-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepLearning.py
96 lines (87 loc) · 3.92 KB
/
DeepLearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import SpecialFunction
# Neural network devloped using numpy librery
class NeuralNetwork :
# Initializing a neural network
def __init__(self):
self.layerGroup = []
self.accuracies = []
# Adding a neural layer to the neural network
def add(self,layer):
self.layerGroup.append(layer)
# Forward propagation through all the layer
def feed_forword_net(self,input_row):
for layer in self.layerGroup :
input_row = layer.feed_forward(input_row)
return input_row
# Back-propagation through all the layer
def back_propagate_net(self,output_error):
for i in reversed(range(len(self.layerGroup))) :
output_error = self.layerGroup[i].back_propagate(output_error)
return output_error
# Weight rectification of all layer
def update_weights_net(self,input_row):
for layer in self.layerGroup :
input_row = layer.update_weights(input_row)
# Train the neural net with dataset includes forword propagation bacck-propagation and weight rectification
# It also include the analization of all epoch with user-defined spilt
def fit(self,X_train,y_train,epoch = 1,learning_rate = 0.01,eval_percent = 0.25):
from sklearn.model_selection import train_test_split
self.learning_rate = learning_rate
for j in range(epoch):
for i in range(len(X_train)):
result = self.feed_forword_net(input_row = X_train[i])
expected = [0 for i in range(self.layerGroup[-1].output_dim)]
expected[y_train[i]] = 1
output_error =expected - result
output_error = output_error.reshape(len(output_error),1)
self.back_propagate_net(output_error)
input_data =np.array([X_train[i]])
input_data =input_data.reshape(len(input_data.ravel()),1)
self.update_weights_net(input_row = input_data)
X_tr, X_te, y_tr, y_te = train_test_split(X_train, y_train, test_size = eval_percent, random_state = np.random.randint(low=1,high = 2000))
y_pr = self.predict(X_te)
performence = SpecialFunction.performence(y_te,y_pr)
self.accuracies.append(performence)
print("epoch ",j," ======== > performence : ",performence,'%')
# For predicting the testcase with trained network includes only forward propagation
def predict(self,X_test):
y_pred = []
for row in X_test:
result = self.feed_forword_net(input_row = row)
max = -1
max_i=-1
for i in range(len(result)):
if max <result[i] :
max = result[i]
max_i = i
y_pred.append(max_i)
return y_pred
# Layer are made of two dimensional matrix it is designed in such a way that user can add multiple layer each with uniq proporties
class Layer :
# Initializing a neural layer
def __init__(self,neural_network,output_dim,activation,initializer,input_dim="pre_output_dim",random_state = 1):
self.neural_network = neural_network
self.output_dim = output_dim
self.initializer = initializer
self.activation = activation
self.input_dim =input_dim
self.transfer = SpecialFunction.activation_function(activation = activation)
self.transfer_derivative = SpecialFunction.activation_derivative(activation_function = activation)
np.random.seed(random_state)
if input_dim == "pre_output_dim" :
self.input_dim =self.neural_network.layerGroup[-1].output_dim
self.weights = SpecialFunction.weights_initializer(initializer =initializer,input_dim =self.input_dim,output_dim =self.output_dim)
# Forward propagation
def feed_forward(self,input_row):
self.output_row = self.transfer(np.dot(input_row,self.weights))
return self.output_row
# Backward propagation
def back_propagate(self,output_error):
self.deltas = output_error
self.output_row = self.output_row.reshape(len(self.output_row.ravel()),1)
return np.dot(self.weights,self.deltas)
# Weight rectification
def update_weights(self,input_row):
self.weights += self.neural_network.learning_rate * np.dot(input_row,(self.deltas * self.transfer_derivative(self.output_row)).transpose())
return self.output_row