forked from 91097luke/phileo-bench
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathembedding_space_exploration.py
178 lines (127 loc) · 5.48 KB
/
embedding_space_exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import random
from matplotlib import pyplot as plt
from models.model_FeatureExtracter import GeoPretrainedFeatureExtractor
from utils import data_protocol, load_data
import buteo as beo
import torch
from tqdm import tqdm
import vdblite
from time import time
from uuid import uuid4
from utils.visualize import render_s2_as_rgb
import numpy as np
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
def plot_fig(anchor, top_k, bottom_k, k):
rows = k
columns = 3
anchor_rgb = render_s2_as_rgb(anchor, channel_first=True)
fig, axes = plt.subplots(nrows=rows, ncols=columns, figsize=(2 * columns, 2 * rows))
fig.add_subplot(rows, columns, 1)
plt.imshow(anchor_rgb)
plt.axis('off')
for i in range(rows):
for j in range(columns):
axes[i][j].axis('off')
for i in range(k):
top_rgb = render_s2_as_rgb(top_k[i]['content'], channel_first=True)
similarity = top_k[i]['score']
ax = fig.add_subplot(rows, columns, 2 + 3*i)
plt.imshow(top_rgb)
ax.set_xlabel(f'sim_score: {np.format_float_positional(similarity, 2)}')
# plt.axis('off')
bottom_rgb = render_s2_as_rgb(bottom_k[i]['content'], channel_first=True)
similarity = bottom_k[i]['score']
ax = fig.add_subplot(rows, columns, 3 + 3*i)
plt.imshow(bottom_rgb)
ax.set_xlabel(f'sim_score: {np.format_float_positional(similarity, 2)}')
# plt.axis('off')
fontsize = 16
axes[0][0].set_title('Anchor', fontdict={'fontsize': fontsize})
axes[0][1].set_title('Similar', fontdict={'fontsize': fontsize})
axes[0][2].set_title('Dissimilar', fontdict={'fontsize': fontsize})
fig.tight_layout()
plt.show()
def get_k_sim(k=5):
vdb = vdblite.Vdb()
vdb.load('GeoAware_contrastive_testVectors_new.vdb')
for _ in range(100):
rand_idx = random.randint(0, len(vdb.data)-1)
vector = vdb.data[rand_idx]['vector']
top_k = vdb.search(vector, field='vector', count=k+5, top_k=True)
bottom_k = vdb.search(vector, field='vector', count=k+10, top_k=False)
plot_fig(anchor=vdb.data[rand_idx]['content'], top_k=top_k[5:], bottom_k=bottom_k[:10], k=k)
def plot_clusters():
vdb = vdblite.Vdb()
vdb.load('GeoAware_contrastive_testVectors_new.vdb')
for cluster in range(200):
results = list()
for i in vdb.data:
if i['cluster'] == cluster:
results.append(i)
rows = 10
columns = 10
k = 0
fig, axes = plt.subplots(nrows=rows, ncols=columns, figsize=(2 * columns, 2 * rows))
if len(results) > 2:
for i in range(columns):
for j in range(rows):
k = k+1
if len(results) > 1:
rand_idx = random.randint(0, len(results) - 1)
rgb = render_s2_as_rgb(results[rand_idx]['content'], channel_first=True)
del results[rand_idx]
fig.add_subplot(rows, columns, k)
plt.imshow(rgb)
plt.axis('off')
axes[i][j].axis('off')
fig.tight_layout()
fig.savefig(f'misc/clusters_{cluster}.png')
plt.close()
def get_k_means():
vdb = vdblite.Vdb()
vdb.load('GeoAware_contrastive_testVectors_new.vdb')
vectors = []
for i in vdb.data:
vectors.append(i['vector'])
vectors = np.array(vectors)
# pca = PCA(n_components=3).fit_transform(vectors)
kmeans = KMeans(n_clusters=200, random_state=0, n_init="auto").fit_predict(vectors)
for i, cluster in enumerate(kmeans):
vdb.data[i]['cluster'] = cluster
# vdb.data[i]['pca_vector'] = pca[i]
# fig = plt.figure()
# ax = fig.add_subplot(projection='3d')
# for c in np.unique(kmeans):
# i = np.where(kmeans == c)
# ax.scatter(pca[i, 0], pca[i, 1], pca[i, 2], label=c)
# ax.legend()
# plt.show()
# fig.savefig('pca_clusters.png')
# fig.close()
vdb.save('GeoAware_contrastive_testVectors_new.vdb')
def gen_vbd():
batch_size = 32
model = GeoPretrainedFeatureExtractor(checkpoint='/home/lcamilleri/git_repos/Phileo-contrastive-geographical-expert/trained_models/contrastive/27102023_CoreEncoderMultiHead_geo_reduce_on_plateau/CoreEncoderMultiHead_best.pt', input_channels=10)
model.eval()
device = 'cuda' #torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
x_test, y_test = data_protocol.get_testset(folder='/phileo_data/downstream/downstream_dataset_patches_np/', y='building')
ds_test = beo.Dataset(x_test, y_test, callback=load_data.callback_decoder)
dl_test = load_data.DataLoader(ds_test, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=0,
drop_last=True, generator=torch.Generator(device='cpu'))
test_pbar = tqdm(dl_test, total=len(dl_test),
desc=f"Test Set")
vdb = vdblite.Vdb()
with torch.no_grad():
for i, (images, labels) in enumerate(test_pbar):
images = images[:15].to(device)
vectors = model(images)
for j, vector in enumerate(vectors):
info = {'vector': vector.detach().cpu().numpy(), 'uuid': str(uuid4()), 'content': images[j].detach().cpu().numpy()}
vdb.add(info)
vdb.save('GeoAware_contrastive_testVectors_new.vdb')
if __name__ == '__main__':
gen_vbd()
get_k_means()
plot_clusters()