forked from DrLGB/SingleCell_Analysis_R
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslingshot_method.R
75 lines (63 loc) · 2.71 KB
/
slingshot_method.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
suppressMessages(library(slingshot))
suppressMessages(library(destiny))
suppressMessages(library(scater))
suppressMessages(library(ggplot2))
args <- commandArgs(trailingOnly = TRUE)
len<-length(args)
if(len < 3 ){
cat("\nRscript Seurat_Rds output_dir prefix")
quit()
}
Seurat_Rdsfile<-args[1]
outdir<-args[2]
prefix<-args[3]
path<-getwd()
setwd(path)
dir.create(outdir,recursive=T)
sc.epi<-readRDS(Seurat_Rdsfile)
sc.scater.epi<-as.SingleCellExperiment(sc.epi)
allcolour=c("#DC143C","#0000FF","#20B2AA","#FFA500","#9370DB","#98FB98","#F08080","#1E90FF","#7CFC00","#FFFF00",
"#808000","#FF00FF","#FA8072","#7B68EE","#9400D3","#800080","#A0522D","#D2B48C","#D2691E","#87CEEB","#40E0D0","#5F9EA0",
"#FF1493","#0000CD","#008B8B","#FFE4B5","#8A2BE2","#228B22","#E9967A","#4682B4","#32CD32","#F0E68C","#FFFFE0","#EE82EE",
"#FF6347","#6A5ACD","#9932CC","#8B008B","#8B4513","#DEB887")
dm <- DiffusionMap(sc.scater.epi,k = 3)
dm.df<-as.data.frame(dm)
p1<-qplot(DC1, DC2, data = dm.df, colour = factor(seurat_clusters)) +theme_bw()+
scale_color_manual(values = allcolour)+theme(legend.title = element_blank())
ggsave(paste0(outdir,prefix,"_destiny_DCplot.png"),plot = p1,width = 6,height = 6)
DC.meta<-data.frame(dm.df[,c(1:2)])
DC.meta1<-DC.meta[rownames([email protected]),]
dc.array<-array(DC.meta1,dim=c(1,2))
colnames(dc.array)<-c("DC1","DC2")
dc.array.mat<-as.matrix(dc.array)
dc.dr <- CreateDimReducObject(
embeddings = dc.array.mat,
loadings =dc.array.mat,
stdev = 0,
key = "DC_",
assay = "RNA"
)
sc.epi@reductions$DC<-dc.dr
#########slingshot analysis###########
#set start cell
sce <- slingshot(sc.scater.epi, clusterLabels = 'seurat_clusters', reducedDim = "DC",
allow.breaks = FALSE,start.clus=0)
# get the lineages:
lnes <- getLineages(reducedDim(sce,"DC"),
sce$seurat_clusters,start.clus=0,)
#------------------------------VISION--------------------#
suppressMessages(library(Polychrome))
suppressMessages(library(ggbeeswarm))
suppressMessages(library(ggthemes))
suppressMessages(library(VISION))
slingshot_df <- data.frame(sce@colData)
slingshot_df<-cbind(slingshot_df,DC.meta1)
crv1 <- getCurves(lnes)
p2<-ggplot(slingshot_df, aes(x = DC1, y = DC2,
colour = slingPseudotime_1)) +geom_point()+theme_bw()+
scale_color_viridis()+labs(colour = "Pseudotime")
p3<-ggplot(slingshot_df, aes(x = DC1, y = DC2,
colour = slingPseudotime_2)) +geom_point()+theme_bw()+
scale_color_viridis()+labs(colour = "Pseudotime")
ggsave(paste0(outdir,prefix,"_destiny_DCplot_by_Pseudotime1.png"),plot = p2,width = 6,height = 6)
ggsave(paste0(outdir,prefix,"_destiny_DCplot_by_Pseudotime2.png"),plot = p3,width = 6,height = 6)