-
Notifications
You must be signed in to change notification settings - Fork 26
/
esl_gencode.c
1181 lines (1017 loc) · 61.8 KB
/
esl_gencode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Genetic code tables for translation, whether canonical or noncanonical.
*
* Table of contents:
* 1. NCBI genetic code tables, in Easel digital form
* 2. ESL_GENCODE genetic code object
* 3. Reading and writing genetic codes in NCBI format
* 4. DNA->protein digital translation, allowing ambiguity chars
* 5. Functions for creating/destroying ESL_GENCODE_WORKSTATE
* 6. Functions for processing ORFs
* 7. Debugging/development utilities
* 8. Unit tests
* 9. Test driver
* 10. Examples
*
* To do:
* - Remove dependency on ESL_GETOPTS. Use a configuration params _CFG
* structure instead. (See `msaweight` for example).
* [xref SRE:2019/0415-easel-tech-tree-v3]
*/
#include <esl_config.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_fileparser.h"
#include "esl_getopts.h" // problematic. See TO DO note.
#include "esl_regexp.h"
#include "esl_sq.h"
#include "esl_sqio.h"
#include "esl_gencode.h"
/*****************************************************************
* 1. NCBI genetic code tables, in Easel digital form
*****************************************************************/
/*
* From: http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=cgencodes
* NCBI text files are digitized by the esl_gencode_example driver:
* make esl_gencode_example
* ./esl_gencode_example <file>
*
* The NCBI page has useful information about these code tables, references and caveats.
*/
static const ESL_GENCODE esl_transl_tables[] = {
{ 1, "Standard",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 27, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S * C W C L F L F */
NULL, NULL },
{ 2, "Vertebrate mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 27, 15, 27, 15, 10, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T * S * S M I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 3, "Yeast mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 10, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 16, 16, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S M I M I Q H Q H P P P P R R R R T T T T E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 4, "Mold, protozoan, coelenterate mitochondrial; Mycoplasma/Spiroplasma",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 5, "Invertebrate mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 15, 15, 15, 15, 10, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
/* K N K N T T T T S S S S M I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 6, "Ciliate, dasycladacean, Hexamita nuclear",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 13, 19, 13, 19, 15, 15, 15, 15, 27, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V Q Y Q Y S S S S * C W C L F L F */
NULL, NULL },
{ 9, "Echinoderm and flatworm mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 11, 11, 8, 11, 16, 16, 16, 16, 15, 15, 15, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* N N K N T T T T S S S S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 10, "Euplotid nuclear",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 1, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S C C W C L F L F */
NULL, NULL },
{ 11, "Bacterial, archaeal; and plant plastid",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 27, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S * C W C L F L F */
NULL, NULL },
{ 12, "Alternative yeast",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 15, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 27, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L S L E D E D A A A A G G G G V V V V * Y * Y S S S S * C W C L F L F */
NULL, NULL },
{ 13, "Ascidian mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 5, 15, 5, 15, 10, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
/* K N K N T T T T G S G S M I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 14, "Alternative flatworm mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 11, 11, 8, 11, 16, 16, 16, 16, 15, 15, 15, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 19, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* N N K N T T T T S S S S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V Y Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 16, "Chlorophycean mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 9, 19, 15, 15, 15, 15, 27, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y L Y S S S S * C W C L F L F */
NULL, NULL },
{ 21, "Trematode mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 11, 11, 8, 11, 16, 16, 16, 16, 15, 15, 15, 15, 10, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* N N K N T T T T S S S S M I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 22, "Scenedesmus obliquus mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 9, 19, 27, 15, 15, 15, 27, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y L Y * S S S * C W C L F L F */
NULL, NULL },
{ 23, "Thraustochytrium mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 27, 1, 18, 1, 27, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S * C W C * F L F */
NULL, NULL },
{ 24, "Pterobranchia mitochondrial",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 15, 15, 8, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 18, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
/* K N K N T T T T S S K S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S W C W C L F L F */
NULL, NULL },
{ 25, "Candidate Division SR1 and Gracilibacteria",
/* AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT */
{ 8, 11, 8, 11, 16, 16, 16, 16, 14, 15, 14, 15, 7, 7, 10, 7, 13, 6, 13, 6, 12, 12, 12, 12, 14, 14, 14, 14, 9, 9, 9, 9, 3, 2, 3, 2, 0, 0, 0, 0, 5, 5, 5, 5, 17, 17, 17, 17, 27, 19, 27, 19, 15, 15, 15, 15, 5, 1, 18, 1, 9, 4, 9, 4 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
/* K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V * Y * Y S S S S G C W C L F L F */
NULL, NULL },
};
/*****************************************************************
* 2. The ESL_GENCODE genetic code object
*****************************************************************/
/* Function: esl_gencode_Create()
* Synopsis: Create a new genetic code object
*
* Purpose: Create a new genetic code object for translating DNA/RNA alphabet
* <nt_abc> to protein alphabet <aa_abc>, using the standard
* genetic code (NCBI transl_table 1).
*
* If you want a different code than transl_table 1, use
* <esl_gencode_Set()> to reset your <ESL_GENCODE> to a
* different code after you create it.
*
* Because the built-in genetic code tables have been
* pre-digitized with the standard Easel alphabets,
* <nt_abc> and <aa_abc> must generally also be standard
* Easel alphabets: <eslDNA> or <eslRNA> for <nt_abc>, and
* <eslAMINO> for <aa_abc>. The exception is if you're
* going to digitize NCBI data files for different Easel
* alphabets (for instance, if you're going to build a new,
* or your own version of the pre-digitized
* <esl_transl_tables[]>). As a special case, if either
* <nt_abc> or <aa_abc> are not standard Easel alphabets,
* the new <ESL_GENCODE> is left uninitialized, rather than
* setting it to transl_table 1.
*
* The <ESL_GENCODE> object keeps a copy of the two
* alphabet pointers. Caller is still responsible for their
* deallocation. They should not be deallocated until
* after the <ESL_GENCODE> object is.
*
* Returns: A pointer to the new object.
*
* Throws: <NULL> if allocation fails.
*/
ESL_GENCODE *
esl_gencode_Create(const ESL_ALPHABET *nt_abc, const ESL_ALPHABET *aa_abc)
{
ESL_GENCODE *gcode = NULL;
int status;
ESL_ALLOC(gcode, sizeof(ESL_GENCODE));
gcode->nt_abc = nt_abc; // Keep a reference to the nucleic alphabet; caller remains responsible for it
gcode->aa_abc = aa_abc; // ditto for amino alphabet
if ( (nt_abc->type == eslDNA || nt_abc->type == eslRNA) && aa_abc->type == eslAMINO)
esl_gencode_Set(gcode, 1); // Default = standard code (NCBI trans table 1)
return gcode;
ERROR:
esl_gencode_Destroy(gcode);
return NULL;
}
/* Function: esl_gencode_Destroy()
* Synopsis: Deallocate an <ESL_GENCODE>
*/
void
esl_gencode_Destroy(ESL_GENCODE *gcode)
{
if (gcode) free(gcode);
}
/* Function: esl_gencode_Set()
* Synopsis: Set one of the NCBI standard genetic codes
*
* Purpose: Set <gcode> to use one of the standard NCBI genetic code tables,
* using the NCBI identifier <ncbi_transl_table>.
*
* <ncbi_transl_table> is an integer from 1..25 (not all of
* which are valid). For example, 1 is the standard code,
* and 6 is the ciliate nuclear code.
*
* The alphabets in <gcode> must be standard Easel
* alphabets: <eslAMINO> for <aa_abc> and either <eslDNA>
* or <eslRNA> for <nt_abc>. This is because <_Set()>
* simply copies precomputed digitized data for the
* appropriate genetic code, and that precomputation is
* done with the standard Easel digital alphabets. If the
* <aa_abc> and <nt_abc> alphabet reference ptrs in <gcode>
* are set (and this is recommended, but not necessary)
* they're used to verify that the alphabets are Easel
* standard ones.
*
* Returns: <eslOK> on success.
* <eslENOTFOUND> if the <ncbi_transl_table> code is not
* in our available table of genetic codes.
*
* Throws: <eslEINVAL> if either of the alphabets in <gcode> are
* nonstandard.
*/
int
esl_gencode_Set(ESL_GENCODE *gcode, int ncbi_transl_table)
{
int ntables = sizeof(esl_transl_tables) / sizeof(ESL_GENCODE);
int t, c;
if (gcode->nt_abc && (gcode->nt_abc->type != eslDNA && gcode->nt_abc->type != eslRNA))
ESL_EXCEPTION(eslEINVAL, "NCBI translation tables are precomputed using Easel standard alphabets; your nucleic alphabet is nonstandard");
if (gcode->aa_abc && gcode->aa_abc->type != eslAMINO)
ESL_EXCEPTION(eslEINVAL, "NCBI translation tables are precomputed using Easel standard alphabets; your amino alphabet is nonstandard");
for (t = 0; t < ntables; t++)
if ( esl_transl_tables[t].transl_table == ncbi_transl_table) break;
if (t == ntables) return eslENOTFOUND;
gcode->transl_table = esl_transl_tables[t].transl_table;
strcpy(gcode->desc, esl_transl_tables[t].desc);
for (c = 0; c < 64; c++)
{
gcode->basic[c] = esl_transl_tables[t].basic[c];
gcode->is_initiator[c] = esl_transl_tables[t].is_initiator[c];
}
return eslOK;
}
/* Function: esl_gencode_SetInitiatorAny()
* Synopsis: Set initiator field so ORFs can start with any aa
*
* Purpose: Set <gcode> to allow ORFs to start with any amino acid, as
* opposed to looking for initiation codons.
*
* We do this by overwriting the <is_initiator> field to be
* TRUE for all codons except terminators. Because we
* overwrite, the only way to revert a genetic code to use
* its official set of initiators is to reinitialize it
* completely.
*
* Returns: <eslOK> on success.
*/
int
esl_gencode_SetInitiatorAny(ESL_GENCODE *gcode)
{
int c;
for (c = 0; c < 64; c++)
gcode->is_initiator[c] = (esl_abc_XIsCanonical(gcode->aa_abc, gcode->basic[c]) ? TRUE : FALSE);
return eslOK;
}
/* Function: esl_gencode_SetInitiatorOnlyAUG
* Synopsis: Set initiator field so ORFs must start with AUG
*
* Purpose: Set <gcode> so that ORFs can only start with AUG, as opposed
* to using the possibly larger set of plausible initiator codons
* associated with the standard NCBI genetic codes. (For example,
* the standard code 1 allows ATG, CTG, and UUG initiators.)
*
* We do this by overwriting the <is_initiator> field to be TRUE
* only for the ATG codon.
*
* Returns: <eslOK> on success.
*/
int
esl_gencode_SetInitiatorOnlyAUG(ESL_GENCODE *gcode)
{
int c;
int atgcodon = 16 * esl_abc_DigitizeSymbol(gcode->nt_abc, 'A') +
4 * esl_abc_DigitizeSymbol(gcode->nt_abc, 'T') +
esl_abc_DigitizeSymbol(gcode->nt_abc, 'G');
for (c = 0; c < 64; c++) gcode->is_initiator[c] = FALSE;
gcode->is_initiator[atgcodon] = TRUE;
return eslOK;
}
/*****************************************************************
* 3. Reading and writing genetic codes in NCBI format
*****************************************************************/
/* Function: esl_gencode_Read()
* Synopsis: Read a genetic code in NCBI text format from a stream.
*
* Purpose: Read an NCBI genetic code text file from <efp>; parse it
* and convert to Easel digitized data using the nucleic
* acid alphabet <nt_abc> and the protein alphabet <aa_abc>;
* return a pointer to the newly created <ESL_GENCODE> object
* via <*ret_gcode>.
*
* Example of an NCBI genetic code datafile:
*
* AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
* Starts = ---M---------------M---------------M----------------------------
* Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
* Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
* Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
*
* Caller is responsible for opening the <efp> first. This
* allows caller to take input from files, streams, or even
* to have data embedded as a piece of a larger file format
* it's parsing.
*
* The <efp> is configured so that lines beginning with '#'
* are ignored as comments, and upon return, the <efp> remains
* configured this way.
*
* This function is and must remain independent of the
* order of residues in the amino and nucleic
* alphabets. This allows us to convert NCBI genetic code
* text files to digitized Easel translation tables even
* for other orders of the symbols in DNA/protein digital
* alphabets, including the case of us someday changing the
* order of the Easel standard alphabet(s). Once digitized,
* Easel encodings of the genetic code are dependent on the
* <eslAMINO> and <eslNUCLEIC> alphabets they were created
* with.
*
* Slightly confusing case: if we *did* change the order in
* the Easel standard alphabets, the esl_gencode module has
* no way to know that it changed. All it sees is the
* <eslDNA>, <eslRNA>, or <eslAMINO> <type>. <ESL_GENCODE>
* data will be corrupted, and unit testing of
* <esl_gencode> will fail, until the <esl_transl_tables[]>
* data are rebuilt for the new alphabets using the
* <esl_gencode_example> program.
*
* Returns: <eslOK> on success. <*ret_gcode> contains the new <ESL_GENCODE>.
* <efp> has been set to ignore lines beginning with '#'.
*
* On a parse error, returns <eslEFORMAT>, and an informative message is
* left in <efp->errbuf>. Now <*ret_gcode> is NULL, but <efp> has
* still been configured to ignore lines beginning with '#'.
*/
int
esl_gencode_Read(ESL_FILEPARSER *efp, const ESL_ALPHABET *nt_abc, const ESL_ALPHABET *aa_abc, ESL_GENCODE **ret_gcode)
{
ESL_GENCODE *gcode = esl_gencode_Create(nt_abc, aa_abc);
ESL_REGEXP *mach = esl_regexp_Create();
int start, end, s, e;
char aas[65];
char mline[65];
char base1[65];
char base2[65];
char base3[65];
int aa_seen[20];
int stop_seen;
int codon_seen[64];
int x, codon, pos;
int status;
ESL_DASSERT1(( nt_abc->K == 4 )); // We're going to hardcode ncodons = 64, so "trust but verify"
ESL_DASSERT1(( aa_abc->K == 20 ));
if (( status = esl_fileparser_SetCommentChar(efp, '#') != eslOK)) goto ERROR;
if ((status = esl_fileparser_NextLine(efp)) != eslOK) { if (status == eslEOF) ESL_XFAIL(eslEFORMAT, efp->errbuf, "File empty or truncated? No AAs line found"); else goto ERROR; }
if ((status = esl_regexp_Match(mach, "^\\s*[Aa][Aa]s\\s*=\\s*(\\S+)\\s*$", efp->buf)) != eslOK) { if (status == eslEOD) ESL_XFAIL(eslEFORMAT, efp->errbuf, "First data line doesn't start with 'AAs ='"); else goto ERROR; }
if ((status = esl_regexp_SubmatchCoords(mach, efp->buf, 1, &start, &end)) != eslOK) goto ERROR;
if (end - start + 1 != 64) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Expected 64 char of AAs data");
strncpy(aas, efp->buf+start, 64);
aas[64] = '\0';
if ((status = esl_fileparser_NextLine(efp)) != eslOK) { if (status == eslEOF) ESL_XFAIL(eslEFORMAT, efp->errbuf, "File empty or truncated? No Starts line found"); else goto ERROR; }
if ((status = esl_regexp_Match(mach, "^\\s*[Ss]tarts\\s*=\\s*(\\S+)\\s*$", efp->buf)) != eslOK) { if (status == eslEOD) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Second data line doesn't start with 'Starts ='"); else goto ERROR; }
if ((status = esl_regexp_SubmatchCoords(mach, efp->buf, 1, &s, &e)) != eslOK) goto ERROR;
if (e - s + 1 != 64) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Expected 64 char of Starts data");
if (s != start) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Starts data is not aligned with AAs data above it");
strncpy(mline, efp->buf+start, 64);
mline[64] = '\0';
if ((status = esl_fileparser_NextLine(efp)) != eslOK) { if (status == eslEOF) ESL_XFAIL(eslEFORMAT, efp->errbuf, "File empty or truncated? No Base1 line found"); else goto ERROR; }
if ((status = esl_regexp_Match(mach, "^\\s*[Bb]ase1\\s*=\\s*(\\S+)\\s*$", efp->buf)) != eslOK) { if (status == eslEOD) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Third data line doesn't start with 'Base1 ='"); else goto ERROR; }
if ((status = esl_regexp_SubmatchCoords(mach, efp->buf, 1, &s, &e)) != eslOK) goto ERROR;
if (e - s + 1 != 64) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Expected 64 char of Base1 data");
if (s != start) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Base1 data is not aligned with data above it");
strncpy(base1, efp->buf+start, 64);
base1[64] = '\0';
if ((status = esl_fileparser_NextLine(efp)) != eslOK) { if (status == eslEOF) ESL_XFAIL(eslEFORMAT, efp->errbuf, "File empty or truncated? No Base2 line found"); else goto ERROR; }
if ((status = esl_regexp_Match(mach, "^\\s*[Bb]ase2\\s*=\\s*(\\S+)\\s*$", efp->buf)) != eslOK) { if (status == eslEOD) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Fourth data line doesn't start with 'Base2 ='"); else goto ERROR; }
if ((status = esl_regexp_SubmatchCoords(mach, efp->buf, 1, &s, &e)) != eslOK) goto ERROR;
if (e - s + 1 != 64) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Expected 64 char of Base2 data");
if (s != start) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Base2 data is not aligned with data above it");
strncpy(base2, efp->buf+start, 64);
base2[64] = '\0';
if ((status = esl_fileparser_NextLine(efp)) != eslOK) { if (status == eslEOF) ESL_XFAIL(eslEFORMAT, efp->errbuf, "File empty or truncated? No Base3 line found"); else goto ERROR; }
if ((status = esl_regexp_Match(mach, "^\\s*[Bb]ase3\\s*=\\s*(\\S+)\\s*$", efp->buf)) != eslOK) { if (status == eslEOD) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Fifth data line doesn't start with 'Base3 ='"); else goto ERROR; }
if ((status = esl_regexp_SubmatchCoords(mach, efp->buf, 1, &s, &e)) != eslOK) goto ERROR;
if (e - s + 1 != 64) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Expected 64 char of Base3 data");
if (s != start) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Base3 data is not aligned with data above it");
strncpy(base3, efp->buf+start, 64);
base3[64] = '\0';
stop_seen = FALSE;
for ( x = 0; x < 20; x++) aa_seen[x] = FALSE;
for (codon = 0; codon < 64; codon++) codon_seen[codon] = FALSE;
for (pos = 0; pos < 64; pos++)
{
if (! esl_abc_CIsValid(aa_abc, aas[pos]) || ! (esl_abc_CIsCanonical(aa_abc, aas[pos]) || esl_abc_CIsNonresidue(aa_abc, aas[pos]))) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Character %c on AAs line is not an amino acid or a * (stop)", aas[pos]);
if (! esl_abc_CIsValid(nt_abc, base1[pos]) || ! esl_abc_CIsCanonical(nt_abc, base1[pos])) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Character %c on Base1 line is not a nucleotide", base1[pos]);
if (! esl_abc_CIsValid(nt_abc, base2[pos]) || ! esl_abc_CIsCanonical(nt_abc, base2[pos])) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Character %c on Base2 line is not a nucleotide", base2[pos]);
if (! esl_abc_CIsValid(nt_abc, base3[pos]) || ! esl_abc_CIsCanonical(nt_abc, base3[pos])) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Character %c on Base3 line is not a nucleotide", base3[pos]);
if ( mline[pos] != '-' && mline[pos] != 'm' && mline[pos] != 'M') ESL_XFAIL(eslEFORMAT, efp->errbuf, "Character %c on Starts line is neither a - or an M", mline[pos]);
codon = 16 * esl_abc_DigitizeSymbol(nt_abc, base1[pos]) +
4 * esl_abc_DigitizeSymbol(nt_abc, base2[pos]) +
esl_abc_DigitizeSymbol(nt_abc, base3[pos]);
x = esl_abc_DigitizeSymbol(aa_abc, aas[pos]);
ESL_DASSERT1(( codon >= 0 && codon < 64 ));
ESL_DASSERT1(( x >= 0 && (x < 20 || x == esl_abc_XGetNonresidue(aa_abc))));
if (x < 20) aa_seen[x]++; else stop_seen++;
codon_seen[codon]++;
gcode->basic[codon] = x;
gcode->is_initiator[codon] = ( mline[pos] == '-' ? FALSE : TRUE ); // We already checked above that it's one of "-mM"
}
/* A genetic code must provide a translation for all 64 codons, and
* all 20 amino acids to be encoded. (No organism is yet known to
* encode fewer than 20 amino acids [Kawahara-Kobayashi et al, NAR
* 40:10576, 2012].) The code must include at least one stop codon.
*/
if (! stop_seen) ESL_XFAIL(eslEFORMAT, efp->errbuf, "No stop codon found in that genetic code");
for (codon = 0; codon < 64; codon++)
if (! codon_seen[codon]) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Data for fewer than 64 codons was found");
for (x = 0; x < 20; x++)
if (aa_seen[x] == 0) ESL_XFAIL(eslEFORMAT, efp->errbuf, "No codon for residue %c found", aa_abc->sym[x]);
esl_regexp_Destroy(mach);
gcode->transl_table = -1; // It was initialized to 1, the NCBI standard table; reset
gcode->desc[0] = '\0'; // Was initialized to desc of NCBI table 1; blank it
gcode->nt_abc = nt_abc;
gcode->aa_abc = aa_abc;
*ret_gcode = gcode;
return eslOK;
ERROR:
if (gcode) esl_gencode_Destroy(gcode);
if (mach) esl_regexp_Destroy(mach);
*ret_gcode = NULL;
return status;
}
/* Function: esl_gencode_Write()
* Synopsis: Write a genetic code to a stream, in NCBI format
*
* Purpose: Write the genetic code <gcode> to stream <ofp> in NCBI format.
*
* If <add_comment> is TRUE and if it's a standard NCBI genetic code
* (i.e. with an NCBI transl_table number), also add a comment
* line at the top to document which transl_table it is, and the
* description line. This is an Easel extension. Other programs
* that read NCBI genetic code files will probably not be able to
* parse the Easel comment line, and for such programs you'll want
* <add_comment> to be FALSE.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on a write failure, such as a disk running out of space.
*/
int
esl_gencode_Write(FILE *ofp, const ESL_GENCODE *gcode, int add_comment)
{
char order[] = "TCAG";
int x,c;
if (add_comment && gcode->transl_table > 0)
if ( fprintf(ofp, "# %d %s\n",
gcode->transl_table, gcode->desc) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fprintf(ofp, " AAs = ") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
for (x = 0; x < 64; x++) {
c = 16 * esl_abc_DigitizeSymbol(gcode->nt_abc, order[ x/16 ])
+ 4 * esl_abc_DigitizeSymbol(gcode->nt_abc, order[ (x%16)/4 ])
+ esl_abc_DigitizeSymbol(gcode->nt_abc, order[ x%4]);
if (fputc( gcode->aa_abc->sym[gcode->basic[c]], ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
}
if ( fputc('\n', ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fprintf(ofp, " Starts = ") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
for (x = 0; x < 64; x++) {
c = 16 * esl_abc_DigitizeSymbol(gcode->nt_abc, order[ x/16 ])
+ 4 * esl_abc_DigitizeSymbol(gcode->nt_abc, order[ (x%16)/4 ])
+ esl_abc_DigitizeSymbol(gcode->nt_abc, order[ x%4]);
if (fputc( (gcode->is_initiator[c] ? 'M' : '-'), ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
}
if ( fputc('\n', ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fprintf(ofp, " Base1 = ") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
for (x = 0; x < 64; x++) if ( fputc( order[ x/16 ], ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fputc('\n', ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fprintf(ofp, " Base2 = ") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
for (x = 0; x < 64; x++) if ( fputc( order[ (x%16)/4 ], ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fputc('\n', ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fprintf(ofp, " Base3 = ") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
for (x = 0; x < 64; x++) if ( fputc( order[ x%4 ], ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
if ( fputc('\n', ofp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "genetic code write failed");
return eslOK;
}
/*****************************************************************
* 4. DNA->protein digital translation, allowing ambiguity chars
*****************************************************************/
/* Function: esl_gencode_GetTranslation()
* Synopsis: Returns translation of a degenerate digital codon.
*
* Purpose: Translate the digital DNA/RNA codon sequence starting at
* pointer <dsqp> and return the digital amino acid code.
*
* <dsqp> is a pointer into a digital sequence,
* not a complete digital sequence, so there are no sentinels.
* Also, caller must be sure that a full codon dsqp[0..2] exists
* at this location.
*
* Ambiguity codes are allowed in the DNA/RNA codon. If
* the amino acid is unambiguous, despite codon ambiguity,
* the correct amino acid is still determined: for example,
* GGR translates as Gly, UUY as Phe, AUH as Ile. If
* there is no single unambiguous amino acid translation, the codon
* is translated as X (unknown).
*
* Other than X, no amino acid ambiguity code is
* returned. We do not, for example, decode SAR as Z (Q|E),
* MUH as J (I|L), or RAY as B (N|D), because the extra
* complexity needed to do this doesn't seem worthwhile.
*
* Returns: digital amino acid code (0..19 or esl_abc_XGetUnknown()) in
* the protein alphabet.
*
* Throws: (no abnormal error conditions)
*/
int
esl_gencode_GetTranslation(const ESL_GENCODE *gcode, ESL_DSQ *dsqp)
{
ESL_DSQ x, y, z;
int codon;
int aa = -1;
if (esl_abc_XIsCanonical(gcode->nt_abc, dsqp[0]) && esl_abc_XIsCanonical(gcode->nt_abc, dsqp[1]) && esl_abc_XIsCanonical(gcode->nt_abc, dsqp[2]))
{
codon = 16*dsqp[0] + 4*dsqp[1] + dsqp[2];
return gcode->basic[codon];
}
for (x = 0; x < 4; x++)
{
if (! gcode->nt_abc->degen[dsqp[0]][x]) continue;
for (y = 0; y < 4; y++)
{
if (! gcode->nt_abc->degen[dsqp[1]][y]) continue;
for (z = 0; z < 4; z++)
{
if (! gcode->nt_abc->degen[dsqp[2]][z]) continue;
/* xyz is one possible basic codon included in the dsqp[3] degeneracy */
codon = x * 16 + y * 4 + z;
if (aa == -1) aa = gcode->basic[codon];
else if (aa != gcode->basic[codon]) return esl_abc_XGetUnknown(gcode->aa_abc);
}
}
}
return aa;
}
/* Function: esl_gencode_IsInitiator()
* Synopsis: Returns TRUE if degenerate codon is an initiator
*
* Purpose: Determine if all possible codons consistent with the
* degenerate codon sequence starting at <dsqp> are
* all initiation codons; return TRUE if so, else FALSE.
*
* For example, the standard code allows AUG|CUG|UUG
* initiators. Given HUG, MUG, or YUG, we would return
* TRUE.
*
* Because stop codons never have the <is_initiator> flag,
* even if we used <esl_gencode_SetAnyInitiator()>, NNN
* will never be used to initiate an open reading frame,
* nor will other degenerate codons that are consistent
* with at least one stop. This is desirable: we don't want
* to call all-X ORFs across long stretches of N's that
* are prevalent in DNA sequence assemblies.
*
* Works fine on nondegenerate codons too, but if caller
* knows the codon is nondegenerate, it should simply
* test <gcode->is_initiator[0..63]> directly.
*
* <dsqp> is a pointer into a digital sequence, not
* a digital sequence itself, so there are no sentinels:
* the codon is dsqp[0..2]. Moreover, caller must be
* sure that a full codon exists at this location;
* don't call this function at dsq[L-1] or dsq[L].
*
* Returns: TRUE|FALSE
*/
int
esl_gencode_IsInitiator(const ESL_GENCODE *gcode, ESL_DSQ *dsqp)
{
ESL_DSQ x, y, z;
int codon;
int ncodons = 0;
/* Handle the canonical case (no degeneracies) even though it's
* wasteful to call esl_gencode_IsInitiator() if there's no
* degeneracies.
*/
if (esl_abc_XIsCanonical(gcode->nt_abc, dsqp[0]) && esl_abc_XIsCanonical(gcode->nt_abc, dsqp[1]) && esl_abc_XIsCanonical(gcode->nt_abc, dsqp[2]))
{
codon = 16*dsqp[0] + 4*dsqp[1] + dsqp[2];
return gcode->is_initiator[codon];
}
/* Main case: if there's degeneracies then all possible
* codons must be initiators to call the ambig codon an initiator.
*/
for (x = 0; x < 4; x++)
{
if (! gcode->nt_abc->degen[dsqp[0]][x]) continue;
for (y = 0; y < 4; y++)
{
if (! gcode->nt_abc->degen[dsqp[1]][y]) continue;
for (z = 0; z < 4; z++)
{
if (! gcode->nt_abc->degen[dsqp[2]][z]) continue;
/* xyz is one possible basic codon included in the dsqp[3] degeneracy */
codon = x * 16 + y * 4 + z;
ncodons++;
if (! gcode->is_initiator[codon]) return FALSE;
}
}
}
/* I can't imagine a degeneracy that doesn't correspond to at least one codon,
* but it creeps me out to leave the door open to this returning TRUE if it
* hasn't seen any. Hence, <ncodons> test.
*/
return (ncodons ? TRUE : FALSE);
}
/*****************************************************************
* 5. Functions for creating/destroying ESL_GENCODE_WORKSTATE
*****************************************************************/
void
esl_gencode_WorkstateDestroy(ESL_GENCODE_WORKSTATE *wrk)
{
int f;
if (wrk)
{
for (f = 0; f < 3; f++) esl_sq_Destroy(wrk->psq[f]);
if(wrk->orf_block != NULL)
{
esl_sq_DestroyBlock(wrk->orf_block);
wrk->orf_block = NULL;
}
free(wrk);
}
}
ESL_GENCODE_WORKSTATE *
esl_gencode_WorkstateCreate(ESL_GETOPTS *go, ESL_GENCODE *gcode)
{
ESL_GENCODE_WORKSTATE *wrk = NULL;
int f;
int status;
ESL_ALLOC(wrk, sizeof(ESL_GENCODE_WORKSTATE));
for (f = 0; f < 3; f++) wrk->psq[f] = NULL;
for (f = 0; f < 3; f++)
{
wrk->psq[f] = esl_sq_CreateDigital(gcode->aa_abc);
wrk->psq[f]->dsq[0] = eslDSQ_SENTINEL;
wrk->in_orf[f] = FALSE;
}
wrk->apos = 1;
wrk->frame = 0;
wrk->codon = 0;
wrk->inval = 0;
wrk->is_revcomp = FALSE;
wrk->orfcount = 0;
wrk->orf_block = NULL;
wrk->do_watson = (esl_opt_GetBoolean(go, "--crick") ? FALSE : TRUE);
wrk->do_crick = (esl_opt_GetBoolean(go, "--watson") ? FALSE : TRUE);
wrk->using_initiators = ((esl_opt_GetBoolean(go, "-m") || esl_opt_GetBoolean(go, "-M")) ? TRUE : FALSE);
wrk->minlen = esl_opt_GetInteger(go, "-l");
wrk->outfp = stdout;
wrk->outformat = eslSQFILE_FASTA;
return wrk;
ERROR:
esl_gencode_WorkstateDestroy(wrk);
return NULL;
}
/*****************************************************************
* 6. Functions for processing ORFs
*****************************************************************/
int
esl_gencode_ProcessOrf(ESL_GENCODE_WORKSTATE *wrk, ESL_SQ *sq)
{
int status = eslOK;
ESL_SQ *psq = wrk->psq[wrk->frame];
psq->end = (wrk->is_revcomp ? wrk->apos+1 : wrk->apos-1);
if (wrk->in_orf[wrk->frame] && psq->n >= wrk->minlen)
{
wrk->orfcount++;
if (psq->n+2 > psq->salloc)
esl_sq_Grow(psq, /*opt_nsafe=*/NULL);
psq->dsq[1+psq->n] = eslDSQ_SENTINEL;
esl_sq_FormatName(psq, "orf%d", wrk->orfcount);
esl_sq_FormatDesc(psq, "source=%s coords=%" PRId64 "..%" PRId64 " length=%" PRId64 " frame=%d desc=%s", psq->source, psq->start, psq->end, psq->n, wrk->frame + 1 + (wrk->is_revcomp ? 3 : 0), sq->desc);
/* if we do not have a block to write ORFs to then write ORFs to file */
if (wrk->orf_block == NULL)
{
esl_sqio_Write(wrk->outfp, psq, wrk->outformat, /*sq ssi offset update=*/FALSE);
}
else
{
if (wrk->orf_block->count == wrk->orf_block->listSize)
{
status = esl_sq_BlockGrowTo(wrk->orf_block, wrk->orf_block->listSize + 128, TRUE, psq->abc);
if (status != eslOK) ESL_XEXCEPTION(eslEMEM, "Cannot increase size of ORF sequence block");
}
//printf("adding seq to block list num %d\n",wrk->orf_block->count);
//esl_sqio_Write(stdout, psq, eslSQFILE_FASTA, 0);
//printf("\n");
esl_sq_Copy(psq, &(wrk->orf_block->list[wrk->orf_block->count]));
//printf("incrementing block count to %d\n",wrk->orf_block->count+1);
wrk->orf_block->count++;
}
}
esl_sq_Reuse(psq);
esl_sq_SetSource(psq, sq->name);
wrk->in_orf[wrk->frame] = FALSE;
ERROR:
return status;
}
void
esl_gencode_ProcessStart(ESL_GENCODE *gcode, ESL_GENCODE_WORKSTATE *wrk, ESL_SQ *sq)
{
int f;
ESL_DASSERT1(( sq->n >= 3 ));
for (f = 0; f < 3; f++)
{
esl_sq_SetSource(wrk->psq[f], sq->name);
wrk->in_orf[f] = FALSE;
}
wrk->frame = 0;
wrk->codon = 0;
wrk->inval = 0;
wrk->is_revcomp = (sq->end > sq->start ? FALSE : TRUE ); // this test fails for seqs of length 1, but we know that L>=3
wrk->apos = (wrk->is_revcomp ? sq->L : 1 );
if (esl_abc_XIsCanonical(gcode->nt_abc, sq->dsq[1])) wrk->codon += 4 * sq->dsq[1]; else wrk->inval = 1;
if (esl_abc_XIsCanonical(gcode->nt_abc, sq->dsq[2])) wrk->codon += sq->dsq[2]; else wrk->inval = 2;
}
int
esl_gencode_ProcessPiece(ESL_GENCODE *gcode, ESL_GENCODE_WORKSTATE *wrk, ESL_SQ *sq)
{
ESL_DSQ aa;
int rpos;
for (rpos = 1; rpos <= sq->n-2; rpos++)
{
wrk->codon = (wrk->codon * 4) % 64;
if ( esl_abc_XIsCanonical(gcode->nt_abc, sq->dsq[rpos+2])) wrk->codon += sq->dsq[rpos+2];
else wrk->inval = 3;
/* Translate the current codon starting at <pos>;
* see if it's an acceptable initiator
*/
if (wrk->inval > 0) // degenerate codon: needs special, tedious handling
{
aa = esl_gencode_GetTranslation(gcode, sq->dsq+rpos); // This function can deal with any degeneracy
if (! wrk->in_orf[wrk->frame] && esl_gencode_IsInitiator(gcode, sq->dsq+rpos)) // ...as can IsInitiator.
{
if (wrk->using_initiators) // If we're using initiation codons, initial codon translates to M even if it's something like UUG or CUG
aa = esl_abc_DigitizeSymbol(gcode->aa_abc, 'M');
wrk->in_orf[wrk->frame] = TRUE;
wrk->psq[wrk->frame]->start = wrk->apos;
}
wrk->inval--;
}
else
{
aa = gcode->basic[wrk->codon]; // If we know the digitized codon has no degeneracy, translation is a simple lookup
if (gcode->is_initiator[wrk->codon] && ! wrk->in_orf[wrk->frame])
{
if (wrk->using_initiators) // If we're using initiation codons, initial codon translates to M even if it's something like UUG or CUG
aa = esl_abc_DigitizeSymbol(gcode->aa_abc, 'M');
wrk->psq[wrk->frame]->start = wrk->apos;
wrk->in_orf[wrk->frame] = TRUE;
}
}
/* Stop codon: deal with this ORF sequence and reinitiate */
if ( esl_abc_XIsNonresidue(gcode->aa_abc, aa))
esl_gencode_ProcessOrf(wrk, sq);
/* Otherwise: we have a residue. If we're in an orf (if we've
* seen a suitable initiator), add this residue, reallocating as needed.
*/
if (wrk->in_orf[wrk->frame])
{
if (wrk->psq[wrk->frame]->n + 2 > wrk->psq[wrk->frame]->salloc)
esl_sq_Grow(wrk->psq[wrk->frame], /*opt_nsafe=*/NULL);
wrk->psq[wrk->frame]->dsq[1+ wrk->psq[wrk->frame]->n] = aa;
wrk->psq[wrk->frame]->n++;
}
/* Advance +1 */
if (wrk->is_revcomp) wrk->apos--; else wrk->apos++;
wrk->frame = (wrk->frame + 1) % 3;
}
return eslOK;
}
int
esl_gencode_ProcessEnd(ESL_GENCODE_WORKSTATE *wrk, ESL_SQ *sq)
{
int f;
/* Done with the sequence. Now terminate all the orfs we were working on.
* <apos> is sitting at L-1 (or 2, if revcomp) and we're in some <frame>
* there.
*/
ESL_DASSERT1(( (wrk->is_revcomp && wrk->apos == 2) || (! wrk->is_revcomp && wrk->apos == sq->L-1) ));
for (f = 0; f < 3; f++) // f counts 0..2, but it is *not* the <frame> index; <frame> is stateful
{
esl_gencode_ProcessOrf(wrk, sq);
if (wrk->is_revcomp) wrk->apos--; else wrk->apos++;
wrk->frame = (wrk->frame + 1) % 3;
}
return eslOK;
}
/*****************************************************************
* 7. Debugging/development utilities
*****************************************************************/
/* Function: esl_gencode_DecodeDigicodon()
* Synopsis: Convert digital codon code 0..63 to a text string
*
* Purpose: Routines in the gencode module encode unambiguous codons
* as an index 0..63, by 16 x_0 + 4 x_1 + x_2. Convert
* <digicodon> (an index 0..63) to a NUL-terminated codon
* string in <codon>, where caller provides allocated space
* for the <codon> string for at least 4 characters.
*
* Returns: <codon> ptr itself; this allows <esl_gencode_DecodeDigicodon()>
* to be called directly as a function in printf() arguments,
* for example.
*/
char *
esl_gencode_DecodeDigicodon(const ESL_GENCODE *gcode, int digicodon, char *codon)
{
codon[0] = gcode->nt_abc->sym[ digicodon / 16 ];
codon[1] = gcode->nt_abc->sym[ (digicodon % 16) / 4 ];
codon[2] = gcode->nt_abc->sym[ digicodon % 4 ];
codon[3] = '\0';
return codon;
}
/* Function: esl_gencode_DumpAltCodeTable()
* Synopsis: Dump a table of available alternative genetic codes
*
* Purpose: Write a table of the available options for alternative
* genetic codes: the NCBI transl_table index number and a
* brief description for each.
*
* Main use of this function is to format help messages,
* listing what the options for transl_table indices are.
*/
int
esl_gencode_DumpAltCodeTable(FILE *ofp)
{
int ntables = sizeof(esl_transl_tables) / sizeof(ESL_GENCODE);
int t;
fprintf(ofp, "id description\n");
fprintf(ofp, "--- -----------------------------------\n");
for (t = 0; t < ntables; t++)
fprintf(ofp, "%3d %s\n", esl_transl_tables[t].transl_table, esl_transl_tables[t].desc);
return eslOK;
}
/* Function: esl_gencode_Compare()