-
-
Notifications
You must be signed in to change notification settings - Fork 205
Generating a data set with Guassians
#Introduction
In the previous example we look at data transforms, which is one tool to improving accuracy when we have a more difficult classification problem. For the braver souls, it may be advantages to create a custom classifier. This could be especially true if there is some expert knowledge about the data you could incorporate into the decision process.
In this example, we look at generating a custom data set. While testing a new classifier on existing data sets is a good idea, sometimes you want to create a data set that has certain known properties, and problems, that you would like to test your classifier against. This example creates a 4 class problem with simple Gaussian distributions. This is for simplicity, by combining Gaussians, you can create many arbitrarily complex data sets.
#Code
import java.util.Random;
import javax.swing.JFrame;
import jsat.classifiers.CategoricalData;
import jsat.classifiers.ClassificationDataSet;
import jsat.classifiers.DataPoint;
import jsat.distributions.multivariate.NormalM;
import jsat.graphing.CategoryPlot;
import jsat.linear.DenseMatrix;
import jsat.linear.DenseVector;
import jsat.linear.Matrix;
import jsat.linear.Vec;
/**
* It can often be useful to generate synthetic data sets to test out classifiers on, and get a feel for how they work.
*
* @author Edward Raff
*/
public class GeneratingDataExample
{
public static void main(String[] args)
{
//We create a new data set. This data set will have 2 dimensions so we can visualize it, and 4 target class values
ClassificationDataSet dataSet = new ClassificationDataSet(2, new CategoricalData[0], new CategoricalData(4));
//We can generate data from a multivarete normal distribution. The 'M' at the end stands for Multivariate
NormalM normal;
//The normal is specifed by a mean and covariance matrix. The covariance matrix must be symmetric.
//We use a simple covariance matrix for each data point for simplicity
Matrix covariance = new DenseMatrix(new double[][]
{
{1.0, 0.0}, //Try altering these values to see the change!
{0.0, 1.0} //Just make sure its still symetric!
});
//And we create 4 different means
Vec mean0 = DenseVector.toDenseVec(0.0, 0.0);
Vec mean1 = DenseVector.toDenseVec(0.0, 4.0);
Vec mean2 = DenseVector.toDenseVec(4.0, 0.0);
Vec mean3 = DenseVector.toDenseVec(4.0, 4.0);
Vec[] means = new Vec[] {mean0, mean1, mean2, mean3};
//We now generate out data
for(int i = 0; i < means.length; i++)
{
normal = new NormalM(means[i], covariance);
for(Vec sample : normal.sample(300, new Random()))
dataSet.addDataPoint(sample, new int[0], i);
}
CategoryPlot plot = new CategoryPlot(dataSet);
JFrame jFrame = new JFrame("2D Visualization");
jFrame.add(plot);
jFrame.setSize(400, 400);
jFrame.setVisible(true);
jFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}