-
Notifications
You must be signed in to change notification settings - Fork 313
/
SeqLSTM.lua
560 lines (472 loc) · 18.2 KB
/
SeqLSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
--[[
The MIT License (MIT)
Copyright (c) 2016 Justin Johnson
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--]]
--[[
Thank you Justin for this awesome super fast code:
* https://github.com/jcjohnson/torch-rnn
If we add up the sizes of all the tensors for output, gradInput, weights,
gradWeights, and temporary buffers, we get that a SeqLSTM stores this many
scalar values:
NTD + 6NTH + 8NH + 8H^2 + 8DH + 9H
N : batchsize; T : seqlen; D : inputsize; H : outputsize
For N = 100, D = 512, T = 100, H = 1024 and with 4 bytes per number, this comes
out to 305MB. Note that this class doesn't own input or gradOutput, so you'll
see a bit higher memory usage in practice.
--]]
local SeqLSTM, parent = torch.class('nn.SeqLSTM', 'nn.Module')
function SeqLSTM:__init(inputsize, hiddensize, outputsize)
parent.__init(self)
-- for non-SeqLSTMP, only inputsize, hiddensize=outputsize are provided
outputsize = outputsize or hiddensize
local D, H, R = inputsize, hiddensize, outputsize
self.inputsize, self.hiddensize, self.outputsize = D, H, R
self.weight = torch.Tensor(D+R, 4 * H)
self.gradWeight = torch.Tensor(D+R, 4 * H)
self.bias = torch.Tensor(4 * H)
self.gradBias = torch.Tensor(4 * H):zero()
self:reset()
self.cell = torch.Tensor() -- This will be (T, N, H)
self.gates = torch.Tensor() -- This will be (T, N, 4H)
self.buffer1 = torch.Tensor() -- This will be (N, H)
self.buffer2 = torch.Tensor() -- This will be (N, H)
self.buffer3 = torch.Tensor() -- This will be (1, 4H)
self.grad_a_buffer = torch.Tensor() -- This will be (N, 4H)
self.h0 = torch.Tensor()
self.c0 = torch.Tensor()
self._remember = 'neither'
self.grad_c0 = torch.Tensor()
self.grad_h0 = torch.Tensor()
self.grad_x = torch.Tensor()
self.gradInput = {self.grad_c0, self.grad_h0, self.grad_x}
-- set this to true to forward inputs as batchsize x seqlen x ...
-- instead of seqlen x batchsize
self.batchfirst = false
-- set this to true for variable length sequences that seperate
-- independent sequences with a step of zeros (a tensor of size D)
self.maskzero = false
end
function SeqLSTM:reset(std)
if not std then
std = 1.0 / math.sqrt(self.outputsize + self.inputsize)
end
self.bias:zero()
self.bias[{{self.outputsize + 1, 2 * self.outputsize}}]:fill(1)
self.weight:normal(0, std)
return self
end
function SeqLSTM:resetStates()
self.h0 = self.h0.new()
self.c0 = self.c0.new()
end
-- unlike MaskZero, the mask is applied in-place
function SeqLSTM:recursiveMask(output, mask)
if torch.type(output) == 'table' then
for k,v in ipairs(output) do
self:recursiveMask(output[k], mask)
end
else
assert(torch.isTensor(output))
-- make sure mask has the same dimension as the output tensor
local outputSize = output:size():fill(1)
outputSize[1] = output:size(1)
mask:resize(outputSize)
-- build mask
local zeroMask = mask:expandAs(output)
output:maskedFill(zeroMask, 0)
end
end
local function check_dims(x, dims)
assert(x:dim() == #dims)
for i, d in ipairs(dims) do
assert(x:size(i) == d)
end
end
-- makes sure x, h0, c0 and gradOutput have correct sizes.
-- batchfirst = true will transpose the N x T to conform to T x N
function SeqLSTM:_prepare_size(input, gradOutput)
local c0, h0, x
if torch.type(input) == 'table' and #input == 3 then
c0, h0, x = unpack(input)
elseif torch.type(input) == 'table' and #input == 2 then
h0, x = unpack(input)
elseif torch.isTensor(input) then
x = input
else
assert(false, 'invalid input')
end
assert(x:dim() == 3, "Only supports batch mode")
if self.batchfirst then
x = x:transpose(1,2)
gradOutput = gradOutput and gradOutput:transpose(1,2) or nil
end
local T, N = x:size(1), x:size(2)
local H, D = self.outputsize, self.inputsize
check_dims(x, {T, N, D})
if h0 then
check_dims(h0, {N, H})
end
if c0 then
check_dims(c0, {N, H})
end
if gradOutput then
check_dims(gradOutput, {T, N, H})
end
return c0, h0, x, gradOutput
end
--[[
Input:
- c0: Initial cell state, (N, H)
- h0: Initial hidden state, (N, H)
- x: Input sequence, (T, N, D)
Output:
- h: Sequence of hidden states, (T, N, H)
--]]
function SeqLSTM:updateOutput(input)
self.recompute_backward = true
local c0, h0, x = self:_prepare_size(input)
local N, T = x:size(2), x:size(1)
self.hiddensize = self.hiddensize or self.outputsize -- backwards compat
local H, R, D = self.hiddensize, self.outputsize, self.inputsize
self._output = self._output or self.weight.new()
-- remember previous state?
local remember
if self.train ~= false then -- training
if self._remember == 'both' or self._remember == 'train' then
remember = true
elseif self._remember == 'neither' or self._remember == 'eval' then
remember = false
end
else -- evaluate
if self._remember == 'both' or self._remember == 'eval' then
remember = true
elseif self._remember == 'neither' or self._remember == 'train' then
remember = false
end
end
self._return_grad_c0 = (c0 ~= nil)
self._return_grad_h0 = (h0 ~= nil)
if not c0 then
c0 = self.c0
if self.userPrevCell then
local prev_N = self.userPrevCell:size(1)
assert(prev_N == N, 'batch sizes must be consistent with userPrevCell')
c0:resizeAs(self.userPrevCell):copy(self.userPrevCell)
elseif c0:nElement() == 0 or not remember then
c0:resize(N, H):zero()
elseif remember then
local prev_T, prev_N = self.cell:size(1), self.cell:size(2)
assert(prev_N == N, 'batch sizes must be constant to remember states')
c0:copy(self.cell[prev_T])
end
end
if not h0 then
h0 = self.h0
if self.userPrevOutput then
local prev_N = self.userPrevOutput:size(1)
assert(prev_N == N, 'batch sizes must be consistent with userPrevOutput')
h0:resizeAs(self.userPrevOutput):copy(self.userPrevOutput)
elseif h0:nElement() == 0 or not remember then
h0:resize(N, R):zero()
elseif remember then
local prev_T, prev_N = self._output:size(1), self._output:size(2)
assert(prev_N == N, 'batch sizes must be the same to remember states')
h0:copy(self._output[prev_T])
end
end
local bias_expand = self.bias:view(1, 4 * H):expand(N, 4 * H)
local Wx = self.weight:narrow(1,1,D)
local Wh = self.weight:narrow(1,D+1,R)
local h, c = self._output, self.cell
h:resize(T, N, R):zero()
c:resize(T, N, H):zero()
local prev_h, prev_c = h0, c0
self.gates:resize(T, N, 4 * H):zero()
for t = 1, T do
local cur_x = x[t]
self.next_h = h[t]
local next_c = c[t]
local cur_gates = self.gates[t]
cur_gates:addmm(bias_expand, cur_x, Wx)
cur_gates:addmm(prev_h, Wh)
cur_gates[{{}, {1, 3 * H}}]:sigmoid()
cur_gates[{{}, {3 * H + 1, 4 * H}}]:tanh()
local i = cur_gates[{{}, {1, H}}] -- input gate
local f = cur_gates[{{}, {H + 1, 2 * H}}] -- forget gate
local o = cur_gates[{{}, {2 * H + 1, 3 * H}}] -- output gate
local g = cur_gates[{{}, {3 * H + 1, 4 * H}}] -- input transform
self.next_h:cmul(i, g)
next_c:cmul(f, prev_c):add(self.next_h)
self.next_h:tanh(next_c):cmul(o)
-- for LSTMP
self:adapter(t)
if self.maskzero then
-- build mask from input
local vectorDim = cur_x:dim()
self._zeroMask = self._zeroMask or cur_x.new()
self._zeroMask:norm(cur_x, 2, vectorDim)
self.zeroMask = self.zeroMask or ((torch.type(cur_x) == 'torch.CudaTensor') and torch.CudaByteTensor() or torch.ByteTensor())
self._zeroMask.eq(self.zeroMask, self._zeroMask, 0)
-- zero masked output
self:recursiveMask({self.next_h, next_c, cur_gates}, self.zeroMask)
end
prev_h, prev_c = self.next_h, next_c
end
self.userPrevOutput = nil
self.userPrevCell = nil
if self.batchfirst then
self.output = self._output:transpose(1,2) -- T x N -> N X T
else
self.output = self._output
end
return self.output
end
function SeqLSTM:adapter(scale, t)
-- Placeholder for SeqLSTMP
end
function SeqLSTM:backward(input, gradOutput, scale)
self.recompute_backward = false
scale = scale or 1.0
assert(scale == 1.0, 'must have scale=1')
local c0, h0, x, grad_h = self:_prepare_size(input, gradOutput)
assert(grad_h, "Expecting gradOutput")
local N, T = x:size(2), x:size(1)
self.hiddensize = self.hiddensize or self.outputsize -- backwards compat
local H, R, D = self.hiddensize, self.outputsize, self.inputsize
self._grad_x = self._grad_x or self.weight:narrow(1,1,D).new()
if not c0 then c0 = self.c0 end
if not h0 then h0 = self.h0 end
local grad_c0, grad_h0, grad_x = self.grad_c0, self.grad_h0, self._grad_x
local h, c = self._output, self.cell
local Wx = self.weight:narrow(1,1,D)
local Wh = self.weight:narrow(1,D+1,R)
local grad_Wx = self.gradWeight:narrow(1,1,D)
local grad_Wh = self.gradWeight:narrow(1,D+1,R)
local grad_b = self.gradBias
grad_h0:resizeAs(h0):zero()
grad_c0:resizeAs(c0):zero()
grad_x:resizeAs(x):zero()
self.buffer1:resizeAs(h0)
self.buffer2:resizeAs(c0)
self.grad_next_h = self.gradPrevOutput and self.buffer1:copy(self.gradPrevOutput) or self.buffer1:zero()
local grad_next_c = self.userNextGradCell and self.buffer2:copy(self.userNextGradCell) or self.buffer2:zero()
for t = T, 1, -1 do
local next_h, next_c = h[t], c[t]
local prev_h, prev_c = nil, nil
if t == 1 then
prev_h, prev_c = h0, c0
else
prev_h, prev_c = h[t - 1], c[t - 1]
end
self.grad_next_h:add(grad_h[t])
if self.maskzero and torch.type(self) ~= 'nn.SeqLSTM' then
-- we only do this for sub-classes (LSTM doesn't need it)
-- build mask from input
local cur_x = x[t]
local vectorDim = cur_x:dim()
self._zeroMask = self._zeroMask or cur_x.new()
self._zeroMask:norm(cur_x, 2, vectorDim)
self.zeroMask = self.zeroMask or ((torch.type(cur_x) == 'torch.CudaTensor') and torch.CudaByteTensor() or torch.ByteTensor())
self._zeroMask.eq(self.zeroMask, self._zeroMask, 0)
-- zero masked gradOutput
self:recursiveMask(self.grad_next_h, self.zeroMask)
end
-- for LSTMP
self:gradAdapter(scale, t)
local i = self.gates[{t, {}, {1, H}}]
local f = self.gates[{t, {}, {H + 1, 2 * H}}]
local o = self.gates[{t, {}, {2 * H + 1, 3 * H}}]
local g = self.gates[{t, {}, {3 * H + 1, 4 * H}}]
local grad_a = self.grad_a_buffer:resize(N, 4 * H):zero()
local grad_ai = grad_a[{{}, {1, H}}]
local grad_af = grad_a[{{}, {H + 1, 2 * H}}]
local grad_ao = grad_a[{{}, {2 * H + 1, 3 * H}}]
local grad_ag = grad_a[{{}, {3 * H + 1, 4 * H}}]
-- We will use grad_ai, grad_af, and grad_ao as temporary buffers
-- to to compute grad_next_c. We will need tanh_next_c (stored in grad_ai)
-- to compute grad_ao; the other values can be overwritten after we compute
-- grad_next_c
local tanh_next_c = grad_ai:tanh(next_c)
local tanh_next_c2 = grad_af:cmul(tanh_next_c, tanh_next_c)
local my_grad_next_c = grad_ao
my_grad_next_c:fill(1):add(-1, tanh_next_c2):cmul(o):cmul(self.grad_next_h)
grad_next_c:add(my_grad_next_c)
-- We need tanh_next_c (currently in grad_ai) to compute grad_ao; after
-- that we can overwrite it.
grad_ao:fill(1):add(-1, o):cmul(o):cmul(tanh_next_c):cmul(self.grad_next_h)
-- Use grad_ai as a temporary buffer for computing grad_ag
local g2 = grad_ai:cmul(g, g)
grad_ag:fill(1):add(-1, g2):cmul(i):cmul(grad_next_c)
-- We don't need any temporary storage for these so do them last
grad_ai:fill(1):add(-1, i):cmul(i):cmul(g):cmul(grad_next_c)
grad_af:fill(1):add(-1, f):cmul(f):cmul(prev_c):cmul(grad_next_c)
grad_x[t]:mm(grad_a, Wx:t())
grad_Wx:addmm(scale, x[t]:t(), grad_a)
grad_Wh:addmm(scale, prev_h:t(), grad_a)
local grad_a_sum = self.buffer3:resize(1, 4 * H):sum(grad_a, 1)
grad_b:add(scale, grad_a_sum)
self.grad_next_h = torch.mm(grad_a, Wh:t())
grad_next_c:cmul(f)
end
grad_h0:copy(self.grad_next_h)
grad_c0:copy(grad_next_c)
if self.batchfirst then
self.grad_x = grad_x:transpose(1,2) -- T x N -> N x T
else
self.grad_x = grad_x
end
self.gradPrevOutput = nil
self.userNextGradCell = nil
self.userGradPrevCell = self.grad_c0
self.userGradPrevOutput = self.grad_h0
if self._return_grad_c0 and self._return_grad_h0 then
self.gradInput = {self.grad_c0, self.grad_h0, self.grad_x}
elseif self._return_grad_h0 then
self.gradInput = {self.grad_h0, self.grad_x}
else
self.gradInput = self.grad_x
end
return self.gradInput
end
function SeqLSTM:gradAdapter(scale, t)
-- Placeholder for SeqLSTMP
end
function SeqLSTM:clearState()
self.cell:set()
self.gates:set()
self.buffer1:set()
self.buffer2:set()
self.buffer3:set()
self.grad_a_buffer:set()
self.grad_c0:set()
self.grad_h0:set()
self.grad_x:set()
self._grad_x = nil
self.output:set()
self._output = nil
self.gradInput = nil
self.zeroMask = nil
self._zeroMask = nil
self._maskbyte = nil
self._maskindices = nil
end
function SeqLSTM:updateGradInput(input, gradOutput)
if self.recompute_backward then
self:backward(input, gradOutput, 1.0)
end
return self.gradInput
end
function SeqLSTM:accGradParameters(input, gradOutput, scale)
if self.recompute_backward then
self:backward(input, gradOutput, scale)
end
end
function SeqLSTM:forget()
self.c0:resize(0)
self.h0:resize(0)
end
function SeqLSTM:type(type, ...)
self.zeroMask = nil
self._zeroMask = nil
self._maskbyte = nil
self._maskindices = nil
return parent.type(self, type, ...)
end
-- Toggle to feed long sequences using multiple forwards.
-- 'eval' only affects evaluation (recommended for RNNs)
-- 'train' only affects training
-- 'neither' affects neither training nor evaluation
-- 'both' affects both training and evaluation (recommended for LSTMs)
SeqLSTM.remember = nn.Sequencer.remember
function SeqLSTM:training()
if self.train == false then
-- forget at the start of each training
self:forget()
end
parent.training(self)
end
function SeqLSTM:evaluate()
if self.train ~= false then
-- forget at the start of each evaluation
self:forget()
end
parent.evaluate(self)
assert(self.train == false)
end
function SeqLSTM:toFastLSTM()
local D, H = self.inputsize, self.outputsize
-- input : x to ...
local Wxi = self.weight[{{1, D},{1, H}}]
local Wxf = self.weight[{{1, D},{H + 1, 2 * H}}]
local Wxo = self.weight[{{1, D},{2 * H + 1, 3 * H}}]
local Wxg = self.weight[{{1, D},{3 * H + 1, 4 * H}}]
local gWxi = self.gradWeight[{{1, D},{1, H}}]
local gWxf = self.gradWeight[{{1, D},{H + 1, 2 * H}}]
local gWxo = self.gradWeight[{{1, D},{2 * H + 1, 3 * H}}]
local gWxg = self.gradWeight[{{1, D},{3 * H + 1, 4 * H}}]
-- hidden : h to ...
local Whi = self.weight[{{D + 1, D + H},{1, H}}]
local Whf = self.weight[{{D + 1, D + H},{H + 1, 2 * H}}]
local Who = self.weight[{{D + 1, D + H},{2 * H + 1, 3 * H}}]
local Whg = self.weight[{{D + 1, D + H},{3 * H + 1, 4 * H}}]
local gWhi = self.gradWeight[{{D + 1, D + H},{1, H}}]
local gWhf = self.gradWeight[{{D + 1, D + H},{H + 1, 2 * H}}]
local gWho = self.gradWeight[{{D + 1, D + H},{2 * H + 1, 3 * H}}]
local gWhg = self.gradWeight[{{D + 1, D + H},{3 * H + 1, 4 * H}}]
-- bias
local bi = self.bias[{{1, H}}]
local bf = self.bias[{{H + 1, 2 * H}}]
local bo = self.bias[{{2 * H + 1, 3 * H}}]
local bg = self.bias[{{3 * H + 1, 4 * H}}]
local gbi = self.gradBias[{{1, H}}]
local gbf = self.gradBias[{{H + 1, 2 * H}}]
local gbo = self.gradBias[{{2 * H + 1, 3 * H}}]
local gbg = self.gradBias[{{3 * H + 1, 4 * H}}]
local lstm = nn.FastLSTM(self.inputsize, self.outputsize)
local params, gradParams = lstm:parameters()
local Wx, b, Wh = params[1], params[2], params[3]
local gWx, gb, gWh = gradParams[1], gradParams[2], gradParams[3]
Wx[{{1, H}}]:t():copy(Wxi)
Wx[{{H + 1, 2 * H}}]:t():copy(Wxg)
Wx[{{2 * H + 1, 3 * H}}]:t():copy(Wxf)
Wx[{{3 * H + 1, 4 * H}}]:t():copy(Wxo)
gWx[{{1, H}}]:t():copy(gWxi)
gWx[{{H + 1, 2 * H}}]:t():copy(gWxg)
gWx[{{2 * H + 1, 3 * H}}]:t():copy(gWxf)
gWx[{{3 * H + 1, 4 * H}}]:t():copy(gWxo)
Wh[{{1, H}}]:t():copy(Whi)
Wh[{{H + 1, 2 * H}}]:t():copy(Whg)
Wh[{{2 * H + 1, 3 * H}}]:t():copy(Whf)
Wh[{{3 * H + 1, 4 * H}}]:t():copy(Who)
gWh[{{1, H}}]:t():copy(gWhi)
gWh[{{H + 1, 2 * H}}]:t():copy(gWhg)
gWh[{{2 * H + 1, 3 * H}}]:t():copy(gWhf)
gWh[{{3 * H + 1, 4 * H}}]:t():copy(gWho)
b[{{1, H}}]:copy(bi)
b[{{H + 1, 2 * H}}]:copy(bg)
b[{{2 * H + 1, 3 * H}}]:copy(bf)
b[{{3 * H + 1, 4 * H}}]:copy(bo)
gb[{{1, H}}]:copy(gbi)
gb[{{H + 1, 2 * H}}]:copy(gbg)
gb[{{2 * H + 1, 3 * H}}]:copy(gbf)
gb[{{3 * H + 1, 4 * H}}]:copy(gbo)
return lstm
end
function SeqLSTM:maskZero()
self.maskzero = true
end