-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathelementwise.py
82 lines (74 loc) · 2.82 KB
/
elementwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import time
from torch.utils.cpp_extension import load
from typing import Optional
from functools import partial
torch.set_grad_enabled(False)
# Load the CUDA kernel as a python module
lib = load(name='elementwise_lib',
sources=['elementwise.cu'],
extra_cuda_cflags=[
"-O3",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_HALF2_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
],
extra_cflags=['-std=c++17'])
def run_benchmark(perf_func: callable, a: torch.Tensor, b: torch.Tensor, tag: str,
out: Optional[torch.Tensor] = None, warmup: int = 10,
iters: int = 1000, show_all: bool = False):
# torch.dot vs custom dot_prod kernel
if out is not None:
out.fill_(0)
# warmup
if out is not None:
for i in range(warmup):
perf_func(a, b, out)
else:
for i in range(warmup):
_ = perf_func(a, b)
torch.cuda.synchronize()
start = time.time()
# iters
if out is not None:
for i in range(iters):
perf_func(a, b, out)
else:
for i in range(iters):
out = perf_func(a, b)
torch.cuda.synchronize()
end = time.time()
total_time = (end - start) * 1000 # ms
mean_time = total_time / iters
out_info = f"out_{tag}"
out_val = out.flatten().detach().cpu().numpy().tolist()[:2]
out_val = [round(v, 8) for v in out_val]
print(f"{out_info:>18}: {out_val}, time:{mean_time:.8f}ms")
if show_all: print(out)
return out, mean_time
Ss = [1024, 2048, 4096]
Ks = [1024, 2048, 4096]
SKs = [(S, K) for S in Ss for K in Ks]
for (S, K) in SKs:
print("-" * 85)
print(" " * 40 + f"S={S}, K={K}")
a = torch.randn((S, K)).cuda().float().contiguous()
b = torch.randn((S, K)).cuda().float().contiguous()
c = torch.zeros_like(a).cuda().float().contiguous()
run_benchmark(lib.elementwise_add_f32, a, b, "f32", c)
run_benchmark(lib.elementwise_add_f32x4, a, b, "f32x4", c)
run_benchmark(partial(torch.add, out=c), a, b, "f32_th")
print("-" * 85)
a_f16 = a.half().contiguous()
b_f16 = b.half().contiguous()
c_f16 = c.half().contiguous()
run_benchmark(lib.elementwise_add_f16, a_f16, b_f16, "f16", c_f16)
run_benchmark(lib.elementwise_add_f16x2, a_f16, b_f16, "f16x2", c_f16)
run_benchmark(lib.elementwise_add_f16x8, a_f16, b_f16, "f16x8", c_f16)
run_benchmark(lib.elementwise_add_f16x8_pack, a_f16, b_f16, "f16x8pack", c_f16)
run_benchmark(partial(torch.add, out=c_f16), a_f16, b_f16, "f16_th")
print("-" * 85)