduce_mean(1-tf.abs(y_true-y_pred))
        return acc
    
model = DNNModel()
# Testing the structure of model
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))

predictions = model(features)

loss = model.loss_func(labels,predictions)
metric = model.metric_func(labels,predictions)

tf.print("init loss:",loss)
tf.print("init metric",metric)
init loss: 1.76568353
init metric 0.6
print(len(model.trainable_variables))
6

(c) Model Training

## Transform to static graph for acceleration using Autograph

@tf.function
def train_step(model, features, labels):
    
    # Forward propagation to calculate the loss
    with tf.GradientTape() as tape:
        predictions = model(features)
        loss = model.loss_func(labels, predictions) 
        
    # Backward propagation to calculate the gradients
    grads = tape.gradient(loss, model.trainable_variables)
    
    # Applying gradient descending
    for p, dloss_dp in zip(model.trainable_variables,grads):
        p.assign(p - 0.001*dloss_dp)
        
    # Calculate metric
    metric = model.metric_func(labels,predictions)
    
    return loss, metric


def train_model(model,epochs):
    for epoch in tf.range(1,epochs+1):
        for features, labels in data_iter(X,Y,100):
            loss,metric = train_step(model,features,labels)
        if epoch%100==0:
            printbar()
            tf.print("epoch =",epoch,"loss = ",loss, "accuracy = ", metric)
        

train_model(model,epochs = 600)
================================================================================16:47:35
epoch = 100 loss =  0.567795336 accuracy =  0.71
================================================================================16:47:39
epoch = 200 loss =  0.50955683 accuracy =  0.77
================================================================================16:47:43
epoch = 300 loss =  0.421476126 accuracy =  0.84
================================================================================16:47:47
epoch = 400 loss =  0.330618203 accuracy =  0.9
================================================================================16:47:51
epoch = 500 loss =  0.308296859 accuracy =  0.89
================================================================================16:47:55
epoch = 600 loss =  0.279367268 accuracy =  0.96
# Visualizing the results
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
ax1.scatter(Xp[:,0],Xp[:,1],c = "r")
ax1.scatter(Xn[:,0],Xn[:,1],c = "g")
ax1.legend(["positive","negative"]);
ax1.set_title("y_true");

Xp_pred = tf.boolean_mask(X,tf.squeeze(model(X)>=0.5),axis = 0)
Xn_pred = tf.boolean_mask(X,tf.squeeze(model(X)<0.5),axis = 0)

ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")
ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")
ax2.legend(["positive","negative"]);
ax2.set_title("y_pred");

Please leave comments in the WeChat official account "PythonไธŽ็ฎ—ๆณ•ไน‹็พŽ" (Elegance of Python and Algorithms) if you want to communicate with the author about the content. The author will try best to reply given the limited time available.

You are also welcomed to join the group chat with the other readers through replying ๅŠ ็พค (join group) in the WeChat official account.

image.png