-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathutils.py
65 lines (53 loc) · 2.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import itertools
import matplotlib.pyplot as plt
import numpy as np
def plot_decision_boundary(model, X, y):
X = X.T
y = y.T
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax = plt.gca()
ax.set_aspect(1)
# plt.axis("equal")
#plt.contourf(xx, yy, Z, cmap=plt.cm.ocean, alpha=0.5)
plt.contourf(xx, yy, Z, colors = ["red","royalblue"], alpha=0.2)
# plt.contourf(xx, yy, Z, cmap=plt.cm.Pastel1, alpha=0.5)
# plt.scatter(X[0, y==1], X[1, y==1], color="dodgerblue", edgecolors='k', label="1")
plt.scatter(X[0, y == 1], X[1, y == 1], color="royalblue", label="1")
plt.scatter(X[0, y == -1], X[1, y == -1], color="red", label="-1")
plt.legend()
def plot_confusion_matrix(
cm, classes, normalize=False, title="Confusion matrix", cmap=plt.cm.Blues
):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation="nearest", cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = ".2f" if normalize else "d"
thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(
j,
i,
format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black",
)
plt.tight_layout()
plt.ylabel("Etiqueta correcta")
plt.xlabel("Etiqueta predicha")