From b03594590ee48929311b5f82d7f37b4fab1f9b55 Mon Sep 17 00:00:00 2001 From: donlaiq Date: Sun, 21 Apr 2024 19:03:17 -0300 Subject: [PATCH] All the notebooks are working now. --- Chapter 1/Ch1_Introduction.ipynb | 29 +- Chapter 10/Ch10_book.ipynb | 250 +++++++++-- Chapter 2/Ch2_book.ipynb | 129 +++--- Chapter 3/Ch3_book.ipynb | 377 ++++++++++++---- Chapter 4/Ch4_book.ipynb | 78 ++-- Chapter 5/Ch5_book.ipynb | 137 +++++- Chapter 6/Ch6_book.ipynb | 146 ++++--- Chapter 6/MNIST Genetic Algorithm.ipynb | 524 ++++++++++++++++------- Chapter 6/String Genetic Algorithm.ipynb | 52 ++- Chapter 7/Ch7_book.ipynb | 332 +++++++++++--- Chapter 8/Ch8_book.ipynb | 136 ++++-- Chapter 8/script_8.py | 324 ++++++++++++++ Chapter 9/Ch9_book.ipynb | 140 +++--- 13 files changed, 2010 insertions(+), 644 deletions(-) create mode 100644 Chapter 8/script_8.py diff --git a/Chapter 1/Ch1_Introduction.ipynb b/Chapter 1/Ch1_Introduction.ipynb index 6143d62..d98ee84 100644 --- a/Chapter 1/Ch1_Introduction.ipynb +++ b/Chapter 1/Ch1_Introduction.ipynb @@ -3,7 +3,10 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "source": [ "# Deep Reinforcement Learning in Action \n", @@ -87,14 +90,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "5.54 s ± 432 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "4.4 s ± 844 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], @@ -105,15 +108,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The slowest run took 4.44 times longer than the fastest. This could mean that an intermediate result is being cached.\n", - "412 ns ± 319 ns per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "319 ns ± 274 ns per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], @@ -121,13 +123,20 @@ "%timeit fib_mem(35)\n", "# We get 412 ns to run with n=35" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -139,9 +148,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 10/Ch10_book.ipynb b/Chapter 10/Ch10_book.ipynb index bf7dc05..a9ac867 100644 --- a/Chapter 10/Ch10_book.ipynb +++ b/Chapter 10/Ch10_book.ipynb @@ -17,9 +17,91 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to MNIST/MNIST/raw/train-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████| 9912422/9912422 [00:08<00:00, 1221139.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting MNIST/MNIST/raw/train-images-idx3-ubyte.gz to MNIST/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to MNIST/MNIST/raw/train-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████| 28881/28881 [00:00<00:00, 12552921.64it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting MNIST/MNIST/raw/train-labels-idx1-ubyte.gz to MNIST/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to MNIST/MNIST/raw/t10k-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████| 1648877/1648877 [00:01<00:00, 1283586.12it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting MNIST/MNIST/raw/t10k-images-idx3-ubyte.gz to MNIST/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to MNIST/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████| 4542/4542 [00:00<00:00, 1829846.20it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting MNIST/MNIST/raw/t10k-labels-idx1-ubyte.gz to MNIST/MNIST/raw\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], "source": [ "import numpy as np\n", "from matplotlib import pyplot as plt\n", @@ -45,8 +127,9 @@ " for i in range(xt.shape[0]):\n", " img = xt[i].unsqueeze(dim=0)\n", " img = TV.transforms.functional.to_pil_image(img)\n", - " rand_rot = np.random.randint(-1*rot,rot,1) if rot > 0 else 0\n", + " rand_rot = np.random.randint(-1*rot,rot,1) if rot < 0 else 0\n", " xtrans,ytrans = np.random.randint(-maxtrans,maxtrans,2)\n", + " #print(rand_rot[0])\n", " img = TV.transforms.functional.affine(img, rand_rot, (xtrans,ytrans),1,0)\n", " img = TV.transforms.functional.to_tensor(img).squeeze()\n", " if noise > 0:\n", @@ -69,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -162,9 +245,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/torchvision/datasets/mnist.py:75: UserWarning: train_data has been renamed data\n", + " warnings.warn(\"train_data has been renamed data\")\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/torchvision/datasets/mnist.py:65: UserWarning: train_labels has been renamed targets\n", + " warnings.warn(\"train_labels has been renamed targets\")\n" + ] + } + ], "source": [ "agent = RelationalModule() #A\n", "epochs = 1000\n", @@ -198,9 +292,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/torchvision/datasets/mnist.py:80: UserWarning: test_data has been renamed data\n", + " warnings.warn(\"test_data has been renamed data\")\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/torchvision/datasets/mnist.py:70: UserWarning: test_labels has been renamed targets\n", + " warnings.warn(\"test_labels has been renamed targets\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.9600)\n" + ] + } + ], "source": [ "def test_acc(model,batch_size=500):\n", " acc = 0.\n", @@ -219,9 +331,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgBklEQVR4nO3df3BU9f3v8ddmN9lETFYSJclKIqmXEQXEHwijeFsYMjIZRJmOWh3EXLzT1jYIGIcCbYOtvyK2tRHlC+LcCp0Rf/whaLmjDkUEvfI7YuW25cdXilG+IdpqFoJZkt1z//Cy32+EkATOJ+9sfD5mzh979uR13rPZzStnc3I24HmeJwAAelmG9QAAgG8nCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmQtYDfFMymdShQ4eUm5urQCBgPQ4AoIc8z9ORI0cUjUaVkdH5cU6fK6BDhw6ppKTEegwAwFlqaGjQ4MGDO72/zxVQbm6uJGl89H8qlJHle74XO+J7ZtrLzHQaHwj7/308wcvJdpd9TthZttL16L496Sw60Bp3l51IOMuWJLUedxbtJRw+5ufmOMltTx7X2x8vT/0870yfK6ATb7uFMrIUyvD/B4AXcPckT1sZjgvIwffxBC+YntlpW0Cewx+GQWfRCniOC8jhX9M9l4+5w9empC7/jMJJCAAAExQQAMAEBQQAMEEBAQBMOCugJUuWaMiQIcrOztbYsWO1bds2V7sCAKQhJwX00ksvqbq6Wg888IDq6+s1atQoTZo0SU1NTS52BwBIQ04K6IknntAPf/hDzZgxQ5dddpmWLVumc845R3/4wx9c7A4AkIZ8L6Djx49r586dKi8v/8+dZGSovLxcmzdvPmn7eDyuWCzWYQEA9H++F9Dnn3+uRCKhwsLCDusLCwvV2Nh40va1tbWKRCKphcvwAMC3g/lZcAsWLFBzc3NqaWhosB4JANALfL8Uz/nnn69gMKjDhw93WH/48GEVFRWdtH04HFY47PZyEACAvsf3I6CsrCxdffXVWr9+fWpdMpnU+vXrde211/q9OwBAmnJyMdLq6mpVVlZq9OjRGjNmjOrq6tTS0qIZM2a42B0AIA05KaAf/OAH+uyzz7Rw4UI1Njbqiiuu0BtvvHHSiQkAgG8vZx/HMHPmTM2cOdNVPAAgzZmfBQcA+HaigAAAJiggAIAJCggAYMLZSQhnyzt6VF7guO+5yXjc98ze0NVnq5+VRMJdtiQdb3OXfewrZ9EOH3Gnj7nn8vuZ4e53Vi+ZdJftcG5Jbl9DDh+XQNDR45Ls3s9ujoAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJkPUAnQpkfL34HRsI+J6ZkuGwz9N1bkleIuEw3HOX3dbmLNpLJJ1ly3OYna4c/CzpLYHssLNsL3eAm9xESDrc9Xbp+10BAKQ1CggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmPC9gGpra3XNNdcoNzdXgwYN0tSpU7Vnzx6/dwMASHO+F9DGjRtVVVWlLVu2aN26dWpra9MNN9yglpYWv3cFAEhjvl8J4Y033uhwe8WKFRo0aJB27typ7373u37vDgCQppxfiqe5uVmSlJ+ff8r74/G44vF46nYsFnM9EgCgD3B6EkIymdScOXM0btw4jRgx4pTb1NbWKhKJpJaSkhKXIwEA+ginBVRVVaXdu3frxRdf7HSbBQsWqLm5ObU0NDS4HAkA0Ec4ewtu5syZWrt2rTZt2qTBgwd3ul04HFY47O5qrwCAvsn3AvI8T/fee69Wr16tt99+W2VlZX7vAgDQD/heQFVVVVq1apVeffVV5ebmqrGxUZIUiUSUk5Pj9+4AAGnK978BLV26VM3NzRo/fryKi4tTy0svveT3rgAAaczJW3AAAHSFa8EBAExQQAAAExQQAMAEBQQAMOH8WnB9jdfebj3CmQk4/F0hI+AuW1IgGHQX3tbmLNrpCTUuH/Nkej5XXD5PAuc4/hcQl8/xpLvnYbxkoJPc9vZW6d+73o4jIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYCJkPQC6yUu6y066/T0kEHb4NMvJdhYdcJYsqb3dWXQgM9NZtpd3rrPs9gJ32Z9MHOAsW5JK34g5yw5+7jD7KzfPQ6+bz2+OgAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGDCeQE99thjCgQCmjNnjutdAQDSiNMC2r59u5555hldfvnlLncDAEhDzgro6NGjmjZtmp599lkNHDjQ1W4AAGnKWQFVVVVp8uTJKi8vd7ULAEAac3KRrhdffFH19fXavn17l9vG43HF4/HU7VjM3XWPAAB9h+9HQA0NDZo9e7aef/55ZWd3faHI2tpaRSKR1FJSUuL3SACAPsj3Atq5c6eampp01VVXKRQKKRQKaePGjVq8eLFCoZASiUSH7RcsWKDm5ubU0tDQ4PdIAIA+yPe34CZOnKgPP/yww7oZM2Zo2LBhmjdvnoLBYIf7wuGwwuGw32MAAPo43wsoNzdXI0aM6LBuwIABKigoOGk9AODbiyshAABM9Monor799tu9sRsAQBrhCAgAYIICAgCYoIAAACYoIACACQoIAGCiV86COyMZGV8vkCR5Sc9ZdjAvx1m2JMnhPxoHcrq+3NOZhwecRXs57h6TrwbnOcuOn+fuR0Yy2PU2Zyr6f1rdhUvK+LLFXXhrvOttzlDmoX85yQ0kuzczP+EBACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJkPUAnfK8rxdIkgKZDr9VIcdPg/PynEUfG3Kes+yMdnfPv+CxdmfZOXsOO8sORwY4yw60J91lfxV3li1Jak84i/YSDh+XpKPneDdzOQICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACScF9Omnn+rOO+9UQUGBcnJyNHLkSO3YscPFrgAAacr3/0D84osvNG7cOE2YMEGvv/66LrjgAu3bt08DBw70e1cAgDTmewEtWrRIJSUleu6551LrysrK/N4NACDN+f4W3GuvvabRo0fr1ltv1aBBg3TllVfq2Wef7XT7eDyuWCzWYQEA9H++F9BHH32kpUuXaujQoXrzzTf1k5/8RLNmzdLKlStPuX1tba0ikUhqKSkp8XskAEAfFPA8f6/4mZWVpdGjR+u9995LrZs1a5a2b9+uzZs3n7R9PB5XPP6fFwqMxWIqKSnRxPz/oVBGlp+jSZKSzWl6hBUMOovOyD3XWbYkqcDd3/++4mKkJ8k89C9n2UkuRnpqLi9G2upu9kB22EluezKuP3+yVM3NzcrL6/xixL4fARUXF+uyyy7rsO7SSy/Vxx9/fMrtw+Gw8vLyOiwAgP7P9wIaN26c9uzZ02Hd3r17ddFFF/m9KwBAGvO9gO677z5t2bJFjz76qPbv369Vq1Zp+fLlqqqq8ntXAIA05nsBXXPNNVq9erVeeOEFjRgxQg899JDq6uo0bdo0v3cFAEhjTj4K88Ybb9SNN97oIhoA0E9wLTgAgAkKCABgggICAJiggAAAJpychOALz5OS/v8nuucgszdkhALOsgNhN/8NfcI/rznfWXb+ts+cZesLd1fNSH7Z7Cy7ve24s+yMAe6uhOD0lXnOOS7TFQi5u1KJ2t1dNUNy+9rvCkdAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADARMh6gM4EIrkKZIT9zz12zPfMVHYg4C472//H4oS2iy5wli1JiSx3j0vzqPOdZefuz3aW7fJ56CUSzrKTX7U6y5aXdBYdzMpyli1JyVaHj0vS3eMSSOa4Ce7mzBwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwITvBZRIJFRTU6OysjLl5OTo4osv1kMPPSTP8/zeFQAgjfn+j6iLFi3S0qVLtXLlSg0fPlw7duzQjBkzFIlENGvWLL93BwBIU74X0Hvvvaebb75ZkydPliQNGTJEL7zwgrZt2+b3rgAAacz3t+Cuu+46rV+/Xnv37pUkffDBB3r33XdVUVFxyu3j8bhisViHBQDQ//l+BDR//nzFYjENGzZMwWBQiURCjzzyiKZNm3bK7Wtra/XrX//a7zEAAH2c70dAL7/8sp5//nmtWrVK9fX1WrlypX77299q5cqVp9x+wYIFam5uTi0NDQ1+jwQA6IN8PwKaO3eu5s+fr9tvv12SNHLkSB08eFC1tbWqrKw8aftwOKxw2N2VngEAfZPvR0DHjh1TRkbH2GAwqKTDS4oDANKP70dAU6ZM0SOPPKLS0lINHz5c77//vp544gndfffdfu8KAJDGfC+gp556SjU1NfrpT3+qpqYmRaNR/fjHP9bChQv93hUAII35XkC5ubmqq6tTXV2d39EAgH6Ea8EBAExQQAAAExQQAMAEBQQAMOH7SQh+aZxYrGBWtu+5xW/6HpmSzM1xlv3RLQOdZQcSAWfZkpT/N3f/AxZsc/cxH43/PeIsO3T15c6yC//3AWfZiX994SzbO37cWXai2e01JjOyMp1lB3JznWXL1f9nJrv3uuQICABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmAhZD9CZd+b9L+Xl+t+PY1p/4nvmCUmHj2awNeAs+/wP251lS1LrwKCz7M+udJe9t/LfnGV/kTjmLHti5v3OsovfCDvLTjZ97iw7EHT3PJGkQMFAZ9mJ8/OcZQc/a3YTnPS6tRlHQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDR4wLatGmTpkyZomg0qkAgoDVr1nS43/M8LVy4UMXFxcrJyVF5ebn27dvn17wAgH6ixwXU0tKiUaNGacmSJae8//HHH9fixYu1bNkybd26VQMGDNCkSZPU2tp61sMCAPqPHv/vfkVFhSoqKk55n+d5qqur0y9/+UvdfPPNkqQ//vGPKiws1Jo1a3T77bef3bQAgH7D178BHThwQI2NjSovL0+ti0QiGjt2rDZv3nzKr4nH44rFYh0WAED/52sBNTY2SpIKCws7rC8sLEzd9021tbWKRCKppaSkxM+RAAB9lPlZcAsWLFBzc3NqaWhosB4JANALfC2goqIiSdLhw4c7rD98+HDqvm8Kh8PKy8vrsAAA+j9fC6isrExFRUVav359al0sFtPWrVt17bXX+rkrAECa6/FZcEePHtX+/ftTtw8cOKBdu3YpPz9fpaWlmjNnjh5++GENHTpUZWVlqqmpUTQa1dSpU/2cGwCQ5npcQDt27NCECRNSt6urqyVJlZWVWrFihX72s5+ppaVFP/rRj/Tll1/q+uuv1xtvvKHs7Gz/pgYApL0eF9D48ePleZ1/2l0gENCDDz6oBx988KwGAwD0b+ZnwQEAvp0oIACACQoIAGCCAgIAmOjxSQi95Wf/cZWyjmT6nhtI+h6ZkveP486yL9jxlbPs9nOznGVLUqgl6Cw753N3v0P9t8x7nGVnxtzNPaCt85OEzlbD9y90ll3ycsJZdjJyrrNsSfpqcK6z7MyYu58rGee4OTvZSwS6t38newcAoAsUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMBEyHqAzrz1+lUKhrN9zx380THfM1OCAXfZ7Uln0ZmHY86yJenIyAucZQcSnrPsxLkOH/OYu9/9gsedRat0ygFn2S27L3SWndHm7nkiSfFI0Fl2ZrOzaHMcAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMBEjwto06ZNmjJliqLRqAKBgNasWZO6r62tTfPmzdPIkSM1YMAARaNR3XXXXTp06JCfMwMA+oEeF1BLS4tGjRqlJUuWnHTfsWPHVF9fr5qaGtXX1+uVV17Rnj17dNNNN/kyLACg/+jxlRAqKipUUVFxyvsikYjWrVvXYd3TTz+tMWPG6OOPP1ZpaemZTQkA6HecX4qnublZgUBA55133invj8fjisfjqduxmNvLwgAA+ganJyG0trZq3rx5uuOOO5SXl3fKbWpraxWJRFJLSUmJy5EAAH2EswJqa2vTbbfdJs/ztHTp0k63W7BggZqbm1NLQ0ODq5EAAH2Ik7fgTpTPwYMH9dZbb3V69CNJ4XBY4XDYxRgAgD7M9wI6UT779u3Thg0bVFBQ4PcuAAD9QI8L6OjRo9q/f3/q9oEDB7Rr1y7l5+eruLhYt9xyi+rr67V27VolEgk1NjZKkvLz85WVleXf5ACAtNbjAtqxY4cmTJiQul1dXS1Jqqys1K9+9Su99tprkqQrrriiw9dt2LBB48ePP/NJAQD9So8LaPz48fK8zj9d8HT3AQBwAteCAwCYoIAAACYoIACACQoIAGCCAgIAmHB+MdIzVbruiELBNt9zA//3333PPMFra3eWHcg711m2Egl32ZLyNh9zlu2dl+ss+9K/JZ1l6wt3F90NhILOshP15znLPudzd5fh8vIjzrIlyQt1frWXsxWKtTrLlquzlruZyxEQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwEbIeoDPBT/+pYEaW77mJ48d9zzzBSyScZSf++S9n2c592ewu+z8a3WU7FAi5e+m5fB4GPnf3PPRysp1lBwIBZ9mSFIrkuAs/3uYuOyvTTa7XvWMbjoAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIkeF9CmTZs0ZcoURaNRBQIBrVmzptNt77nnHgUCAdXV1Z3FiACA/qjHBdTS0qJRo0ZpyZIlp91u9erV2rJli6LR6BkPBwDov3r833AVFRWqqKg47Taffvqp7r33Xr355puaPHnyGQ8HAOi/fP8bUDKZ1PTp0zV37lwNHz7c73gAQD/h+/VAFi1apFAopFmzZnVr+3g8rng8nrodi8X8HgkA0Af5egS0c+dOPfnkk1qxYkW3r71UW1urSCSSWkpKSvwcCQDQR/laQO+8846amppUWlqqUCikUCikgwcP6v7779eQIUNO+TULFixQc3NzamloaPBzJABAH+XrW3DTp09XeXl5h3WTJk3S9OnTNWPGjFN+TTgcVjgc9nMMAEAa6HEBHT16VPv370/dPnDggHbt2qX8/HyVlpaqoKCgw/aZmZkqKirSJZdccvbTAgD6jR4X0I4dOzRhwoTU7erqaklSZWWlVqxY4dtgAID+rccFNH78eHme1+3t//GPf/R0FwCAbwGuBQcAMEEBAQBMUEAAABMUEADABAUEADDh+7Xg/JK4sECBYLbvucEc/zNPiJfmO8v2Mrp3aaMzkch2+3tIzsdHnGVnfOku22s55izbJe+rr5xlB7KynGUnL3Z3Ga7jF+Q4y5ak0JE2Z9nJc93NnsxxUwHt7d3bjiMgAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImQ9QDf5HmeJKk9EXeTn3STK0nt7a3Osr2MgLPsRJvb30NcfS8lKcPh99PzjjvLdsnl3AHPWbSSDp8n7e3uXj9f76DNWXRGIuEsO9ne7iS3vf3r7+WJn+edCXhdbdHLPvnkE5WUlFiPAQA4Sw0NDRo8eHCn9/e5Akomkzp06JByc3MVCHT9W0ssFlNJSYkaGhqUl5fXCxP6g7l7V7rOLaXv7Mzdu/rS3J7n6ciRI4pGo8rI6Pwdlj73FlxGRsZpG7MzeXl55g/6mWDu3pWuc0vpOztz966+MnckEulyG05CAACYoIAAACbSvoDC4bAeeOABhcNh61F6hLl7V7rOLaXv7Mzdu9Jx7j53EgIA4Nsh7Y+AAADpiQICAJiggAAAJiggAICJtC6gJUuWaMiQIcrOztbYsWO1bds265G6VFtbq2uuuUa5ubkaNGiQpk6dqj179liP1WOPPfaYAoGA5syZYz1Klz799FPdeeedKigoUE5OjkaOHKkdO3ZYj3VaiURCNTU1KisrU05Oji6++GI99NBDXV5by8KmTZs0ZcoURaNRBQIBrVmzpsP9nudp4cKFKi4uVk5OjsrLy7Vv3z6bYf+L083d1tamefPmaeTIkRowYICi0ajuuusuHTp0yG7g/6+rx/u/uueeexQIBFRXV9dr8/VE2hbQSy+9pOrqaj3wwAOqr6/XqFGjNGnSJDU1NVmPdlobN25UVVWVtmzZonXr1qmtrU033HCDWlparEfrtu3bt+uZZ57R5Zdfbj1Kl7744guNGzdOmZmZev311/XXv/5Vv/vd7zRw4EDr0U5r0aJFWrp0qZ5++mn97W9/06JFi/T444/rqaeesh7tJC0tLRo1apSWLFlyyvsff/xxLV68WMuWLdPWrVs1YMAATZo0Sa2t7i7e2x2nm/vYsWOqr69XTU2N6uvr9corr2jPnj266aabDCbtqKvH+4TVq1dry5YtikajvTTZGfDS1JgxY7yqqqrU7UQi4UWjUa+2ttZwqp5ramryJHkbN260HqVbjhw54g0dOtRbt26d973vfc+bPXu29UinNW/ePO/666+3HqPHJk+e7N19990d1n3/+9/3pk2bZjRR90jyVq9enbqdTCa9oqIi7ze/+U1q3ZdffumFw2HvhRdeMJjw1L4596ls27bNk+QdPHiwd4bqhs7m/uSTT7wLL7zQ2717t3fRRRd5v//973t9tu5IyyOg48ePa+fOnSovL0+ty8jIUHl5uTZv3mw4Wc81NzdLkvLz840n6Z6qqipNnjy5w2Pfl7322msaPXq0br31Vg0aNEhXXnmlnn32WeuxunTddddp/fr12rt3ryTpgw8+0LvvvquKigrjyXrmwIEDamxs7PB8iUQiGjt2bFq+VgOBgM477zzrUU4rmUxq+vTpmjt3roYPH249zmn1uYuRdsfnn3+uRCKhwsLCDusLCwv197//3Wiqnksmk5ozZ47GjRunESNGWI/TpRdffFH19fXavn279Sjd9tFHH2np0qWqrq7Wz3/+c23fvl2zZs1SVlaWKisrrcfr1Pz58xWLxTRs2DAFg0ElEgk98sgjmjZtmvVoPdLY2ChJp3ytnrgvHbS2tmrevHm64447+sSFPk9n0aJFCoVCmjVrlvUoXUrLAuovqqqqtHv3br377rvWo3SpoaFBs2fP1rp165SdnW09Trclk0mNHj1ajz76qCTpyiuv1O7du7Vs2bI+XUAvv/yynn/+ea1atUrDhw/Xrl27NGfOHEWj0T49d3/U1tam2267TZ7naenSpdbjnNbOnTv15JNPqr6+vlsfZ2MtLd+CO//88xUMBnX48OEO6w8fPqyioiKjqXpm5syZWrt2rTZs2HBGHz/R23bu3KmmpiZdddVVCoVCCoVC2rhxoxYvXqxQKKSEw09tPBvFxcW67LLLOqy79NJL9fHHHxtN1D1z587V/Pnzdfvtt2vkyJGaPn267rvvPtXW1lqP1iMnXo/p+lo9UT4HDx7UunXr+vzRzzvvvKOmpiaVlpamXqcHDx7U/fffryFDhliPd5K0LKCsrCxdffXVWr9+fWpdMpnU+vXrde211xpO1jXP8zRz5kytXr1ab731lsrKyqxH6paJEyfqww8/1K5du1LL6NGjNW3aNO3atUvBYNB6xFMaN27cSae57927VxdddJHRRN1z7Nixkz7IKxgMKplMGk10ZsrKylRUVNThtRqLxbR169Y+/1o9UT779u3Tn//8ZxUUFFiP1KXp06frL3/5S4fXaTQa1dy5c/Xmm29aj3eStH0Lrrq6WpWVlRo9erTGjBmjuro6tbS0aMaMGdajnVZVVZVWrVqlV199Vbm5uan3wSORiHJycoyn61xubu5Jf6caMGCACgoK+vTfr+677z5dd911evTRR3Xbbbdp27ZtWr58uZYvX2492mlNmTJFjzzyiEpLSzV8+HC9//77euKJJ3T33Xdbj3aSo0ePav/+/anbBw4c0K5du5Sfn6/S0lLNmTNHDz/8sIYOHaqysjLV1NQoGo1q6tSpdkPr9HMXFxfrlltuUX19vdauXatEIpF6rebn5ysrK8tq7C4f728WZWZmpoqKinTJJZf09qhdsz4N72w89dRTXmlpqZeVleWNGTPG27Jli/VIXZJ0yuW5556zHq3H0uE0bM/zvD/96U/eiBEjvHA47A0bNsxbvny59UhdisVi3uzZs73S0lIvOzvb+853vuP94he/8OLxuPVoJ9mwYcMpn9OVlZWe5319KnZNTY1XWFjohcNhb+LEid6ePXtsh/ZOP/eBAwc6fa1u2LChz859Kn35NGw+jgEAYCIt/wYEAEh/FBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATPw/xF4qV84d/Q0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.imshow(agent.att_map[0].max(dim=0)[0].view(16,16))" ] @@ -235,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -272,9 +405,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([5, 3, 7, 7])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from einops import rearrange\n", "x = torch.randn(5,7,7,3)\n", @@ -290,7 +434,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -382,11 +526,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/registration.py:307: DeprecationWarning: The package name gym_minigrid has been deprecated in favor of minigrid. Please uninstall gym_minigrid and install minigrid with `pip install minigrid`. Future releases will be maintained under the new package name minigrid.\n", + " fn()\n" + ] + } + ], "source": [ - "import gym\n", + "import gymnasium as gym\n", "from gym_minigrid.minigrid import *\n", "from gym_minigrid.wrappers import FullyObsWrapper, ImgObsWrapper\n", "from skimage.transform import resize\n", @@ -421,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -459,13 +612,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n" + ] + } + ], "source": [ "from collections import deque\n", - "env = ImgObsWrapper(gym.make('MiniGrid-DoorKey-5x5-v0')) #A\n", - "state = prepare_state(env.reset()) \n", + "env = ImgObsWrapper(gym.make('MiniGrid-DoorKey-5x5-v0', render_mode=\"rgb_array\")) #A\n", + "state = prepare_state(env.reset()[0]) \n", "GWagent = MultiHeadRelationalModule() #B\n", "Tnet = MultiHeadRelationalModule() #C\n", "maxsteps = 400 #D\n", @@ -487,14 +649,14 @@ " if np.random.rand() < eps: #F\n", " action = int(torch.randint(0,5,size=(1,)).squeeze())\n", " action_d = action_map[action]\n", - " state2, reward, done, info = env.step(action_d)\n", + " state2, reward, done, _, info = env.step(action_d)\n", " reward = -0.01 if reward == 0 else reward #G\n", " state2 = prepare_state(state2)\n", " exp = (state,action,reward,state2,done)\n", " \n", " replay = update_replay(replay,exp,replay_size)\n", " if done:\n", - " state = prepare_state(env.reset())\n", + " state = prepare_state(env.reset()[0])\n", " else:\n", " state = state2\n", " if len(replay) > batch_size:\n", @@ -519,23 +681,51 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAGdCAYAAAAv9mXmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWTUlEQVR4nO3db2xVhf348c+FyoVpWwEB6Siomw4RYSpCGLr5h2n4qdE9cMZgRphZoqlTJCaGJ8NliWVZZtwfgqKb+GAMNxPUmS8wxgRilMifkKBLVJSFTgTm4trSB1ek9/dgv3W/fhXmbfvhcuvrlZzEe3JOz+dE7bvnnNvbQrlcLgcADLAh1R4AgMFJYABIITAApBAYAFIIDAApBAaAFAIDQAqBASBF3ck+YHd3dxw4cCDq6+ujUCic7MMD0A/lcjk6Ozujqakphgw58TXKSQ/MgQMHorm5+WQfFoAB1NbWFhMmTDjhNic9MPX19RERcUX8n6iL00724QHoh4/jaLwc/9PzvfxETnpg/n1brC5Oi7qCwADUlP/36ZWf5RGHh/wApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACn6FJjly5fHOeecE8OHD49Zs2bFa6+9NtBzAVDjKg7MM888E4sXL46lS5fGrl27Yvr06XH99dfH4cOHM+YDoEZVHJhHHnkkvve978XChQtjypQp8dhjj8UXvvCF+PWvf50xHwA1qqLAfPTRR7Fz586YO3fuf77AkCExd+7cePXVVz91n1KpFB0dHb0WAAa/igLzwQcfxLFjx2LcuHG91o8bNy4OHjz4qfu0trZGY2Njz9Lc3Nz3aQGoGenvIluyZEm0t7f3LG1tbdmHBOAUUFfJxmeddVYMHTo0Dh061Gv9oUOH4uyzz/7UfYrFYhSLxb5PCEBNqugKZtiwYXHZZZfFpk2betZ1d3fHpk2bYvbs2QM+HAC1q6IrmIiIxYsXx4IFC2LGjBkxc+bMePTRR6OrqysWLlyYMR8ANariwNx2223x97//PX7wgx/EwYMH46tf/WqsX7/+Ew/+Afh8K5TL5fLJPGBHR0c0NjbGVXFz1BVOO5mHBqCfPi4fjc3xfLS3t0dDQ8MJt/VZZACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSVByYrVu3xk033RRNTU1RKBTiueeeSxgLgFpXcWC6urpi+vTpsXz58ox5ABgk6irdYd68eTFv3ryMWQAYRCoOTKVKpVKUSqWe1x0dHdmHBOAUkP6Qv7W1NRobG3uW5ubm7EMCcApID8ySJUuivb29Z2lra8s+JACngPRbZMViMYrFYvZhADjF+D0YAFJUfAVz5MiR2Lt3b8/rffv2xe7du2PUqFExceLEAR0OgNpVcWB27NgRV199dc/rxYsXR0TEggULYtWqVQM2GAC1reLAXHXVVVEulzNmAWAQ8QwGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQIqKAtPa2hqXX3551NfXx9ixY+OWW26JN998M2s2AGpYRYHZsmVLtLS0xLZt22Ljxo1x9OjRuO6666KrqytrPgBqVF0lG69fv77X61WrVsXYsWNj586d8fWvf31ABwOgtlUUmP+tvb09IiJGjRp13G1KpVKUSqWe1x0dHf05JAA1os8P+bu7u2PRokUxZ86cmDp16nG3a21tjcbGxp6lubm5r4cEoIb0OTAtLS3x+uuvx5o1a0643ZIlS6K9vb1naWtr6+shAaghfbpFds8998SLL74YW7dujQkTJpxw22KxGMVisU/DAVC7KgpMuVyO73//+7F27drYvHlznHvuuVlzAVDjKgpMS0tLrF69Op5//vmor6+PgwcPRkREY2NjjBgxImVAAGpTRc9gVqxYEe3t7XHVVVfF+PHje5Znnnkmaz4AalTFt8gA4LPwWWQApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUlT0J5MB6INCodoTDKBCRPmzbekKBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkqCgwK1asiGnTpkVDQ0M0NDTE7NmzY926dVmzAVDDKgrMhAkTYtmyZbFz587YsWNHXHPNNXHzzTfHG2+8kTUfADWqUC6Xy/35AqNGjYqf/OQnceedd36m7Ts6OqKxsTGuipujrnBafw4NUBsKhWpPMGA+Lh+NzeXnor29PRoaGk64bV1fD3Ls2LH4/e9/H11dXTF79uzjblcqlaJUKvW87ujo6OshAaghFT/k37NnT5xxxhlRLBbjrrvuirVr18aUKVOOu31ra2s0Njb2LM3Nzf0aGIDaUPEtso8++ij2798f7e3t8eyzz8aTTz4ZW7ZsOW5kPu0Kprm52S0y4PPjc3qLrN/PYObOnRtf+tKX4vHHH/9M23sGA3zufE4D0+/fg+nu7u51hQIAERU+5F+yZEnMmzcvJk6cGJ2dnbF69erYvHlzbNiwIWs+AGpURYE5fPhwfOc734n3338/GhsbY9q0abFhw4b45je/mTUfADWqosD86le/ypoDgEHGZ5EBkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKSoq/YAAINeuVztCQZOBefiCgaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApOhXYJYtWxaFQiEWLVo0QOMAMFj0OTDbt2+Pxx9/PKZNmzaQ8wAwSPQpMEeOHIn58+fHE088ESNHjhzomQAYBPoUmJaWlrjhhhti7ty5/3XbUqkUHR0dvRYABr+6SndYs2ZN7Nq1K7Zv3/6Ztm9tbY0f/vCHFQ8GQG2r6Aqmra0t7rvvvvjNb34Tw4cP/0z7LFmyJNrb23uWtra2Pg0KQG2p6Apm586dcfjw4bj00kt71h07diy2bt0av/zlL6NUKsXQoUN77VMsFqNYLA7MtADUjIoCc+2118aePXt6rVu4cGFMnjw5HnzwwU/EBYDPr4oCU19fH1OnTu217vTTT4/Ro0d/Yj0An29+kx+AFBW/i+x/27x58wCMAcBg4woGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASBFXbUOvPatPdFQP3j6dn3TV6s9Av/FkPr6ao8w4Lo7O6s9wsArFKo9wcArl6s9QVUMnu/wAJxSBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIUVFgHnrooSgUCr2WyZMnZ80GQA2rq3SHiy66KP70pz/95wvUVfwlAPgcqLgOdXV1cfbZZ2fMAsAgUvEzmLfffjuamprivPPOi/nz58f+/ftPuH2pVIqOjo5eCwCDX0WBmTVrVqxatSrWr18fK1asiH379sWVV14ZnZ2dx92ntbU1Ghsbe5bm5uZ+Dw3Aqa9QLpfLfd35n//8Z0yaNCkeeeSRuPPOOz91m1KpFKVSqed1R0dHNDc3x4dvnRcN9YPnTWzXN3212iPwXwypr6/2CAOu+wQ/3NWsQqHaEwy8vn+bPeV8XD4am+P5aG9vj4aGhhNu268n9GeeeWZccMEFsXfv3uNuUywWo1gs9ucwANSgfl1CHDlyJN55550YP378QM0DwCBRUWAeeOCB2LJlS/z1r3+NV155Jb71rW/F0KFD4/bbb8+aD4AaVdEtsr/97W9x++23xz/+8Y8YM2ZMXHHFFbFt27YYM2ZM1nwA1KiKArNmzZqsOQAYZAbP27gAOKUIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUddU68LcuuDjqCqdV6/B8DnV3dlZ7BD6LcrnaEwy8QqHaEwygQsRn/FfkCgaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApKg4MO+9917ccccdMXr06BgxYkRcfPHFsWPHjozZAKhhdZVs/OGHH8acOXPi6quvjnXr1sWYMWPi7bffjpEjR2bNB0CNqigwP/7xj6O5uTmeeuqpnnXnnnvugA8FQO2r6BbZCy+8EDNmzIhbb701xo4dG5dcckk88cQTJ9ynVCpFR0dHrwWAwa+iwLz77ruxYsWKOP/882PDhg1x9913x7333htPP/30cfdpbW2NxsbGnqW5ubnfQwNw6iuUy+XyZ9142LBhMWPGjHjllVd61t17772xffv2ePXVVz91n1KpFKVSqed1R0dHNDc3x1Vxc9QVTuvH6AA1olCo9gQD5uPy0dhcfi7a29ujoaHhhNtWdAUzfvz4mDJlSq91F154Yezfv/+4+xSLxWhoaOi1ADD4VRSYOXPmxJtvvtlr3VtvvRWTJk0a0KEAqH0VBeb++++Pbdu2xcMPPxx79+6N1atXx8qVK6OlpSVrPgBqVEWBufzyy2Pt2rXx29/+NqZOnRo/+tGP4tFHH4358+dnzQdAjaro92AiIm688ca48cYbM2YBYBDxWWQApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUlT8J5P7q1wuR0TEx3E0onyyjw5QDYVqDzBgPi4fjYj/fC8/kZMemM7OzoiIeDn+52QfGqA6BuEP052dndHY2HjCbQrlz5KhAdTd3R0HDhyI+vr6KBTyqt7R0RHNzc3R1tYWDQ0Nacc5mZzTqW+wnU+Ec6oVJ+ucyuVydHZ2RlNTUwwZcuKnLCf9CmbIkCExYcKEk3a8hoaGQfMf0L85p1PfYDufCOdUK07GOf23K5d/85AfgBQCA0CKQRuYYrEYS5cujWKxWO1RBoxzOvUNtvOJcE614lQ8p5P+kB+Az4dBewUDQHUJDAApBAaAFAIDQIpBGZjly5fHOeecE8OHD49Zs2bFa6+9Vu2R+mXr1q1x0003RVNTUxQKhXjuueeqPVK/tLa2xuWXXx719fUxduzYuOWWW+LNN9+s9lj9smLFipg2bVrPL7nNnj071q1bV+2xBtSyZcuiUCjEokWLqj1Knz300ENRKBR6LZMnT672WP3y3nvvxR133BGjR4+OESNGxMUXXxw7duyo9lgRMQgD88wzz8TixYtj6dKlsWvXrpg+fXpcf/31cfjw4WqP1mddXV0xffr0WL58ebVHGRBbtmyJlpaW2LZtW2zcuDGOHj0a1113XXR1dVV7tD6bMGFCLFu2LHbu3Bk7duyIa665Jm6++eZ44403qj3agNi+fXs8/vjjMW3atGqP0m8XXXRRvP/++z3Lyy+/XO2R+uzDDz+MOXPmxGmnnRbr1q2Lv/zlL/HTn/40Ro4cWe3R/qU8yMycObPc0tLS8/rYsWPlpqamcmtraxWnGjgRUV67dm21xxhQhw8fLkdEecuWLdUeZUCNHDmy/OSTT1Z7jH7r7Owsn3/++eWNGzeWv/GNb5Tvu+++ao/UZ0uXLi1Pnz692mMMmAcffLB8xRVXVHuM4xpUVzAfffRR7Ny5M+bOnduzbsiQITF37tx49dVXqzgZJ9Le3h4REaNGjaryJAPj2LFjsWbNmujq6orZs2dXe5x+a2lpiRtuuKHX/1e17O23346mpqY477zzYv78+bF///5qj9RnL7zwQsyYMSNuvfXWGDt2bFxyySXxxBNPVHusHoMqMB988EEcO3Ysxo0b12v9uHHj4uDBg1WaihPp7u6ORYsWxZw5c2Lq1KnVHqdf9uzZE2eccUYUi8W46667Yu3atTFlypRqj9Uva9asiV27dkVra2u1RxkQs2bNilWrVsX69etjxYoVsW/fvrjyyit7/oxIrXn33XdjxYoVcf7558eGDRvi7rvvjnvvvTeefvrpao8WEVX4NGX4/7W0tMTrr79e0/fB/+0rX/lK7N69O9rb2+PZZ5+NBQsWxJYtW2o2Mm1tbXHffffFxo0bY/jw4dUeZ0DMmzev55+nTZsWs2bNikmTJsXvfve7uPPOO6s4Wd90d3fHjBkz4uGHH46IiEsuuSRef/31eOyxx2LBggVVnm6QXcGcddZZMXTo0Dh06FCv9YcOHYqzzz67SlNxPPfcc0+8+OKL8dJLL53UP+GQZdiwYfHlL385LrvssmhtbY3p06fHz372s2qP1Wc7d+6Mw4cPx6WXXhp1dXVRV1cXW7ZsiZ///OdRV1cXx44dq/aI/XbmmWfGBRdcEHv37q32KH0yfvz4T/wAc+GFF54yt/0GVWCGDRsWl112WWzatKlnXXd3d2zatGlQ3AsfLMrlctxzzz2xdu3a+POf/xznnntutUdK0d3dHaVSqdpj9Nm1114be/bsid27d/csM2bMiPnz58fu3btj6NCh1R6x344cORLvvPNOjB8/vtqj9MmcOXM+8Rb/t956KyZNmlSliXobdLfIFi9eHAsWLIgZM2bEzJkz49FHH42urq5YuHBhtUfrsyNHjvT6CWvfvn2xe/fuGDVqVEycOLGKk/VNS0tLrF69Op5//vmor6/veT7W2NgYI0aMqPJ0fbNkyZKYN29eTJw4MTo7O2P16tWxefPm2LBhQ7VH67P6+vpPPBc7/fTTY/To0TX7vOyBBx6Im266KSZNmhQHDhyIpUuXxtChQ+P222+v9mh9cv/998fXvva1ePjhh+Pb3/52vPbaa7Fy5cpYuXJltUf7l2q/jS3DL37xi/LEiRPLw4YNK8+cObO8bdu2ao/ULy+99FI5/vVXvXstCxYsqPZoffJp5xIR5aeeeqrao/XZd7/73fKkSZPKw4YNK48ZM6Z87bXXlv/4xz9We6wBV+tvU77tttvK48ePLw8bNqz8xS9+sXzbbbeV9+7dW+2x+uUPf/hDeerUqeVisViePHlyeeXKldUeqYeP6wcgxaB6BgPAqUNgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFL8X2ryMlhxCuaaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "state_ = env.reset()\n", - "state = prepare_state(state_)\n", + "state = prepare_state(state_[0])\n", "GWagent(state)\n", - "plt.imshow(env.render('rgb_array'))\n", + "plt.imshow(env.render())\n", "plt.imshow(state[0].permute(1,2,0).detach().numpy())\n", "head, node = 2, 26\n", "plt.imshow(GWagent.att_map[0][head][node].view(7,7))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -549,7 +739,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.10.12" } }, "nbformat": 4, diff --git a/Chapter 2/Ch2_book.ipynb b/Chapter 2/Ch2_book.ipynb index 3918aac..0864b4f 100644 --- a/Chapter 2/Ch2_book.ipynb +++ b/Chapter 2/Ch2_book.ipynb @@ -41,9 +41,17 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Matplotlib is building the font cache; this may take a moment.\n" + ] + } + ], "source": [ "import numpy as np\n", "from scipy import stats\n", @@ -64,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -78,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -87,16 +95,16 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7.001" + "6.9825" ] }, - "execution_count": 149, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -107,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -116,7 +124,7 @@ "22" ] }, - "execution_count": 151, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -131,19 +139,30 @@ }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAFKCAYAAAD/tU6fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm0JWV97vHvIyACKmODhAYaBWcjYMugxAg4gBIhDjgiKIYbxUSjiaLeDF71inGelSsoTigiRiIOtEzGCWwEFUSkgyANSLcKqAFl8Hf/qDqwOfQ5feqcvXufLr+ftfbaVW/Vrv3b9FrN02+99b6pKiRJkvrmbuMuQJIkaRQMOZIkqZcMOZIkqZcMOZIkqZcMOZIkqZcMOZIkqZcMOZIkqZcMOZIkqZcMOZIkqZfWHXcBa8IWW2xRixYtGncZkiRpCM4777xfVtWC1Z33JxFyFi1axNKlS8ddhiRJGoIkV8zkPG9XSZKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXjLkSJKkXvqTWLtKkoZp0VGnjruEobj86CePuwRppOzJkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvWTIkSRJvTQvQk6Sy5P8KMkFSZa2bZslWZLk0vZ907Y9Sd6TZFmSHybZdbzVS5Kk+WhehJzW3lW1c1UtbvePAk6vqp2A09t9gP2BndrXEcAH13ilkiRp3ptPIWeyA4Hj2+3jgYMG2j9eje8CmyTZehwFSpKk+Wu+hJwCTktyXpIj2ratquqadvsXwFbt9jbAlQOfXd623UmSI5IsTbJ05cqVo6pbkiTNU+uOu4DWXlV1VZItgSVJfjJ4sKoqSXW5YFUdAxwDsHjx4k6flSRJa7950ZNTVVe17yuALwC7AddO3IZq31e0p18FbDvw8YVtmyRJ0u3GHnKSbJTkXhPbwBOAC4FTgEPb0w4FvthunwI8v33Kag/ghoHbWpIkScD8uF21FfCFJNDU8+mq+mqS7wEnJjkcuAI4uD3/y8CTgGXAjcAL1nzJkiRpvht7yKmqy4CHr6L9V8C+q2gv4Mg1UJokSVqLjf12lSRJ0igYciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi+NfcZjSdJ4LDrq1HGXMDSXH/3kcZegecieHEmS1EtDCTlJ7pnkEUm2HMb1JEmS5mrGISfJ3kk+kGSXSe2HAdcC5wJXJXnjcEuUJEnqrktPzouAFwKXTzQk2QE4BtgAuKptfk2Su6weLkmStCZ1CTm7AT+oqusG2g6hGbz86qraDtgTKOAlwytRkiSpuy4hZwGwfFLbPsDvgfcBVNVS4NvAw4dSnSRJ0ix1CTkbArdM7CS5G7AYOLeqbho470pg6+GUJ0mSNDtdQs4KYMeB/T1ogs+3Jp23PnATkiRJY9Ql5HwH2CXJwUnuDbyOZvzNkknnPQi4ekj1SZIkzUqXkPNW4FbgBOA6YH/g/Ko6a+KEJAtpQs7SIdYoSZLU2YxDTlWdCxwAnA1cDHwMmDyP9jOBG7hr744kSdIa1WntqqpawjQBpqreDrx9rkVJkiTNlWtXSZKkXjLkSJKkXuoUcpIsSvLhJMuS3Jjktilet46qYEmSpJmY8ZicJA8BvgncG8jqTp9LUZIkSXPVpSfnTcDGwFeA3YGNq+puU71GUq0kSdIMdXm66jE0K5D/dVXdsppzJUmSxqpLj8v6wPcMOJIkaW3QJeT8lOZ2lSRJ0rzXJeT8P+AxSRaNphRJkqTh6bKswweAE4GvJ9k/iYOLJUnSvNXlEfLL2s1FwJeAW5NcA/xxFadXVd1v7uVJkiTNTpenqxYNbAdYD9huinNrtgVJkiQNQ5eQs8PIqpAkSRqyGYecqrpilIVI6rdFR5067hIk/Ylx8LAkSeqlLrerbpdkT+CxwDZt01XAWVX1nSHVJUmSNCedQk47R86ngD0mmtr3ao9/B3heVV3etZAk6wBLgauq6oAkOwCfATYHzgMOqaqbk6wPfBx4BPAr4Jmz+T5JktRvM75dlWQz4ExgT+B/aALIm9rXZ9q2RwFnJNl0FrW8DLh4YP8twDurakfgOuDwtv1w4Lq2/Z3teZIkSXfSZUzOPwHbAycBO1TVc6vqn9vXc2keMT+pff+nLkUkWQg8GfhIux9gn/Z6AMcDB7XbB7b7tMf3bc+XJEm6XZeQcyBwDc1to19NPlhVvwYOac85aPLx1XgX8CrumFhwc+D6qrq13V/OHeN/tgGubL/zVuCG9nxJkqTbdQk5i4D/qqo/THVCe+y/uPPEgdNKcgCwoqrO61DLTK57RJKlSZauXLlymJeWJElrgS4h5xZgwxmct0F77kw9GnhKkstpxvbsA7wb2CTJxMDohTRPcNG+bwvQHt+YZgDynVTVMVW1uKoWL1iwoEM5kiSpD7qEnIuBvZPcZ6oT2mP7cOcBxNOqqtdU1cKqWgQ8CzijHeNzJvD09rRDgS+226e0+7THz6gql5GQJEl30iXkfBLYiGYV8n0mH0yyN3AaTW/PJ4ZQ26uBVyRZRjPm5ti2/Vhg87b9FcBRQ/guSZLUM13myfkQ8DTgL4ElSa4GfkYzR84ONAOCQ9MD86HZFFNVZwFntduXAbut4pzfA8+YzfUlSdKfjhn35LRPMu0HvI1mTpxtgL2Av6AZM/M/7bEnVdVtwy9VkiRp5jrNeNw+PfWqJP9CM+Pw4LIO57W9LJIkSWM3q7Wr2jDzrSHXIkmSNDSuQi5Jknppyp6cJI9pN8+tqt8P7M9IVX1jTpVJkiTNwXS3q86ieXLqQcBPB/ZnolZzbUmSpJGaLoh8gyas3DhpX5Ikad6bMuRU1WOn25ckSZrPHHgsSZJ6acYhJ8lxSV44g/MOS3Lc3MqSJEmamy49OYfRzHC8Oo/mjgU0JUmSxmIUt6vWA/44gutKkiTN2ChCzkOA60dwXUmSpBmbdi6bVYyt2Wua8Tbr0sypsytw6hBqkyRJmrXVTdh32MB2ATu2r+n8AnjdHGqSJEmas9WFnBe07wGOA74JHDvFuTfTrEb+3aq6eTjlSZIkzc60Iaeqjp/YTvJvNAHm+Kk/IUmSND/MeH2pqlo0wjokSZKGyhmPJUlSL3VeKTzJPYC9gfsD96YZrzNZVdUb5libJEnSrHUKOUmeBnwI2Gy602iexDLkSJKksZlxyEmyO/AZmtmMTwAeCjwMOJrmsfLHAxvTPH21fOiVSpIkddClJ+cfacbwHFRVpyb5KPCwqnodQJItgI8CT6KZEFCSJGlsugw8fhRwYVWtcjbjqvol8BxgfeD1Q6hNkiRp1rqEnC2ASwb2bwVIssFEQ1X9FvgGsP9QqpMkSZqlLiHnOppemgkTi3AunHReAVvOpShJkqS56hJyrgS2G9i/kOZJqgMmGpJsBOxFs7yDJEnS2HQZeHwW8LIkC6pqJfAl4EbgzUnuQ/NE1fNpbmudPOxCJUmSuugScj4H7AzsApxWVb9K8krgAzRPXkHTs3Ml8M9DrVKSJKmjLmtXnUszF85g24eTnAc8jWaCwJ8AH62q61dxCUmSpDWm87IOk1XVUmDpEGqRJEkamhkPPE7y4FEWIkmSNExdnq76UZJzkrw4ySYjq0iSJGkIuoScFcAjgfcB1yT5bJL9k3S5hiRJ0hrRJaAspJkT5/Pt/jNoHiO/MslbvJ0lSZLmkxmHnKq6raq+XFUHA1sDRwLfa7f/ieZ21rnezpIkSfPBrG41VdX1VfXBqtoDeCDwFuBqYDHN7ayrh1eiJElSd3MeT1NVP62q1wD3Bd5DMyHg+tN/SpIkabTmPE9OkocAhwHPBbZqm2+a63UlSZLmYlY9OUk2TfLSJN8Dfgi8ErgP8B3gCJpxOjO91j3asTw/SHJRkte37Tu0j6wva5/kunvbvn67v6w9vmg2v0GSJPVbl8kA10nyV0lOohlz827gETQrjr8ZeEBV7VVVH6mq33ao4Q/APlX1cJq1sfZLsgfNOJ93VtWOwHXA4e35hwPXte3vbM+TJEm6ky49OVcB/wE8FSjgs8ATge2r6nVVdelsCqjG79rd9dpXAfsAJ7XtxwMHtdsHtvu0x/dNktl8tyRJ6q8uIWdL4Fzgb4H7VNVzqmpJVdVci2h7iS6gmXBwCfDfwPVVdWt7ynJgm3Z7G5qVzmmP3wBsvoprHpFkaZKlK1eunGuJkiRpLdNl4PGDquqSURRRVbcBO7fz63yB5rH0uV7zGOAYgMWLF885iEmSpLVLl56c7yT5xsgqoZl/BzgT2BPYJMlECFtIc7uM9n1bgPb4xsCvRlmXJEla+3QJOXenvU00TEkWTMyQnGQD4PHAxTRh5+ntaYcCX2y3T2n3aY+fMYxbZpIkqV+63K5aBmwxghq2Bo5Psg5N6Dqxqr6U5MfAZ5K8ETgfOLY9/1jgE0mWAb8GnjWCmiRJ0lquS8j5JPCGJDtU1c+GVUBV/RDYZRXtlwG7raL99zSLg0qSJE2py+2qdwJfA85I8swkLt0gSZLmrS49OZfSrEu1PfBpgCQrWPUSDlVV95t7eZIkSbPTJeQsGtiemHxvq1WcB81kfpIkSWPTJeTsMLIqJEmShmzGIaeqrhhlIZIkScM0q1XIJUmS5rsut6sASLIx8DyaWYkXAKdX1b+3x+5PM3bnv6pqVQOSJUmS1ohOISfJfsCngE1oBh8Xdyy3APAAmpXKn0OzSrkkSdJYzPh2VZKHAicD9wI+ADyTO56ymvBV4EbgwGEVKEmSNBtdenJeC6wP/HVVnQKQ5E69NVV1S5LzgYcPr0RJkqTuugw8fixw/kTAmcZVNOtRSZIkjU2XkLM5zSKdq3N3YIPZlSNJkjQcXULOdcDCGZx3P+Da2ZUjSZI0HF1CzrnAI5PsNNUJSR4J/DnwrbkWJkmSNBddQs77gfWAk5I8YPLBJPcFjqN5rPyDwylPkiRpdmYccqrqa8B7gYcBP07yQ5pA87gk5wA/AR4CvLOqvjmKYiVJkmaq07IOVfUy4CU0Y24eSjNPzkLgkcANwMur6h+HXaQkSVJXnZd1qKoPJTkG2Bm4L7AOcCVwblXdOuT6JEmSZqVzyAGoqj8C329fkiRJ885QViFPcs8kj0iy5TCuJ0mSNFdd1q7aO8kHkuwyqf0FNGN0zgWuSvLGIdcoSZLUWZeenBcBLwQun2hIsgPwYZoZjidWI39Nkn2HVaAkSdJsdAk5uwE/qKrrBtoOoRnX8+qq2g7Yk+ax8pcMr0RJkqTuuoScBcDySW37AL8H3gdQVUuBb+Mq5JIkacy6hJwNgVsmdpLcDVhM8+j4TQPnXYmrkEuSpDHrEnJWADsO7O9BE3wmr1O1PnATkiRJY9Ql5HwH2CXJwUnuDbyOZvzNkknnPQi4ekj1SZIkzUqXyQDfCjwFOKHdD/D9qjpr4oQkC2lCzseGVJ8kSau16KhTx13C0Fx+9JPHXUJvdFmg81zgAOBs4GKaIDP5T+KZNGtYTe7dkSRJWqM6LetQVUuYJsBU1duBt8+1KEmSpLkayrIOkiRJ882sFuhMsifwWGBh23QVcFZVfXtIdUmSJM1Jp5CTZCfgE8AjJ5ra92qPLwWeX1WXDK1CSZKkWZhxyEmyLfANYCvgN8B/csc6VotoBiU/Ejg7yW5V9fOhVipJktRBl56cN9AEnE8Af19VNwwebOfOeQ/wfOD/AIcNqUZJkqTOugw83g/4OXD45IADUFW/oVmp/Mr2XEmSpLHpEnI2Br5dVbdOdUJ77NvAvedamCRJ0lx0CTk/AzadwXkbA1fMrhxJkqTh6BJyPg48NskDpjohyQOBfWjG7cxIkm2TnJnkx0kuSvKytn2zJEuSXNq+b9q2J8l7kixL8sMku3b4DZIk6U9El5DzVuBU4KwkL24HGgOQ5F5J/hY4A/gScHSH694KvLKqHkyzsvmRSR4MHAWcXlU7Aae3+wD7Azu1ryOAD3b4LkmS9Cdiyqerklw2xaGtgPcB70tyfdu2ycDxRwCXAvebSQFVdQ1wTbv92yQXA9sAB9JMOAhwPHAW8Oq2/eNVVcB3k2ySZOv2OpIkScD0j5AvmubYxCSAqxqjsz3t5IBdJVkE7AKcA2w1EFx+QROuoAlAVw58bHnbdqeQk+QImp4etttuu9mUI0mS1mLThZwd1lgVQJJ7Ap8HXl5Vv0ly+7GqqiSdglNVHQMcA7B48eJZhS5p3BYddeq4S5CktdaUIaeq1tgTUknWowk4n6qqk9vmayduQyXZGljRtl8FbDvw8YVtmyRJ0u3Gvgp5mi6bY4GLq+odA4dOAQ5ttw8FvjjQ/vz2Kas9gBscjyNJkibrsnbVPWkGAj8CWNA2rwTOo1mB/HezrOHRwCHAj5Jc0La9luYJrROTHE4z787B7bEvA08ClgE3Ai+Y5fdKkqQeW23IaW8l/Qvwd8C9pjjtt0neD/xbVd3SpYCq+iZ3DGSebN9VnF/AkV2+Q5Ik/emZNuS0c+EsARbTBJEbgPOBa9v9LWmehtqYZh6bxyd5/KrWtpIkSVqTVteTcyLwSJolHV4F/EdV3TZ4QpJ1gL+mmSxwcfuZJw6/VEmSpJmbcuBxkgOAJ9D03OxaVZ+fHHAAquq2qjoJ2Bm4AHhc+1lJkqSxme7pqucBfwQOmcntp/acQwY+K0mSNDbThZw9ge9X1Y9nerGquojmaas951qYJEnSXEwXcrakeUy7q2XtZyVJksZmupDze2CDWVxzg/azkiRJYzNdyLkC2L3LxdrZi3cHfj6XoiRJkuZqupDzdWCrdsbhmTocuA9w2pyqkiRJmqPpQs77gFuA9yY5cHUXSnIQ8F7gZuD9wylPkiRpdqYMOVV1OfBq4B7AyUm+mOSpSRYmWa99LUzy9CT/SbOK+PrAa9rPSpIkjc20Mx5X1buTrAu8GfgrYKpJ/gLcRhNw3jncEiVJkrqb7nYVAFX1dprZjD8BXEcTaAZf17fHdqmqt42uVEmSpJlb7SrkAO2EgIcCJNkBWNAe+iXws3ZlcEmSpHljRiFnUFX9jGbBTkmSpHlrtberJEmS1kaGHEmS1EuGHEmS1EuGHEmS1EuGHEmS1EuGHEmS1EuGHEmS1EuGHEmS1EudQk6Sy5K8aVTFSJIkDUvXnpxF3LGkAwBJjkvywqFVJEmSNARThpwk/5xk3yT3Ws01DgP2GmpVkiRJczTd2lWvBwqoJBcB57Tt64y8KkmSpDmaLuQ8auC1B/Citv2wJI8CTgfOHG15kiRJszPl7aqq+m5VvaOqnl5VC4Ed2kPLgQ2BlwAn0vT2PCHJW5M8Kck9R161JEnSasx44HFVXdFufq2qtgfuTxN0AmwNvBL4T+DXSb417EIlSZK6mG7g8bFJXpjkQas6XlXLqurD7e7HgT8H/gE4FXjg0CuVJEnqYLoxOS+geXKKJDcA323bN0myblXdOnBuVdWFwIXAe5JkFMVKkiTN1HQhZweaAccTr31oxt88jeaW1Nk0g4/voqpqyHVKkiR1MmXIacfgXAF8FiDJ+sBNwI+B64EnAk+mCT4HJdkAOAs4s6p+OtqyJUmSptdl4PEf2s1vV9VewObAQTQDj9cDngF8ELg4yfJhFypJktTFrBforKrfVtUp7e7naELPU4H3A78eQm2SJEmzNt2YnE6q6gbgP9qXJEnSWHUKOVU1654fSZKkNWkYoWVv4C2z/XC7ivmKJBcOtG2WZEmSS9v3Tdv2JHlPkmVJfphk1yHUL0mSemjOIaeqzq6qS+ZwiY8B+01qOwo4vap2onlM/ai2fX9gp/Z1BM1AZ0mSpLsY++2nqvoGdx2ofCBwfLt9PM1TXBPtH6/Gd2kmJtx6zVQqSZLWJmMPOVPYqqquabd/AWzVbm8DXDlw3vK27S6SHJFkaZKlK1euHF2lkiRpXpqvIed27ezJnWdQrqpjqmpxVS1esGDBCCqTJEnz2XwNOddO3IZq31e07VcB2w6ct7BtkyRJupP5GnJOAQ5ttw8FvjjQ/vz2Kas9gBsGbmtJkiTdbmiTAc5WkhOAxwJbtMtB/CtwNHBiksNp1s86uD39y8CTgGXAjTQrpUuSJN3F2ENOVT17ikP7ruLcAo4cbUWSJKkP5uvtKkmSpDkx5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4y5EiSpF4a+wKd0rAtOurUcZcgSZoH7MmRJEm9ZMiRJEm95O0qSZLmkb7ccr/86CePuwR7ciRJUj8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi8ZciRJUi+tO+4CNH8sOurUcZcgSdLQ2JMjSZJ6yZAjSZJ6yZAjSZJ6yZAjSZJ6yZAjSZJ6aa0MOUn2S3JJkmVJjhp3PZIkaf5Z60JOknWA9wP7Aw8Gnp3kweOtSpIkzTdrXcgBdgOWVdVlVXUz8BngwDHXJEmS5pm1cTLAbYArB/aXA7uPqRYn0JMkaZ5aG0POjCQ5Ajii3f1dkktG9FVbAL8c0bXnC39jP/gb+8Hf2A+9/415y0h/4/YzOWltDDlXAdsO7C9s2+6kqo4Bjhl1MUmWVtXiUX/POPkb+8Hf2A/+xn7wN64Za+OYnO8BOyXZIcndgWcBp4y5JkmSNM+sdT05VXVrkpcCXwPWAY6rqovGXJYkSZpn1rqQA1BVXwa+PO46WiO/JTYP+Bv7wd/YD/7GfvA3rgGpqnHXIEmSNHRr45gcSZKk1TLkzEKSbZOcmeTHSS5K8rJx1zQKSe6R5NwkP2h/5+vHXdMoJFknyflJvjTuWkYlyeVJfpTkgiRLx13PKCTZJMlJSX6S5OIke467pmFK8oD2z2/i9ZskLx93XcOW5B/av28uTHJCknuMu6ZhS/Ky9vdd1Jc/wyTHJVmR5MKBts2SLElyafu+6Zquy5AzO7cCr6yqBwN7AEf2dGmJPwD7VNXDgZ2B/ZLsMeaaRuFlwMXjLmIN2Luqdh73I50j9G7gq1X1QODh9OzPtKouaf/8dgYeAdwIfGHMZQ1Vkm2AvwcWV9VDaR4uedZ4qxquJA8F/oZm9v6HAwck2XG8VQ3Fx4D9JrUdBZxeVTsBp7f7a5QhZxaq6pqq+n67/Vuav0y3GW9Vw1eN37W767WvXg3iSrIQeDLwkXHXotlLsjHwGOBYgKq6uaquH29VI7Uv8N9VdcW4CxmBdYENkqwLbAhcPeZ6hu1BwDlVdWNV3QqcDTx1zDXNWVV9A/j1pOYDgePb7eOBg9ZoURhy5izJImAX4JzxVjIa7a2cC4AVwJKq6tvvfBfwKuCP4y5kxAo4Lcl57WzgfbMDsBL4aHvr8SNJNhp3USP0LOCEcRcxbFV1FfA24OfANcANVXXaeKsauguBv0iyeZINgSdx5wlu+2Srqrqm3f4FsNWaLsCQMwdJ7gl8Hnh5Vf1m3PWMQlXd1naPLwR2a7taeyHJAcCKqjpv3LWsAXtV1a7A/jS3Vx8z7oKGbF1gV+CDVbUL8D+MoWt8TWgnQX0K8Llx1zJs7ZiNA2lC658BGyV53nirGq6quhh4C3Aa8FXgAuC2sRa1BlTzKPcavxNgyJmlJOvRBJxPVdXJ465n1Nqu/zO56z3XtdmjgackuZxmNft9knxyvCWNRvsvZKpqBc04jt3GW9HQLQeWD/Q0nkQTevpof+D7VXXtuAsZgccBP6uqlVV1C3Ay8Kgx1zR0VXVsVT2iqh4DXAf8dNw1jci1SbYGaN9XrOkCDDmzkCQ09/4vrqp3jLueUUmyIMkm7fYGwOOBn4y3quGpqtdU1cKqWkTT/X9GVfXqX40ASTZKcq+JbeAJNF3mvVFVvwCuTPKAtmlf4MdjLGmUnk0Pb1W1fg7skWTD9u/ZfenZAHKAJFu279vRjMf59HgrGplTgEPb7UOBL67pAtbKGY/ngUcDhwA/aserALy2nYm5T7YGjk+yDk0gPrGqevuYdY9tBXyh+X8G6wKfrqqvjrekkfg74FPt7ZzLgBeMuZ6ha0Pq44H/Ne5aRqGqzklyEvB9mqdYz2cezJo7Ap9PsjlwC3BkHwbJJzkBeCywRZLlwL8CRwMnJjkcuAI4eI3X5YzHkiSpj7xdJUmSesmQI0mSesmQI0mSesmQI0mSesmQI0mSesmQI6mTdkXzmvT6fZKfJzkxyV+Ou8b5JMkn2/9GvZuDSZrvnCdH0mx9jWY9GoBNadZwewbwjCSvqKp3jq0yScKQI2n2jq6qsyZ22qVO3g28GDg6yeeqavm4ipMkb1dJGop2raFXAr8F7k6zfIQkjY0hR9LQVNVN3LHY4FaTj6fxnCRLkvwqyc1Jrkjy4XYdn8Fzd2vHsnxrFdd5T3vs5napg8FjT2mPnTyp/RlJPprkx0mub8cRXZrkfUm2WdXvSfLN9lp7Jdk7yVeS/DLJH9tV7CfOu2eSNye5LMkfklzZXnezmf/XkzRshhxJw7Zx+36nVbLb21lfAD5Fs7L0RTQL9t0EHAGcn2SXgY+cB9wA7DaxwOiAfdv39YDHTHHs65PaTwSeTtPTtKQ9vgFwZPvd95vmNz0bOB3Ypv3sGTTrDtHWdjZwFLA58BXge8BzgO9yx38PSWuYIUfS0CR5CLADcDNw2qTDbwYOBM4Edqqqx1TVM6rqgcA/AJsBn2kXhKWqbgPOohk7ePsTW0m2Bh4M/Khtetyk75kIOadPan8WsGVV7d5+7wHAIppFBBcA75rmp70EeFFV/XlVPbuqHldVX2uPvRHYFbgA2LGqDqqqpwL3A34FHLDqS0oaNUOOpDlLsmmS/YGTaf5eefngoOMkC4CX0vTMHFxVVw9+vqreRfO01v2581ieid6YwSCzT/v+bmDF4LEk9wEeAiyvqksmfcdn29tpg223Aq+l6XUYq/naAAADZ0lEQVTaP8mGU/zEr1TVcav43RsBL2p3/66qVg5c+zqacCRpTHy6StJsnZlkctsfgP0Hejkm7AOsD3y1qn45xfXOBp4I7Elzywfu6I3Zd+C8ie0lNAHnmUm2rKoV3BGAJvfiAJDkAe137Ajckzv+oXc3YB2a3pcfreKjJ6+iDeCRwIbAFVX1zckHq+r8JBfRBC9Ja5ghR9JsTcyTE+A+NGNj7gF8PMmjq2rZwLn3bd8PTFKrue6CiY2qujjJ1cBDk2xVVdfShJxLq+rnSb5OcxtqX+AEprhV1Y4H+iBw+Gq++95TtF8xRfvC9v1n01zzcgw50lgYciTN1uR5cramCT4PAz6VZI+qmgg067TvPwHOWc11z520fzpwCLBvknOB7YAPDRyDpkdnypADvIIm4Cynecz9O8CKqvpDW/u5NL0yd+maat00RbukecyQI2koquqaJAcDPwR2A54LfLI9fGX7fkFVHdbx0hMh53HAxFNWX2+/8/Ik/00TgO4HbA9cPHnMD81MzAB/U1VfXcV37NixpglXte+LpjlnumOSRsiBx5KGpqp+Anyg3f23JBP/kFoC3Ao8IclUt4SmMjguZ1/gjzRPaA0e3x7420nnD5qYr+bKyQfaAdObdqxpwvdoenkWJXnUKq69M96qksbGkCNp2N5EMxfN/Wh6YGh7Vj5EEzZOSXL/yR9KslGS57VPYt2ufUrrEprbVH8FnF9Vvx44ZeIJrJe276sKOT9p31+cgdHSSXbijlDWWVX9Dph46uq9SbYYuPYmwPtne21Jc2fIkTRU7WPUb2t3//dAb84rgc/TzHlzUZLvtauWn9iOifk18AlWPXneRHC5B3cNMWcA1R67jTv38kz4vzST9x0JXJzkM0mWABcCl7H6cULTeS3NHDm7AsuSnJzk8+11FwBfmsO1Jc2BIUfSKLyDZu6Z+wKHAlTVzVX1dOAg4Ms0TyYdRPPY9wY0MyEfRPM00mSDweZOMxlX1a9oQgbAeVV1w+QPt493795+7ybAU4A/A94A7E9zK21Wquo3NE+W/TtwPc3kf7vTzLC8J83cQJLGIHc8/CBJktQf9uRIkqReMuRIkqReMuRIkqReMuRIkqReMuRIkqReMuRIkqReMuRIkqReMuRIkqReMuRIkqReMuRIkqRe+v/BZVqIt0hHaAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "(array([ 4., 29., 62., 236., 397., 497., 458., 253., 64.]),\n", + " array([ 2. , 2.88888889, 3.77777778, 4.66666667, 5.55555556,\n", + " 6.44444444, 7.33333333, 8.22222222, 9.11111111, 10. ]),\n", + " )" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAHPCAYAAADK5ZxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKyUlEQVR4nO3dd3wVVf7/8fekAmmQSBIiEIpIL9IDIlUQQxNQRIQAVn4BKasrrAg2hGVVFBdhRRcERYoKKCjFgEEhdFAECV1qggJJICwhZX5/8Mj9EhMgmQncXPJ6Ph7z2Htnzsz53Lsq982Zc8YwTdMUAAAAAFjg5uwCAAAAALguAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALDMw9kFuLqsrCydPHlSfn5+MgzD2eUAAAAAtpmmqfPnzyssLExubtcfgyBQ2HTy5ElVqFDB2WUAAAAAhe7YsWMqX778ddsQKGzy8/OTdOXL9vf3d3I1AAAAgH0pKSmqUKGC47fu9RAobMq+zcnf359AAQAAgNtKfm7pZ1I2AAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLXDZQvPLKKzIMI8dWo0YNx/FLly4pOjpaQUFB8vX1Va9evZSYmJjjGkePHlVkZKRKlSql4OBgvfDCC8rIyLjVHwUAAABwWR7OLsCO2rVr6/vvv3e89/D4v48zcuRILV++XIsWLVJAQICGDh2qnj17av369ZKkzMxMRUZGKjQ0VBs2bNCpU6c0YMAAeXp66s0337zlnwUAAABwRS4dKDw8PBQaGpprf3Jysj7++GPNmzdP7dq1kyTNmjVLNWvW1MaNG9W8eXOtWrVKe/bs0ffff6+QkBA1aNBAr7/+ul588UW98sor8vLyutUfBwAAAHA5LnvLkyTt379fYWFhqlKlivr166ejR49KkrZt26b09HR16NDB0bZGjRqqWLGi4uLiJElxcXGqW7euQkJCHG06deqklJQU7d69+5p9pqWlKSUlJccGAAAAFFcuGyiaNWum2bNna8WKFZo+fboOHz6sVq1a6fz580pISJCXl5dKly6d45yQkBAlJCRIkhISEnKEiezj2ceuZeLEiQoICHBsFSpUKNwPBgAAALgQl73lqXPnzo7X9erVU7NmzRQeHq6FCxeqZMmSN63fMWPGaNSoUY73KSkphAoAAAAUWy4bKP6qdOnSuvvuu3XgwAHdf//9unz5spKSknKMUiQmJjrmXISGhmrz5s05rpG9ClRe8zKyeXt7y9vbu/A/AADA5VQavdzZJRRJRyZFOrsEALeQy97y9FcXLlzQwYMHVa5cOTVq1Eienp6KiYlxHI+Pj9fRo0cVEREhSYqIiNCuXbt0+vRpR5vVq1fL399ftWrVuuX1AwAAAK7IZUconn/+eXXt2lXh4eE6efKkxo8fL3d3d/Xt21cBAQF64oknNGrUKAUGBsrf31/Dhg1TRESEmjdvLknq2LGjatWqpf79+2vy5MlKSEjQ2LFjFR0dzQgEAAAAkE8uGyiOHz+uvn376syZMypbtqzuvfdebdy4UWXLlpUkTZkyRW5uburVq5fS0tLUqVMnffDBB47z3d3dtWzZMg0ZMkQRERHy8fFRVFSUXnvtNWd9JAAAAMDlGKZpms4uwpWlpKQoICBAycnJ8vf3d3Y5AIBbiDkUeWMOBeD6CvIb97aZQwEAAADg1iNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLPJxdAAAAuL1UGr3c2SUUWUcmRTq7BKDQMUIBAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALDM41Z0smPHDv3444/KyMhQgwYN1K5du1vRLQAAAICbzFagOHHihP75z39Kkp544gnVr18/x3HTNPXkk09q9uzZOfZHRERo6dKlCgoKstM9AAAAACezdcvT/Pnz9e9//1uzZs1S1apVcx2fOnWqZs2aJdM0c2xxcXF6+OGH7XQNAAAAoAiwFSh+/PFHSVLbtm3l6+ub41hmZqYmTZokSfL09NTw4cP17rvvqmHDhjJNU7GxsVq+fLmd7gEAAAA4ma1AcejQIRmGoaZNm+Y6tnbtWiUmJsowDE2bNk1TpkzRc889p9jYWIWFhUm6MsIBAAAAwHXZChR//vmnJKly5cq5jq1Zs0aS5OvrqwEDBjj2+/j4qG/fvjJNU1u3brXTPQAAAAAnsxUozp49K0kqUaJErmMbNmyQYRhq06aNvLy8chyrUaOGpCuTugEAAAC4LluBwsPjyiJRZ86cybE/PT1dW7ZskSTde++9uc4rXbq0JOnSpUt2ugcAAADgZLYCRbly5SRJu3fvzrH/hx9+0P/+9z9JV5aI/auUlBRJV25/AgAAAOC6bAWKJk2ayDRNLViwwBESJOnf//63pCuBoVmzZrnOi4+PlySVL1/eTvcOkyZNkmEYGjFihGPfpUuXFB0draCgIPn6+qpXr15KTEzMcd7Ro0cVGRmpUqVKKTg4WC+88IIyMjIKpSYAAACgOLAVKPr16ydJ+uOPP9S4cWONHj1aHTt21DfffCPDMPTII4/I09Mz13nZ8ytq165tp3tJ0pYtW/Sf//xH9erVy7F/5MiR+uabb7Ro0SLFxsbq5MmT6tmzp+N4ZmamIiMjdfnyZW3YsEGffPKJZs+erXHjxtmuCQAAACgubAWKyMhIdenSRaZp6uDBg/rXv/6lmJgYSVJAQIDGjx+f65yEhARt2LBBUt63QxXEhQsX1K9fP82cOVNlypRx7E9OTtbHH3+sd955R+3atVOjRo00a9YsbdiwQRs3bpQkrVq1Snv27NGnn36qBg0aqHPnznr99dc1bdo0Xb582VZdAAAAQHFhK1BI0sKFCzVixAj5+/s7noTdvHlzxcTEqEKFCrnaf/jhh8rKypIk3X///bb6jo6OVmRkpDp06JBj/7Zt25Senp5jf40aNVSxYkXFxcVJkuLi4lS3bl2FhIQ42nTq1EkpKSm55oQAAAAAyJuH3QuUKFFC77zzjt566y398ccfKlWqlPz8/K7Zvlu3bmrdurUMw1CtWrUs9zt//nxt377dsZrU1RISEuTl5eVYTSpbSEiIEhISHG2uDhPZx7OPXUtaWprS0tIc76+eOwIAAAAUN7YDRTY3N7dcP9Dz0qBBA9t9HTt2TMOHD9fq1avzfAbGzTRx4kS9+uqrt7RPAAAAoKiyfcuTM2zbtk2nT59Ww4YN5eHhIQ8PD8XGxmrq1Kny8PBQSEiILl++rKSkpBznJSYmKjQ0VJIUGhqaa9Wn7PfZbfIyZswYJScnO7Zjx44V7ocDAAAAXEihjVDcSu3bt9euXbty7Bs0aJBq1KihF198URUqVJCnp6diYmLUq1cvSVeWqj169KhjInhERIQmTJig06dPKzg4WJK0evVq+fv7X/dWLG9vb3l7e9+kTwYARU+l0cudXQIAoAgrtECRkZGhLVu26Ndff9W5c+fy/RRsK8u0+vn5qU6dOjn2+fj4KCgoyLH/iSee0KhRoxQYGCh/f38NGzZMERERat68uSSpY8eOqlWrlvr376/JkycrISFBY8eOVXR0NIEBAAAAyCfbgSIrK0uTJ0/WlClT9Oeffxb4/Jv13IcpU6bIzc1NvXr1Ulpamjp16qQPPvjAcdzd3V3Lli3TkCFDFBERIR8fH0VFRem11167KfUAAAAAtyPDNE3T6smmaap3795asmSJ432BOjcMZWZmWu2+SEhJSVFAQICSk5Pl7+/v7HIAoNBxyxNQeI5MinR2CUC+FOQ3rq0Rijlz5mjx4sWSrvyNf+/evXX//ferfPny3DYEAAAAFAO2AsUnn3wi6cqzKFasWKH77ruvUIoCAAAA4BpsLRv7yy+/yDAMPfnkk4QJAAAAoBiyFShSU1MlSS1atCiUYgAAAAC4FluBIiwsTNKVlZ4AAAAAFD+2AkX2bU6//PJLoRQDAAAAwLXYChTDhg2Tm5ubZs+erfPnzxdWTQAAAABchK1A0bBhQ73xxhs6ffq0evTooXPnzhVWXQAAAABcgK1lY9etW6eIiAg99thjmjdvnu6++24NGDBAERERuuOOO+TmduO8wupQAAAAgOuy9aRsNzc3GYbheG+aZo73N+zcMJSRkWG1+yKBJ2UDuN3xpGyg8PCkbLiKW/akbOlKiLjeewAAAAC3L1uBYvz48YVVBwAAAAAXRKAAAAAAYJmtVZ4AAAAAFG8ECgAAAACW2Z6UfS1JSUk6f/68/Pz8VLp06ZvVDQAAAAAnKrQRitTUVL3//vtq27atfH19FRQUpEqVKikoKEi+vr5q27atpk2bptTU1MLqEgAAAICTFUqgWL16tapVq6YRI0Zo3bp1unjxokzTdGwXL17UunXr9Nxzz+nuu+/W999/XxjdAgAAAHAy24Hiu+++U5cuXZSYmOgIED4+Pqpfv75atmyp+vXry9fX13Hs1KlTioyM1IoVKwqjfgAAAABOZCtQJCcnq3///kpPT5dpmnrggQe0bt06paSkaMeOHfrxxx+1Y8cOJScnKzY2Vp07d5Ykpaen6/HHH1dKSkqhfAgAAAAAzmErUEyfPl1nz56VYRgaP368vv32W917770yDCNHO8Mw1KpVKy1fvlyvvvqqJOncuXOaPn26ne4BAAAAOJmtQLF8+XJJUvPmzfP9kLuXX35ZERERMk1Ty5Yts9M9AAAAACezFSj27dsnwzD06KOPFui87Pb79u2z0z0AAAAAJ7MVKJKSkiRJ5cqVK9B5oaGhOc4HAAAA4JpsBYoyZcpIkk6ePFmg806dOiVJPPAOAAAAcHG2AsXdd98t0zQ1f/78Ap23YMECSVL16tXtdA8AAADAyWwFigcffFCStGnTJr3xxhv5OmfChAmKi4uTYRiKjIy00z0AAAAAJ7MVKIYMGaLAwEBJ0vjx49WtWzetX78+z7br169Xt27dNG7cOElXbpcaMmSIne4BAAAAOJmHnZMDAgI0Z84c9ejRQ5mZmVq+fLmWL1+uUqVKqWrVqvLx8VFqaqoOHTqk1NRUSZJpmvLw8NDcuXPl7+9fKB8CAAAAgHPYChTSlduevvnmGw0cOFCJiYmSpNTUVO3atcvRxjRNx+uQkBB98skn6tixo92uAQAAADiZrVuesnXq1EkHDhzQe++9pzZt2qhUqVIyTdOx+fj4qE2bNnr//fd14MABwgQAAABwm7A9QpHNx8dHw4YN07BhwyRJKSkpOn/+vPz8/Li1CQAAALhNFVqg+Ct/f3+CBAAAAHCbK5RbngAAAAAUTwQKAAAAAJbl65anOXPmOF4PGDAgz/1WXX09AAAAAK7FMK9e0/Ua3NzcZBiGDMNQRkZGrv2WO//L9VxRSkqKAgIClJyczJwRALelSqOXO7sE4LZxZFKks0sA8qUgv3HzPSn7WrkjH3kEAAAAwG0qX4Fi1qxZBdoPAAAAoHjIV6CIiooq0H4AAAAAxQOrPAEAAACwjEABAAAAwDJbgcLNzU0eHh76+uuvC3TeypUr5e7uLg+Pm/agbgAAAAC3gO1f9FZXeWJ1KAAAAMD1ccsTAAAAAMucEiguXrwoSSpRooQzugcAAABQSJwSKDZu3ChJCg4Odkb3AAAAAApJvudQ/PLLL9q5c2eex9asWaOkpKTrnm+aplJTU7V9+3Z9+umnMgxDTZo0KUitAAAAAIqYfAeKxYsX67XXXsu13zRNvf/++wXq1DRNGYahZ599tkDnAQAAAChaCnTLk2maObZr7b/RFhISopkzZ6pdu3aF/oEAAAAA3Dr5HqHo0aOHKlWqlGPfoEGDZBiGhg4dqoYNG173fDc3N/n6+qpy5cqqW7eu3N3dLRUMAAAAoOjId6CoX7++6tevn2PfoEGDJEnt27dXt27dCrcyAAAAAEWerQfbzZo1S5JuODoBAAAA4PZkK1BERUUVVh0AAAAAXBBPygYAAABgGYECAAAAgGW2bnm62oYNG/TJJ59o48aNOn78uFJSUpSVlXXdcwzDUEZGRmGVAAAAAOAWsx0oLl68qMGDB2vRokWSlOP5FAAAAABub7YDRb9+/fT111/LNE35+Piobt262rhxowzDUK1atVSyZEkdOXJEf/75p6QroxKNGjWSj4+P7eIBAAAAOJetORTff/+9li5dKunKg+9OnjypDRs2OI5PmDBBmzdv1unTp7Vp0yY98MADMk1TaWlpmj17ttauXWuvegAAAABOZStQzJkzR5JUrlw5zZs3T35+ftds26RJE3377bcaPny4du3apR49eujy5ct2ugcAAADgZLYCRfatTX369FGJEiVyHc9rPsXbb7+tGjVq6JdfftF///tfO90DAAAAcDJbgSIhIUGSVK9evRz7DcOQJKWlpeXu0M1Njz/+uEzT1MKFC+10DwAAAMDJbAWKS5cuSZL8/f1z7M+ecH3u3Lk8z7vrrrskSfHx8Zb7nj59uurVqyd/f3/5+/srIiJC3333XY7aoqOjFRQUJF9fX/Xq1UuJiYk5rnH06FFFRkaqVKlSCg4O1gsvvMAytgAAAEAB2AoUpUuXlnRl6dirBQUFSZIOHDiQ53nZQePMmTOW+y5fvrwmTZqkbdu2aevWrWrXrp26d++u3bt3S5JGjhypb775RosWLVJsbKxOnjypnj17Os7PzMxUZGSkLl++7HiGxuzZszVu3DjLNQEAAADFja1AUa1aNUnS77//nmN/nTp1ZJqmvv/++zzPi42NlZR7ZKMgunbtqgcffFDVqlXT3XffrQkTJsjX11cbN25UcnKyPv74Y73zzjtq166dGjVqpFmzZmnDhg3auHGjJGnVqlXas2ePPv30UzVo0ECdO3fW66+/rmnTpjFZHAAAAMgnW4GicePGMk1TO3bsyLH/gQcekCT98ssv+s9//pPj2FdffaUFCxbIMAw1btzYTvcOmZmZmj9/vlJTUxUREaFt27YpPT1dHTp0cLSpUaOGKlasqLi4OElSXFyc6tatq5CQEEebTp06KSUlxTHKkZe0tDSlpKTk2AAAAIDiylagaN++vSRpzZo1yszMdOzv16+f47an//f//p+aNm2qxx57TE2bNtXDDz/sWP3p6aefttO9du3aJV9fX3l7e+vZZ5/V4sWLVatWLSUkJMjLy8txS1a2kJAQx0TyhISEHGEi+3j2sWuZOHGiAgICHFuFChVsfQYAAADAldkKFJ06dVKlSpXk5eWV4/am0qVL66OPPpK7u7tM09S2bdu0YMECbdu2zREmBg8erB49etgqvnr16tq5c6c2bdqkIUOGKCoqSnv27LF1zRsZM2aMkpOTHduxY8duan8AAABAUeZh52Rvb28dOnQoz2Pdu3dXbGysxo0bp9jYWMfqSXfffbdGjBihZ5991k7XkiQvLy/HilGNGjXSli1b9N5776lPnz66fPmykpKScoxSJCYmKjQ0VJIUGhqqzZs357he9ipQ2W3y4u3tLW9vb9u1AwAAALcDWyMUNxIREaHVq1fr4sWLOnnypJKTk7V3795CCRN5ycrKUlpamho1aiRPT0/FxMQ4jsXHx+vo0aOKiIhw1LZr1y6dPn3a0Wb16tXy9/dXrVq1bkp9AAAAwO3G1ghFvjvx8Lju3/pbMWbMGHXu3FkVK1bU+fPnNW/ePP3www9auXKlAgIC9MQTT2jUqFEKDAyUv7+/hg0bpoiICDVv3lyS1LFjR9WqVUv9+/fX5MmTlZCQoLFjxyo6OpoRCAAAACCfbAWKjIwMeXjckkySy+nTpzVgwACdOnVKAQEBqlevnlauXKn7779fkjRlyhS5ubmpV69eSktLU6dOnfTBBx84znd3d9eyZcs0ZMgQRUREyMfHR1FRUXrttdec8nkAAAAAV2SY2bOkLShbtqweffRR9e/fX02bNi3MulxGSkqKAgIClJycbOu5GgBQVFUavdzZJQC3jSOTIp1dApAvBfmNa2sOxZkzZ/TBBx8oIiJCNWvW1MSJE1n1CAAAAChGbAWKwMBAmaYp0zS1b98+jR07VpUrV1a7du30ySefKDU1tbDqBAAAAFAE2QoUp06d0uLFi/XQQw/J09NTpmkqKytLsbGxGjx4sEJDQzVgwACtXr1aNu6sAgAAAFBE2QoUnp6e6t69u7788kudOnXKcftT9qhFamqqPvvsMz3wwAOqUKGCRo8erd27dxdW7QAAAACcrNCeQ1GmTBk9++yzWr9+vfbv369x48apSpUqjnBx8uRJ/etf/1K9evXUqFEjTZ06VX/88UdhdQ8AAADACWyt8pQfGzZs0Jw5c7Rw4UIlJSX9X8eGIU9PT126dOlmdn/TscoTgNsdqzwBhYdVnuAqbtkqT/nRokULzZgxQwkJCfriiy/UrVs3eXh4yDRNpaen3+zuAQAAANxENz1QZEtPT1dKSoqSk5OVmZl5q7oFAAAAcBPd1Mdcm6apVatWac6cOVq6dKn+97//OfZLUqlSpW5m9wAAAABuspsSKH755RfNmTNHn3/+uRISEiT9X4gwDEOtW7fWgAED9PDDD9+M7gEAAADcIoUWKBITE/Xpp59q7ty52rVrlyTlePZEtWrV1L9/f/Xv31/h4eGF1S0AAAAAJ7IVKC5duqSvvvpKc+fOVUxMjGNuRHaQKFOmjB555BENGDBAERER9qsFAAAAUKTYChQhISG6cOGCpP8LER4eHnrggQc0YMAAdevWTV5eXvarBAAAAFAk2QoU58+fd7y+5557NGDAAD322GMqW7as7cIAAAAAFH22AkVoaKgef/xxRUVFqXbt2oVVEwAAAAAXYStQHD9+XG5ut+xRFgAAAACKGFtp4K677lKVKlX03HPPFVY9AAAAAFyIrRGKo0ePyjRNbncCAAAAiilbIxTBwcGSpMDAwEIpBgAAAIBrsRUoqlevLunKXAoAAAAAxY+tQNG7d2+Zpqkvv/yysOoBAAAA4EJsBYqnnnpKtWvXVlxcnN56663CqgkAAACAi7AVKLy8vLRs2TI1aNBAL774onr16qUffvhBly9fLqz6AAAAABRhtlZ5qlKliiQpLS1NpmlqyZIlWrJkidzd3RUUFKSSJUte93zDMHTw4EE7JQAAAABwIluB4siRIzIMQ5Ic/2uapjIyMpSYmHjD87PPAQAAAOCabAWKihUrEgoAAACAYsz2CAUAAACA4svWpGwAAAAAxZutEQoAAADkX6XRy51dQpF0ZFKks0uADYxQAAAAALCsUEcotmzZopUrV2rPnj06e/as0tPTFRMTk6PNn3/+qcuXL6tEiRIKDAwszO4BAAAA3GKFEigOHDigwYMHa/369Y59pmnmuQLUxIkT9e6776ps2bI6ceKE3N3dC6MEAAAAAE5g+5an7du3q3Hjxlq/fr1M03Rs1zJkyBCZpqk//vhDq1atsts9AAAAACeyFSj+97//qUePHkpJSZG7u7v+8Y9/KD4+XgsXLrzmOXfddZcaNGggSVq9erWd7gEAAAA4ma1AMXPmTB0/flyGYWjBggV64403VK1aNXl6el73vFatWsk0TW3dutVO9wAAAACczFagWLp0qQzDUOfOnfXQQw/l+7yaNWtKujL3AgAAAIDrshUodu/eLUmKjCzY2sHZqzslJSXZ6R4AAACAk9kKFOfOnZMkBQcHF+i8603aBgAAAOA6bAWKgIAASVJKSkqBzjt+/LgkKSgoyE73AAAAAJzMVqCoVKmSJGnbtm0FOi/7YXe1atWy0z0AAAAAJ7MVKNq3by/TNLVgwYJ8j1Ls3LlTK1eulGEY6tChg53uAQAAADiZrSdlP/XUU3r77bd19uxZRUVFadGiRfLwuPYlDx06pN69e8s0Tfn4+Gjw4MF2ugeAQlVp9HJnlwAAgMuxNUJRpUoVPf/88zJNU19//bUaNGigjz76SIcOHXK02bNnj1asWKHhw4erfv36OnTokAzD0Pjx45lDAQAAALg4WyMUkjRhwgQdO3ZMn332mX777Tc988wzkiTDMCRJdevWdbTNXt1p8ODBev755+12DQAAAMDJbI1QSFeCw9y5czV9+nSFhobKNM1rbmXLltW0adM0c+bMwqgdAAAAgJPZHqHI9swzz2jQoEFatWqV1q1bpyNHjigpKUm+vr4qX768Wrdurc6dO6tUqVKF1SUAAAAAJyu0QCFJXl5e6tKli7p06VKYlwUAAABQRNm+5QkAAABA8XXLAkVKSorOnj17q7oDAAAAcAvYChQZGRnavn27tm/frjNnzuTZZs2aNapfv77KlCmjsmXLKjw8XB9++KGdbgEAAAAUEbYCxZIlS9S4cWM1adJEf/zxR67jmzdvVufOnfXrr786Vno6duyYhgwZokmTJtnpGgAAAEARYCtQrFixQpJUv3591ahRI9fxv/3tb0pPT3csGdugQQO5ubnJNE298sorOnjwoJ3uAQAAADiZrUDxyy+/yDAMtW3bNtexffv2af369TIMQ4888ohOnDih7du3KzY2Vp6enkpPT9fHH39sp3sAAAAATmYrUGTf5lSzZs1cx7JHLwzD0FtvvSUPjysr1LZs2VLdunWTaZr64Ycf7HQPAAAAwMlsBYrsidhlypTJdezHH3+UJDVs2FDly5fPcax169aSpP3799vpHgAAAICT2QoUaWlpkqTU1NRcxzZs2CDDMBzh4WohISGSriwlCwAAAMB12QoU2SMTJ06cyLE/Pj5ep06dkiRFRETkOu/y5cuS5LgNCgAAAIBrshUoatWqJdM0tXjx4hz7P//8c8frVq1a5TovO4CULVvWTvcAAAAAnMxWoIiMjJQkbdu2TX//+9+1d+9effbZZ3r77bdlGIZatGiRZ2jYvn27JOnuu++20z0AAAAAJ7MVKJ5++mnHfIi3335btWvX1oABAxxzKkaPHp3rnPT0dK1cuVKGYahx48Z2ugcAAADgZLYChZ+fn5YtW6awsDDHk7BN05RhGBo7dqxjBONqS5cuVXJysiTl+fwKAAAAAK7D9qzoRo0aad++ffr222914MAB+fj4qEOHDnk+OVuSTp06paioqGuuAAUAAADAdRTKMkslS5ZUr1698tV22LBhhdElAAAAgCLA1i1PzjRx4kQ1adJEfn5+Cg4OVo8ePRQfH5+jzaVLlxQdHa2goCD5+vqqV69eSkxMzNHm6NGjioyMVKlSpRQcHKwXXnhBGRkZt/KjAAAAAC7rpgWKpKQkHTt2TElJSTfl+rGxsYqOjtbGjRu1evVqpaenq2PHjjkesjdy5Eh98803WrRokWJjY3Xy5En17NnTcTwzM1ORkZG6fPmyNmzYoE8++USzZ8/WuHHjbkrNAAAAwO3GME3TLIwLXbhwQbNnz9YXX3yhbdu26eLFi45jpUqVUuPGjfXwww9rwIAB8vX1LYwuc/jjjz8UHBys2NhY3XfffUpOTlbZsmU1b9489e7dW5K0d+9e1axZU3FxcWrevLm+++47denSRSdPnnSsVjVjxgy9+OKL+uOPP+Tl5XXDflNSUhQQEKDk5GT5+/sX+ucCcOtUGr3c2SUAQLF0ZFLuhXzgXAX5jVsoIxTffPONqlWrpuHDh+vHH39UampqjlWfUlNTtW7dOg0bNkzVqlXTsmXLCqPbHLJXjgoMDJR05dkY6enp6tChg6NNjRo1VLFiRcXFxUmS4uLiVLduXUeYkKROnTopJSVFu3fvzrOftLQ0paSk5NgAAACA4sp2oJgzZ4569uyp06dPOwKEn5+fGjRooJYtW6pBgwby9/d3HEtMTFSPHj00d+7cwqhfkpSVlaURI0aoZcuWqlOnjiQpISFBXl5eKl26dI62ISEhSkhIcLS5OkxkH88+lpeJEycqICDAsVWoUKHQPgcAAADgamwFigMHDujZZ59VZmamTNPUQw89pLi4OCUnJ2v79u368ccftX37diUlJWnjxo2OlaCysrL0zDPP6ODBg4XyIaKjo/Xrr79q/vz5hXK96xkzZoySk5Md27Fjx256nwAAAEBRZStQTJkyRZcuXZJhGJo8ebK+/PJLNWvWLM+2TZs21aJFi/TWW29JunLr0JQpU+x0L0kaOnSoli1bprVr16p8+fKO/aGhobp8+XKuSeGJiYkKDQ11tPnrqk/Z77Pb/JW3t7f8/f1zbAAAAEBxZStQrFq1SoZh6L777tPzzz+fr3NGjRql1q1byzRNrVy50nLfpmlq6NChWrx4sdasWaPKlSvnON6oUSN5enoqJibGsS8+Pl5Hjx5VRESEJCkiIkK7du3S6dOnHW1Wr14tf39/1apVy3JtAAAAQHFh68F2J06ckCTHKkr51bt3b8XGxjrOtyI6Olrz5s3T0qVL5efn55jzEBAQoJIlSyogIEBPPPGERo0apcDAQPn7+2vYsGGKiIhQ8+bNJUkdO3ZUrVq11L9/f02ePFkJCQkaO3asoqOj5e3tbbk2AAAAoLiwFSh8fX2VlpaWa2LzjQQHBzvOt2r69OmSpDZt2uTYP2vWLA0cOFDSlVuy3Nzc1KtXL6WlpalTp0764IMPHG3d3d21bNkyDRkyRBEREfLx8VFUVJRee+01y3UBAAAAxYmtQHHXXXfpzJkzOnr0aIHOy57IXK1aNct95+fxGSVKlNC0adM0bdq0a7YJDw/Xt99+a7kOAAAAoDizNYeiT58+Mk1T8+bNy9cPfOlKEPjss89kGIYeffRRO90DAAAAcDJbgeLZZ59VvXr1tGPHDo0cOTJf54waNUo7duxQ/fr19cwzz9jpHgAAAICT2QoU3t7eWr58uZo1a6b3339fzZs31xdffKFz587laJeUlKRFixYpIiJCU6dOVUREhJYvXy4vLy9bxQMAAABwrnzNoahSpcp1j6enp8s0TW3ZskV9+vSRJJUpU0Y+Pj5KTU11BAzTNGUYho4ePaqWLVvKMIxCe7gdAAAAgFsvX4HiyJEjMgzjmvMkDMOQYRiS/m+y9NmzZ3X27Nlc7STp5MmTjnABAAAAwHXlK1BUrFiRH/8AAAAAcsn3CAUAAAAA/JWtSdkAAAAAijcCBQAAAADLCBQAAAAALMvXHIob2bNnj3766SedOHFCZ86ckSQFBQXpzjvv1L333qtatWoVRjcAAAAAihjLgeLChQuaPn263nvvPZ06deq6bcPCwjRixAg988wz8vX1tdolAAAAgCLG0i1PcXFxql27tkaPHq1Tp07JNM3rbidOnNDf//531alTRxs3bizszwAAAADASQo8QvHNN9+od+/eysjIcDzEztfXV40aNVKNGjVUunRpSVJSUpL27t2rbdu26cKFCzJNU0ePHlXr1q315ZdfqkuXLoX6QQAAAADcegUKFD///LP69u2r9PR0SVLNmjU1duxY9e7dW56ennmek56eri+++EJvvvmmdu/erfT0dPXt21fr169XvXr17H8CAAAAAE5ToFuehg8frosXL8owDD399NPasWOH+vbte80wIUmenp7q27evtm/frmeffVaSdPHiRQ0fPtxe5QAAAACcLt+BIjY2VuvWrZNhGHrsscc0Y8YMeXl55bsjT09PffDBB3r88cdlmqbWrVun2NhYS0UDAAAAKBryHSi+/vprSZK/v7/ee+89yx2+9957CggIkCQtXbrU8nUAAAAAOF++A8UPP/wgwzDUrVs3BQYGWu6wTJky6t69u0zTZIQCAAAAcHH5DhTZz5po3ry57U6bNWsmSTp58qTtawEAAABwnnwHirNnz0qSypYta7vTO+64Q5J07tw529cCAAAA4Dz5DhR+fn6Srjxfwq7k5OQc1wQAAADgmvIdKEJCQiRJu3fvtt1p9jWCg4NtXwsAAACA8+Q7UDRt2lSmaeqrr75SZmam5Q4zMjL01VdfyTAMx1wKAAAAAK4p34Gic+fOkqTjx4/r7bffttzhlClTdOzYMUnSgw8+aPk6AAAAAJwv34HioYceUpUqVWSapl566SUtWLCgwJ0tWrRI//jHP2QYhipXrqyHHnqowNcAAAAAUHTkO1B4eHho8uTJkqSsrCw99thjeuaZZxzLyV7PqVOn9Oyzz+rRRx913C41efJkubu7WywbAAAAQFHgUZDGPXv21EsvvaQJEybIMAx99NFHmjVrltq3b6+WLVuqevXqKl26tKQrq0HFx8dr/fr1iomJUWZmpkzTlCT94x//UM+ePQv9wwAAAAC4tQoUKCTp9ddfl4+Pj15++WVlZmYqIyNDq1at0qpVq655TnaQcHd31+uvv67Ro0dbrxgAAABAkZHvW56uNnr0aP3000/q2LGjpCuB4XqbJHXs2FE//fQTYQIAAAC4jRR4hCJbs2bNtGLFCsXHx2vVqlVav369jh8/7niidmBgoMqXL6+WLVuqY8eOql69eqEVDQAAAKBosBwoslWvXl3Vq1fXsGHDCqMeAAAAAC7E0i1PAAAAACARKAAAAADYQKAAAAAAYBmBAgAAAIBlBAoAAAAAlhEoAAAAAFhGoAAAAABgGYECAAAAgGUECgAAAACWESgAAAAAWEagAAAAAGAZgQIAAACAZR52L7Bu3TpJUr169VS6dGm7lwMAAADgQmyPULRp00Zt27bV5s2bC6MeAAAAAC7E9gjF9cTHx2vBggWSpHHjxt3MrgAAAAA4Qb5HKDIzMwt88b179+qVV17Rq6++WuBzAQAAABR9+R6hKF26tFq1auW4xalx48YyDONm1gYAAACgiMt3oEhNTdXKlSu1cuVKSZK/v79atWrlOE64AAAAAIqffAeKDz/8UDExMVq7dq1Onz6t5ORkLVu2zHG8T58+atasmVq0aKGIiAg1b978phQMAAAAoOgwTNM0C3rSr7/+qpiYGMXExGjZsmUyDEPZl8keqXBzc1NISIhOnjwpwzD0559/qkyZMoVbfRGQkpKigIAAJScny9/f39nlALCh0ujlzi4BAIqlI5MinV0C/qIgv3EtrfJUp04d1alTR8OHD5eb25V53YMGDVJqaqri4uJ07NgxZWZmOsKEaZoqW7as6tatq7Zt26pt27Zq3bo1P8ABAAAAF1doT8ru06eP5s+fr99//13Hjx/XokWL1Lt3b5mmKcMwlJWVpZ9//lnvvfeeevTooaCgIDVr1qywugcAAADgBPkOFGvXrtXly5fz1TYsLEy9evVSv379HPu+/vprjRw5UvXr15d0ZRnarVu3FrBcAAAAAEVJvm95at++vUqUKKGIiAi1a9dO7du3V5MmTfLdUZcuXdSlSxdJ0rlz57R27Vr98MMPBS4YAAAAQNFRoFueLl26pLVr12rcuHFq2bKlAgMDHcf27duntLS0fF2nTJky6tmzp6ZOnVqwagEAAAAUKfkOFPv379fMmTPVr18/3XnnnTJNU+fPn3es6jR8+HAFBASoefPm+tvf/qYvv/xSCQkJN61wAAAAAM5nadlYSTp48KDWrl2rp59+OseysVLOh9xlT8r+7LPP1LZtW4WEhNivughh2Vjg9sGysQDgHCwbW/Tc9GVjJalq1aqqWrWqnn76aUnS9OnTVaJECa1fv14//fST4uPjHWFCkmOCdvXq1dW2bVu1a9dObdq0UVBQkNUSAAAAADiZ5UDxV5UrV1bHjh0VFRUlSTp79qymTZum8ePHyzAMeXh4KD09XXv37lV8fLxmzJghNzc3paenF1YJAAAAAG6xQgsUfxUYGKh69eo53iclJenHH3/UmjVrtGbNGu3YsUNZWVk3q3sAAAAAt8BNCxR/VbJkSXXs2FEdO3aUdOW+LJaNBQAAAFyb7SdlV6xYURUrVlTJkiULdJ6/v7+6detmud9169apa9euCgsLk2EYWrJkSY7jpmlq3LhxKleunEqWLKkOHTpo//79OdqcPXtW/fr1k7+/v0qXLq0nnnhCFy5csFwTAAAAUNzYDhRHjhzR4cOH1apVq8KoJ99SU1NVv359TZs2Lc/jkydP1tSpUzVjxgxt2rRJPj4+6tSpky5duuRo069fP+3evVurV6/WsmXLtG7dOsckcwAAAAA3dlNveapYsaJjknZh69y5szp37pznMdM09e6772rs2LHq3r27JGnOnDkKCQnRkiVL9Oijj+q3337TihUrtGXLFjVu3FiS9P777+vBBx/UW2+9pbCwsJtSNwAAAHA7sT1CcT333HOPZs2apVmzZt3MbnI5fPiwEhIS1KFDB8e+gIAANWvWTHFxcZKkuLg4lS5d2hEmJKlDhw5yc3PTpk2brnnttLQ0paSk5NgAAACA4uqmBgpnyX5C918fohcSEuI4lpCQoODg4BzHPTw8FBgYeN0nfE+cOFEBAQGOrUKFCoVcPQAAAOA6bstAcTONGTNGycnJju3YsWPOLgkAAABwmtsyUISGhkqSEhMTc+xPTEx0HAsNDdXp06dzHM/IyNDZs2cdbfLi7e0tf3//HBsAAABQXN2WgaJy5coKDQ1VTEyMY19KSoo2bdqkiIgISVJERISSkpK0bds2R5s1a9YoKytLzZo1u+U1AwAAAK7olj3YrrBduHBBBw4ccLw/fPiwdu7cqcDAQFWsWFEjRozQG2+8oWrVqqly5cp6+eWXFRYWph49ekiSatasqQceeEBPPfWUZsyYofT0dA0dOlSPPvooKzwBAAAA+eSygWLr1q1q27at4/2oUaMkSVFRUZo9e7b+/ve/KzU1VU8//bSSkpJ07733asWKFSpRooTjnM8++0xDhw5V+/bt5ebmpl69emnq1Km3/LMAAAAArsowTdN0dhGuLCUlRQEBAUpOTmY+BeDiKo1e7uwSAKBYOjIp0tkl4C8K8hv3tpxDAQAAAODWIFAAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLPJxdAAAAAIq3SqOXO7uEIunIpEhnl5AvBAqgmOE/2gAAoDBxyxMAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxAAQAAAMAyAgUAAAAAywgUAAAAACwjUAAAAACwjEABAAAAwDICBQAAAADLCBQAAAAALCNQAAAAALCMQAEAAADAMgIFAAAAAMsIFAAAAAAsI1AAAAAAsMzD2QUAN0ul0cudXQIAAMBtjxEKAAAAAJYRKAAAAABYRqAAAAAAYBmBAgAAAIBlBAoAAAAAlhEoAAAAAFhGoAAAAABgGYECAAAAgGUECgAAAACWESgAAAAAWEagAAAAAGAZgQIAAACAZQQKAAAAAJYRKAAAAABYRqAAAAAAYBmBAgAAAIBlBAoAAAAAlhEoJE2bNk2VKlVSiRIl1KxZM23evNnZJQEAAAAuwcPZBTjbggULNGrUKM2YMUPNmjXTu+++q06dOik+Pl7BwcHOLu+GKo1e7uwSAAAAUIwV+xGKd955R0899ZQGDRqkWrVqacaMGSpVqpT++9//Ors0AAAAoMgr1iMUly9f1rZt2zRmzBjHPjc3N3Xo0EFxcXF5npOWlqa0tDTH++TkZElSSkrKzS32GrLSLjqlXwAAANxczvp9eXXfpmnesG2xDhR//vmnMjMzFRISkmN/SEiI9u7dm+c5EydO1Kuvvpprf4UKFW5KjQAAACieAt51dgXS+fPnFRAQcN02xTpQWDFmzBiNGjXK8T4rK0tnz55VUFCQDMO4pbWkpKSoQoUKOnbsmPz9/W9p37cDvj/r+O6s47uzju/OHr4/6/jurOO7s87Z351pmjp//rzCwsJu2LZYB4o77rhD7u7uSkxMzLE/MTFRoaGheZ7j7e0tb2/vHPtKly59s0rMF39/f/4ltYHvzzq+O+v47qzju7OH7886vjvr+O6sc+Z3d6ORiWzFelK2l5eXGjVqpJiYGMe+rKwsxcTEKCIiwomVAQAAAK6hWI9QSNKoUaMUFRWlxo0bq2nTpnr33XeVmpqqQYMGObs0AAAAoMgr9oGiT58++uOPPzRu3DglJCSoQYMGWrFiRa6J2kWRt7e3xo8fn+sWLOQP3591fHfW8d1Zx3dnD9+fdXx31vHdWedK351h5mctKAAAAADIQ7GeQwEAAADAHgIFAAAAAMsIFAAAAAAsI1AAAAAAsIxA4YImTpyoJk2ayM/PT8HBwerRo4fi4+OdXZZLmD59uurVq+d4SExERIS+++47Z5flkiZNmiTDMDRixAhnl+ISXnnlFRmGkWOrUaOGs8tyGSdOnNDjjz+uoKAglSxZUnXr1tXWrVudXVaRV6lSpVz/3BmGoejoaGeXVuRlZmbq5ZdfVuXKlVWyZElVrVpVr7/+uljLJv/Onz+vESNGKDw8XCVLllSLFi20ZcsWZ5dV5Kxbt05du3ZVWFiYDMPQkiVLchw3TVPjxo1TuXLlVLJkSXXo0EH79+93TrHXQKBwQbGxsYqOjtbGjRu1evVqpaenq2PHjkpNTXV2aUVe+fLlNWnSJG3btk1bt25Vu3bt1L17d+3evdvZpbmULVu26D//+Y/q1avn7FJcSu3atXXq1CnH9tNPPzm7JJdw7tw5tWzZUp6envruu++0Z88evf322ypTpoyzSyvytmzZkuOfudWrV0uSHn74YSdXVvT985//1PTp0/Xvf/9bv/32m/75z39q8uTJev/9951dmst48skntXr1as2dO1e7du1Sx44d1aFDB504ccLZpRUpqampql+/vqZNm5bn8cmTJ2vq1KmaMWOGNm3aJB8fH3Xq1EmXLl26xZVehwmXd/r0aVOSGRsb6+xSXFKZMmXMjz76yNlluIzz58+b1apVM1evXm22bt3aHD58uLNLcgnjx48369ev7+wyXNKLL75o3nvvvc4u47YwfPhws2rVqmZWVpazSynyIiMjzcGDB+fY17NnT7Nfv35Oqsi1XLx40XR3dzeXLVuWY3/Dhg3Nl156yUlVFX2SzMWLFzveZ2VlmaGhoea//vUvx76kpCTT29vb/Pzzz51QYd4YobgNJCcnS5ICAwOdXIlryczM1Pz585WamqqIiAhnl+MyoqOjFRkZqQ4dOji7FJezf/9+hYWFqUqVKurXr5+OHj3q7JJcwtdff63GjRvr4YcfVnBwsO655x7NnDnT2WW5nMuXL+vTTz/V4MGDZRiGs8sp8lq0aKGYmBjt27dPkvTzzz/rp59+UufOnZ1cmWvIyMhQZmamSpQokWN/yZIlGZ0tgMOHDyshISHHn7kBAQFq1qyZ4uLinFhZTsX+SdmuLisrSyNGjFDLli1Vp04dZ5fjEnbt2qWIiAhdunRJvr6+Wrx4sWrVquXsslzC/PnztX37du6BtaBZs2aaPXu2qlevrlOnTunVV19Vq1at9Ouvv8rPz8/Z5RVphw4d0vTp0zVq1Cj94x//0JYtW/Tcc8/Jy8tLUVFRzi7PZSxZskRJSUkaOHCgs0txCaNHj1ZKSopq1Kghd3d3ZWZmasKECerXr5+zS3MJfn5+ioiI0Ouvv66aNWsqJCREn3/+ueLi4nTXXXc5uzyXkZCQIEkKCQnJsT8kJMRxrCggULi46Oho/frrr6T9Aqhevbp27typ5ORkffHFF4qKilJsbCyh4gaOHTum4cOHa/Xq1bn+xgk3dvXfatarV0/NmjVTeHi4Fi5cqCeeeMKJlRV9WVlZaty4sd58801J0j333KNff/1VM2bMIFAUwMcff6zOnTsrLCzM2aW4hIULF+qzzz7TvHnzVLt2be3cuVMjRoxQWFgY/9zl09y5czV48GDdeeedcnd3V8OGDdW3b19t27bN2aWhkHHLkwsbOnSoli1bprVr16p8+fLOLsdleHl56a677lKjRo00ceJE1a9fX++9956zyyrytm3bptOnT6thw4by8PCQh4eHYmNjNXXqVHl4eCgzM9PZJbqU0qVL6+6779aBAwecXUqRV65cuVyBv2bNmtwyVgC///67vv/+ez355JPOLsVlvPDCCxo9erQeffRR1a1bV/3799fIkSM1ceJEZ5fmMqpWrarY2FhduHBBx44d0+bNm5Wenq4qVao4uzSXERoaKklKTEzMsT8xMdFxrCggULgg0zQ1dOhQLV68WGvWrFHlypWdXZJLy8rKUlpamrPLKPLat2+vXbt2aefOnY6tcePG6tevn3bu3Cl3d3dnl+hSLly4oIMHD6pcuXLOLqXIa9myZa6lsfft26fw8HAnVeR6Zs2apeDgYEVGRjq7FJdx8eJFubnl/Jnk7u6urKwsJ1Xkunx8fFSuXDmdO3dOK1euVPfu3Z1dksuoXLmyQkNDFRMT49iXkpKiTZs2Fan5n9zy5IKio6M1b948LV26VH5+fo576AICAlSyZEknV1e0jRkzRp07d1bFihV1/vx5zZs3Tz/88INWrlzp7NKKPD8/v1zzdHx8fBQUFMT8nXx4/vnn1bVrV4WHh+vkyZMaP3683N3d1bdvX2eXVuSNHDlSLVq00JtvvqlHHnlEmzdv1ocffqgPP/zQ2aW5hKysLM2aNUtRUVHy8OCP/fzq2rWrJkyYoIoVK6p27drasWOH3nnnHQ0ePNjZpbmMlStXyjRNVa9eXQcOHNALL7ygGjVqaNCgQc4urUi5cOFCjtHqw4cPa+fOnQoMDFTFihU1YsQIvfHGG6pWrZoqV66sl19+WWFhYerRo4fziv4rZy8zhYKTlOc2a9YsZ5dW5A0ePNgMDw83vby8zLJly5rt27c3V61a5eyyXBbLxuZfnz59zHLlypleXl7mnXfeafbp08c8cOCAs8tyGd98841Zp04d09vb26xRo4b54YcfOrskl7Fy5UpTkhkfH+/sUlxKSkqKOXz4cLNixYpmiRIlzCpVqpgvvfSSmZaW5uzSXMaCBQvMKlWqmF5eXmZoaKgZHR1tJiUlObusImft2rV5/q6LiooyTfPK0rEvv/yyGRISYnp7e5vt27cvcv8+G6bJIx8BAAAAWMMcCgAAAACWESgAAAAAWEagAAAAAGAZgQIAAACAZQQKAAAAAJYRKAAAAABYRqAAAAAAYBmBAgAAJ2nTpo0Mw5BhGM4uBQAs83B2AQCAm+N6P1JLlSqlwMBA1apVS+3bt1dUVJRCQkJuYXUAgNsFT8oGgNtUQf7W28/PT++//76ioqJuYkX4qzZt2ig2NlaSxB/HAFwVIxQAUAwsXrw4x/vU1FTt3btX8+bN06FDh3T+/HkNGjRIgYGB6tq1q5OqBAC4IkYoAOA2dfUIxbX+U5+WlqZ+/frpyy+/lCRVr15de/fuvSX1gREKALcHJmUDQDHm7e2tGTNmyNPTU5IUHx9PoAAAFAiBAgCKuTvuuEO1a9d2vN+3b9912ycnJ+vtt99Whw4dFBYWJm9vbwUGBqpRo0YaM2aMTpw4ked5GRkZ8vPzk2EYatmy5TWv369fP8fKR9WrV79mu+joaEe73bt35zp+/PhxffDBB3r00UdVq1Yt+fn5ydPTU3fccYeaNWumMWPG6NixY9f9rJJUqVIlGYahSpUqSboyqjNt2jS1adNG5cqVk7u7u+PY1c6dO6eXX35ZdevWla+vr0qXLq0GDRrotdde05kzZ27YLwC4DBMAcFuS5NhupHnz5o628+fPv2a7hQsXmoGBgTmu/detRIkS5uzZs/M8v3PnzqYk09PT0zx//nyebcqVK5fjesePH8+zXY0aNUxJZkhISK5ja9euNQ3DuG6dkkwvLy/zo48+uu53Ex4ebkoyw8PDzcOHD5t16tTJdZ3w8PAc52zevNkMCQm5Zr8VKlQwf/75Z7N169b5/v8IAIoqJmUDQDGXkZGh+Ph4x/uKFSvm2W7mzJl65plnZJqmvLy81L17d913330KCQnRhQsX9NNPP2nevHm6dOmSBg4cKC8vL/Xt2zfHNdq1a6fvvvtO6enp+vHHH9W5c+ccx3/77TedOnUqx741a9aof//+OfadOnXKcWtW27Ztc9V66dIlmaap6tWrq23btqpVq5buuOMOeXh4KCEhQevWrdOSJUt0+fJlPfXUUwoJCVGXLl2u+z2lpaWpZ8+e+vXXX9W8eXP17t1b5cuX19mzZ3OMkBw+fFgdO3ZUUlKSpCvzUgYOHKjKlSvrzz//1FdffaU1a9aoR48eCggIuG6fAOASnJ1oAAA3h/I5QjFlyhRHu4CAADMlJSVXm59//tn08vIyJZnVqlUzf/vttzyvtWfPHjMsLMyUZPr5+ZlnzpzJcXzr1q2Ovv72t7/lOn/atGmmJLNkyZJmgwYNTEnmwIEDc7X77LPPHNf58MMPcx0/cuSIuXPnzut+7h07dpjBwcGOz5SVlZVnu+wRiuxt0qRJ171ux44dHW0feeQRMy0tLVebd955J9eoBQC4KuZQAEAxdPHiRW3fvl1Dhw7V3/72N8f+5557Tn5+frnav/LKK7p8+bJKlCihb7/9VjVq1MjzujVr1tTs2bMlSefPn9fMmTNzHL/nnntUpkwZSVdGHv4qe1+LFi0coxdr1669ZjvpyqjHX4WHh6t+/fp51pitQYMGevPNNyVJ+/fv14YNG67bXpK6d++uF1988ZrHf/nlF61atUrSlZGe2bNny8vLK1e7kSNHqnfv3jfsDwBcAYECAIqB7MnL2ZuPj48aNWqkadOmKSsrS5L0+OOPa/z48bnOTUpK0tKlSyVJDz30kO66667r9nX//ferXLlykqSVK1fmOObm5qbWrVtLkn7++WedPXvWccw0Tf3www+SroSE7KDw+++/6+DBgzmukx0oKlasqKpVq+brO8jLvffe63i9cePGG7Z/7rnnrnv8q6++crweMmSISpYsec22L7zwQj4qBICijzkUAFDMhYaGas6cObr//vvzPL5+/XpH6PD29taSJUtueE0/Pz+dOnVKe/bsyXWsbdu2WrJkibKysrR27Vr16tVL0pWAkb36Ufv27VWvXj15eXnp8uXLWrNmjSM4/P777zp8+LCkvEcnrrZz5059+umniouL0/79+5WSkqK0tLQ82x4/fvy613J3d1eLFi2u22bz5s2O1+3bt79u2yZNmsjPz0/nz5+/bjsAKOoIFABQDFz9pOy0tDQdPXpUX375pTZt2qSEhAS98cYbatq0aZ6ThI8cOeJ4PXv2bMctTflx9QhEtqtDwJo1axyBIvvWJn9/fzVu3Fju7u5q3ry51q1bpzVr1uipp55ynJPXta6WkZGh6OhozZw5M98PjEtJSbnu8aCgIJUoUeK6bU6ePOl4faORHMMwVLVqVe3cuTNf9QFAUUWgAIBioEePHrn2vfDCC3r33Xc1cuRIrVu3Tr169dKqVavk5pbzbtjs1YqsSE9Pz7WvTp06Cg4O1unTp3OEg+zX9913n9zd3SVdCQzr1q3LMY8iP4Fi+PDh+vDDDyVJnp6eeuCBB9S0aVOVL19ePj4+jgf5nT59Ws8884wkKTMz87qf5Xq3L2W7cOGC43WpUqVu2N7Hx+eGbQCgqGMOBQAUYyNGjNBjjz0mSYqJidF7772Xq42vr6/j9dSpU2WaZoG2vLRp00aStHfvXp08eVKZmZlat26dpJwhIft1YmKiY2nW7HBRrVo13XnnnbmufezYMc2YMUOSdOedd2r37t36+uuvNXbsWA0cOFAPP/ywevTooR49elz3AXtWXP1dXbx48YbtU1NTC7V/AHAGAgUAFHNvvfWW42/f83qKc/ny5R2v8/Nk6fz4621PW7duddxydPXcg2bNmjn+pn/NmjWKj493PIn7WqMT33//vWPOx+jRo1WtWrVr1pE9F6OwXB1wDhw4cN22pmnq0KFDhdo/ADgDgQIAirly5cppyJAhkq7c3jRp0qQcx1u1aiXDMCRJK1asKJQ+/xooskcdypYtq7p16zqOeXl5OUYRrm7312tcLSEhwfH6RvMYvvvuu4IXfx1NmzZ1vM5rWdyrbdmy5YbzNgDAFRAoAAB6/vnn5e3tLUn64IMPlJiY6DgWHBzseCbErl279Pnnn9vur1q1ao6RjzVr1jh+fLdp08YRXrJlB4fY2Fh9//33kq5MaM7rCdlSznkJ1xslOHTokD755BPrHyIPDz30kOP19OnTdenSpWu2ffvttwu1bwBwFgIFAEDlypXT4MGDJV259/+voxQTJkxwPKDtySefvGGoOHv2rN555x1HAMhLdiD4/fffHSMPeS21mh0ozp0753geRp06dVS2bNk8r9ukSRPH67feeivXLVySdPToUXXt2rXQ5zDUq1dPHTt2lHTlcw0ePDjPienvv/++Fi5cWKh9A4CzGGZ+19MDALiUq/+mPz//qf/9999VrVo1paenq0SJEjp48KDCwsIcx2fPnq0nnnjCMT+hQYMG6tq1q6pVq6aSJUsqOTlZBw4c0ObNm7Vu3TplZGRo7ty5evzxx/Psb/bs2Ro0aFCOffv27cs15yEzM1OBgYE5bg8aPny43n333Wt+lubNm2vTpk2SpDvuuENPP/20atasqczMTG3cuFFz585VamqqBg4c6FgGNyoqKs8lcStVqqTff/9d4eHhOZbQvZbDhw+rYcOGjtWxatSooYEDB6py5co6c+aMvvzyS8XExKhy5coKCAhwLBvLH8cAXJYJALgtSXJs+TVo0CDHOdHR0bmOr1ixwgwLC8tx7Wtt3t7e5nfffXfNvo4cOZKjfYUKFa7ZtkuXLjnaLl269Lqf4/Dhw2blypWvW9+wYcPMQ4cOOd5HRUXlea3w8HBTkhkeHn7dPq+2adMmMzg4+Jp9V6hQwfz555/N1q1bF/j/IwAoarjlCQDgMGbMGMczID766KNcqzp16tRJhw4d0n//+1/17t1blStXlq+vrzw8PFSmTBndc889GjhwoObMmaOEhAQ98MAD1+wrPDxcVapUcby/1pwIKecEbHd3d7Vu3fq6n6NSpUrasWOHXnnlFdWrV0+lSpVSqVKlVKVKFT3++ONau3atpk6dmmu+RmFp2rSp9u7dq5deekm1a9dWqVKl5O/vr3r16umVV17Rjh07VK9evZvSNwDcatzyBAAAAMAyRigAAAAAWEagAAAAAGAZgQIAAACAZQQKAAAAAJYRKAAAAABYRqAAAAAAYBmBAgAAAIBlBAoAAAAAlhEoAAAAAFhGoAAAAABgGYECAAAAgGUECgAAAACWESgAAAAAWEagAAAAAGAZgQIAAACAZf8fQ2459iyXYAcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -163,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -174,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -185,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -205,29 +224,27 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 163, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAFACAYAAABuonzYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHbJJREFUeJzt3XuUZWV55/Hv00UBp9GhuJSXLkC8kGaJIG1qlEQmS2C0MYD2oFFQx2ic6Zk1mRlwMu3YWWYRXRpMOvEyScY1DSEaxbtNiU5iwygJxiWM1VRrcatwEZVqlBIsFagFRfnMH2dXp7qty6mqs88+p873s1atPmfXPud9eJs+9at3v/t9IzORJEmqyrqqC5AkSd3NMCJJkiplGJEkSZUyjEiSpEoZRiRJUqUMI5IkqVKGEUmSVCnDiCRJqpRhRJIkVeqQqguY69hjj80TTzyx6jIkSVIT7Nmz58eZ2b/UeW0VRk488USGh4erLkOSJDVBRHyvkfNKvUwTEW+PiNsi4taI+FREHF5me5IkqfOUFkYiYgD4r8BgZr4A6AEuKqs9SZLUmcqewHoIUIuIQ4D1wL6S25MkSR2mtDCSmePAnwLfBx4AfpqZ1x18XkRsjYjhiBiemJgoqxxJktSmyrxMcxTwauDZwAbgiIh408HnZebOzBzMzMH+/iUn3EqSpDWmzMs0/xr4bmZOZOY0sAv49RLbkyRJHajMMPJ94IyIWB8RAZwD3FFie5IkqQOVOWfkZuDzwC3AaNHWzrLakyRJnanURc8y8zLgsjLbkJphaGScHbvH2Dc5xYa+Gts2b2TLpoEVnydJjRoaGecPr72Nyanplre9LuAXCQMVf55FZlbS8HwGBwfTFVjVSkMj42zf9R2mpn9xwPEA3njGCbx3y6mLflAEkFT/D1lSe6gyWKxWrbeHyy88tamfYxGxJzMHlzzPMKKFNGMUYDn/MI84tIf3/Zvm/kNYbU3LddT6Xi674BSAA9qYPW5YkTpLJ4eLlRjoq/GNd57dtPczjGhFFvuHt5zUvNCIw2rM9wN9qQ+Ko9b3ct5pz+TL336grT5MGg0ns4FwfHJq/yhMo++1kjC50g/e+fp5fW99Stpjc/4fWGkoKysYlx0SV9Kf8/VbGdYFvOEl9dG/srXqB/pCvwwA9K6Dkrt0TQjgu+8/r3nvZxhRI941NMrVN31/3h9y81koNc/9oanG9PYEO177QuCXPzjVnuYbvSsjeFelVUFI7cuREQwjrfbGK77JN+55eNmv+9DrT9//W+qRtV4efXza3zgkqcMF8MHXn17JnJFS76ZRe1rtb3KXfmbv/sf+Ni9JnW920n5V89oMI13mXUOjfOKm71ddhiTpIMudS7baOVTttEyBl2m6gPM5ljY7mW/wWUd35IRYSe3FO+jqvEzTQZpx18PchWvOOrm/7X5YHnbIOv74NafNe8fH9l2jTE3PtLymhT4sGvnwmL0DYam7XQ7tCQ5ZF04IlDqc4aJcjoxUbKFJpIutudGKSy2zIwCrbWfu4mELmfsDvSeCmcz9i4gBDYWV9b3rOKy3h588Nr3/PQ4OB1V/mAyNjLPtc99m+hcr/zfXE8HFLzl+ycXYVms5w8VL1dBuo0lV3DHSSH8e3Je962Am679kzP17X60q182Y2w9zfwk7stZLBEw+Nr3sSwaL/ffM9/9e1Z8D3ca7aTrAUqFi9tbPuf9oygwib5onNGx6z3X85LHGP7TKWJG03a5trsZSH5x+SK7cwX3bzP5sNHR16t9fmX2n7mYYaTPz/UD9b5/dy1K/JPdE8ItMNvTVWH/oOu568NGm17bYKEyjv8374SVJOphzRtrIwfMixienDrg9djEzRVgsa/LpfKMhc82Gi1avXClJ6h6GkZINjYzz9s/upY0GoIDG5nLM2rJpwNAhSSqNYaREs5c42iWItMtW0ZIkzWUYKdG7v3Tbqu6caNQRh/bw6BMzC26kVsa20JIkNYthpCRDI+PLugtlpV763KO5+t//2i+1vVbuPpEkrX2GkZK8+0u3ld5GrXfdLwURcI6HJKmzrKu6gLVoJaMitd4ejlrf2/D5AVx+4WnLrEySpPZjGGmyoZFx3r7EbbuzoaMnAqhPKL38wlO57IJTqPX2NNROlbsrSpLUTF6maaJGVkf90OtPXzJEzJ3vcfA+M67vIUlaa1yBtQnqi5p9h6kG9rq47/3ntaAiSZKq5wqsLbKczc/6ao3PCZEkqVuUNmckIjZGxN45Xz+LiEvLaq8qy1lL5A9fdUrJ1UiS1HlKGxnJzDHgdICI6AHGgWvKaq8K7xoabfiumTc54VSSpHm16jLNOcA9mfm9FrVXuqGRca5eYrIqLL4jriRJal0YuQj41HzfiIitwFaAE044oUXlrN6O3WPzLr0+11I74kqSpBbcTRMRhwL7gFMy80eLndtud9McvKz6WSf3c8OdE+ybnFo0iETAB1+39C28kiStZe10N80rgVuWCiLtpn677ihT0zMAjE9OLbmGCNRXRjWISJLUuFaswHoxC1yiaWc7do/tDyLL4cqokiQtT6lhJCKOAF4O7CqznTLsm5xa0eucIyJJ0vKUGkYy89HMPCYzf1pmO2XoW8amdbMG+molVCJJ0trmCqxzzE5YHV/hqMi2zRubXJEkSWufYaRw8ITV5eqr9TpXRJKkFWjFBNaOsNIJq1C/g8al3iVJWhnDSGGlE1YD76CRJGk1uv4yzew8kZUs/TbQV2Pb5o0GEUmSVqGrw8hK54n01XrZe9krSqpKkqTu0tWXaVYyT6TW2+P8EEmSmqirR0aWM08kgA1elpEkqem6Ooxs6Ks1tKbIQF+Nb7zz7BZUJElS9+nqyzSNLFJW6+1xMTNJkkrU1WFkqcstPRFcfuGpXpaRJKlEXR1GYOH9ZAL4s9e90CAiSVLJujqMDI2M8+jjT/7ScRcykySpdbp2AutCa4wctb6Xyy44xSAiSVKLdO3IyEJrjKw/9BCDiCRJLdS1YWShW3pXukeNJElama4MI0Mj48QC39uwwIRWSZJUjq4MIwttjBc0tvaIJElqnq4MIwtdikmWXntEkiQ1V1eGkYUuxSy05ogkSSpPV4aRbZs3UuvtOeCYy75LklSNrlxnZPZSzI7dY+ybnHI3XkmSKlRqGImIPuBK4AXUp2T8TmZ+s8w2G7Vl04DhQ5KkNlD2yMiHga9k5msj4lBgfcntSZKkDlNaGImII4HfAN4CkJlPAE+U1Z4kSepMZU5gfTYwAfx1RIxExJURcUSJ7UmSpA5UZhg5BHgR8JHM3AQ8Crzz4JMiYmtEDEfE8MTERInlSJKkdlTmnJH7gfsz8+bi+eeZJ4xk5k5gJ8Dg4OB8C6M23dDIuHfSSJLUJkobGcnMHwI/iIjZxTvOAW4vq71GDY2Ms33XKOOTUyT1DfO27xplaGS86tIkSepKZS969l+AqyPiO8DpwB+V3N6SduweY2p65oBjU9Mz7Ng9VlFFkiR1t1Jv7c3MvcBgmW0s10L70ix0XJIklavrloNfaF+ahY5LkqRydV0YcV8aSZLaS9ftTeO+NJIktZeuCyPgvjSSJLWTrrtMI0mS2othRJIkVcowIkmSKmUYkSRJleq6CazuSyNJUnvpqjAyuy/N7HLws/vSAAYSSZIq0lWXadyXRpKk9tNVYcR9aSRJaj9dFUbcl0aSpPbTVWHEfWkkSWo/XTWB1X1pJElqP10VRsB9aSRJajdddZlGkiS1H8OIJEmqlGFEkiRVyjAiSZIqZRiRJEmVMoxIkqRKGUYkSVKlSl1nJCLuA34OzABPZuZgme1JkqTO04pFz87KzB+3oB1JktSBvEwjSZIqVXYYSeC6iNgTEVtLbkuSJHWgsi/TnJmZ4xHxNOD6iLgzM2+ce0IRUrYCnHDCCSWXI0mS2k2pIyOZOV78+SBwDfDiec7ZmZmDmTnY399fZjmSJKkNlRZGIuKIiHjq7GPgFcCtZbUnSZI6U5mXaZ4OXBMRs+18MjO/UmJ7SxoaGWfH7jH2TU6xoa/Gts0b2bJpoMqSJEnqeqWFkcy8F3hhWe+/XEMj42zfNcrU9AwA45NTbN81CmAgkSSpQl1za++O3WP7g8isqekZduweq6giSZIEXRRG9k1OLeu4JElqjQUv00TE0Yu9MDMfbn455dnQV2N8nuCxoa9WQTWSJGnWYiMje4Dh4s8J4J+Au4rHe8ovrbm2bd5IrbfngGO13h62bd5YUUWSJAkWCSOZ+ezMfA7wf4ELMvPYzDwGOB+4rlUFNsuWTQNcfuGpDPTVCGCgr8blF57q5FVJkioWmbn4CRGjmXnqUseaYXBwMIeHh5v9tpIkqQIRsSczB5c6r5Fbe/dFxLuATxTP3wjsW01xkiRJsxq5m+ZioJ/6cu67iscXl1mUJEnqHouOjERED/D7mXlJi+qRJEldZtGRkcycAc5sUS2SJKkLNTJnZCQirgU+Bzw6ezAzd5VWlSRJ6hqNhJHDgYeAs+ccS+rzRyRJklZlyTCSmW9tRSGSJKk7LRlGIuJw4G3AKdRHSQDIzN8psS5JktQlGrm19+PAM4DNwD8AxwE/L7MoSZLUPRoJI8/LzD8AHs3MjwHnAS8ptyxJktQtGgkj08WfkxHxAuBI4GnllSRJkrpJI3fT7IyIo4A/AK4FnlI8liRJWrVG7qa5snj4D8Bzyi1HkiR1m0buprkHuAn4OvD1zLyt9KokSVLXaGTOyPOB/w0cA+yIiHsi4ppyy5IkSd2ikTAyQ30S6wzwC+DB4kuSJGnVGpnA+jNgFPgAcEVmPlRuSZIkqZs0MjJyMXAj8J+AT0fEuyPinEYbiIieiBiJiC+vtEhJkrR2NXI3zReBL0bEycArgUuBdwC1Btu4BLgD+BcrLVKSJK1dS46MRMQXIuJu4MPAeuDNwFGNvHlEHEd9xdYrlzpXkiR1p0bmjFwOjGTmzAre/0PUR1GeutAJEbEV2ApwwgknrKAJSZLUyRqZM3I7sD0idgJExEkRcf5SLyrOeTAz9yx2XmbuzMzBzBzs7+9vqGhJkrR2NBJG/hp4Avj14vk48N4GXvdS4FURcR/waeDsiPjESoqUJElrVyNh5LmZ+ScUG+Zl5mNALPWizNyemcdl5onARcDXMvNNqylWkiStPY2EkSciogYkQEQ8F3i81KokSVLXaGQC62XAV4DjI+Jq6pdf3rKcRjLz74G/X2ZtkiSpCzSyzsj1EXELcAb1yzOXZOaPS69MkiR1hUYu05CZD2Xm/8nMLwNHR8QVJdclSZK6xIJhJCJOi4jrIuLWiHhvRDwzIr4AfI367b6SJEmrttjIyBXAJ4HXABPAXuAe4HmZ+cEW1CZJkrrAYnNGDsvMjxaPxyLiksx8RwtqkiRJXWSxMHJ4RGzin9cUeXzu88y8peziJEnS2rdYGHkA+MCc5z+c8zyBs8sqSpIkdY8Fw0hmntXKQso2NDLOjt1j7JucYkNfjW2bN7Jl00DVZUmS1PUaWfSs4w2NjLN91yhT0/WNh8cnp9i+axTAQCJJUsUaWmek0+3YPbY/iMyamp5hx+6xiiqSJEmzuiKM7JucWtZxSZLUOktepomIF81z+KfA9zLzyeaX1Hwb+mqMzxM8NvTVKqhGkiTN1cjIyP8CbgJ2Ul8I7ZvA56ivPfKKEmtrmm2bN1Lr7TngWK23h22bN1ZUkSRJmtVIGNkHbMrMwcz8VWATcC/wcuBPyiyuWbZsGuDyC09loK9GAAN9NS6/8FQnr0qS1AYauZvmVzLzttknmXl7RJycmfdGxGKvaytbNg0YPiRJakONhJHbIuIjwKeL568Hbo+Iw4Dp0iqTJEldoZHLNG8B7gYuLb7uLY5NA2tqYTRJktR6jYyMvBL4i8z8s3m+90iT65EkSV2mkZGRC4B/ioiPR8T5EdEVq7ZKkqTWWDKMZOZbgedRv533YuCeiLiy7MIkSVJ3aGiUIzOnI+LvqO/WWwO2AP+uzMIkSVJ3WHJkJCJeGREfBe4CXgNcCTyj5LokSVKXaGRk5M3AZ4D/kJmPl1yPJEnqMkuGkcy8eO7ziDgTuDgzf3ex10XE4cCNwGFFO5/PzMtWUeuKDY2Ms2P3GPsmp9jQV2Pb5o0ugCZJUptoaM5IRGwC3gD8FvBdYFcDL3scODszH4mIXuAfI+LvMvOmFVe7AkMj42zfNcrU9AwA45NTbN81CmAgkSSpDSw4ZyQifiUiLouIO4E/B74PRGaelZl/vtQbZ93sOiS9xVc2o+jl2LF7bH8QmTU1PcOO3WOtLkWSJM1jsQmsdwJnA+dn5plFAJlZ5PxfEhE9EbEXeBC4PjNvnuecrRExHBHDExMTy3n7huybnFrWcUmS1FqLhZELgQeAGyLiiog4B1jWzniZOZOZpwPHAS+OiBfMc87OYkfgwf7+/uW8fUM29NWWdVySJLXWgmEkM4cy8yLgZOAG6vvSPC0iPhIRr1hOI5k5WbzHuaspdiW2bd5IrbfngGO13h62bd7Y6lIkSdI8GlmB9dHM/GRmXkB9hGME+B9LvS4i+iOir3hcA15O/dJPS23ZNMDlF57KQF+NAAb6alx+4alOXpUkqU1EZjlzSiPiNOBjQA/10PPZzHzPYq8ZHBzM4eHhUuqRJEmtFRF7MnNwqfNK2/QuM78DbCrr/SVJ0trQyK69kiRJpTGMSJKkShlGJElSpQwjkiSpUoYRSZJUKcOIJEmqlGFEkiRVqrR1RtrF0Mg4O3aPsW9yig19NbZt3ujqq5IktZE1HUaGRsbZvmuUqen6ZsPjk1Ns3zUKYCCRJKlNrOnLNDt2j+0PIrOmpmfYsXusoookSdLB1nQY2Tc5tazjkiSp9dZ0GNnQV1vWcUmS1HprOoxs27yRWm/PAcdqvT1s27yxoookSdLB1vQE1tlJqt5NI0lS+1rTYQTqgcTwIUlS+1rTl2kkSVL7M4xIkqRKGUYkSVKlDCOSJKlShhFJklQpw4gkSaqUYUSSJFWqtDASEcdHxA0RcXtE3BYRl5TVliRJ6lxlLnr2JPB7mXlLRDwV2BMR12fm7SW2KUmSOkxpIyOZ+UBm3lI8/jlwB+BSqJIk6QAtmTMSEScCm4CbW9GeJEnqHKWHkYh4CvAF4NLM/Nk8398aEcMRMTwxMVF2OZIkqc2UGkYiopd6ELk6M3fNd05m7szMwcwc7O/vL7McSZLUhsq8myaAvwLuyMwPlNWOJEnqbGWOjLwU+LfA2RGxt/j6zRLbkyRJHai0W3sz8x+BKOv9JUnS2uAKrJIkqVKGEUmSVCnDiCRJqpRhRJIkVcowIkmSKmUYkSRJlTKMSJKkShlGJElSpQwjkiSpUoYRSZJUKcOIJEmqlGFEkiRVyjAiSZIqZRiRJEmVMoxIkqRKGUYkSVKlDCOSJKlShhFJklQpw4gkSaqUYUSSJFXKMCJJkiplGJEkSZUyjEiSpEqVFkYi4qqIeDAibi2rDUmS1PnKHBn5KHBuie8vSZLWgNLCSGbeCDxc1vtLkqS1ofI5IxGxNSKGI2J4YmKi6nIkSVKLVR5GMnNnZg5m5mB/f3/V5UiSpBarPIxIkqTuZhiRJEmVKvPW3k8B3wQ2RsT9EfG2stqSJEmd65Cy3jgzLy7rvSVJ0trhZRpJklQpw4gkSaqUYUSSJFXKMCJJkiplGJEkSZUyjEiSpEoZRiRJUqUMI5IkqVKGEUmSVCnDiCRJqpRhRJIkVcowIkmSKmUYkSRJlTKMSJKkShlGJElSpQwjkiSpUoYRSZJUKcOIJEmqlGFEkiRVyjAiSZIqZRiRJEmVMoxIkqRKGUYkSVKlDinzzSPiXODDQA9wZWa+v8z2DjY0Ms6O3WPsm5xiQ1+NbZs3smXTQCtLkCRJSygtjERED/CXwMuB+4FvRcS1mXl7WW3ONTQyzvZdo0xNzwAwPjnF9l2jAAYSSZLaSJmXaV4M3J2Z92bmE8CngVeX2N4Bduwe2x9EZk1Nz7Bj91irSpAkSQ0oM4wMAD+Y8/z+4tgBImJrRAxHxPDExETTGt83ObWs45IkqRqVT2DNzJ2ZOZiZg/39/U173w19tWUdlyRJ1SgzjIwDx895flxxrCW2bd5IrbfngGO13h62bd7YqhIkSVIDyryb5lvASRHxbOoh5CLgDSW2d4DZSareTSNJUnsrLYxk5pMR8Z+B3dRv7b0qM28rq735bNk0YPiQJKnNlbrOSGb+LfC3ZbYhSZI6W+UTWCVJUnczjEiSpEoZRiRJUqUMI5IkqVKGEUmSVCnDiCRJqpRhRJIkVSoys+oa9ouICeB7Jbz1scCPS3hfzc/+bh37unXs69ayv1unzL5+VmYuufFcW4WRskTEcGYOVl1Ht7C/W8e+bh37urXs79Zph772Mo0kSaqUYUSSJFWqW8LIzqoL6DL2d+vY161jX7eW/d06lfd1V8wZkSRJ7atbRkYkSVKbMoxIkqRKrfkwEhHnRsRYRNwdEe+sup5OFxFXRcSDEXHrnGNHR8T1EXFX8edRxfGIiP9Z9P13IuJF1VXeeSLi+Ii4ISJuj4jbIuKS4rj9XYKIODwi/l9EfLvo73cXx58dETcX/fqZiDi0OH5Y8fzu4vsnVll/J4qInogYiYgvF8/t6xJExH0RMRoReyNiuDjWVp8jazqMREQP8JfAK4HnAxdHxPOrrarjfRQ496Bj7wS+mpknAV8tnkO9308qvrYCH2lRjWvFk8DvZebzgTOA3y3+/7W/y/E4cHZmvhA4HTg3Is4A/hj4YGY+D/gJ8Lbi/LcBPymOf7A4T8tzCXDHnOf2dXnOyszT56wn0lafI2s6jAAvBu7OzHsz8wng08CrK66po2XmjcDDBx1+NfCx4vHHgC1zjv9N1t0E9EXEM1tTaefLzAcy85bi8c+pf2gPYH+Xoui3R4qnvcVXAmcDny+OH9zfs38PnwfOiYhoUbkdLyKOA84DriyeB/Z1K7XV58haDyMDwA/mPL+/OKbmenpmPlA8/iHw9OKx/d8kxbD0JuBm7O/SFJcN9gIPAtcD9wCTmflkccrcPt3f38X3fwoc09qKO9qHgHcAvyieH4N9XZYErouIPRGxtTjWVp8jh5TdgLpLZmZEeL94E0XEU4AvAJdm5s/m/kJofzdXZs4Ap0dEH3ANcHLFJa1JEXE+8GBm7omIl1VdTxc4MzPHI+JpwPURcefcb7bD58haHxkZB46f8/y44pia60ezw3jFnw8Wx+3/VYqIXupB5OrM3FUctr9LlpmTwA3Ar1Efpp79xW1un+7v7+L7RwIPtbjUTvVS4FURcR/1y+dnAx/Gvi5FZo4Xfz5IPWS/mDb7HFnrYeRbwEnFDO1DgYuAayuuaS26Fvjt4vFvA1+cc/zNxezsM4CfzhkW1BKKa+J/BdyRmR+Y8y37uwQR0V+MiBARNeDl1Ofp3AC8tjjt4P6e/Xt4LfC1dBXJhmTm9sw8LjNPpP65/LXMfCP2ddNFxBER8dTZx8ArgFtps8+RNb8Ca0T8JvVrkz3AVZn5vopL6mgR8SngZdS3nP4RcBkwBHwWOAH4HvC6zHy4+GH6F9TvvnkMeGtmDldRdyeKiDOBrwOj/PN19d+nPm/E/m6yiDiN+kS+Huq/qH02M98TEc+h/tv70cAI8KbMfDwiDgc+Tn0uz8PARZl5bzXVd67iMs1/z8zz7evmK/r0muLpIcAnM/N9EXEMbfQ5subDiCRJam9r/TKNJElqc4YRSZJUKcOIJEmqlGFEkiRVyjAiSZIqZRiRtGoRMVPsCHprRHwuItYXxx9Z6rWSZBiR1AxTxY6gLwCeAP5j1QVJ6hyGEUnN9nXgeXMPRMRTIuKrEXFLRIxGxKuL4++JiEvnnPe+iLgkIp4ZETfOGW35Vy3+b5DUQi56JmnVIuKRzHxKsW/IF4CvZOZHDjq+vtjo71jgJuAk4FnArsx8UUSsA+6ivm/GW4DDi5Uie4rX/ryS/zhJpXPXXknNUIuIvcXjr1PfU2euAP4oIn6D+tL2A9S3ML8vIh6KiE3UtzAfycyHIuJbwFXFRoFDmbkXSWuWYURSM0xl5umLfP+NQD/wq5k5XezWenjxvSupj4Q8A7gKIDNvLILLecBHI+IDmfk3ZRUvqVrOGZHUCkcCDxZB5Czql2dmXUN9U65/CewGiIhnAT/KzCuoh5UXtbheSS3kyIikVrga+FJEjALDwJ2z38jMJyLiBmAyM2eKwy8DtkXENPAI8OYW1yuphZzAKqlSxcTVW4Dfysy7qq5HUut5mUZSZSLi+cDdwFcNIlL3cmREkiRVypERSZJUKcOIJEmqlGFEkiRVyjAiSZIqZRiRJEmV+v8gbxomeufH2AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6MUlEQVR4nO3de3hU1b3/8c9M7gnJhAAhQSJGuWiMIBfByKm2AoLaFD39Ha2FFsF6wVgFrI/Yp4DUCxZbqlUPihfEItLWigoHUxEFBLmHFAKIgEEQEm6RSbgkgZn9+4NmzCSTZCaZS3bm/XqePJo9a2a+k5Uhn71m7bUshmEYAgAAAGA61lAXAAAAAKB5CPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKRoS6gJZxOpw4dOqTExERZLJZQlwMAAAD4hWEYqqioUJcuXWS1Njz+buowf+jQIWVkZIS6DAAAACAgDhw4oK5duzZ4u6nDfGJioqTzLzIpKSnE1QAAAAD+UV5eroyMDFfebYipw3zN1JqkpCTCPAAAANqcpqaScwEsAAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKm3gE2nDmchjYUl+lIRaVSE2M1MDNFEdbGdwgDAABA20KYNxmH09CLn+7R3DXFOnHmrOt4ui1W03KzNCI7PYTVAQAAIJgI861EUyPtNSH+lVV7dbraUe/+pfZKjZ9foNmj+xHoAQAAwgRhvhVYurVEv/ugSGWnql3Hakbah2WlNRriaxj/+e/jH27XsKw0ptwAAACEAcJ8iM1YukOvrCqud7zEXqn75hcoNtKqynNOrx+vtLxKL366Rw8N7eHPMgEAANAKsZpNCC3deshjkK/NlyBf48+ffKX8opLmlgUAAACTIMyHiMNp6JF/bg3Y409fvEMOp9F0QwAAAJgWYT5EXvx0t05VNTwHvqVK7JXaUFwWsMcHAABA6BHmQ8DhNDR3zb6AP8+RisqAPwcAAABChzAfAhuKy9zWiA+U1MTYgD8HAAAAQocwHwKf7CgN+HMkxUaqf7f2AX8eAAAAhA5hPsjyi0r0ehCm2JRXntN1z37GqjYAAABtGGE+iBxOQ5Pf2xa05yv5z66wBHoAAIC2iTAfRC8s360Tp1s2V37QRclKjovy6T4sUwkAANA2sQNskCzdekjPL9/d4sf5+dUXKSbSqvvmF3jV3tD5EfqH/16oru3jlXNJB119cQdFWC0trqU1cDgNrdt7XGu/PianIbWPj1bHxBilJcVqYGZKm3mdAAAAnhDmgyC/qET3L9jil8dKTYxVziUddNfgi3yae/9+4SFJ0ouf7VFCTISe/Wlv3dS7i19qCgWH09CLn+7RK6v26nS15/X6022xmpabpRHZ6UGuDgAAIDiYZhNgDqeh6Yt3+OWx0m3nR5slaWhWWrMf51SVQ/cv2KIZS/1Tlz84nIbW7j2uDwoPau3e441OC1q6tUR9pn+sP3/yVYNBXuKaAQAA0PYxMh9gG4rLVGJv+eZNFknTcrNc00YGZqYo3Rbbosd+ZVWx+nRtr5t6h3bkOr+oRNMX73B7LQ2Nqj/1fzv06ufFXj+2IenxD7drWFYaU24AAECbw8h8gPljF9b28VGaPbqfW7CNsFo0LTdLLY2nUz4oCunFsUu3lui++QX1TkpKa42qO5yG1uw+plte/NynIO96rPIqvfjpHn+V7MaXTxQAAAD8jZH5APNlF9b46Ai3aSPJcVEaO/giPXB9D4+jyiOy0zV7dL96o9q+OH6qWuv2HtfgHh2bdf/mcjgNPf/JV3qhgZBt6PynEZP/uVW/+cdWnaw616Ln+/MnX6lXWju3E6LaF89KlgYvDm6o3b+KSvW7D4pUdqra1ZZ5+gAAIJgshmGYdiixvLxcNptNdrtdSUlJoS7HI4fT0IAnl+k7L5akfPuuQbJaLTpSUanURO9XY3E4Df1l+e5mr5aTHBelZ356RdACaH5RiSb9/d+NzncPhMTYCE3PzVbnpFht3FemOZ9/Xa+GhJgI/eHWK9Q+IUZrvz6m3UdOauVXR1V51unWLjrSoupznt86FqneJykAAAC+8DbnEuYDLL+oRI/+c6vsZxofWU63xWr1o9c3a163w2noqqeWqexU89ewD0YAdTgNvbB8t57zwxKdrV1aUozWTB7CPH0AANAs3uZcptkEUH5RicbPL1BTZ0t1L2711YbishYFeen8tJbpi3c0+0JRh9PQhuKyBj9VWLq1RI+8+2+dCvJofKjUzNN/aGiPUJeCJtT87pbaz+jYySqVna7Woe/OyGKx6IL2cbrmko5tam8GAEDbQpgPkJolKZsK8v6YY+2Pi2yl80s5/nnZVxrcvaP6d2uvzd9859WUn6VbSxqdO+7rCjRtxZ8/+UonTldp6GVpkkU6Ul6pYyerdOLMWVn+M/f+qotStLG4rMl5+2i5uhuM2eKiVLD/O4/TqGp76bO9So6P0jP/fX4qWlMnrgAABBPTbAJk7d7juuPVdU22e/uuQS2++NTb5/KF1SLVXpiluUtFXpQSp31lZ/xaW1tXOzh6o/bIctmpaqW0O78Dbv9u7bWxuExr9h7VoROVphxl9hTAT5ypVkkjr6fmPmv2HtXB/4ywnznraDK0e+PKDJv2HDmpk1Xff8Jki43UsKzOGtyjEzsPAwD8xhRz5h0Ohx5//HHNnz9fpaWl6tKli+6880797ne/k8XS9B/D1hzmPyg8qIcWFjbZ7vmfXamRV17QoudyOA391x8+9ct69g2p6Y3a8+qfWLJdr6/eF7Dn9MVd/9VN9tMOvVvwbahL8ZuXG7mGoSawvrVun88hNSEmQj8bkKGhWWluwbM1jDjXDu8NXXxcV3J8lJ6+JVu2uGjNX79Pn315VJXnWhbaWyI2yqof9uykX+RcpKsv7iBJIf+5mk3tEzKznoi2Ra3h3wggnJhizvwf/vAHzZ49W/PmzdPll1+uTZs2aezYsbLZbHrwwQdDWVqL7Tt2yqt2vixd2ZCaNee9mZ/fXDVLRT7+4XYlREfqTx9/qcJvywP0bN5rFxOhmT/trZt6d9EHhQfbVJif/N421zUMtcPNpn3f6d/f2lXVzMB6qsqh19fs0+tr9indFqspN1+mrw6f1Gurv3Ybca77aYy/A1bdUfdSe6X+b1uJz6/rxOmzun/BFp+fP1AqzzqVv/2w8rcfVqRVslosqnZ8/85MSYjSrVdeUO9kKtjqfqKTHB+tE6e//2Sn7omeN8u4+vr8nj512dzA7/dLn+1VQkyEnv3P+z2cNDdEe/PJVs1Uv5r3dXpyrJLjonXizPfXjqQnx+qwvUr/2lGqU7X+jUiIjtC1PTtp9NXdmjxxbegTRE4IgJYL6cj8j3/8Y3Xu3Fmvv/6669hPf/pTxcXFaf78+U3ev7WOzDuchgY/s1yl5VWNtmvJCjaeeNpJNSUhSr/PvVxPffRlQEfugy0m0qL7f9jdbQ3+QEw3CrVLOyeqW8d4v0wRaa6BF7VX+4ToBmuIibTq+ktTXX/Qm/p9rlnV6OWVe0M6gt4atIux6r+6d9LFndqpfXy0UhK+D9Sp7WIki3TsZFWLR0HrXuS76ZumrxWIj7Lq8i5JslgsHsN1TKRF9157sa66qIPWFx+X05Dax0erY6LnkFa7htV7jmnJVt9P3Gp07xiv7K7JSk+OVUp8jFISolV26vz1KMZ/Qmt55ffXprSGEf26J8MNhea6x86cdeiLvcdVUfn9imjtYqwafElHxUZFNHq/YP67EWmVoiKsOlPr+eKjrRpxeWedqnY2WEtCTITuGnyRrrqog9Z+fazJn42v/epp2t0F7eN0deb5k4/1xcdlxuuV6p6o1X7v1UyxbM7JdyBO3NF8pphm8/TTT2vOnDn6+OOP1bNnT/373//WDTfcoFmzZmnUqFH12ldVVamq6vuAXF5eroyMjFYX5r0NlROH9vT7aicNjeB4u7KOGdx8RWf95Y7+Hjd38uYkCoFji4vUnddcpLMOp+sPZ+0/zJv3faeC/Sd0jp1yfdY+PlJXZ6YoJirSbVS19oXqtf+I+3KRbyDERll1XY+O6tctJWQ11LDFRWrc4ExdmBLv+hSi7FT9lYvqBrxBmSmyWi31TqgaGvH2FMpLTlQGPViHi+gI6ce909XZFqcSDycBJfZKnz7FjI6wqE9Xmy5oH1+vD+t+EulpFayaGho6wWzqxK3uczb2KYmvn2LW/lk1VENDP6+YSIt+2LNTvZPH8srzr62xk/hA8/ZTK0+fDNUMmNQsTlH734Pmnjz6mynCvNPp1G9/+1vNnDlTERERcjgceuqpp/TYY495bP/4449r+vTp9Y63tjAfzPnyvsgvKtHjH243bdhNSYjSkyOzG/2IPb+oRPfNLwhiVQDCRXy0VVdckKTCA+XN/lQB5hYTadFlaYn68vBJTs48SIiO0A96dFT/bimuE5raJzrefBrly0lN3alfnj618tSuOXxdnMIfTBHmFy5cqEceeUTPPvusLr/8chUWFmrChAmaNWuWxowZU699WxuZf+fuq5VzSYcgVPS955Z91ao2bUqIidCf/qePJNWbIhQfbdWN2Wn6rx6pPp3x5xeVaPJ723TCi11328VE6Jlbr9DeY6f1yqq99XaEjY6Qcvt0UVJctD4oPOS2/CYAAAgvjS1O4W+mCPMZGRmaPHmy8vLyXMeefPJJzZ8/X19++WWT92+tc+aXbj3U5AV5/p4v7w2H01D/J5bpxJmWbTDlL3Wny/hzpQRP8/6aWtO9qbmCDV3A9d2pat2/gE8DAABo64KZ30yxms3p06dltVrdjkVERMjpNO9HVw6noSf+b2eT7abc3PwdX5trQ3FZqwjytVegqS3CavHbJxURVosG9+hYbw1/T8eauo839b1s7ef1pwFovWrmhh4/WaVN++2hLgcA0MqU2Cu1obgs6DMrGhPSMJ+bm6unnnpKF154oS6//HJt2bJFs2bN0rhx40JZVotsKC7zatWY9gnRQajGnb92im0uTyvQtBUjstM1LCtN6/Ye1/z1+/RR0eEG20ZYJYd5z1fbhJpVNmounPO0zOaMpTv0yqrw27kYANC4UOepukIa5l944QVNmTJF999/v44cOaIuXbro3nvv1dSpU0NZVot428Gh+EXwx5r2zdXQCjRtSe2R/YaWCX1yZLaGZ6e7TecpsZ/RPwsOhq5wk6i5+HB98Qmv2kdapL4XJrtWpkiJj/FpxYXHbspSn67t9bsPityulYiJtCoqwuK2Jj8AIHyEMk95EtI58y3VGufMt+aLX2t2ii21Vza4RGV0hBQVEaFT1b4FlQlDeqhn50Q98X+eA2y4bfIi+bZk1uBnPlVpue8neDERFvXJSNZVmSluG8DUnvdvP322Xr+YQc3Fx3UvgPZ0olRbTKRF46+7RL8e0tMvJ4+e+lFy3xynZklIf2zqhe9F/mcWJj9KAK1Fa5wzT5j3s6YCs0VSWggufq1Rs968JI/1vTy6nyT5tCb9//68ryuss9138/iyD0BslFU/7NlJv8i5yKeNQDYUl2nZjlL9fdO3Oll1rl6bKKtFEVaLVxs5RVr9G7Bq1kBOT473ak3fums8nzjTujcIqjzn0Ibi71gNqQF11wuvPe1Jkl78dI/H1abgPW82cKq9N0BjGzYNykzRxn1lmrPq67Df+A3hh9Vs/Kw1hnmp4cBcEy9mB/EXwRNPI5vptlhNy81y1dXU6Ken+6BlPP3Ma/64Driog9825agbNOsGp8Y2Qqldw7+KSlu0ik9spFU/8mHnWLOruxpScny0vth7TPnbW77+sS9qLvKNi/a8+VTHhBg5DUNrvz7mtmNm7U9+5q/fp893H3ObahQdaZEMqdrR9J+UmEiLftQrVd1TE1u0k6en3VGjIy2qPte6/6w1FZrrHqvZhOjEac8bXjV2P0//bjS0Mpev/7Z42oW0oc2Sap+kNfZ71NjPpjmbJdWIibCod1ebLBaLtpeUB/U9F2iRVslqsXj13kPztY+P0gzWmfe/1hrmJe8Ccyh5M4LuKXzUbDUfip3ewoHZPtloaE3/mj+c3uykGO7q9nntXVz3Hj2l9cVlbiP6UREWGYaa3EW3sdHuQE4/qn2iGIy+91THsh2lTQ5G1N5cpsReWS/gWeT508u6mtpZs6GTYX73z/P137yGdt9taHMhT79zDb3nap8o1jyWN7sX1z5B9nSCWfuCe39sluRpZ1JJjS7H3NROxXV/XjUn+LUHdprasMnMGtvllh1gA6w1h3nJfMEMaI6m1udHyzQWmmt+5oP+c2x98XHRB+f5OhjhKeDVDjO1R5pD/QcewVV3Wl/NJ5YNnZyGy9/+2q+zY0KM1hcf1xtrit0+aak5aY6LjvT7DrA1Yduo86mQp0+tar9nm9pzpjUhzIdAuLyBAQAA6iIH+ZcpNo1qSzxNq0mOi9LYwRe1yXXVAQAAavPn5o/wnrXpJmhKzQWvdednnjhzVn/+ZLf6P7lM+UUlIaoOAAAAbRVhvoUcTkPTF+9o9EKpE6fPavz8AgI9AAAA/Iow30Ibisu82ozHkDR98Q45mliBAgAAAPAWYb6FjlR4v6tmib1SG4rLAlgNAAAAwglhvoVSE2N9au9L+AcAAAAaQ5hvoYGZKUq3eR/ofQ3/AAAAQEMI8y0UYbVoWm5Wk+0sOr8DbM2GLwAAAEBLEeb9YER2ul4e3U/J8VEeb69ZYX5abhbrzQMAAMBvCPN+MiI7XZt/N0wTh/ZUcpx7qE+zxWr26H4akZ0eouoAAADQFrEDrB9FWC164PruGtCtvdZ+fUzS+Z3Qrr64AyPyAAAA8DvCvB/lF5Vo+uIdbuvO/7PgW03LzWJUHgAAAH7HNBs/yS8q0fj5BfU2kCq1V7L7KwAAAAKCMO8HDqeh6Yt3yNPerjXH2P0VAAAA/kaY94MNxWX1RuRrM8TurwAAAPA/wrwfeLurK7u/AgAAwJ8I837g7a6u7P4KAAAAfyLM+8HAzBSl22LV0OKT7P4KAACAQCDM+0GE1aJpuVmSVC/Qs/srAAAAAoUw7ycjstM1e3Q/pdncp9Kw+ysAAAAChU2j/GhEdrqGZaVpQ3GZjlRUKjXx/NQaRuQBAAAQCIR5P4uwWpRzSYdQlwEAAIAwwDQbAAAAwKQI8wAAAIBJMc3GTxxOg7nyAAAACCrCvB/kF5Vo+uIdKrF/v8Nrui1W03KzWMUGAAAAAcM0mxbKLyrR+PkFbkFekkrtlRo/v0D5RSUhqgwAAABtHWG+BRxOQ9MX75Dh4baaY9MX75DD6akFAAAA0DKE+RbYUFxWb0S+NkNSib1SG4rLglcUAAAAwgZhvgWOVDQc5JvTDgAAAPAFYb4FUhNj/doOAAAA8AVhvgUGZqYo3RarhhagtOj8qjYDM1OCWRYAAADCBGG+BSKsFk3LzZKkeoG+5vtpuVmsNw8AAICAIMy30IjsdM0e3U9pNvepNGm2WM0e3Y915gEAABAwbBrlByOy0zUsK40dYAEAABBUhHk/ibBalHNJh1CXAQAAgDDCNBsAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJkWYBwAAAEyKMA8AAACYFGEeAAAAMCnCPAAAAGBShHkAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJkWYBwAAAEyKMA8AAACYFGEeAAAAMCnCPAAAAGBShHkAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJkWYBwAAAEyKMA8AAACYFGEeAAAAMCnCPAAAAGBShHkAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJhUZ6gLMzuE0tKG4TEcqKpWaGKuBmSmKsFpCXRYAAADCQMjD/MGDB/Xoo4/qo48+0unTp9W9e3fNnTtXAwYMCHVpTcovKtH0xTtUYq90HUu3xWpabpZGZKeHsDIAAACEg5BOs/nuu+80ePBgRUVF6aOPPtKOHTv0pz/9Se3btw9lWV7JLyrR+PkFbkFekkrtlRo/v0D5RSUhqgwAAADhIqQj83/4wx+UkZGhuXPnuo5lZmaGsCLvOJyGpi/eIcPDbYYki6Tpi3doWFYaU24AAAAQMCEdmf/www81YMAA/c///I9SU1PVt29fvfrqqw22r6qqUnl5udtXKGwoLqs3Il+bIanEXqkNxWXBKwoAAABhJ6Rh/uuvv9bs2bPVo0cP/etf/9L48eP14IMPat68eR7bz5gxQzabzfWVkZER5IrPO1LRcJBvTjsAAACgOSyGYXiaLRIU0dHRGjBggL744gvXsQcffFAbN27U2rVr67WvqqpSVVWV6/vy8nJlZGTIbrcrKSkpKDVL0tq9x3XHq+uabPfO3Vcr55IOQagIAAAAbUl5eblsNluTOTekI/Pp6enKyspyO3bZZZdp//79HtvHxMQoKSnJ7SsUBmamKN0Wq4Zmw1t0flWbgZkpwSwLAAAAYSakYX7w4MHatWuX27GvvvpK3bp1C1FF3omwWjQt9/xJSN1AX/P9tNwsLn4FAABAQIU0zE+cOFHr1q3T008/rT179mjBggWaM2eO8vLyQlmWV0Zkp2v26H5Ks8W6HU+zxWr26H6sMw8AAICAC+mceUlasmSJHnvsMe3evVuZmZmaNGmS7r77bq/u6+1cokBiB1gAAAD4m7c5N+RhviVaQ5gHAAAA/M0UF8ACAAAAaD7CPAAAAGBShHkAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJkWYBwAAAEyKMA8AAACYFGEeAAAAMCnCPAAAAGBShHkAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJkWYBwAAAEyKMA8AAACYFGEeAAAAMCnCPAAAAGBShHkAAADApAjzAAAAgEkR5gEAAACTIswDAAAAJkWYBwAAAEyKMA8AAACYFGEeAAAAMKlIbxr17dtXFovFqwcsKChoUUEAAAAAvONVmL/llltc/19ZWan//d//VVZWlnJyciRJ69at0/bt23X//fcHpEgAAAAA9XkV5qdNm+b6/1/96ld68MEH9cQTT9Rrc+DAAf9WBwAAAKBBFsMwDF/uYLPZtGnTJvXo0cPt+O7duzVgwADZ7Xa/FtiY8vJy2Ww22e12JSUlBe15AQAAgEDyNuf6fAFsXFyc1qxZU+/4mjVrFBsb6+vDAQAAAGgmr6bZ1DZhwgSNHz9eBQUFGjhwoCRp/fr1euONNzRlyhS/FwgAAADAM5/D/OTJk3XxxRfr+eef1/z58yVJl112mebOnavbbrvN7wUCAAAA8MynMH/u3Dk9/fTTGjduHMEdAAAACDGf5sxHRkZq5syZOnfuXKDqAQAAAOAlny+AHTJkiFauXBmIWgAAAAD4wOc58zfeeKMmT56sbdu2qX///kpISHC7/Sc/+YnfigMAAADQMJ/XmbdaGx7Mt1gscjgcLS7KW6wzDwAAgLbI25zr88i80+lsUWEAAAAA/MPnOfMAAAAAWgefR+Yl6dSpU1q5cqX279+v6upqt9sefPBBvxQGAAAAoHE+h/ktW7bopptu0unTp3Xq1CmlpKTo2LFjio+PV2pqKmEeAAAACBKfp9lMnDhRubm5+u677xQXF6d169bpm2++Uf/+/fXHP/4xEDUCAAAA8MDnMF9YWKiHH35YVqtVERERqqqqUkZGhmbOnKnf/va3gagRAAAAgAc+h/moqCjX8pSpqanav3+/JMlms+nAgQP+rQ4AAABAg3yeM9+3b19t3LhRPXr00HXXXaepU6fq2LFj+utf/6rs7OxA1AgAAADAA59H5p9++mmlp6dLkp566im1b99e48eP19GjRzVnzhy/FwgAAADAM593gG1N2AEWAAAAbZG3Odfnkfk33nhDxcXFLSoOAAAAQMv5HOZnzJih7t2768ILL9QvfvELvfbaa9qzZ08gagMAAADQCJ/D/O7du7V//37NmDFD8fHx+uMf/6hevXqpa9euGj16dCBqBAAAAOBBi+bMnz59Wp9//rneeecdvf322zIMQ+fOnfNnfY0K9Zx5h9PQhuIyHamoVGpirAZmpijCagl6HQAAAGhbvM25Pi9N+fHHH2vFihVasWKFtmzZossuu0zXXXed3n33XV177bUtKtpM8otKNH3xDpXYK13H0m2xmpabpRHZ6SGsDAAAAOHC55F5q9WqTp066eGHH9Y999yj5OTkAJXWtFCNzOcXlWj8/ALV/cHVjMnPHt2PQA8AAIBmC9hqNrNmzdLgwYM1c+ZMXX755fr5z3+uOXPm6KuvvmpRwWbhcBqavnhHvSAvyXVs+uIdcjhNu+InAAAATMLnMD9hwgS99957OnbsmPLz83XNNdcoPz9f2dnZ6tq1ayBqbFU2FJe5Ta2py5BUYq/UhuKy4BUFAACAsOTznHlJMgxDW7Zs0YoVK/TZZ59p9erVcjqd6tSpk7/ra3WOVDQc5JvTDgAAAGgun8N8bm6u1qxZo/LycvXp00c//OEPdffdd+vaa68N6fz5YElNjPVrOwAAAKC5fA7zl156qe6991794Ac/kM1mC0RNrdrAzBSl22JVaq/0OG/eIinNdn6ZSgAAACCQfA7zzz77rOv/KysrFRsbXiPQEVaLpuVmafz8Alkkt0Bfs5rNtNws1psHAABAwPl8AazT6dQTTzyhCy64QO3atdPXX38tSZoyZYpef/11vxfYGo3ITtfs0f2UZnM/kUmzxbIsJQAAAILG55H5J598UvPmzdPMmTN19913u45nZ2frueee01133eXXAlurEdnpGpaVxg6wAAAACBmfw/xbb72lOXPmaMiQIbrvvvtcx/v06aMvv/zSr8W1dhFWi3Iu6RDqMgAAABCmfJ5mc/DgQXXv3r3ecafTqbNnz/qlKAAAAABN8znMZ2Vl6fPPP693/N1331Xfvn39UhQAAACApvk8zWbq1KkaM2aMDh48KKfTqffee0+7du3SW2+9pSVLlgSiRgAAAAAe+DwyP3LkSC1evFiffPKJEhISNHXqVO3cuVOLFy/WsGHDAlEjAAAAAA8shmF42vuoWTZt2qQBAwb46+GaVF5eLpvNJrvdrqSkpKA9LwAAABBI3uZcn0fmT548qTNnzrgdKywsVG5urgYNGuR7pQAAAACaxeswf+DAAeXk5Mhms8lms2nSpEk6ffq0fvnLX2rQoEFKSEjQF198EchaAQAAANTi9QWwjzzyiCorK/X888/rvffe0/PPP6/PP/9cgwYN0t69e9W1a9dA1gkAAACgDq/D/KpVq/Tee+/p6quv1m233aa0tDSNGjVKEyZMCGB5AAAAABri9TSbw4cPKzMzU5KUmpqq+Ph43XjjjX4r5JlnnpHFYuHkAAAAAPCSTxfAWq1Wt/+Pjo72SxEbN27UK6+8ot69e/vl8QAAAIBw4HWYNwxDPXv2VEpKilJSUnTy5En17dvX9X3Nl69OnjypUaNG6dVXX1X79u19vj8AAAAQrryeMz937tyAFJCXl6ebb75ZQ4cO1ZNPPtlo26qqKlVVVbm+Ly8vD0hNAAAAgBl4HebHjBnj9ydfuHChCgoKtHHjRq/az5gxQ9OnT/d7HQAAAIAZ+bxplL8cOHBADz30kN5++23FxsZ6dZ/HHntMdrvd9XXgwIEAVwkAAAC0XhbDMIxQPPH777+vW2+9VREREa5jDodDFotFVqtVVVVVbrd54u02twAAAICZeJtzvZ5m429DhgzRtm3b3I6NHTtWl156qR599NEmgzwAAAAQ7kIW5hMTE5Wdne12LCEhQR06dKh3HAAAAEB9IZszDwAAAKBlfB6ZnzRpksfjFotFsbGx6t69u0aOHNmsNedXrFjh830AAACAcOXzBbA/+tGPVFBQIIfDoV69ekmSvvrqK0VEROjSSy/Vrl27ZLFYtHr1amVlZQWk6BpcAAsAAIC2yNuc6/M0m5EjR2ro0KE6dOiQNm/erM2bN+vbb7/VsGHDdMcdd+jgwYO69tprNXHixBa9AAAAAACN83lk/oILLtCyZcvqjbpv375dN9xwgw4ePKiCggLdcMMNOnbsmF+LrYuReQAAALRFARuZt9vtOnLkSL3jR48eVXl5uSQpOTlZ1dXVvj40AAAAAB80a5rNuHHjtGjRIn377bf69ttvtWjRIt1111265ZZbJEkbNmxQz549/V0rAAAAgFp8nmZz8uRJTZw4UW+99ZbOnTsnSYqMjNSYMWP05z//WQkJCSosLJQkXXnllf6u1w3TbAAAANAWeZtzfQ7zNU6ePKmvv/5aknTxxRerXbt2zau0BQjzAAAAaIsCNmd+/vz5On36tNq1a6fevXurd+/eIQnyAAAAQLjzOcxPnDhRqamp+vnPf66lS5fK4XAEoi4AAAAATfA5zJeUlGjhwoWyWCy67bbblJ6erry8PH3xxReBqA8AAABAA5o9Z16STp8+rUWLFmnBggX65JNP1LVrV+3du9ef9TWKOfMAAABoi7zNuZEteZL4+HgNHz5c3333nb755hvt3LmzJQ8HAAAAwAc+T7ORzo/Iv/3227rpppt0wQUX6LnnntOtt96q7du3+7s+AAAAAA3weWT+Zz/7mZYsWaL4+HjddtttmjJlinJycgJRGwAAAIBG+BzmIyIi9Pe//13Dhw9XRESE221FRUXKzs72W3EAAAAAGuZzmH/77bfdvq+oqNA777yj1157TZs3b2apSgAAACBImjVnXpJWrVqlMWPGKD09XX/84x91/fXXa926df6sDQAAAEAjfBqZLy0t1ZtvvqnXX39d5eXluu2221RVVaX3339fWVlZgaoRAAAAgAdej8zn5uaqV69e2rp1q5577jkdOnRIL7zwQiBrAwAAANAIr0fmP/roIz344IMaP368evToEciaAAAAAHjB65H51atXq6KiQv3799egQYP04osv6tixY4GsDQAAAEAjvA7zV199tV599VWVlJTo3nvv1cKFC9WlSxc5nU4tW7ZMFRUVgawTAAAAQB0WwzCM5t55165dev311/XXv/5VJ06c0LBhw/Thhx/6s75GlZeXy2azyW63KykpKWjPCwAAAASStzm32UtTSlKvXr00c+ZMffvtt3rnnXda8lAAAAAAfNSikflQY2QeAAAAbVFQRuYBAAAAhA5hHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJEeYBAAAAkyLMAwAAACZFmAcAAABMijAPAAAAmBRhHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJEeYBAAAAkyLMAwAAACZFmAcAAABMijAPAAAAmBRhHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJEeYBAAAAkyLMAwAAACZFmAcAAABMijAPAAAAmBRhHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJEeYBAAAAkyLMAwAAACZFmAcAAABMijAPAAAAmBRhHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJEeYBAAAAkyLMAwAAACZFmAcAAABMijAPAAAAmBRhHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJhTTMz5gxQ1dddZUSExOVmpqqW265Rbt27QplSQAAAIBphDTMr1y5Unl5eVq3bp2WLVums2fP6oYbbtCpU6dCWRYAAABgChbDMIxQF1Hj6NGjSk1N1cqVK3Xttdc22b68vFw2m012u11JSUlBqBAAAAAIPG9zbquaM2+32yVJKSkpIa4EAAAAaP0iQ11ADafTqQkTJmjw4MHKzs722KaqqkpVVVWu78vLy4NVHgAAANDqtJqR+by8PBUVFWnhwoUNtpkxY4ZsNpvrKyMjI4gVAgAAAK1Lq5gz/8ADD+iDDz7QqlWrlJmZ2WA7TyPzGRkZzJkHAABAm+LtnPmQTrMxDEO//vWvtWjRIq1YsaLRIC9JMTExiomJCVJ1AAAAQOsW0jCfl5enBQsW6IMPPlBiYqJKS0slSTabTXFxcaEsDQAAAGj1QjrNxmKxeDw+d+5c3XnnnU3en6UpAQAA0BaZZpoNAAAAgOZpNavZAAAAAPANYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJOKDHUBZuVwGtpQXKYjFZVKTYzVwMwURVgtoS4LAAAAYaRVhPmXXnpJzz77rEpLS9WnTx+98MILGjhwYKjLalB+UYmmL96hEnul61i6LVbTcrM0Ijs9hJUBAAAgnIR8ms3f/vY3TZo0SdOmTVNBQYH69Omj4cOH68iRI6EuzaP8ohKNn1/gFuQlqdReqfHzC5RfVBKiygAAABBuQh7mZ82apbvvvltjx45VVlaWXn75ZcXHx+uNN94IdWn1OJyGpi/eIcPDbTXHpi/eIYfTUwsAAADAv0Ia5qurq7V582YNHTrUdcxqtWro0KFau3ZtvfZVVVUqLy93+wqmDcVl9UbkazMkldgrtaG4LHhFAQAAIGyFNMwfO3ZMDodDnTt3djveuXNnlZaW1ms/Y8YM2Ww211dGRkawSpUkHaloOMg3px0AAADQEiGfZuOLxx57THa73fV14MCBoD5/amKsX9sBAAAALRHS1Ww6duyoiIgIHT582O344cOHlZaWVq99TEyMYmJiglVePQMzU5Rui1WpvdLjvHmLpDTb+WUqAQAAgEAL6ch8dHS0+vfvr+XLl7uOOZ1OLV++XDk5OSGszLMIq0XTcrMknQ/utdV8Py03i/XmAQAAEBQhn2YzadIkvfrqq5o3b5527typ8ePH69SpUxo7dmyoS/NoRHa6Zo/upzSb+1SaNFusZo/uxzrzAAAACJqQbxp1++236+jRo5o6dapKS0t15ZVXKj8/v95Fsa3JiOx0DctKYwdYAAAAhJTFMAzTLopeXl4um80mu92upKSkUJcDAAAA+IW3OTfk02wAAAAANA9hHgAAADApwjwAAABgUoR5AAAAwKQI8wAAAIBJEeYBAAAAkyLMAwAAACZFmAcAAABMijAPAAAAmBRhHgAAADCpyFAX0BKGYUg6v90tAAAA0FbU5NuavNsQU4f5iooKSVJGRkaIKwEAAAD8r6KiQjabrcHbLUZTcb8VczqdOnTokBITE2WxWIL+/OXl5crIyNCBAweUlJQU9OdH6ND34Yl+D1/0ffii78NXqPveMAxVVFSoS5cuslobnhlv6pF5q9Wqrl27hroMJSUl8QYPU/R9eKLfwxd9H77o+/AVyr5vbES+BhfAAgAAACZFmAcAAABMijDfAjExMZo2bZpiYmJCXQqCjL4PT/R7+KLvwxd9H77M0vemvgAWAAAACGeMzAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcJ8M7300ku66KKLFBsbq0GDBmnDhg2hLgkttGrVKuXm5qpLly6yWCx6//333W43DENTp05Venq64uLiNHToUO3evdutTVlZmUaNGqWkpCQlJyfrrrvu0smTJ4P4KuCrGTNm6KqrrlJiYqJSU1N1yy23aNeuXW5tKisrlZeXpw4dOqhdu3b66U9/qsOHD7u12b9/v26++WbFx8crNTVVjzzyiM6dOxfMlwIfzZ49W71793ZtCJOTk6OPPvrIdTv9Hj6eeeYZWSwWTZgwwXWM/m+bHn/8cVksFrevSy+91HW7GfudMN8Mf/vb3zRp0iRNmzZNBQUF6tOnj4YPH64jR46EujS0wKlTp9SnTx+99NJLHm+fOXOm/vKXv+jll1/W+vXrlZCQoOHDh6uystLVZtSoUdq+fbuWLVumJUuWaNWqVbrnnnuC9RLQDCtXrlReXp7WrVunZcuW6ezZs7rhhht06tQpV5uJEydq8eLF+sc//qGVK1fq0KFD+u///m/X7Q6HQzfffLOqq6v1xRdfaN68eXrzzTc1derUULwkeKlr16565plntHnzZm3atEnXX3+9Ro4cqe3bt0ui38PFxo0b9corr6h3795ux+n/tuvyyy9XSUmJ62v16tWu20zZ7wZ8NnDgQCMvL8/1vcPhMLp06WLMmDEjhFXBnyQZixYtcn3vdDqNtLQ049lnn3UdO3HihBETE2O88847hmEYxo4dOwxJxsaNG11tPvroI8NisRgHDx4MWu1omSNHjhiSjJUrVxqGcb6fo6KijH/84x+uNjt37jQkGWvXrjUMwzCWLl1qWK1Wo7S01NVm9uzZRlJSklFVVRXcF4AWad++vfHaa6/R72GioqLC6NGjh7Fs2TLjuuuuMx566CHDMHjft2XTpk0z+vTp4/E2s/Y7I/M+qq6u1ubNmzV06FDXMavVqqFDh2rt2rUhrAyBVFxcrNLSUrd+t9lsGjRokKvf165dq+TkZA0YMMDVZujQobJarVq/fn3Qa0bz2O12SVJKSookafPmzTp79qxb31966aW68MIL3fr+iiuuUOfOnV1thg8frvLyctcoL1o3h8OhhQsX6tSpU8rJyaHfw0ReXp5uvvlmt36WeN+3dbt371aXLl108cUXa9SoUdq/f78k8/Z7ZEie1cSOHTsmh8Ph1omS1LlzZ3355ZchqgqBVlpaKkke+73mttLSUqWmprrdHhkZqZSUFFcbtG5Op1MTJkzQ4MGDlZ2dLel8v0ZHRys5Odmtbd2+9/S7UXMbWq9t27YpJydHlZWVateunRYtWqSsrCwVFhbS723cwoULVVBQoI0bN9a7jfd92zVo0CC9+eab6tWrl0pKSjR9+nT94Ac/UFFRkWn7nTAPAP+Rl5enoqIit/mTaNt69eqlwsJC2e12vfvuuxozZoxWrlwZ6rIQYAcOHNBDDz2kZcuWKTY2NtTlIIhuvPFG1//37t1bgwYNUrdu3fT3v/9dcXFxIays+Zhm46OOHTsqIiKi3pXNhw8fVlpaWoiqQqDV9G1j/Z6WllbvIuhz586prKyM3w0TeOCBB7RkyRJ99tln6tq1q+t4WlqaqqurdeLECbf2dfve0+9GzW1ovaKjo9W9e3f1799fM2bMUJ8+ffT888/T723c5s2bdeTIEfXr10+RkZGKjIzUypUr9Ze//EWRkZHq3Lkz/R8mkpOT1bNnT+3Zs8e073vCvI+io6PVv39/LV++3HXM6XRq+fLlysnJCWFlCKTMzEylpaW59Xt5ebnWr1/v6vecnBydOHFCmzdvdrX59NNP5XQ6NWjQoKDXDO8YhqEHHnhAixYt0qeffqrMzEy32/v376+oqCi3vt+1a5f279/v1vfbtm1zO5lbtmyZkpKSlJWVFZwXAr9wOp2qqqqi39u4IUOGaNu2bSosLHR9DRgwQKNGjXL9P/0fHk6ePKm9e/cqPT3dvO/7kFx2a3ILFy40YmJijDfffNPYsWOHcc899xjJycluVzbDfCoqKowtW7YYW7ZsMSQZs2bNMrZs2WJ88803hmEYxjPPPGMkJycbH3zwgbF161Zj5MiRRmZmpnHmzBnXY4wYMcLo27evsX79emP16tVGjx49jDvuuCNULwleGD9+vGGz2YwVK1YYJSUlrq/Tp0+72tx3333GhRdeaHz66afGpk2bjJycHCMnJ8d1+7lz54zs7GzjhhtuMAoLC438/HyjU6dOxmOPPRaKlwQvTZ482Vi5cqVRXFxsbN261Zg8ebJhsViMjz/+2DAM+j3c1F7NxjDo/7bq4YcfNlasWGEUFxcba9asMYYOHWp07NjROHLkiGEY5ux3wnwzvfDCC8aFF15oREdHGwMHDjTWrVsX6pLQQp999pkhqd7XmDFjDMM4vzzllClTjM6dOxsxMTHGkCFDjF27drk9xvHjx4077rjDaNeunZGUlGSMHTvWqKioCMGrgbc89bkkY+7cua42Z86cMe6//36jffv2Rnx8vHHrrbcaJSUlbo+zb98+48YbbzTi4uKMjh07Gg8//LBx9uzZIL8a+GLcuHFGt27djOjoaKNTp07GkCFDXEHeMOj3cFM3zNP/bdPtt99upKenG9HR0cYFF1xg3H777caePXtct5ux3y2GYRih+UwAAAAAQEswZx4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAmRZgHAAAATIowDwDQm2++qeTk5FCXAQDwEWEeAMLEnXfeKYvFIovFoujoaHXv3l2///3vde7cuVCXBgBopshQFwAACJ4RI0Zo7ty5qqqq0tKlS5WXl6eoqCilp6eHujQAQDMwMg8AYSQmJkZpaWnq1q2bxo8fr6FDh+rDDz+s127v3r0aOXKkOnfurHbt2umqq67SJ5984rr997//vbKzs+vd78orr9SUKVMkSStWrNDAgQOVkJCg5ORkDR48WN98803gXhwAhCHCPACEsbi4OFVXV9c7fvLkSd10001avny5tmzZohEjRig3N1f79++XJI0bN047d+7Uxo0bXffZsmWLtm7dqrFjx+rcuXO65ZZbdN1112nr1q1au3at7rnnHlkslqC9NgAIB0yzAYAwZBiGli9frn/961/69a9/Xe/2Pn36qE+fPq7vn3jiCS1atEgffvihHnjgAXXt2lXDhw/X3LlzddVVV0mS5s6dq+uuu04XX3yxysrKZLfb9eMf/1iXXHKJJOmyyy4LzosDgDDCyDwAhJElS5aoXbt2io2N1Y033qjbb79djz/+eL12J0+e1G9+8xtddtllSk5OVrt27bRz507XyLwk3X333XrnnXdUWVmp6upqLViwQOPGjZMkpaSk6M4779Tw4cOVm5ur559/XiUlJcF6mQAQNgjzABBGfvSjH6mwsFC7d+/WmTNnNG/ePCUkJNRr95vf/EaLFi3S008/rc8//1yFhYW64oor3Kbk5ObmKiYmRosWLdLixYt19uxZ/b//9/9ct8+dO1dr167VNddco7/97W/q2bOn1q1bF5TXCQDhgmk2ABBGEhIS1L179ybbrVmzRnfeeaduvfVWSedH6vft2+fWJjIyUmPGjNHcuXMVHR2tn/3sZ4qLi3Nr07dvX/Xt21ePPfaYcnJytGDBAl199dV+ez0AEO4I8wCAenr06KH33ntPubm5slgsmjJlipxOZ712v/rVr1xz4desWeM6XlxcrDlz5ugnP/mJunTpol27dmn37t365S9/GbTXAADhgDAPAKhn1qxZGjdunK655hp17NhRjz76qMrLy+u169Gjh6655hqVlZVp0KBBruPx8fH68ssvNW/ePB0/flzp6enKy8vTvffeG8yXAQBtnsUwDCPURQAAzMkwDPXo0UP333+/Jk2aFOpyACDsMDIPAGiWo0ePauHChSotLdXYsWNDXQ4AhCXCPACgWVJTU9WxY0fNmTNH7du3D3U5ABCWCPMAgGZhliYAhB7rzAMAAAAmRZgHAAAATIowDwAAAJgUYR4AAAAwKcI8AAAAYFKEeQAAAMCkCPMAAACASRHmAQAAAJMizAMAAAAm9f8BU0vLJaR3tVYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -258,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -269,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -279,29 +296,27 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 193, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAFACAYAAABuonzYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGYBJREFUeJzt3X+U5XV93/Hnm9kBZtEwK4zRHdDFQJaDGFmyNVRtjkDNqoBsDW0gWiMxh9M2bSEnGevmmIOmWtNMi7FJyumKRGOwNsoyojUOVEmkP6DuMujIj6lAFJlFGYFBgYkMw7t/3O+ss+PuzJ3d+72fO3Ofj3P27P1+7p37ffNZzp3X/fz4fiMzkSRJKuWI0gVIkqTuZhiRJElFGUYkSVJRhhFJklSUYUSSJBVlGJEkSUUZRiRJUlGGEUmSVJRhRJIkFbWudAELHX/88blp06bSZUiSpBbYs2fP9zNzYLnXdVQY2bRpE7t37y5dhiRJaoGI+HYzr3OaRpIkFWUYkSRJRRlGJElSUYYRSZJUlGFEkiQVZRiRJElFGUYkSVJRhhFJklRUR130TJK0urxnZJzrbnuQrI6PObKHD/yjV7B9yyAAI2OTDI9OsHd6ho39fQxt27zvuXaYP//k9EzbzrkabVjfy5UXvLyt/zYLRWYu/6o22bp1a3oFVkla2sjYJO+98S6mZ2ZLl6I1pLcnGL7olS0NJBGxJzO3Lvc6R0a61MG+LSz+ViO10+Jv0ZuO6+N/3/8Yh/KV6YiA5xIGD/Hb+MjYJDt2fZ2Z2ecO4ezS6jM7lwyPThT5/HdkpIvU8W3qcIf2lqtpufdvZgi4VcPEB3ofoKk+Xd97BEf19jD99GzTNfjtV1K7BfC3f3Be696vyZERw8gq0swvpw3rezntxc8/5G+Th+Ng30QXjsIEtL0uSVJzBvv7+F/vPqdl72cYWQNceCVJahfXjGgfh+YlSe1WejeNYaQww4ektWB9b+OyVU936ILfw13Q3Izl1qeV3ubcyZymKcSV+pIOV+lvs9JynKbpUJ0WQua/LfT39fLMs3Md+61G3e1Av3QXf8s8+9QBbrl3isnpGXoimMtsyYJpf+FL9TOM1GTxVQmP7Akyk074Xd/sh+vCD/tj+3qJYN/W1LNPHeDzX3u4ZdNLRwT86i+8hPdvf8W+c6+m6av5PgV+4hfk4faTvwwPbPuWQftEWiOcpmmxdo18LJ7/hJ+83kW7fok1u3X3cOZs655rdS5XklrPrb0FNILIODOzcy1933YsvJIkqdVcM1LA+z53V8uCiEPzkqRuYRhpkfeMjPP404e3vsEAIknqRoaRFVq8sHJ97xHMzj13yAtTvTGdJKnbGUaW0MyOjkPdCmsIkSSpwTByECNjkwx9+mvMPtfaBb5OxUiStD/DyEEMj060JIgYPiRJWpph5CBacafct53144t4SZKkAzuidAGdaGRskjjM9zCISJLUHEdGDmB4dOKQ72fhwlRJklam1jASEb8F/AaNK4SPA5dm5t/Vec5WOJQpmgDe6miIJEkrVts0TUQMAv8a2JqZpwM9wMV1na9Vlpqi6e/rZbC/j6geb1jfS9C4TPuHfuUMg4gkSYeg7mmadUBfRMwC64G9NZ/vsL3vc3cdcIomgPe+2V0xkiS1Wm0jI5k5CfwH4EHgYeCJzLxp8esi4rKI2B0Ru6empuoqpykjY5MHvaR7gkFEkqQa1DlNswG4EDgJ2AgcExFvW/y6zNyZmVszc+vAwEBd5TRleHTioM8N9ve1sRJJkrpHnVt7/yHwt5k5lZmzwC7g1TWe77DtXWLh6tC2zW2sRJKk7lHnmpEHgbMiYj0wA5wL7K7xfCs2MjbJ8OgEe6dn2Njfx/oje3jqmbmfeF1/X69TNJIk1aS2MJKZt0fEZ4A7gGeBMWBnXedbqfeMjHPdbQ/uW6x6sO28vT3Be9/88vYVJklSl6l1N01mXglcWec5DsXI2OR+QWQpxxy5zlERSZJq1JWXg1/JFVafmDnw7hpJktQaXRlGllqouthGd9FIklSrrgwjKwkY7qKRJKleXRlGzj51oKm78rqLRpKk+nVdGBkZm+T6PZNNrRlxF40kSfXrujAyPDrBzOxPXkvkQBwVkSSpfl0XRppdvLphfW/NlUiSJOjCMNLM4tXenuDKC5yikSSpHboujAxt20xfb89+bb1HBBvW9xI0bog3fNErnaKRJKlNar0Ca6c6at0R+9aNbFjfy5UXvNzwIUlSIV0VRkbGJtmxa3y/Bax/N/tcwYokSVJXTdMcaCfNzOwcw6MThSqSJEldFUYOtpNmJZeHlyRJrdVVYeRgO2m8/4wkSeV0VRg50E6avt4e7z8jSVJBXbWAdX7HzPDoBHunZ9jY38fQts3upJEkqaCuCiPQCCSGD0mSOkdXTdNIkqTOYxiRJElFGUYkSVJRhhFJklSUYUSSJBVlGJEkSUUZRiRJUlFddZ2RkbFJL3gmSVKH6ZowMjI2yY5d4/vu2js5PcOOXeMABhJJkgrqmmma4dGJfUFk3szsHMOjE4UqkiRJ0EVhZO/0zIraJUlSe3RNGNnY37eidkmS1B5dE0aGtm2mr7dnv7a+3h6Gtm0uVJEkSYIuWsA6v0jV3TSSJHWWrgkj0Agkhg9JkjpL10zTSJKkzmQYkSRJRRlGJElSUYYRSZJUlGFEkiQVZRiRJElFGUYkSVJRhhFJklSUYUSSJBVlGJEkSUUZRiRJUlGGEUmSVJRhRJIkFWUYkSRJRRlGJElSUevqfPOI6AeuAU4HEvj1zPw/dZ7zYEbGJhkenWDv9Awb+/sY2raZ7VsGS5QiSZIWqDWMAB8GvpiZF0XEkcD6ms93QCNjk+zYNc7M7BwAk9Mz7Ng1DmAgkSSpsNqmaSLiWOAXgY8CZOYzmTld1/mWMjw6sS+IzJuZnWN4dKJEOZIkaYE614ycBEwBfxYRYxFxTUQcs/hFEXFZROyOiN1TU1O1FLJ3emZF7ZIkqX3qDCPrgDOBqzNzC/AU8O7FL8rMnZm5NTO3DgwM1FLIxv6+FbVLkqT2qTOMPAQ8lJm3V8efoRFO2m5o22b6env2a+vr7WFo2+YS5UiSpAVqCyOZ+V3gOxEx/xv/XODuus63lO1bBvngW17BYH8fAQz29/HBt7zCxauSJHWAunfT/CvgumonzQPApTWf76C2bxk0fEiS1IFqDSOZeSewtc5zSJKk1c0rsEqSpKIMI5IkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrqoPemiYgXLPWDmflY68uRJEndZqkb5e0BEgjgJcDj1eN+4EHgpNqrkyRJa95Bp2ky86TMfBnwP4ALMvP4zDwOOB+4qV0FSpKkta2ZNSNnZeYX5g8y86+AV9dXkiRJ6iZLTdPM2xsR7wH+ojp+K7C3vpIkSVI3aWZk5BJgALgB2FU9vqTOoiRJUvdYcmQkInqA383My9tUjyRJ6jJLjoxk5hzw2jbVIkmSulAza0bGIuJG4NPAU/ONmbmrtqpabGRskuHRCfZOz7Cxv4+hbZvZvmWwdFmSJInmwsjRwKPAOQvaksb6kY43MjbJjl3jzMzOATA5PcOOXeMABhJJkjrAsmEkMy9tRyF1GR6d2BdE5s3MzjE8OmEYkSSpAywbRiLiaOCdwMtpjJIAkJm/XmNdLbN3emZF7ZIkqb2a2dr7CeBFwDbgb4ATgB/WWVQrbezvW1G7JElqr2bCyMmZ+XvAU5n5ceA84BfqLat1hrZtpq+3Z7+2vt4ehrZtLlSRJElaqJkFrLPV39MRcTrwXeCF9ZXUWvPrQtxNI0lSZ2omjOyMiA3A7wE3As+rHq8a27cMGj4kSepQzeymuaZ6+DfAy+otR5IkdZtmdtPcD9wG3Arcmpl31V6VJEnqGs0sYD0N+C/AccBwRNwfETfUW5YkSeoWzYSRORqLWOeA54BHqj+SJEmHrZkFrD8AxoGrgI9k5qP1liRJkrpJMyMjlwBfAf4F8KmIeF9EnFtvWZIkqVs0s5vms8BnI+JU4I3AFcC7AC9hKkmSDtuyIyMRcX1E3Ad8GFgPvB3YUHdhkiSpOzSzZuSDwFhmzi37SkmSpBVqZs3I3cCOiNgJEBGnRMT59ZYlSZK6RTNh5M+AZ4BXV8eTwPtrq0iSJHWVZsLIz2TmH1LdMC8znwai1qokSVLXaCaMPBMRfUACRMTPAD+qtSpJktQ1mlnAeiXwReDEiLgOeA3wjjqLkiRJ3aOZ64zcHBF3AGfRmJ65PDO/X3tlkiSpKzQzTUNmPpqZ/z0zPw+8ICI+UnNdkiSpSxw0jETEz0XETRHxjYh4f0S8OCKuB75MY7uvJEnSYVtqZOQjwCeBXwamgDuB+4GTM/NDbahNkiR1gaXWjByVmR+rHk9ExOWZ+a421CRJkrrIUmHk6IjYwo+vKfKjhceZeUfdxUmSpLVvqTDyMHDVguPvLjhO4JxmThARPcBuYDIzvYy8JEnaz0HDSGae3aJzXA7cA/xUi95PkiStIU1t7T1UEXECcB5wTZ3nkSRJq1etYQT4I+BdwHMHe0FEXBYRuyNi99TUVM3lSJKkTlNbGImI84FHMnPPUq/LzJ2ZuTUztw4MDNRVjiRJ6lDLXg4+Is48QPMTwLcz89klfvQ1wJsj4k3A0cBPRcRfZObbDq1USZK0FjVzo7z/DJwJfJ3Gtt7TgbuAYyPin2fmTQf6oczcAewAiIjXAb9jEJEkSYs1M02zF9hSTaX8PLAFeAB4PfCHdRYnSZLWvmZGRn42M++aP8jMuyPi1Mx8ICKW+rl9MvOvgb8+pAolSdKa1kwYuSsirgY+VR3/CnB3RBwFzNZWmSRJ6grNTNO8A7gPuKL680DVNgu06sJokiSpSzUzMvJG4E8y8z8e4LknW1yPJEnqMs2MjFwA/L+I+EREnB8RzQQYSZKkpiwbRjLzUuBk4NPAJcD9EeHl3SVJUks0NcqRmbMR8Vc07tbbB2wHfqPOwlplZGyS4dEJ9k7PsLG/j6Ftm9m+ZbB0WZIkqbLsyEhEvDEiPgZ8E/hlGje9e1HNdbXEyNgkO3aNMzk9QwKT0zPs2DXOyNhk6dIkSVKlmTUjbwdGgM2Z+Y7M/MIyl4HvGMOjE8zMzu3XNjM7x/DoRKGKJEnSYstO02TmJQuPI+K1wCWZ+Zu1VdUie6dnVtQuSZLar6m79kbElogYjohvAf8WuLfWqlpkY3/fitolSVL7HTSMRMTPRsSVEXEv8MfAg0Bk5tmZ+cdtq/AwDG3bTF9vz35tfb09DG3bXKgiSZK02FLTNPcCtwLnZ+Z9ABHxW22pqkXmd824m0aSpM61VBh5C3AxcEtEfJHGvWmauzNeB9m+ZdDwIUlSBzvoNE1mjmTmxcCpwC007kvzwoi4OiJ+qV0FSpKkta2ZK7A+lZmfzMwLgBOAMeDf1F6ZJEnqCk3tppmXmY9n5s7MPLeugiRJUndZURiRJElqNcOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkooyjEiSpKIMI5IkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkooyjEiSpKIMI5IkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkoqqLYxExIkRcUtE3B0Rd0XE5XWdS5IkrV7ranzvZ4Hfzsw7IuL5wJ6IuDkz767xnJIkaZWpbWQkMx/OzDuqxz8E7gEG6zqfJElandqyZiQiNgFbgNsP8NxlEbE7InZPTU21oxxJktRBag8jEfE84Hrgisz8weLnM3NnZm7NzK0DAwN1lyNJkjpMrWEkInppBJHrMnNXneeSJEmrU527aQL4KHBPZl5V13kkSdLqVufIyGuAfwqcExF3Vn/eVOP5JEnSKlTb1t7M/J9A1PX+kiRpbfAKrJIkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkooyjEiSpKIMI5IkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkooyjEiSpKIMI5IkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkooyjEiSpKIMI5IkqSjDiCRJKsowIkmSijKMSJKkogwjkiSpKMOIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrKMCJJkopaV+ebR8QbgA8DPcA1mfkHdZ5vsZGxSYZHJ9g7PcPG/j6Gtm1m+5bBdpYgSZKWUVsYiYge4E+B1wMPAV+NiBsz8+66zrnQyNgkO3aNMzM7B8Dk9Aw7do0DGEgkSeogdU7TvAq4LzMfyMxngE8BF9Z4vv0Mj07sCyLzZmbnGB6daFcJkiSpCXWGkUHgOwuOH6ra9hMRl0XE7ojYPTU11bKT752eWVG7JEkqo/gC1szcmZlbM3PrwMBAy953Y3/fitolSVIZdYaRSeDEBccnVG1tMbRtM329Pfu19fX2MLRtc7tKkCRJTahzN81XgVMi4iQaIeRi4FdrPN9+5hepuptGkqTOVlsYycxnI+JfAqM0tvZem5l31XW+A9m+ZdDwIUlSh6v1OiOZ+QXgC3WeQ5IkrW7FF7BKkqTuZhiRJElFGUYkSVJRhhFJklSUYUSSJBVlGJEkSUUZRiRJUlGRmaVr2CcipoBv1/DWxwPfr+F9dWD2d/vY1+1jX7eX/d0+dfb1SzNz2RvPdVQYqUtE7M7MraXr6Bb2d/vY1+1jX7eX/d0+ndDXTtNIkqSiDCOSJKmobgkjO0sX0GXs7/axr9vHvm4v+7t9ivd1V6wZkSRJnatbRkYkSVKHMoxIkqSi1nwYiYg3RMRERNwXEe8uXc9qFxHXRsQjEfGNBW0viIibI+Kb1d8bqvaIiP9U9f3XI+LMcpWvPhFxYkTcEhF3R8RdEXF51W5/1yAijo6I/xsRX6v6+31V+0kRcXvVr/8tIo6s2o+qju+rnt9Usv7VKCJ6ImIsIj5fHdvXNYiIb0XEeETcGRG7q7aO+hxZ02EkInqAPwXeCJwGXBIRp5WtatX7GPCGRW3vBr6UmacAX6qOodHvp1R/LgOublONa8WzwG9n5mnAWcBvVv//2t/1+BFwTma+EjgDeENEnAX8e+BDmXky8Djwzur17wQer9o/VL1OK3M5cM+CY/u6Pmdn5hkLrifSUZ8jazqMAK8C7svMBzLzGeBTwIWFa1rVMvMrwGOLmi8EPl49/jiwfUH7n2fDbUB/RLy4PZWufpn5cGbeUT3+IY0P7UHs71pU/fZkddhb/UngHOAzVfvi/p7/d/gMcG5ERJvKXfUi4gTgPOCa6jiwr9upoz5H1noYGQS+s+D4oapNrfXTmflw9fi7wE9Xj+3/FqmGpbcAt2N/16aaNrgTeAS4GbgfmM7MZ6uXLOzTff1dPf8EcFx7K17V/gh4F/BcdXwc9nVdErgpIvZExGVVW0d9jqyr+wTqLpmZEeF+8RaKiOcB1wNXZOYPFn4htL9bKzPngDMioh+4ATi1cElrUkScDzySmXsi4nWl6+kCr83MyYh4IXBzRNy78MlO+BxZ6yMjk8CJC45PqNrUWt+bH8ar/n6karf/D1NE9NIIItdl5q6q2f6uWWZOA7cAf5/GMPX8F7eFfbqvv6vnjwUebXOpq9VrgDdHxLdoTJ+fA3wY+7oWmTlZ/f0IjZD9Kjrsc2Sth5GvAqdUK7SPBC4Gbixc01p0I/Br1eNfAz67oP3t1erss4AnFgwLahnVnPhHgXsy86oFT9nfNYiIgWpEhIjoA15PY53OLcBF1csW9/f8v8NFwJfTq0g2JTN3ZOYJmbmJxufylzPzrdjXLRcRx0TE8+cfA78EfIMO+xxZ81dgjYg30Zib7AGuzcwPFC5pVYuI/wq8jsYtp78HXAmMAH8JvAT4NvBPMvOx6pfpn9DYffM0cGlm7i5R92oUEa8FbgXG+fG8+u/SWDdif7dYRPwcjYV8PTS+qP1lZv5+RLyMxrf3FwBjwNsy80cRcTTwCRpreR4DLs7MB8pUv3pV0zS/k5nn29etV/XpDdXhOuCTmfmBiDiODvocWfNhRJIkdba1Pk0jSZI6nGFEkiQVZRiRJElFGUYkSVJRhhFJklSUYUTSYYuIueqOoN+IiE9HxPqq/cnlflaSDCOSWmGmuiPo6cAzwD8rXZCk1cMwIqnVbgVOXtgQEc+LiC9FxB0RMR4RF1btvx8RVyx43Qci4vKIeHFEfGXBaMs/aPN/g6Q28qJnkg5bRDyZmc+r7htyPfDFzLx6Ufv66kZ/xwO3AacALwV2ZeaZEXEE8E0a9814B3B0daXInupnf1jkP05S7bxrr6RW6IuIO6vHt9K4p85CAfy7iPhFGpe2H6RxC/NvRcSjEbGFxi3MxzLz0Yj4KnBtdaPAkcy8E0lrlmFEUivMZOYZSzz/VmAA+PnMnK3u1np09dw1NEZCXgRcC5CZX6mCy3nAxyLiqsz887qKl1SWa0YktcOxwCNVEDmbxvTMvBto3JTr7wGjABHxUuB7mfkRGmHlzDbXK6mNHBmR1A7XAZ+LiHFgN3Dv/BOZ+UxE3AJMZ+Zc1fw6YCgiZoEngbe3uV5JbeQCVklFVQtX7wD+cWZ+s3Q9ktrPaRpJxUTEacB9wJcMIlL3cmREkiQV5ciIJEkqyjAiSZKKMoxIkqSiDCOSJKkow4gkSSrq/wNQR4uazzIQzQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9lElEQVR4nO3deXxU9b3/8fdMVhLIhAAhQbYoAQ2RCCgQ1yogoI1o771uUBGtWoSqoL3K/VUi6m286vXWumDVCraKVK1ooUhFERBkk0AhgBQwyDYxhshkgSSQOb8/aKZZJslMMjMnJ3k9H488Hsw53znzmZxE3/PNd7EZhmEIAAAAgOXYzS4AAAAAQMsQ5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAosLNLqA13G63jh49qi5dushms5ldDgAAABAQhmGotLRUvXr1kt3eeP+7pcP80aNH1adPH7PLAAAAAILi0KFD6t27d6PnLR3mu3TpIunMm4yLizO5GgAAACAwSkpK1KdPH0/ebYylw3zN0Jq4uDjCPAAAANqd5oaSMwEWAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsChL7wALAABgpmq3oU35xSosrVD32Ci5DUPrvynSkR9Oymaz6ayunXTxOd016uxuCrM3vZMn0BKEeQAAgHpqh/TELtEa3q+rNucXa93+7z1B/eSpan25/5hKK043ea2XPt+vyDCbMno7dFbXGCXHRyu+U6SOn6zS0Vqhf1RKN0nSxvxjchuSo1NEgzZ8MEB9NsMwDLOLaKmSkhI5HA65XC7FxcWZXQ4AAGijasJ5geukisoqVXyiSs7jFV6Dta8h3Sz1PxgkxESpe5coJcVFa0RKQkCDfrXb0Ib9x7T+myJJNo1MSZCkOn998PY9rH3MebyCDyIt4GvOJcwDAAC/1Q55jfUij0rpJrvdpqKySiV28S9oNnf9+mGxqUCZe/AHrf7H96o45Q7yd8V8MZF2jR/cUz0dnep8HxJiopQQG6ni8kodP3lKhg/f05OnqgP+fWvuLxSt+XBS8zOzbv/3OtrIB4j6bZr6uSmpOCWbbMo8p5spH0II8wAAtDH1x1fLJhWWVKi4vEoJnf0LL/WHgQS6R7b+a9UO1gWuCv11h1OVp/0LebFRYbrzkv66qH+3RoeSJMdH6ztXZYuuj/YnITZCj2cNVtfYqCYDeFMfPCLDbLqgT7y6xka2+MNJfEyEnvrJ+RqfnhyIt+UTwjwAwDK89cKa3SsWSNVuQy98tlevr/1GZZXVTbaNibBrcK+4Bj2XtXufvfU0+/I8bz2gzfXWBqN3FrCqVyYPC1mgJ8wDANqs2uF9b2FZs2ExNipMz/zbEF0zpFcIq2yctx72mqEktSdKHv3nUIWVXxfqVLVl/3cL4J+SHdFa+/BVIelc8DXnspoNACCgak80rBk+ktj5X0NK1u4r0tLt/g2hKK+s1r0LtypjzT7179Y54GOy1chfALz9xaAjjb8GUJfTVaFN+cXKPKeb2aV4EOYBAC1iRtD9++FS/f1wqefxS5/vr3O+9uS/muEl3ibTLdvu1H/+ebvKKv+1WsmLn+/zjK0d3r8r47YBeFVYWmF2CXUQ5gEAPqvpdf9kp1PvbD7U5nqnT1S59cFWZ6PnoyPsSoqL0oFjJ72er6o2tOnAD9p04IdglQjA4hK7RJtdQh2EeQBAsyuj+DOBsy2rOOVuNMgDgVIzGdlms+nvh138dacdSXac+e9jW0KYB4AOrLGQHhsZpssH9tDkUf3kOnFKD73/d52osm6IBwIlKsymIfU2bEqIjdTxE96XF629rnljmyw5XRXa6SxRea3fwfrrxTtdFXwwaAOys9La3MparGYDAB1I7WDx1YEflHvwuE67Lfu/AaBFosJt+tHAHuoUGe7zsp3BXibVl30DvH0wMGvp0MaWQvW2AdWWAz9Y/oNI15gI5bDOfOAR5gF0FI3thtnUJM/az23L49xhfZFh0o+HJNfpRa7f0xzI6/u7A2xNG287grYHze2We/JUtb7cf0ylFf+a8N3YTrH1v6c1/22pWZGqJStH1a6xqb9Q2Gw2HThWrm2HXK3+nkSE2WQYarKzIjrCritSu2tYvwR2gDULYR5AR+Bt5ZWmxEaF6a5LU3Tvlal6+fN9lh/njralJgQmx8c0GXRqL1FaVFapLQd/0Nq9RXV+FpsKlGYHqfYmlDsGt9ay7U796qM8FZdXNTjXVACv36khyfMB4qgPHR9tDWEeACyodu/V0eMVAeulspKYSLvOio/W3sITZpcSFLFRYbrzkv4aeXZ3FZZU1FmL320YWv9Nkdeey/q9zzU9zaNSzqx37evzWtJbG6gAZKVACXN526/CCgE8kAjzAGARHX0YTGSYlJXRS5emJjZYC76x3jkriAqzKeOfa9a31d5AwjXQdhHmAcACrB5YWyIq3KYrByVqQGKXZodQ1B+qUXyi8dU/gq32uO3aveJ2u02FJRUqKgvNREkAHYOvOZelKQHAJP/911167Yt8s8sIiPo7r9ZMNLyof4I25xdr/TdFUgtCbpjd1ui26fWD/vGTp2TUmxzsy0ofCbERejxrsLrGRtUZW8u4bQBWQM88AARI/TGe8TH/WtaufsjMLyrT3w+XmF1yq92e2U/j0pPb9PCM+vMQrDYJDkDHZIme+ccee0xz586tc2zQoEH6+uuvTaoIAPzXXnZH9dfLtw7VNUN6mV1Gs8LsNl2S2l2XpHY3uxQACDjTh9kMHjxYn376qedxeLjpJQEIovrrIXeNiWxy98T6z60/WU+qu/RY7XWkJQVlNYTa72FvYZlWfl2oU9WW/SOnJCk63K4rz03UrSP6avOBYr265htVNLLBS7IjWtlZaSHdPAUA4J3pyTk8PFxJSUlmlwEgiGrC71sbD+jzr79vNCTWqFkn/RejB3pCt7eJopHhNsmQquoF6Zc+369wu2S32Rqck86E0UevPU+OTpFePwQ09UGiPa04Ex1h148G9tBPM/vXed+XDeyh+8cMbPChi2EpAND2mDpm/rHHHtMzzzwjh8Oh6OhoZWZmKicnR3379vXavrKyUpWVlZ7HJSUl6tOnD2PmARN523mw9qTB4vIqzf5gh88bHtUWFWbTPVecrS/2FmlriNZajwyzKaO3Q2d1jfGsVrL5QLHeWJffpobQjOwfr2H9EzyTPH3960BEmE2TR/bV1YPb9jh3AOjoLLE05ccff6yysjINGjRITqdTc+fO1ZEjR5SXl6cuXbo0aO9tjL0kwjxggppx4q+s3t9sTzsCJyE2Qk9OTG8wVr25cfve/toBAGi7LBHm6zt+/Lj69eun5557TnfeeWeD8/TMA+ardht6ceU+vbRqn6oI8UFVs235hf27+TzEhV0TAaB9sMRqNvXFx8dr4MCB2rdvn9fzUVFRioqKCnFVACR64kPpR4O6657LB7QogDe1LjsAoP1pU2G+rKxM+/fv109/+lOzSwGgf/XyrthVoIUbDxLiQ+Cuy/rr/1072OwyAAAWYWqYf+ihh5SVlaV+/frp6NGjys7OVlhYmG655RYzywI6rNpDNNbuK9LynQUqb0OTPtuzxsbCAwDQFFPD/OHDh3XLLbfo2LFj6tGjhy699FJt2LBBPXr0MLMsoEOoP7b6YPEJfbD1iEor/F91Bs2LibRr/OCe6unoJCe7kAIAAsTUML9o0SIzXx7okDrqbqWhUrNqzL1XpmrLtz/U2eCKsA4ACLQ2NWYeQHAt2+7UrHe3tdux7xFhNhmGdNodukW6YiLtmpCepEtTExv0sDMRFQAQbIR5oIPIWbZLv1uTb3YZigq3adoV5zTouR7er6te/nxfs6vlRIZJWUN6KSm+kwwvO5NK0ob9x+rs7Bpht2vBlwd0/OQpr9f090MAGy8BANqKNrXOvL98XX8T6OiWbjuqGYu2Bv11IsOkoX3jte1QiSrrBfLYyDDdffnZmnFVarPrpL+4cp/mr8uvE75bu+lR/Z1qm/oQcOSHk3K6KrTTWVJnAjAbLwEAQsWSm0b5izAPNG/Z9qOavnCrgvmLPqyPQw+OO1ejzu6mMLutTnCWzqx7XnPOVzUTdM0cc94WagAAdEyEeQBatt2pexfmBvU1Xrx5qH58AcspAgAQSJbcARZA69TuEf/Hd6X6ZFdhUF/v5VuHsi46AAAmIswD7cSy7U7955+3q6wy+OvEJzuilZ2VpvHpyUF/LQAA0DjCPNAOBGulmgv6xOnSAYkamZIgu92morJKxo4DANCGEOYBi1u67WjAg3xCbISenJjOEBoAANo4wjxgUdVuQ89/+g/9duW+Vl3nvisHaMZodisFAMCKCPOABQVqJ9f7R6dq5tiBktitFAAAKyLMA21czQo1NZsZ7Txaon3fl7f6uvExEbpvdGoAKgQAAGYhzANtVM1OqL9bs18nqqqbf4KfnvrJ+QylAQDA4gjzQBu0PM+pRz7YoeMnTgX82rFRYfrf/8hgWUkAANoBwjzQxgRr19bYqDDddWmKfjF6ID3yAAC0E4R5oA2odhvalF+s5XlH9eb6gwG77k8u6KXLBiUqKY4VagAAaI8I84DJlm136lcf5am4vCqg133x5qH68QWsEw8AQHtGmAdM9N9/3aXXvgj8zq33XJ5CkAcAoAMgzAMBVDNcprC0Qt1joySbVFRW6dmISZLn/Cc7C/TXHQUBff3oCLue+48Mdm4FAKCDIMwDAdLccJnIcJvCbDadPNW6jZ68iQq3adoV5zC5FQCADoYwD7RA7Y2cjh6v0IFj5dp2yNXkc6pOG5KMgNYRGxmmuy8/WzOuSiXEAwDQARHmAT8Fcw345oTbpGuH9FLvhE66+JzuGnV2N0I8AAAdGGEe8EHNWPgVuwr0xroDptXx4qRhbPYEAAA8CPNAM5bnOTV3yS45XRWm1cCurQAAwBvCPNCE5XlOTXsrN8Aj3X3Hrq0AAKAphHmgEdVuQ498sMOUIH/loO66+/IB7NoKAACaRJgHGvHiyr0hn+Rqk/QCO7cCAAAfEeaBeqrdhr7cW6QXV+4L+Wu/dOtQNnwCAAA+I8yHQO1dQWt2AmXoRNu0bLtT//nn7SqrPB3S1+0aE6Gcn5zPBFcAAOAXwnyQeVsJJdkRreysNIJbG5OzbJd+tyY/INfqGhOuKZn91a9brIrKKnX85CkZhtQ1JlIJsZEqLj9zzCabMs/pxnrxAACgRQjzQdTYSihOV4V+/lauXm7BkAp6+YNj2fajrQ7ynaPC9Ph16UqO78R9AQAAIUGYD5Jqt6G5S3Y1uRLKjHe26kXZdM0Q33ro6eUPjmq3oV99lNeqa9gkPcs68AAAIMTsZhfQXm3KL252kyG3Id27MFfL85zNXq+ml7/+NQtcFZr2lm/XgHcbvjmm4vKWr1qT7IjWvMnszAoAAEKPnvkgKSz1fbfQuUt2aWxaUqPDMprq5Td0ple4uWvAu2XbnZr57ja/nxcdYdevrz+fITUAAMBUhPkgSewS7XNbp6tCm/KLlXlON6/nm+vlN3y4RltnxlyA//7rLr32RcvGyf/mpgvoiQcAAKYjzAfJiJQEJTuimx1qU6PAdbLRc7728i/4Mt+SvcShnAtQ86Hh1TX79PmeIr+fzxKSAACgLWHMfJCE2W3Kzkrzuf0Tf93d6Lh3X3v5/7bzOw157G9anudUtdvQ+v3H9NG2I1q//5iq3U1NxTXPsu1O/TxEcwGW5zl16f+s1C2vbfA7yIfbbZo5JlVf/WosQR4AALQZNsMw2mbK80FJSYkcDodcLpfi4uLMLserZduPasY7W9Vclq7pS/c2kXLZ9qO6d+FWv143NjJM5VXVnsfxnSI09ZL+mnFVapvpuW/ue2OTlOSI1tqHr2p1zY0tE+qrt+8cqUtSu7eqBgAAAF/5mnPpmQ+ya4b00ou3DGu2XU3InLtkl6cXvdptaN3eIj30/na/X7d2kJek4ydP6f8+3avhT65oEyvfLNvu1L0Lm/6QU3suQGtUuw098sGOFgf5ZEe0Rll0LgIAAGjfGDMfAtcMSdYr9mF68L2/q7yyutF2tcOr62RVg3HkgXD8xCn9/K1cvRLCpRTrT249VlqpX/zJ9780/G2ns1UTe19cuVfHT7Rs6UmbpOystDbz1wwAAIDaCPMh1FSQr23FrgLNX3egxT3Jvnjkgx0+L2XZ0pVmqt2GXly5T/PX5ev4yZav477gy291rKxSv7l5mNfXrXYb2rD/mNbt/15Hj1forK6ddPE53XVR/wRt3H9ML67c16LXZbIrAABo6xgzHwLVbkOX/s9Kn3vZE2IjVVxeFeSqpJljBur+MalNtvG20owv4++X5zn1yAc7Wtwj7k1UuE3TrjhH916Zqi3f/qDC0grlf1+u19fmq6zydMBeR5KuPT9Jv73F+4cHAACAYPM15xLmQ2D9/mO65bUNZpfRQHxMhLb8amyTgbypSaPxMRF6ykvP9fK8MyvUBItNCupfLe66rL/+37WDg/gKAAAATWMCbBviz26woXT8xClt2H/M67mmdp2t/fz6y0fWPC+YghXkbZJevHkoQR4AAFgGYT4E/NkNNtSmL/S+lvuGb475NCzIkPTwn7dr3b4iz9j6QE/aDZWXbh2qH1/Qy+wyAAAAfMYE2BAYkZKghNgIFZcHbvx4oBw/eaZ3fd7kYRqblqQN+4/prY0H9MnO73y+huvkaU16faMSYiOUcZYjiNUGR+eocD37H0OY6AoAACyHMfNBVHsVmG++L9fzn+01uySvbJIcMRGSoVatOmNFsVFh2vro1YoM549UAACg7fA159IzHyTeVoGJDrer4rTbxKq8M6SArjpjJf/7HxkEeQAAYFmkmCCoWQWm/tjxmiAfFR6Y5Q4TYiMDcp22oGtMhHY/Pl4PjE5VVFjwl4PsGhMR0o2zAAAAgoEwH2C+rAJTedrQtelJLX4Nm6RkR7SenJje4mu0JTZJOT85X50iw/TA2IHa9cQE/XhI8EL2A6NT9dWvxhLkAQCA5RHmA8zX1Vw25Bfr2vNbHuizs9J0zZBkvXzrUFl5X6NkR7Tm1eshD7Pb9OKtw/TizUPl71tr7gf65VuH6oGxA9kMCgAAtAuMmQ8wX9eUP1ZepZTunf2+frIjWtlZaZ7we82QXnpRNt27sOEmTcHeXKklbr+4n8YNTlZhaYUSu0RrREpCo8H6xxf0kt3u/b3VFxsZprsvP1szrkrV3/IK9KuP8ursolv/+wYAANAeEOYDzL815f2L2jPHpGrGVakNwu81Q5L1in1Ygwm3Sf8MsJL02F92qqCk0q/XC4Zxg5OVeU43n9s39t5qxHeK0NRL+tf5vlwzJFnj0pM8Kwk196EBAADAqgjzAebPmvKZZ3fXwk0HfWo7c8xA3T8mtdHz49OTNTat8QDbJTpCk17f6Psb8SI63C673aYTVdUten6y40xN/qr93gpcJ1VcXqWEzlFKims8pIfZbX59aAAAALAiwnyAhdltenJiuu5duLXJdsmOaI06p5tPbZPiojTjqgE+vXZjAbaorOW98iP6J+j+MakadfaZa2/Yf0zrvynS2n1F2nbI5dM1bDozzr+lveOEcwAAgIbazATYp556SjabTQ888IDZpbTaNUN66Z7LUxo9XzvY+tL2sesGt3qIiH/Df/4lISZC79w9SpcM6K4wu01hdpsuSe2uh8adqw+nX6qXbx2mzlFNfyb0NskVAAAArdcmeuY3b96s3/3udxoyZIjZpQTM7GvSlNG7q08TMf1p21IjUhIU3ynC7x1erx96VpMfJGrGp9f01ks2jUxJkN1uU1FZJePVAQAAgsj0MF9WVqZJkybptdde05NPPml2OQHlz0TMYE/aDLPbNPWS/vq/T/f69byxac0vn1nTW39JaveWlgcAAIAWMD3MT58+Xddee63GjBnTbJivrKxUZeW/xn6XlJQEu7xW82esd7DHhc+4KlXzvzyg4yd8651v6YRVAAAAhIapY+YXLVqk3Nxc5eTk+NQ+JydHDofD89WnT58gV9i+hNlteuon5ze7EZNNrZ+wCgAAgOAzLcwfOnRI999/v95++21FR/s2OXP27NlyuVyer0OHDgW5yvZnfHqy5k0epmRH49/zJCasAgAAWILNMAxTNgn98MMPdcMNNygsLMxzrLq6WjabTXa7XZWVlXXOeVNSUiKHwyGXy6W4uLhgl9yuVLsNz/j87rFRkk1MWAUAAGgjfM25po2ZHz16tHbs2FHn2NSpU3Xuuefq4YcfbjbIo3VYtx0AAMD6TAvzXbp0UXp6ep1jsbGx6tatW4PjAAAAABoyfTWb9qj2EBaGrQAAACBY2lSYX7VqldkltNryPKfmLtklp6vCcyyQmz8BAAAANUxdmrK9WZ7n1LS3cusEeUkqcFVo2lu5Wp7nNKkyAAAAtEeE+QCpdhuau2SXvC0NVHNs7pJdqnabsngQAAAA2iHCfIBsyi9u0CNfmyHJ6arQpvzi0BUFAACAdo0wHyCFpY0H+Za0AwAAAJpDmA+QxC6+7WLrazsAAACgOYT5ABmRkqBkR7QaW4DSpjOr2oxISQhlWQAAAGjHCPMBEma3KTsrTZIaBPqax9lZaaw3DwAAgIAhzAfQ+PRkzZs8TEmOukNpkhzRmjd5GOvMAwAAIKDa1KZR7cH49GSNTUtiB1gAAAAEHWE+CMLsNmWe083sMgAAANDOEeYDrNpt0CsPAACAkCDMB9DyPKfmLtlVZ/OoZEe0srPSGC8PAACAgGMCbIAsz3Nq2lu5DXaBLXBVaNpbuVqe5zSpMgAAALRXhPkAqHYbmrtklwwv52qOzV2yS9Vuby0AAACAliHMB8Cm/OIGPfK1GZKcrgptyi8OXVEAAABo9wjzAVBY2niQb0k7AAAAwBeE+QBI7BLdfCM/2gEAAAC+IMwHwIiUBCU7otXYApQ2nVnVZkRKQijLAgAAQDtHmA+AMLtN2VlpktQg0Nc8zs5KY715AAAABBRhPkDGpydr3uRhSnLUHUqT5IjWvMnDWGceAAAAAcemUQE0Pj1ZY9OS2AEWAAAAIUGYb4Vqt+EJ7t1joySbVFRWqcQu0frxkF6EeAAAAAQVYb6Fluc5NXfJrkbXl092RCs7K43hNQAAAAgaxsy3wPI8p6a9ldvkRlEFrgpNeytXy/OcIawMAAAAHQlh3k/VbkNzl+yS0Uy7mvNzl+xStbu51gAAAID/CPN+2pRf3GSPfG2GJKerQpvyi4NbFAAAADokwryfCkt9C/KtfQ4AAADQHMK8nxK7RDffKADPAQAAAJpDmPfTiJQEJTuiG+z06o1NZ1a1GZGSEOyyAAAA0AER5v0UZrcpOytNkpoM9DXnsrPSWG8eAAAAQUGYb4Hx6cmaN3mYkhyND59JckRr3uRhrDMPAACAoGHTqBYan56ssWlJje4AOyIlgR55AAAABBVhvhXC7DZlntPN7DIAAADQQTHMBgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBSbRgVQtdvw7AjLLrAAAAAINsJ8gCzPc2rukl1yuio8x5Id0crOStP49GQTKwMAAEB7xTCbAFie59S0t3LrBHlJKnBVaNpbuVqe5zSpMgAAALRnhPlWqnYbmrtklwwv52qOzV2yS9Vuby0AAACAlvNpmM3QoUNls/k29js3N7dVBVnNpvziBj3ytRmSnK4KbcovVuY53UJXGAAAANo9n8L89ddf7/l3RUWFXn75ZaWlpSkzM1OStGHDBu3cuVP33ntvUIpsywpLGw/yLWkHAAAA+MqnMJ+dne35989+9jPdd999euKJJxq0OXToUGCrs4DELtEBbQcAAAD4yu8x8++9955uu+22BscnT56sP//5zwEpykpGpCQo2RGtxgYh2XRmVZsRKQmhLAsAAAAdgN9hvlOnTlq3bl2D4+vWrVN0dMfrfQ6z25SdlSZJDQJ9zePsrDTWmwcAAEDA+b3O/AMPPKBp06YpNzdXI0aMkCRt3LhRb7zxhh599NGAF2gF49OTNW/ysAbrzCexzjwAAACCyGYYht9rJr777rt6/vnntXv3bknSeeedp/vvv1833nhjwAtsSklJiRwOh1wul+Li4kL62t6wAywAAAACwdec61fP/OnTp/XrX/9ad9xxR8iDuxWE2W0sPwkAAICQ8WvMfHh4uJ5++mmdPn06WPUAAAAA8JHfE2BHjx6t1atXB6MWS6p2G1q//5g+2nZE6/cfY6dXAAAAhIzfE2AnTJigRx55RDt27NDw4cMVGxtb5/x1113n87XmzZunefPm6cCBA5KkwYMHa86cOZowYYK/ZZlieZ6zwaTXZCa9AgAAIET8ngBrtzfemW+z2VRdXe3ztZYsWaKwsDClpqbKMAy9+eabeuaZZ7R161YNHjy42eebOQF2eZ5T097KVf1vXs1013mThxHoAQAA0CK+5twWrWYTTAkJCXrmmWd05513NtvWrDBf7TZ06f+srNMjX5tNZ5alXPvwVaxmAwAAAL8FZTWbYKqurtZ7772n8vJyZWZmem1TWVmpyspKz+OSkpJQlVfHpvziRoO8JBmSnK4KbcovZnUbAAAABE2Lwnx5eblWr16tgwcPqqqqqs65++67z69r7dixQ5mZmaqoqFDnzp21ePFipaWleW2bk5OjuXPntqTkgCosbTzIt6QdAAAA0BJ+D7PZunWrrrnmGp04cULl5eVKSEhQUVGRYmJilJiYqG+++cavAqqqqnTw4EG5XC69//77ev3117V69Wqvgd5bz3yfPn1CPsxm/f5juuW1Dc22e+euUfTMAwAAwG++DrPxe2nKmTNnKisrSz/88IM6deqkDRs26Ntvv9Xw4cP17LPP+l1oZGSkBgwYoOHDhysnJ0cZGRl6/vnnvbaNiopSXFxcnS8zjEhJULIjWo2NhrfpzKo2I1ISQlkWAAAAOhi/w/y2bdv04IMPym63KywsTJWVlerTp4+efvpp/dd//VerC3K73XV639uiMLtN2Vln/nJQP9DXPM7OSmPyKwAAAILK7zAfERHhWZ4yMTFRBw8elCQ5HA4dOnTIr2vNnj1ba9as0YEDB7Rjxw7Nnj1bq1at0qRJk/wtK+TGpydr3uRhSnJE1zme5IhmWUoAAACEhN8TYIcOHarNmzcrNTVVV1xxhebMmaOioiL98Y9/VHp6ul/XKiws1G233San0ymHw6EhQ4bob3/7m8aOHetvWaYYn56ssWlJ2pRfrMLSCiV2OTO0hh55AAAAhILfE2C/+uorlZaW6sorr/SE8S+//FKpqal64403lJGREaxaGzBz0ygAAAAgWCy7aZQ/CPMAAABoj4K2ms0bb7yh/Pz8VhUHAAAAoPX8DvM5OTkaMGCA+vbtq5/+9Kd6/fXXtW/fvmDUBgAAAKAJfof5vXv36uDBg8rJyVFMTIyeffZZDRo0SL1799bkyZODUSMAAAAAL1o1Zv7EiRP64osv9M477+jtt9+WYRg6ffp0IOtrEmPmAQAA0B75mnP9Xpryk08+0apVq7Rq1Spt3bpV5513nq644gq9//77uvzyy1tVNAAAAADf+R3mx48frx49eujBBx/UsmXLFB8fH4SyAAAAADTH7zHzzz33nC655BI9/fTTGjx4sG699Va9+uqr+sc//hGM+gAAAAA0olVj5nfs2KHVq1dr5cqVWrp0qRITE3X48OFA1tckxswDAACgPQramHlJMgxDW7du1apVq/T5559r7dq1crvd6tGjR4sLBgAAAOAfv8N8VlaW1q1bp5KSEmVkZOhHP/qR7rrrLl1++eWMnwcAAABCyO8wf+655+qee+7RZZddJofDEYyaAAAAAPjA7zD/zDPPeP5dUVGh6OjogBYEAAAAwDd+r2bjdrv1xBNP6KyzzlLnzp31zTffSJIeffRR/f73vw94gQAAAAC88zvMP/nkk1qwYIGefvppRUZGeo6np6fr9ddfD2hxAAAAABrnd5j/wx/+oFdffVWTJk1SWFiY53hGRoa+/vrrgBYHAAAAoHF+h/kjR45owIABDY673W6dOnUqIEUBAAAAaJ7fYT4tLU1ffPFFg+Pvv/++hg4dGpCiAAAAADTP79Vs5syZoylTpujIkSNyu9364IMPtGfPHv3hD3/Q0qVLg1EjAAAAAC/87pmfOHGilixZok8//VSxsbGaM2eOdu/erSVLlmjs2LHBqBEAAACAFzbDMIxAXeyrr77ShRdeGKjLNaukpEQOh0Mul0txcXEhe10AAAAgmHzNuX73zJeVlenkyZN1jm3btk1ZWVkaOXKk/5UCAAAAaBGfw/yhQ4eUmZkph8Mhh8OhWbNm6cSJE7rttts0cuRIxcbG6ssvvwxmrQAAAABq8XkC7C9/+UtVVFTo+eef1wcffKDnn39eX3zxhUaOHKn9+/erd+/ewawTAAAAQD0+h/k1a9bogw8+0KhRo3TjjTcqKSlJkyZN0gMPPBDE8gAAAAA0xudhNt99951SUlIkSYmJiYqJidGECROCVhgAAACApvk1AdZut9f5d2RkZMALAgAAAOAbn4fZGIahgQMHymazSTqzqs3QoUPrBHxJKi4uDmyFAAAAALzyOczPnz8/mHUAAAAA8JPPYX7KlCnBrAMAAACAn/zeNAoAAABA20CYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRPq9mU2PWrFlej9tsNkVHR2vAgAGaOHGiEhISWl0cAAAAgMbZDMMw/HnClVdeqdzcXFVXV2vQoEGSpH/84x8KCwvTueeeqz179shms2nt2rVKS0sLStE1SkpK5HA45HK5FBcXF9TXAgAAAELF15zr9zCbiRMnasyYMTp69Ki2bNmiLVu26PDhwxo7dqxuueUWHTlyRJdffrlmzpzZqjcAAAAAoGl+98yfddZZWrFiRYNe9507d+rqq6/WkSNHlJubq6uvvlpFRUUBLbY+euYBAADQHgWtZ97lcqmwsLDB8e+//14lJSWSpPj4eFVVVfl7aQAAAAB+aNEwmzvuuEOLFy/W4cOHdfjwYS1evFh33nmnrr/+eknSpk2bNHDgwEDXCgAAAKAWv4fZlJWVaebMmfrDH/6g06dPS5LCw8M1ZcoU/d///Z9iY2O1bds2SdIFF1wQ6HrrYJgNAAAA2iNfc67fYb5GWVmZvvnmG0nS2Wefrc6dO7es0lYgzAMAAKA9CtqY+bfeeksnTpxQ586dNWTIEA0ZMsSUIA8AAAB0dH6H+ZkzZyoxMVG33nqrli1bpurq6mDUBQAAAKAZfod5p9OpRYsWyWaz6cYbb1RycrKmT5+uL7/8Mhj1AQAAAGhEi8fMS9KJEye0ePFiLVy4UJ9++ql69+6t/fv3B7K+JjFmHgAAAO2Rrzk3vDUvEhMTo3HjxumHH37Qt99+q927d7fmcgAAAAD84PcwG+lMj/zbb7+ta665RmeddZZ+85vf6IYbbtDOnTsDXR8AAACARvjdM3/zzTdr6dKliomJ0Y033qhHH31UmZmZwagNAAAAQBP8DvNhYWF69913NW7cOIWFhdU5l5eXp/T09IAVBwAAAKBxfof5t99+u87j0tJSvfPOO3r99de1ZcsWlqoEAAAAQqRFY+Ylac2aNZoyZYqSk5P17LPP6qqrrtKGDRsCWRsAAACAJvjVM19QUKAFCxbo97//vUpKSnTjjTeqsrJSH374odLS0oJVIwAAAAAvfO6Zz8rK0qBBg7R9+3b95je/0dGjR/XCCy8EszYAAAAATfC5Z/7jjz/Wfffdp2nTpik1NTWYNQEAAADwgc8982vXrlVpaamGDx+ukSNH6sUXX1RRUVGrXjwnJ0cXXXSRunTposTERF1//fXas2dPq64JAAAAdBQ+h/lRo0bptddek9Pp1D333KNFixapV69ecrvdWrFihUpLS/1+8dWrV2v69OnasGGDVqxYoVOnTunqq69WeXm539cCAAAAOhqbYRhGS5+8Z88e/f73v9cf//hHHT9+XGPHjtVf/vKXFhfz/fffKzExUatXr9bll1/ebPuSkhI5HA65XC7FxcW1+HUBAACAtsTXnNvipSkladCgQXr66ad1+PBhvfPOO625lCTJ5XJJkhISEryer6ysVElJSZ0vAAAAoKNqVc98ILndbl133XU6fvy41q5d67XNY489prlz5zY4Ts88AAAA2hNfe+bbTJifNm2aPv74Y61du1a9e/f22qayslKVlZWexyUlJerTpw9hHgAAAO2Kr2Her02jgmXGjBlaunSp1qxZ02iQl6SoqChFRUWFsDIAAACg7TI1zBuGoV/84hdavHixVq1apZSUFDPLAQAAACzF1DA/ffp0LVy4UB999JG6dOmigoICSZLD4VCnTp3MLA0AAABo80wdM2+z2bwenz9/vm6//fZmn8/SlAAAAGiPLDFmvo3MvQUAAAAsqVXrzAMAAAAwD2EeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFmVqmF+zZo2ysrLUq1cv2Ww2ffjhh2aWAwAAAFiKqWG+vLxcGRkZeumll8wsAwAAALCkcDNffMKECZowYYKZJQAAAACWZWqY91dlZaUqKys9j0tKSkysBgAAADCXpSbA5uTkyOFweL769OljdkkAAACAaSwV5mfPni2Xy+X5OnTokNklAQAAAKax1DCbqKgoRUVFmV0GAAAA0CZYqmceAAAAwL+Y2jNfVlamffv2eR7n5+dr27ZtSkhIUN++fU2sDAAAAGj7TA3zX331la688krP41mzZkmSpkyZogULFphUFQAAAGANpob5H/3oRzIMw8wSAAAAAMtizDwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AAAAwKII8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsKtzsAqyq2m1oU36xCksrlNglWiNSEhRmt5ldFgAAADqQNhHmX3rpJT3zzDMqKChQRkaGXnjhBY0YMcLsshq1PM+puUt2yemq8BxLdkQrOytN49OTTawMAAAAHYnpw2z+9Kc/adasWcrOzlZubq4yMjI0btw4FRYWml2aV8vznJr2Vm6dIC9JBa4KTXsrV8vznCZVBgAAgI7G9DD/3HPP6a677tLUqVOVlpamV155RTExMXrjjTfMLq2BarehuUt2yfByrubY3CW7VO321gIAAAAILFPDfFVVlbZs2aIxY8Z4jtntdo0ZM0br169v0L6yslIlJSV1vkJpU35xgx752gxJTleFNuUXh64oAAAAdFimhvmioiJVV1erZ8+edY737NlTBQUFDdrn5OTI4XB4vvr06ROqUiVJhaWNB/mWtAMAAABaw/RhNv6YPXu2XC6X5+vQoUMhff3ELtEBbQcAAAC0hqmr2XTv3l1hYWH67rvv6hz/7rvvlJSU1KB9VFSUoqKiQlVeAyNSEpTsiFaBq8LruHmbpCTHmWUqAQAAgGAztWc+MjJSw4cP12effeY55na79dlnnykzM9PEyrwLs9uUnZUm6Uxwr63mcXZWGuvNAwAAICRMH2Yza9Ysvfbaa3rzzTe1e/duTZs2TeXl5Zo6darZpXk1Pj1Z8yYPU5Kj7lCaJEe05k0exjrzAAAACBnTN4266aab9P3332vOnDkqKCjQBRdcoOXLlzeYFNuWjE9P1ti0JHaABQAAgKlshmFYdlH0kpISORwOuVwuxcXFmV0OAAAAEBC+5lzTh9kAAAAAaBnCPAAAAGBRhHkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBR4WYX0BqGYUg6s90tAAAA0F7U5NuavNsYS4f50tJSSVKfPn1MrgQAAAAIvNLSUjkcjkbP24zm4n4b5na7dfToUXXp0kU2my3kr19SUqI+ffro0KFDiouLC/nrwzzc+46J+95xce87Lu59x2X2vTcMQ6WlperVq5fs9sZHxlu6Z95ut6t3795ml6G4uDh+wTso7n3HxH3vuLj3HRf3vuMy89431SNfgwmwAAAAgEUR5gEAAACLIsy3QlRUlLKzsxUVFWV2KQgx7n3HxH3vuLj3HRf3vuOyyr239ARYAAAAoCOjZx4AAACwKMI8AAAAYFGEeQAAAMCiCPMAAACARRHmW+ill15S//79FR0drZEjR2rTpk1ml4RWWrNmjbKystSrVy/ZbDZ9+OGHdc4bhqE5c+YoOTlZnTp10pgxY7R37946bYqLizVp0iTFxcUpPj5ed955p8rKykL4LuCvnJwcXXTRRerSpYsSExN1/fXXa8+ePXXaVFRUaPr06erWrZs6d+6sf/u3f9N3331Xp83Bgwd17bXXKiYmRomJifrlL3+p06dPh/KtwE/z5s3TkCFDPBvCZGZm6uOPP/ac5753HE899ZRsNpseeOABzzHuf/v02GOPyWaz1fk699xzPeeteN8J8y3wpz/9SbNmzVJ2drZyc3OVkZGhcePGqbCw0OzS0Arl5eXKyMjQSy+95PX8008/rd/+9rd65ZVXtHHjRsXGxmrcuHGqqKjwtJk0aZJ27typFStWaOnSpVqzZo3uvvvuUL0FtMDq1as1ffp0bdiwQStWrNCpU6d09dVXq7y83NNm5syZWrJkid577z2tXr1aR48e1U9+8hPP+erqal177bWqqqrSl19+qTfffFMLFizQnDlzzHhL8FHv3r311FNPacuWLfrqq6901VVXaeLEidq5c6ck7ntHsXnzZv3ud7/TkCFD6hzn/rdfgwcPltPp9HytXbvWc86S992A30aMGGFMnz7d87i6utro1auXkZOTY2JVCCRJxuLFiz2P3W63kZSUZDzzzDOeY8ePHzeioqKMd955xzAMw9i1a5chydi8ebOnzccff2zYbDbjyJEjIasdrVNYWGhIMlavXm0Yxpn7HBERYbz33nueNrt37zYkGevXrzcMwzCWLVtm2O12o6CgwNNm3rx5RlxcnFFZWRnaN4BW6dq1q/H6669z3zuI0tJSIzU11VixYoVxxRVXGPfff79hGPzet2fZ2dlGRkaG13NWve/0zPupqqpKW7Zs0ZgxYzzH7Ha7xowZo/Xr15tYGYIpPz9fBQUFde67w+HQyJEjPfd9/fr1io+P14UXXuhpM2bMGNntdm3cuDHkNaNlXC6XJCkhIUGStGXLFp06darOvT/33HPVt2/fOvf+/PPPV8+ePT1txo0bp5KSEk8vL9q26upqLVq0SOXl5crMzOS+dxDTp0/XtddeW+c+S/zet3d79+5Vr169dPbZZ2vSpEk6ePCgJOve93BTXtXCioqKVF1dXecmSlLPnj319ddfm1QVgq2goECSvN73mnMFBQVKTEyscz48PFwJCQmeNmjb3G63HnjgAV1yySVKT0+XdOa+RkZGKj4+vk7b+vfe289GzTm0XTt27FBmZqYqKirUuXNnLV68WGlpadq2bRv3vZ1btGiRcnNztXnz5gbn+L1vv0aOHKkFCxZo0KBBcjqdmjt3ri677DLl5eVZ9r4T5gHgn6ZPn668vLw64yfRvg0aNEjbtm2Ty+XS+++/rylTpmj16tVml4UgO3TokO6//36tWLFC0dHRZpeDEJowYYLn30OGDNHIkSPVr18/vfvuu+rUqZOJlbUcw2z81L17d4WFhTWY2fzdd98pKSnJpKoQbDX3tqn7npSU1GAS9OnTp1VcXMzPhgXMmDFDS5cu1eeff67evXt7jiclJamqqkrHjx+v077+vff2s1FzDm1XZGSkBgwYoOHDhysnJ0cZGRl6/vnnue/t3JYtW1RYWKhhw4YpPDxc4eHhWr16tX77298qPDxcPXv25P53EPHx8Ro4cKD27dtn2d97wryfIiMjNXz4cH322WeeY263W5999pkyMzNNrAzBlJKSoqSkpDr3vaSkRBs3bvTc98zMTB0/flxbtmzxtFm5cqXcbrdGjhwZ8prhG8MwNGPGDC1evFgrV65USkpKnfPDhw9XREREnXu/Z88eHTx4sM6937FjR50PcytWrFBcXJzS0tJC80YQEG63W5WVldz3dm706NHasWOHtm3b5vm68MILNWnSJM+/uf8dQ1lZmfbv36/k5GTr/t6bMu3W4hYtWmRERUUZCxYsMHbt2mXcfffdRnx8fJ2ZzbCe0tJSY+vWrcbWrVsNScZzzz1nbN261fj2228NwzCMp556yoiPjzc++ugjY/v27cbEiRONlJQU4+TJk55rjB8/3hg6dKixceNGY+3atUZqaqpxyy23mPWW4INp06YZDofDWLVqleF0Oj1fJ06c8LT5+c9/bvTt29dYuXKl8dVXXxmZmZlGZmam5/zp06eN9PR04+qrrza2bdtmLF++3OjRo4cxe/ZsM94SfPTII48Yq1evNvLz843t27cbjzzyiGGz2YxPPvnEMAzue0dTezUbw+D+t1cPPvigsWrVKiM/P99Yt26dMWbMGKN79+5GYWGhYRjWvO+E+RZ64YUXjL59+xqRkZHGiBEjjA0bNphdElrp888/NyQ1+JoyZYphGGeWp3z00UeNnj17GlFRUcbo0aONPXv21LnGsWPHjFtuucXo3LmzERcXZ0ydOtUoLS014d3AV97uuSRj/vz5njYnT5407r33XqNr165GTEyMccMNNxhOp7POdQ4cOGBMmDDB6NSpk9G9e3fjwQcfNE6dOhXidwN/3HHHHUa/fv2MyMhIo0ePHsbo0aM9Qd4wuO8dTf0wz/1vn2666SYjOTnZiIyMNM466yzjpptuMvbt2+c5b8X7bjMMwzDnbwIAAAAAWoMx8wAAAIBFEeYBAAAAiyLMAwAAABZFmAcAAAAsijAPAAAAWBRhHgAAALAowjwAAABgUYR5AIAWLFig+Ph4s8sAAPiJMA8AHcTtt98um80mm82myMhIDRgwQI8//rhOnz5tdmkAgBYKN7sAAEDojB8/XvPnz1dlZaWWLVum6dOnKyIiQsnJyWaXBgBoAXrmAaADiYqKUlJSkvr166dp06ZpzJgx+stf/tKg3f79+zVx4kT17NlTnTt31kUXXaRPP/3Uc/7xxx9Xenp6g+ddcMEFevTRRyVJq1at0ogRIxQbG6v4+Hhdcskl+vbbb4P35gCgAyLMA0AH1qlTJ1VVVTU4XlZWpmuuuUafffaZtm7dqvHjxysrK0sHDx6UJN1xxx3avXu3Nm/e7HnO1q1btX37dk2dOlWnT5/W9ddfryuuuELbt2/X+vXrdffdd8tms4XsvQFAR8AwGwDogAzD0Geffaa//e1v+sUvftHgfEZGhjIyMjyPn3jiCS1evFh/+ctfNGPGDPXu3Vvjxo3T/PnzddFFF0mS5s+fryuuuEJnn322iouL5XK59OMf/1jnnHOOJOm8884LzZsDgA6EnnkA6ECWLl2qzp07Kzo6WhMmTNBNN92kxx57rEG7srIyPfTQQzrvvPMUHx+vzp07a/fu3Z6eeUm666679M4776iiokJVVVVauHCh7rjjDklSQkKCbr/9do0bN05ZWVl6/vnn5XQ6Q/U2AaDDIMwDQAdy5ZVXatu2bdq7d69OnjypN998U7GxsQ3aPfTQQ1q8eLF+/etf64svvtC2bdt0/vnn1xmSk5WVpaioKC1evFhLlizRqVOn9O///u+e8/Pnz9f69et18cUX609/+pMGDhyoDRs2hOR9AkBHwTAbAOhAYmNjNWDAgGbbrVu3TrfffrtuuOEGSWd66g8cOFCnTXh4uKZMmaL58+crMjJSN998szp16lSnzdChQzV06FDNnj1bmZmZWrhwoUaNGhWw9wMAHR1hHgDQQGpqqj744ANlZWXJZrPp0UcfldvtbtDuZz/7mWcs/Lp16zzH8/Pz9eqrr+q6665Tr169tGfPHu3du1e33XZbyN4DAHQEhHkAQAPPPfec7rjjDl188cXq3r27Hn74YZWUlDRol5qaqosvvljFxcUaOXKk53hMTIy+/vprvfnmmzp27JiSk5M1ffp03XPPPaF8GwDQ7tkMwzDMLgIAYE2GYSg1NVX33nuvZs2aZXY5ANDh0DMPAGiR77//XosWLVJBQYGmTp1qdjkA0CER5gEALZKYmKju3bvr1VdfVdeuXc0uBwA6JMI8AKBFGKUJAOZjnXkAAADAogjzAAAAgEUR5gEAAACLIswDAAAAFkWYBwAAACyKMA8AAABYFGEeAAAAsCjCPAAAAGBRhHkAAADAov4/rrK45s4aFPYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -330,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -369,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -382,14 +397,14 @@ }, { "cell_type": "code", - "execution_count": 319, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "8\n" + "3\n" ] } ], @@ -402,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 320, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -416,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 321, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -425,7 +440,7 @@ }, { "cell_type": "code", - "execution_count": 322, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": 323, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -446,7 +461,7 @@ }, { "cell_type": "code", - "execution_count": 324, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -461,7 +476,7 @@ }, { "cell_type": "code", - "execution_count": 325, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -489,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 326, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -498,29 +513,27 @@ }, { "cell_type": "code", - "execution_count": 327, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 327, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VNX9x/H3yZ4QdgKySdgE2bcCKioqKgLihntbN9Ta1vVXFevW1gWq1rrVrVRbrQsttW4oKlQFN5R93xM2WcIWCNmT8/tj7kxmMpNkEiaZzMzn9Tx5uHPvyZ1zZ8h3zpx7zvcYay0iIhJd4sJdARERCT0FdxGRKKTgLiIShRTcRUSikIK7iEgUUnAXEYlCCu4iIlFIwV1EJAopuIuIRKGEcD1xmzZtbGZmZrieXkQkIi1atGivtTajpnJhC+6ZmZksXLgwXE8vIhKRjDFbgimnbhkRkSik4C4iEoUU3EVEopCCu4hIFFJwFxGJQgruIiJRSMFdRCQKKbiLBOHjFTuZu2Z3uKshErSwTWISiRRl5Zab3lgMQPa08WGujUhw1HIXqUHO4SLP9qItB8JYE5HgKbiL1GDk1Lme7Yte+IYLnv86jLURCY6Cu0gA89bn8PgnawMeW7L1YAPXRqT21OcuUsmMH7Zy939WAHDViZnhrYxIHanlLuLlYH6xJ7ADzFm9B4D7J/Rh4yPnePbnF5c2eN1EakPBXcTLl+tzfB4/5nTNbD+QT0J8HOcP6gBAnwc+oaSsvMHrJxIsBXcRx+HCEm59e6nncUpiHAfzSwCYMKA9ACf2aOM5/spXWbz2bTbW2gatp0gwFNxFHH/4YLVne8YNI2mSVHFLqlubdAAy0pM9+6Z+vJYH3lvFf5fsaLhKigQpqOBujLndGLPKGLPSGPOWMSal0vGrjTE5xpilzs/k+qmuSP3p0Tbds/2TzFYkJ1T8eaQmxQNwWu+2vHL1MJ/fu+NfyxqmgiK1UGNwN8Z0BG4Bhllr+wHxwGUBis6w1g5yfqaHuJ4iDSouzvBjbiEAg49tQUpivOdY/44t/MqXqv9dGplgu2USgFRjTAKQBvxYf1USaXjb9ucz9WPXzdMLh3QE4JTjXGsQP3XpIJ+yLdMS/X7/ncXqmpHGpcbgbq3dATwBbAV2ArnW2k8DFL3IGLPcGDPTGNM5xPUUqVcnP/a5Z/vJS1zB/OWfDeXdX51El9ZNfMomxPv/2WTtOxLS+mROmcUvXl9U5fHSsnI+WbWLJVuVDkECC6ZbpiVwHtAV6AA0Mcb8tFKxD4BMa+0A4DPgH1Wc6wZjzEJjzMKcnJxARUQajZTEeAZ19u+C8TZxoGto5AtfbArZ8xaWlAEwe9WuKkfi/N+/l3Hj64u44PlvKC0r53fvr2Lb/vyQ1UEiXzDdMmOALGttjrW2BHgHONG7gLV2n7XWnV1pOjA00ImstS9ba4dZa4dlZGQcTb1F6sXHt55cq/JPX1bRZROqIZFbvYJ0XlHgyVLvLa3oGe1x78f8/Ztsn28fIsEE963ASGNMmjHGAGcAa7wLGGPaez2cWPm4SGO2/UBFMD2+fbOgfufpywZx4yndcP1JOPvmbghJfXY5N3IB9uYV+x13t+wDicUx989/sZF/LdwW7mo0OsH0uS8AZgKLgRXO77xsjPmDMWaiU+wWZ6jkMlwja66up/qKhETmlFkMe3gOAKP+WPsW73mDOnLPuOMBeP7KIUDogvvXm/Z6tvfmFfkdn/DsV1X+bm5BSUjqAFBcWk55eeP+sCgrtzw2ex13zVweluffm1fEc//bQFkjfJ2CGi1jrX3QWtvbWtvPWvsza22RtfYBa+37zvF7rLV9rbUDrbWnWWsDp9MTaQTcrdvKgfOdX54YqHiNzuzTzjkvfLDs6AeSvfTlZs/2xS9+y0MfruaiF77xtNi3VtO3/vm6PVUey9p7xOdbQXWstRx338fc997KIGsdHll7K25k7z/i+y3nSBVdWqE07OE5PPHpehZm76/356otzVCVmDNnTUUA3OcE+FZNkhhybMs6nS/Ra/TMzW8tOaqukUC/+7evsli05QC9758NQK92TQGYf9dpfmVvnxF4QtU3m/Zy2hNf+OSmr07Xez4C4M0FW3lv6Q6fBUsakz2HKj6s9hwuJK+olJKych6ZtZq+D37C91m+QXfKf5ZX+wEI8P6yH8mcMqtWcxfc35gKS8qq7TZrSAruEnPeXVoxJv3Jz9YD/q2+2hrdq2KAwKGCurcYcwJ0w3iz1rJiRy4DO7egc6s0zu7r+tYw5Zze1f7ea99s8WzXFLQqf8Dc+vZSfvLInGp/p6HlFZWyeOsBth8s8OybPj+Lfg9+wvBH5vDX+VkAXPLSt3yftZ+1uw6Rc7iIt3/YxjWv/sC2/fls3HM44LlveWsJAFu8viHNWr6TO/9d9UzkG15fxL68InrfP5ve989uFPc+lM9dYo/X392mnLyQnPLv1wwnc8osAF6at4m7xrqCbXm5JS7OVPerPhZvcS0EMnlUV6Z/leV33N2izne6HB46vx+92jVl8qiufLd5H9l7A4+3P+KVoji/pIxm8XFYa7n61R94+Px+dG6V5jm+KSfwOcY8+SVz7jg16GupT/0e/MRv38xF2wE4kO973+GSl771K+seWVTdmrgLs/fTPcOVkuJXb7rW0N1/pJi/Xf2TgOWHPlzxAfjGgq0cLiwlPSWB0cdl+Ly+DUUtd4kpR4pKmbViJwBxBvY43Q1Xh2BRjqkX9gfgeWfM+1cb9tLttx/59AvX5Bf/dE1c+unILvTt4Bq507pJkl+5Y51g0bZpCnec1YuE+DgyWzche18+mVNm+d3gm7+h4ibtjgOu1u4nq3bz5focvyGU71aRCG3jntB8EB6tULaKA3WhpCe72rxLt+X6Pd/ctXs4VFhS5e+63ffuSv44ey33v7uS3/53RZXl6pOCu8QUd2AHKLew2WmlTnTytB+NE7u39nl810zX1/jl22u/LF9mmyb0cYZl7jtSzJ1n9/I5fsdZx/n9jjvogO9C3pWD4TlPz+fL9Tk+31r+t3Y31lqKSss83REPntuHlMTwhghrLdPnb2ZnbkX3y89f+d6nzOBjA080W/vQWDq3Sq32/FdOX+D3Qei+Zve/y7fn+hx/Zo5rVJS7n31ol+rv1ewM8iZ2qCm4S8xYv/uwZ8jcny8d6HNscA0zUYPhnabgSFGpJ/HYW99vrdP50lNcLch7zunNTad29+y/aXR3+nZo7lc+Ma7iz/mf31X0sR8q9L8HcMeMpTz+yTrP42v/vpCHPlxDr/tme0b8TBraiTV/GEvW1HHcckZPjKHBh/w9PXcDD89awwlT/+fZ5/0tBFxdX69fN9zvd1MS45l352k8ekF/z77lvzvLp8yiLQd47n8bAdiZW0DmlFmeuQUfLHM1BErLfe9RZDR1pX1es/MQ4MpFdO1JXT3Hu7XxTVcRrm88Cu4SM8768zzP9vCuvq1s78lIofDUnPWe7fIgB124b3Se1MNVt3Od1Aaje7X16be/e2zgm6d3ju3lWVSkqLSiy8A9omR8/4q5hvsC3EB+5euKPv5mKQk0TUnEGIMxhuapiVjrGpHSkJ6aUzF34P1Kw0zd32zeuH4kmV4frKN6tOE05wa3MYYrRhzrOdYsxT/p2/vLXN1Q3h8gUDFUdrvTjfXm9SMAVx7/zCmzuPrVHwBIS4rngXP7kD1tPNnTxtPdSR3d+5imnnOF4wargrvEpBapFX/kI7q2Ctl5xxzfFsAzWgPg++z9QbV4P1juCl77nJbjkGNbkj1tPL2cIOEOHlVpk57Mc1e4JlSt+vGQZ/+ZzoeaO9tlMCq39v823zX2vnIAbEi3vLXEc9Ma4LpRXcmeNp705AQ6t0qjY4tUfn1aD/45eQSvXuPbkn/4/H5cNKQT4JsyAlzDYL3P6y1zyizP6lwdWwTu4jm9dzufx5+t3g3A2l2HPa/5xOe+pqzcsvtQYa3uwRwNBXeJSWlJ8Xx48yj6dmjGK1WMfqiLxycNDLjf3TqsSlFpmWeMuvdX/LrafqCAotIyrvv7D559XVo3IXvaeG45vYdnn/vbQU2ap/nf1K0Lay23vb2EP84++nmOFw3t5PP46ymn85tK9ybcfjqyC3+6xPXenDeoI9nTxnuufcWOXL/yXVr7j25p3zxwcG+e6v9twM2dCnrFjly6//YjRjw6l9Oe+KLK8qGk4C5R62B+MT84Mwf/8vlGn2PGGPp1bM6sW06mSXLoRgRX9Ye+K9f1FX9TTh6ZU2b53CAE35b2pEpBq7bc+eanz89i7tqKCTvulaZuG3Mcj00awFOXDuLZywdX+23AbcaNIz3bPx4s8DsebEbKrvd8xLtLf+SFLzYFNd7eGLjl9B5cXOk12fDIOUE9X3WevXwwaUnxFJb41uPVa37Cln3+15OUEMeVXl08VblrrOsDZszxbfnHtf73AgBun7E04P5QUnCXiGatJXPKrIAtwQue/4aLX/yWVT/m+tw8/Pw3o+utPnFxxjMkEiqGWJY7fa5/+tRVj3eX+PYfL8p2jW45vXfbWo2LD2TiwA40T02sMs9MXJzhkmGdOX9wRTfNoxf0Z2Cn5nx6+ylAxVBLN+++6pfnVaRHyM0vIXPKLE5+7PMqh1BWxbs/PZCCkjKshbTkBIZlVoxIiY8zPrOCj0Z+ccW9iUcu6Ef2tPGc1qstj1zQz6fcb8f1dsr099n/7OWD/c555YguTBzYgccnDeSkSiOo3Bpi3V0Fd4lo7j/OF77YxLJtFUMOrbWevs3xz1Qk2lr38Fi6VhrNEGqXDz+Wds1cIyrun9CHtKR4z825j1bsAqCpMxJmV24hf5y9lpfmucbGv/SzgNmya6V5aiKHCkt8WtPum4FVuWLEsbz361Ec164p2dPGMy9AagO3/ziThd5csJWBf6hYt+e2GUvJnDKrytm+le87pCXHByzn5u67LiwpY83OitmkC+8dU+3v1VXnlhUfaFeO6EL2tPF8eedoNj06jhtOqRit9PyVQxjWpSUDOjUP2K3VPDWRZy4fTMsmSSTEx5E9bTzPXeH7IVB51E59UHCXiOa+2QVw3l++9my/9u2WQMVJTqg+oITKgt+OIXvaeOLjDPnFZbz6dbbP7NH73l1J5pRZjJw6lxe+2OQZfheKFmkzZ2TLxytdHyRZU8dxYvc2R33eD28eBcDholKKSsuqnJzz5fo9PqN13A7m+wb9FqlV9+N/tGKn571NTojnF15DQVsGmNRVV7/xmi/QKsB5u7RuQnylb1Lj+rdn5k0n8v6vRwX9PBMGdGCgM9z2l6O7Bxy1E2oK7hLR5qzZ7fPYnQjswfdXhaM61RrdQDfSCop9A2uohnn2bJfu2e513+wqy90+Y1nA4wudiVXuLo6CkjKWbz/o90FQXFrOL99Y7Hl8wyndaNs0mXH9j+G1Kvqw6+raUa6b11efmEm/jv5zB0Lprz8byvDMVlwVgtnQwVBwl4hVXOp/Q27ow3N8Vi8a0KniD9Z73HFDCnb0yw2ndAvJ843qefSt9EBq+62n8vtzo7Mm7Lpdrkk9D324monPfc3IR12ZKr/ZtJcV23P9Jg3Fxxni4gzPXznUs2h5qKQlJZA9bTy/m9g3pOcNpG2zFP71ixNo1yyl3p8LFNwlgu32SvfqPT3fO6nU69dW9DW/FmAWY0N44Nw+QZXzXhHqaFQ1HjsUvr3n9ID7v5lyOn9xxti7bd0feDz3bWN6+jw+kF/C3rwirvjrAs597iv6PFDx/n155+ijq3AMU3CXiJI5ZRbnO33rS7xuoP7qtB5+Ze8e25tmqQn8bGQX/vvLE2nbtGFaTLXxxW9G09MZovjkJYNqKB2cFl5j0uf+X2izOHqP9fbOO9OhRSrjB7TnV6dV9I1f/9qigOcIlCFx2MP+KYUnDGjvk9JBakfBPcZ8vq4iq11ZuWXD7sNkTpkVstS3DWGpE9TdebfvONM/iRZA++YpGGN46Px+DK7jQhyhMsRJbvXZ7ad4Au5b148ks00TPrvjVLKnjSclMTQ3e5MSKv6s3SlrQ2nenafx3q9OYu1D5/Cfm07k+9+e4Tl259m9mXOHazhl1t4jTHh2PlAxDv6Ebq6hgfeNP77G57lkWOdQVz2mKJ97lPk+az/z1ucEnKm3L6+Ia5x8GG9OHsG97670DBc8409fBjWZJRwOHClmwrNf+XTDeE8X/+nILgB8dfdpPuuhHtO88bTU/zl5BPnFZbRJdw2RbIjX2p1nJtSObZ3Gsc4MzkAZEb1HgqzccYhNOXkccIZHju13DACTT+7GlSO6cPZT86pcNrCqbI8SHLXcG7nXvs3m6417ayzndslL3/Lc5xt9+m9z80uY+tEavtm0z7PviukLfHJcdKgiEE6fv5k3F9Qtq2GoDH7oM3YcLKC0ivws7iFsnVqmMfu2kz37O1QxXTwc0pISPIG9IbjGVg+puWA9qHzj9Yw/fclh5yZ3f68b3KlJ8ZxaxQ3Si4d28uRVl7qJ+eBureXumct9WoXhkF9c6regb3FpOQ+8t4orpy+o9fk+WVUxRPCFLzfx0rzN3Ox0YwTyY26hX+a68nLLw7PWNPhiA//6YRuZU2axbX9+jQm3Xq2UF6b3Mc082x1bNp7gHktSk/y7l3Kd1ZEqp2c4u+8xAc/x+MUDQ56pM9bE/Efjgqz9zFi4jRkLt7lmpK3PoUVqomfCQUNxjxCYNLQT5dZ6Eg65lZSVeya4PDt3AyXllmtPymTQHz4DXKvHeA8BfOjD1Zx6XBt6tG3q+Upckx+yDzDcyZBYXm6Z+vEaz7FPV+3ipB5tqs3DcqSolLlr9zAxyGRUAN9s3EtKUrzP4tR3/ceVc33JtoM+/ceBtG3m3xpurN1LsSIpIY6Vvz+b9bsPc+Hz3wCu2atQkQvdzXvYZrOUBKZdNMBn+KrUXUwH97Jyyx1eCXy63TMLd0OxIQOE9wru7nUgK3vjuy2ccXw7OrZI5U/Oos7PzK3IzZFX5L8gw968YrpnWGYs3Oazv6r1OQu8lg3r9tuPfI7d4IxRrup12bY/37Nc2y1vLSF72njPN4FALbCVO3LJOVzENU7WQvd5vWcx/u2rLAZUM7GkWUpCWNamlJqlJycwsJN/A6lpgMbBxUM78e9F2/nw5pM9ffly9GI6uD/x6TrPajkADbzIjMdlf/2uxjK/+2A1v/tgNbee0bPGsm5/+XwjW/f7tqLvn9CH60Z1Ja+olLd/2MZkZ4be9K+yWLvzUJV9oDVxr0rj1vWeWfTr0JwVO3JZ9uBZfl/HJzz7FZUdLizxtPTAFbwPO3nFX/7ZUMYc346X529m2sdrOalHa96YPNLvHNJ4xMcZfj+xr89s4UAf9I9fPJDHLw6cKlnqLqb73F9wFjIOpKZ0pKEw+R8L+Wz1bs86noG0r3Sj8+m51WfS83Z8+2aeLIRu7pSl0y4aQPa08dw3oQ+TT3bNjJz6cc05tr3X6fS2dtdhn8fWVuTJHvh7V3Kp3YcK2ZdXxKIt+/1+P7+4lHHPzGez103epPg4DjvP1zQlkbg4w/mDOtK5VSqPnN/f7xzS+Fx1Yia/C3ISl4RWTAd3t+PbN/Pb90P2gQAlQ+dwYQlz1uzm+tcWBjzeq51rqvyUcwIvqVads/u6VobZnHOE3YeKfI4FGkvdIs0/iVFqYjwTBrT364Z5sYoPxCc/Wx9wv9u+vCJGPDqXoQ/P4aIXvvU73ueBT9i23zdP+Ny1e1jufEC4syge0zyF+XedTmY9Z3aU0Ln6pK48MKGPJ52wNIyY7pbp39HVbfDRLaPoeo9vH/PhKlqoofLrN/1Hriy6bwy5BSUUlpTz4fIfWbf7MKlVTGx5+Px+tElPZnSvDJ+AvWjLfvp2aE7v+2f7JNWq7h6C9+9nTpnFsgfOoqCkzLO4wz+uHc5Vzorzz3+xibsqreHpvRr911NO56Rp/kuxVZUGtibTnG8ToZrgI+HhTtAlDSemW+7rdh9mQKfmGGOYck5v7ht/PN/d45pt576BWFlufgnfbtrH1xv3+mXfq8nWffm8s9h1w/TL9Tl+x1unJ9MtI50+HZpx65iePD5pAGf2acfbN/j3Lf90ZBfG9jvGL+gN7dLqqAOhO0e3OyCfelyGJ/90m/QkTv/TFyzZeoBFW/ZTUFzGPK9r6dgilb4dXN+EvPO9VLUCfLMU//bFnDv8p8xXXlFeRKoX0y334tJylm93fe1354v27mtfv/swZ/15HiO6tmLGjSdgrfVZnABqN6rmiunfsf1AAQMCjCJY+9BYn8fJCfFc7Ey/HtmtNdnTxvOvhdu4a+Zyn9Xcg1HTQg1V8Z705J51uDevmL15xVzgdeOzsnd+eSKfrtrNhAHt6dk2nRteX8RNXilc3T749Sh6tkun9/2u9LBPXzaIiQM7YIxh7UNjPfuBo16dSCTWxHRwDyTBa7GEs5xV4xdk7WfF9lzOfc5/hEcwsvYe4bPVu9h+wNWn/Jt/L/MrE0xr+5JhnRnXv31QM/fuHtubOWt288zlg4PKEvjDvWN49KM1Pst/fXJb3fpIkxPiPSvUBLqf0blVKrNvPcVvzPyoHm08oym8X4+//nxYneohEstiNrgv2OxqlQY7Jdx7Qk9t3TZjqc8ScEu9ttukJ9GnQ/CTNoKdkn3T6O7cNLp7zQUdGU2TefKSgZ7gfmL31n4r0Dx7+eBqZ7kOz2zlt6/yqjlZU8cBvkPi7hrbi8dmr/PJZgjwz+tGsHjrAc7s0y7o6xARl5jtc1+Q5RqO517b0ttTl/qnXvXuovBW1Y3CotIy3lu6A2utT2D3dnbfdnx0y8k8f2V4coBUZoyhe4arb/u+8f7D184d2IHNj46r8vefCbBYcJNKU9GNMX5jnX85uodnSTpvo3q24ZZajOsXkQpBNQONMbcDkwELrACusdYWeh1PBl4DhgL7gEuttdkhr20IuQNJoOARKNNdZSO6tmJB1n72HynyW3vRO2NhUYDVgtzuG9+Htg20Kkuw7jy7F/f+d2WVXTlxcYbLh3fmre99Z71+ePOogFkY3YG8XbNkPv/N6JDXV0QCqzG4G2M6ArcAfay1BcaYfwGXAX/3KnYdcMBa28MYcxnwR+DSeqhvyLgbj5NP9h+i5T2lvapAlnO4iAVZ+z0zKN3KK01zvWvm8irr0Binzo/t156z+x5TbdKmqRcO4NTj2tK5VSrjn3Hdh3CPkAlEuV5EGl6wfe4JQKoxpgRIA36sdPw84HfO9kzgOWOMsZXTDDYij812zdysahXyH+4dw/wNOVw4pBNDjm3JnV5BumlKRZKu7QcKPAtB/P6DVX7BPpAl958ZVLlwCSYb39h+x/h8kCmDn0jjUmNwt9buMMY8AWwFCoBPrbWfVirWEdjmlC81xuQCrYHgE5E3MhlNk7lwSCcALh7WmYuHdeaEqXPZmVtIWlKCJ0XwzW8t4cw+7UhJjOfVr7NrPO/gY1vQskmS343GSBQXZ9QqF2mkaryhaoxpiatl3hXoADQxxvy0Lk9mjLnBGLPQGLMwJ8d/Ek9DGfLQZ3X6vTevH8n9E/qQ0TSZtKSKz8V/fJPtV/Yf1w7HuzHr7m++/uTQrHAvIlKdYEbLjAGyrLU51toS4B3gxEpldgCdAYwxCUBzXDdWfVhrX7bWDrPWDsvIqFv2wVBwj3A5b1DweccBurZpwnXONOoxx7f17A+UcOvU4zIY2bW1z+9mTxvPuP71s/SZiIi3YIL7VmCkMSbNuDpWzwAqD/p+H7jK2Z4E/K+x9re/6zVJp/LKR7VRuY95XoB0Aq9UWiVIRKSh1BjcrbULcN0kXYxrGGQc8LIx5g/GmIlOsb8BrY0xG4E7gCn1VN+j9vsPKnJLu2eM1tWLP60Yn+6dPMstNSmexycN4O/XKMiLSMMKarSMtfZB4MFKux/wOl4IXBzCetUb79WGRvVoU03Jmo3t157nrhjsl+GxX8eKYYHu/DAiIg0pptIPFJWWUVjimlR06bDO/MYra2FdVc6XnjV1nIYFikjYxVT6gWleNz7/OGlASHKEn+WV92T6z4cpsItIoxBTwX3Vj4dqLlRL3qsYjVGCKxFpJGKqW6Y+2tRNUxJ58pKBnNj96PrvRURCKaZa7t2dZeNuPDW0E4kuHNIpYNIsEZFwiZngvv1APm8u2ArA3WfXftFpEZFIEjPB/e9eeV+0ZJuIRLuYCe7FZVXnVRcRiTYxEdz/8vlGXvt2S7irISLSYGIiuD/+yTrPdnvd+BSRGBATwd3bCd1a11xIRCTCRX1wzy0o8Xn86IX9w1QTEZGGE/XBfVNOnmf7retHhiTlgIhIYxf1wb2k1DVKpvcxTTmhu7pkRCQ2RH1wv+/dlQDcceZxYa6JiEjDifrgvmGPq1vmUGHdV10SEYk0UR/c3bzXPBURiXZRH9wT412pBlqkJYW5JiIiDSfqg3tJWaNcp1tEpF5FdXA/mF8MwPgB7cNcExGRhhXVwX30E18AMGv5zvBWRESkgUV1cE+Ic11e0+SYWnBKRCS6g/vPRnYB4Ku7Tw9zTUREGlZUB/fvNu8DoLnXItYiIrEgqoP7t05wFxGJNVEb3K3VEEgRiV1RG9yfmrMh3FUQEQmbqA3uq3ceAuAnmS3DXBMRkYYXtcF9QMfmALx+3Ygw10REpOFFbXA/WFBCWlK8FucQkZgUtcE9t6CE5qkaAikisanG4G6M6WWMWer1c8gYc1ulMqONMbleZR6ovyoH52B+sTJBikjMqnFevrV2HTAIwBgTD+wA/hug6Hxr7YTQVq/uDuSX0FKTl0QkRtW2W+YMYJO1dkt9VCaUDqlbRkRiWG2D+2XAW1UcO8EYs8wY87Expu9R1uuo5ReXkZqkm6kiEpuCDu7GmCRgIvDvAIcXA12stQOBZ4F3qzjHDcaYhcaYhTk5OXWpb9AKSspIU3AXkRhVm5b7OcBia+3uygestYestXnO9kdAojGmTYByL1trh1lrh2VkZNS50sHILy4lLUmpfkUkNtUmuF9OFV0yxphjjDHG2R7unDdsWbsKissoLCln3a7D4aqCiEhYBdW0NcY0Ac4EbvTa9wsAa+2LwCTgJmNMKVAAXGbDmLlr5Y+5AHy5vn67fkQ64WHeAAAMZklEQVREGquggru19gjQutK+F722nwOeC23V6i45wfWF5PcTw35fV0QkLKJyhur+I66Fsft1bBbmmoiIhEdUBvf84jIAmmjtVBGJUdEd3DVaRkRiVJQG91IATWISkZgVlcE9r8gV3NPVLSMiMSoqg/tjs9cBKJe7iMSsqAzuIiKxLuqCe2lZebirICISdlEX3N397bee0TPMNRERCZ+oC+6HClzBvXOrtDDXREQkfKIuuOcWlADQLEUjZUQkdkVdcJ+3wZUsTKswiUgsi7rg/vgnrmGQzRTcRSSGRV1wd2udnhTuKoiIhE1UBvcWaYm0bZoS7mqIiIRNVAV3ay3GwM9Hdgl3VUREwiqqgnt+cRnWKtWviEhUBfcj7oRhGgYpIjEuqoL7J6t3A/DFOq2dKiKxLaqCexMnf/spPduEuSYiIuEVVcE9zQnuQ7u0CnNNRETCK6qC+z5nYeyWTTSBSURiW1QF9+nzswBok54c5pqIiIRXVAX3rL1HAEiMj6rLEhGptaiJgiVapENExCNqgvu+vOJwV0FEpNGImuBeZm24qyAi0mhETXAvKC4DYPKormGuiYhI+EVNcP/znPUAJOhmqohI9AT3L52UA/vyisJcExGR8Iua4J7nJA27aXT3MNdERCT8oia4n3pcBgDdMtLDXBMRkfCrMbgbY3oZY5Z6/RwyxtxWqYwxxjxjjNlojFlujBlSf1UO7Mv1ygQpIuJWY+Jza+06YBCAMSYe2AH8t1Kxc4Cezs8I4AXnXxERCYPadsucAWyy1m6ptP884DXr8h3QwhjTPiQ1rIXEeNPQTyki0ijVNrhfBrwVYH9HYJvX4+3OvgZ1+fBjG/opRUQapaCDuzEmCZgI/LuuT2aMucEYs9AYszAnJ3R95O8v+xGA7zbvC9k5RUQiWW1a7ucAi621uwMc2wF09nrcydnnw1r7srV2mLV2WEZGRu1qWo21Ow8BMOTYliE7p4hIJKtNcL+cwF0yAO8DP3dGzYwEcq21O4+6dkHq0joNgF+f3qOhnlJEpFGrcbQMgDGmCXAmcKPXvl8AWGtfBD4CxgEbgXzgmpDXtBp5Ra68MunJQV2OiEjUCyoaWmuPAK0r7XvRa9sCvwpt1YJ3xJmd2kTBXUQEiJIZqnlFpaQkxmkFJhERR1REw8OFpeqSERHxEiXBvYSmKYnhroaISKMRFcE9t6CEZqkK7iIiblER3A8VlNBcwV1ExCMqgnuugruIiI+oCO6HCktplqIbqiIiblER3POKSklXcBcR8Yj44F5WbikuLSc1MT7cVRERaTQiPrgXlrhSDyi4i4hUiJ7gnqTgLiLiFvHBvcAJ7ilquYuIeER8cC9UcBcR8RPxwT23wJURMknrp4qIeER8cF+5IxdwTWQSERGXiA/ui7YcAGBQZy2xJyLiFvHBfWH2fgDapCeFuSYiIo1HxAf3cwd1ICkhjtbpyeGuiohIoxHxwT2/qIwmGuMuIuIj4oP7keJS0pKUV0ZExFvEB/f8ojKaJKvlLiLiLeKbvLNX7Qp3FUREGp2Ib7mLiIi/iG+5t0lP5sw+7cJdDRGRRiXiW+5HikpJV5+7iIiPiA7upWXlFJSUkZ6s9VNFRLxFdHA/UuzKCKnRMiIiviI6uK/deQiA+DhlhBQR8RbRwf3Sl78D4O3vt4W5JiIijUtEB/cBnZoD8Mo1PwlzTUREGpeIDu7Lt7tyuXdskRrmmoiINC4RHdxFRCSwoIK7MaaFMWamMWatMWaNMeaESsdHG2NyjTFLnZ8H6qe6IiISjGBnqD4NzLbWTjLGJAFpAcrMt9ZOCF3VqvfjwYKGeioRkYhTY3A3xjQHTgGuBrDWFgPF9Vutmu0/EvYqiIg0WsF0y3QFcoBXjTFLjDHTjTFNApQ7wRizzBjzsTGmb6ATGWNuMMYsNMYszMnJOZp6szO3EIDHJw04qvOIiESjYIJ7AjAEeMFaOxg4AkypVGYx0MVaOxB4Fng30ImstS9ba4dZa4dlZGQcRbXhxtcXAlBYUnZU5xERiUbBBPftwHZr7QLn8Uxcwd7DWnvIWpvnbH8EJBpj2oS0ppV0aunq9h/dq219Po2ISESqMbhba3cB24wxvZxdZwCrvcsYY44xxhhne7hz3n0hrquPrfvzATimeUp9Po2ISEQKdrTMzcAbzkiZzcA1xphfAFhrXwQmATcZY0qBAuAya62tjwpXlqC8MiIifoIK7tbapcCwSrtf9Dr+HPBcCOtVoxO6taas3OJ8YRARES8RO0O1oKSMxAQFdhGRQCJ2mb2l2w6GuwoiIo1WRLbcF2bvD3cVREQatYgM7t9scg3EUTZIEZHAIjK4u4P6a9cND3NNREQap4gM7gXOrNSmyRF7y0BEpF5FZHB3pxxISdLC2CIigURkcC8odgX31EQFdxGRQCIzuJeUkRBnSIyPyOqLiNS7iIyOhSXlarWLiFQjIu9IvvJ1VrirICLSqEVky11ERKoXkS33/h2b0yY9KdzVEBFptCIuuB8pKmXFjlzapCeHuyoiIo1WxHXLbNiTB8DevKIw10REpPGKuOCuxTlERGoWccH9r/M3AzBhQPsw10REpPGKuOB+yxk9adUkiUcu6B/uqoiINFoRd0O1e0Y6i+8/M9zVEBFp1CKu5S4iIjVTcBcRiUIK7iIiUUjBXUQkCim4i4hEIQV3EZEopOAuIhKFFNxFRKKQsdaG54mNyQG21PHX2wB7Q1idSBTrr4GuX9cfq9ffxVqbUVOhsAX3o2GMWWitHRbueoRTrL8Gun5dfyxffzDULSMiEoUU3EVEolCkBveXw12BRiDWXwNdf2yL9euvUUT2uYuISPUiteUuIiLViLjgbowZa4xZZ4zZaIyZEu76hIoxprMx5nNjzGpjzCpjzK3O/lbGmM+MMRucf1s6+40x5hnndVhujBnida6rnPIbjDFXheua6sIYE2+MWWKM+dB53NUYs8C5zhnGmCRnf7LzeKNzPNPrHPc4+9cZY84Oz5XUnjGmhTFmpjFmrTFmjTHmhFh6/40xtzv/91caY94yxqTE0vsfctbaiPkB4oFNQDcgCVgG9Al3vUJ0be2BIc52U2A90Ad4DJji7J8C/NHZHgd8DBhgJLDA2d8K2Oz829LZbhnu66vF63AH8CbwofP4X8BlzvaLwE3O9i+BF53ty4AZznYf5/9FMtDV+f8SH+7rCvLa/wFMdraTgBax8v4DHYEsINXrfb86lt7/UP9EWst9OLDRWrvZWlsMvA2cF+Y6hYS1dqe1drGzfRhYg+s//Hm4/uhx/j3f2T4PeM26fAe0MMa0B84GPrPW7rfWHgA+A8Y24KXUmTGmEzAemO48NsDpwEynSOXrd78uM4EznPLnAW9ba4ustVnARlz/bxo1Y0xz4BTgbwDW2mJr7UFi6P3HtTJcqjEmAUgDdhIj7399iLTg3hHY5vV4u7MvqjhfMQcDC4B21tqdzqFdQDtnu6rXIpJfo6eAu4By53Fr4KC1ttR57H0tnut0juc65SP1+rsCOcCrTrfUdGNME2Lk/bfW7gCeALbiCuq5wCJi5/0PuUgL7lHPGJMO/Ae4zVp7yPuYdX3vjMrhTcaYCcAea+2icNclTBKAIcAL1trBwBFc3TAeUf7+t8TV6u4KdACaEDnfOBqlSAvuO4DOXo87OfuigjEmEVdgf8Na+46ze7fzdRvn3z3O/qpei0h9jU4CJhpjsnF1t50OPI2ru8G9kLv3tXiu0zneHNhH5F7/dmC7tXaB83gmrmAfK+//GCDLWptjrS0B3sH1fyJW3v+Qi7Tg/gPQ07mDnoTrRsr7Ya5TSDj9hX8D1lhrn/Q69D7gHvFwFfCe1/6fO6MmRgK5ztf3T4CzjDEtndbQWc6+Rs1ae4+1tpO1NhPX+/o/a+2VwOfAJKdY5et3vy6TnPLW2X+ZM5qiK9AT+L6BLqPOrLW7gG3GmF7OrjOA1cTI+4+rO2akMSbN+VtwX39MvP/1Itx3dGv7g2uUwHpcd8HvDXd9Qnhdo3B95V4OLHV+xuHqR5wLbADmAK2c8gb4i/M6rACGeZ3rWlw3kjYC14T72urwWoymYrRMN1x/nBuBfwPJzv4U5/FG53g3r9+/13ld1gHnhPt6anHdg4CFzv+Bd3GNdomZ9x/4PbAWWAm8jmvES8y8/6H+0QxVEZEoFGndMiIiEgQFdxGRKKTgLiIShRTcRUSikIK7iEgUUnAXEYlCCu4iIlFIwV1EJAr9P91bRrtWiQKeAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcaUlEQVR4nO3dd3xT5f4H8E+60pbuXaBQ9rCMIqtUQGQKcsWBXkUBcVt+4JbqdXJlqChOFFTwqsC9IiDKkr1HQVZByijQUjqgpbtNR87vjzSnOVlN2qQnaT/v1ysvz3nOc5KnDTbfPOP7KARBEEBEREQkExe5G0BERETNG4MRIiIikhWDESIiIpIVgxEiIiKSFYMRIiIikhWDESIiIpIVgxEiIiKSFYMRIiIikpWb3A2whFqtxrVr1+Dr6wuFQiF3c4iIiMgCgiCgqKgILVu2hIuL6f4PpwhGrl27hqioKLmbQURERPWQnp6O1q1bm7zuFMGIr68vAM0P4+fnJ3NriIiIyBKFhYWIiooSP8dNcYpgRDs04+fnx2CEiIjIydQ1xYITWImIiEhWDEaIiIhIVgxGiIiISFYMRoiIiEhWDEaIiIhIVgxGiIiISFYMRoiIiEhWDEaIiIhIVgxGiIiISFYMRoiIiEhWDEaIiIhIVgxGiIiISFYMRoiIiGxo8+ks/C8pXe5mOBWn2LWXiIjIGey/cANP/3gUANAq0AvxHUNkbpFzYM8IERGRjTz87SHxeJLOMZnHYISIiIhkxWCEiIjIBiqr1QZlz688hj9OXoMgCDK0yHkwGCEiIrKBElWVQdna49cwffkx/Hjwigwtch4MRoiIiGwgt6TC5LW3fjvdiC1xPgxGiIiIbODTrefNXs/IL2ukljgfBiNEREQNsONsDu5btB/rTlwzW2/l4bRGapHzYTBCRETUAI8tS8LRKzfrrPf59guN0BrnxGCEiIjIhqYOisb0YR2NXkvPK23k1jgHBiNEREQ21L9dEF4e3QVhvkoAwIB2QeK1H/ZflqlVjo3p4ImIiGwo0NsDAHD4jREAAFVVNbr8axMA4Nu9l/DU0PYI8/WUrX2OiD0jRERE9XQlt8SgzNNd+tGqdHNF76gA8bz/+9vs3SynY1UwEh0dDYVCYfBISEgweU9+fj4SEhIQGRkJpVKJzp07Y8OGDQ1uOBERkdyGfrjToOyWlv4GZa0CvBqhNc7LqmGapKQkVFdXi+fJyckYOXIkJk6caLR+RUUFRo4cibCwMKxatQqtWrXClStXEBAQ0KBGExEROSoPN8Pv+d4erjK0xHlYFYyEhoZKzufNm4cOHTpg6NChRut///33yMvLw/79++Hu7g5A07tCRETk7KyZjNovOgi/HL0KAAj0drdTi5xXveeMVFRU4KeffsK0adOgUCiM1lm3bh3i4uKQkJCA8PBwxMTEYM6cOZLeFWNUKhUKCwslDyIiIkfy9jrLU7zfd2trvDyqMwCgpML8Z2BzVO9gZO3atcjPz8fUqVNN1klNTcWqVatQXV2NDRs24M0338SCBQvw73//2+xzz507F/7+/uIjKiqqvs0kIiKyuSq9HXpHdAtHXPtgHP3XCKP1XV0UeKh/GwBARZUaajV38dWlEOq5r/Ho0aPh4eGB33//3WSdzp07o7y8HJcuXYKrq2a87OOPP8aHH36IzMxMk/epVCqoVCrxvLCwEFFRUSgoKICfn199mktERGQzBaWV6PXen+L52dlj4Olufl5IiaoKt7y9GQDw93tj4NUM5pEUFhbC39+/zs/veuUZuXLlCrZu3YrVq1ebrRcZGQl3d3cxEAGAbt26ISsrCxUVFfDw8DB6n1KphFKprE/TiIiI7K64okpyXlcgol+nvLK6WQQjlqrXMM3SpUsRFhaGcePGma0XHx+PCxcuQK2u7c46d+4cIiMjTQYiREREji63WFV3JT2uLgq4u2rmWK5ISsP/ktJt3SynZXUwolarsXTpUkyZMgVubtKOlcmTJyMxMVE8f/bZZ5GXl4eZM2fi3LlzWL9+PebMmWM2LwkREZGj+2TLOfH4ldFdLL7P003TG/LBphS8+utJPLzkIG6WVNi8fc7G6mBk69atSEtLw7Rp0wyupaWlSeaCREVFYfPmzUhKSkLPnj0xY8YMzJw5E7NmzWpYq4mIiGTk7VH7ZTzBxKZ4xvh5SZf17r+Yi/c3/G2zdjkrq+eMjBo1CqbmvO7cudOgLC4uDgcPHrS6YURERI6qU7gPcAoY1yPSqvv8vdyRkV8mKTtzjekruDcNERGRlUprcoW0DLBuw7uU7CKDsjOZDEYYjBAREVmpRKVZTaM7XGOJahP5RUyVNxcMRoiIiKxUVtMz0kJpm+W5N0ub9yRWBiNERERWKqmoX8/IiG7hRstzixmMEBERkRVK69kz8uH9PY2Wl1U27/1qGIwQERFZISWrCHvO3wCgWR1jjcAWxhN+ljMYISIiIktN+HKfeNwqwNvq+5PeGIEXRnTGwcTh6B6p2a+FwQgRERFZTHdIxdqlvQAQ6qvEzBGdEOHvKS7rnbo0yWbtc0YMRoiIiOrJ19O6YRpzTl0tsNlzORsGI0RERBbacCqz7kr1tO1stt2e29ExGCEiIrKAIAiSDfLuv7V1g59z3fR48Xjh1vPIa6ab5jEYISIissAj3x3C+Zxi8Xzm8E4Nfs6erQOgUNSe95m9BaM/2d3g53U2DEaIiIjqUFWtxr4LueJ590g/RAVZv5LGmN+n3yY5T8kuMthMr6ljMEJERFSH/LJKyfm029rZ7LljWvkblL21NhnRs9Zj7oa/bfY6jozBCBERUR3WHb8mOa/Pkl5rbDubAwD4ZneqXV/HUTAYISIiMkGtFrDr3HW898cZSXlc+2Cbvs6E3i1NXhOEpr+jr3U7/BARETUj/1x8EIcv50nK5t3bAwrdWac28N6EGMS08se/1xsOyxSUVSLA23ga+aaCPSNENpRTVI7C8sq6KxKRw0vOKDAIRADgwX5RNn8tP093PDG4PQZ1MOxx+VhnOXFTxWCEyEYKyirR//1tiH1vi9xNISIbuOvzvQZlq56Js3mviK6PJvYyKNt8Ostur+coGIwQ2ciFnCIAQLVawKmrBfj3H2dw+4c78M2uizK3jIhsJTLAy67P3zLACxfevxNje0SIZUo3V7u+piNgMEJkI64utf87jf9iL77dewmXc0sxd+PZeu05oVYL2HfhBoo47EPU6Kqq1UbLw3yVdn9tN1cXfDXpVvSoWfKblleKiirj7WkqGIwQ2cjb606bvPbZ9vNWP9/Lv5zApG8Pocc7fzakWURUDyoTH/7uro33sflQ/zbisXZ336aKwQiRDZRVVONEer7J61vOWL8B1upjGeLx3038DxGRo7lZqtkjxqMRgw99Xh61r/3fpDTZ2tEYGIwQ2YAlQynb/rY8IFGrpXkFPtqcYnWbiKh+qqrVeOKHIwCA1kH2nSNiTvsQH/F4zbEM7Dibg+hZ67EzJUe2NtkLgxEiG7hZWncwMmPFMbPXswvLsSMlB4Ig4EaxSnItzshyPyKyj21nc3A2SzMhPfV6CdYmxCPcT4kvHo5t1Hb0igoQj8sr1XhsWRIAYOrSJETPWo9rTWj/GgYjRDbwwaazRst/S6jdHrykotrsc9z71X48tjQJf5zMxKkM6YRXdTPIwEjkKNLzSiXnvaMCcOj1Ebirp+ksqfbyyzNxJq/dv2h/I7bEvpiBlaiB0nJLxX0k9LVQmv5f7OiVm5i74W8smdwXCgXEXToX/JmCy7nSP4ZF5VW2azARmZWmE4w0dm+Ivo6hPiavXSsob8SW2Bd7RogaIPV6MYZ8uMPk9RZKaX4A3bkg9y3ajyNXbiJ29hZ8v/eSWK4fiAAMRojsRRAE7EjJQWZB7ZBHTqFmmPSNsd1k6Q3RFdjCdBr427uENmJL7IvBCFED7D53XXJ+IPEO3NLSTzzX7xkprjAeVPxdMz5tSnpeabPYLMvR7L94A9Gz1iP2PS6vbqp2nbuOx5YmIX7edrHs0o0SAEDrQPkmr1oir6RC7ibYDIMRIiss2nkRa3WW3C7W2d77sfhoRPp74ffpt2HZY/2Q8u8xaOEhDUYKTEx0rWvp77azORi+YJdBeXpeKV5fc0oc4iHbevo/RwFYNkGZnNORyzcBAGoBePu3ZPydWYiUbM2Xg5BGSHBmid41E1lHdAuXlJ+8WoBBc7c1iaCEc0aILHQ2qxDzayaqZuSXQVWllozZxrYJBAC4uChwe5cwsfzHx/vj0e8OA9DsX1PfLbZSb5Tg3q/24ZMHe6NtcAsAwKzVJ7HvQi6WH0rD5Xnj6vnMZEqIrxJFKk1vllotwMXFfnuSkDx0h0F+OHAFPxy4Ip77ejrGR+TahHgUq6rgo3RDtVrAqqPpeO3XUwA080a+2XURiWO7ydzKhmHPCFEdKqrUuOvzPRizcI9Y9uHmFHy2TZpVdWxMhP6tAIDBnULRPkQTPJTUfLCZGnJ5emh7yfmbd3WXnP+Vlo8vd1yAIAgoVlVh34Vc8drtH+4wWAVADVOpkxK8xMQQGzm3glLTvQpdwn0bsSXm+dQM+bq6KNA3Okhy7fDlPAz5YAcW/JmC8spqp0wdb1UwEh0dDYVCYfBISEio896VK1dCoVBgwoQJ9W0rkSxOXytAcob5DKiDOgTDzUymRu3cEe0H2uq/MozW69HKH1Pi2ornt3UMMahz8moB3v39DHq+s1lSfjm3FOO/qN1ltKyiGutPZhrkLKG6FZRVYs6Gv3H1Zu3wV7GKwUhT9Nn2C0bLH7+tnV13522ISH9PyfmxtHyk5ZXi8+0XcNv8HRizcLfTzTGzqg8qKSkJ1dW1uRKSk5MxcuRITJw40ex9ly9fxssvv4zBgwfXr5VEFqhWC9iUnIUB7YMQ4tO4Y737L+aava79VlNUXoWM/DK89MsJo/VaKN3w7t0xiOsQgpYBnogM8DSoczarSEzIpC9fZ27D0z8dFSfYcgjHOEEQ8Oqqk8gqLIeqSo3nh3fCoI4hGPvpHoN5ODdLKhHp79gTGsl2gn1Mr2KRm7kU9TeKVbhRrEJhWRX8vd0bsVUNY1XPSGhoKCIiIsTHH3/8gQ4dOmDo0KEm76mursakSZPw7rvvon379ibrETXU17suImH5X5i+/C+bPm+hBctq597bw+x1sWdEVW12B9/cYk2X8ZiYCPRsHQA/T3dsnGl5EN81whdjFu7G/604JlnpU15pPuGaMzqRno9v96QapM63xo3iCvxy9Cr2nL+Bw5fy8PC3h1BVrTY6IfiDzcYT25Hz0p2Mrq8h/67szdWCuUuv/mr8C4+jqveckYqKCvz000+YNm2a2a6s9957D2FhYXj88cctfm6VSoXCwkLJg6guv/51FQBwMDXP6nsLyipxIafY6LVl+y4ZLdfqGOaDf/YzPy3VpybfSImqCvsv3jBZb2T3cIOybpF+Rmoap+01+f3ENUl5U8lTcjarUBwuufvLffj3+r/x2wnTHyh1qVIbjq1/o7NCStfOlOtGy8k5ZRaU4fn/HhfPP/1nb8n1Tg40X0SfQqEwOoSra/PpbKf6ElLvYGTt2rXIz8/H1KlTTdbZu3cvvvvuOyxZssSq5547dy78/f3FR1RUfdcfUHNS1+6apsZQS1RV6PXunxjx8S6k6A1/aBIimf8QuqtnZJ1jyz41s/KLVVX4j85sfQA4+q8R6Brhi5dGdoa/l/Fu1ScHtzP7/JufH2L2ekkTmO+w42wOxizcg3u/2icpT8kyHkRawthEvw/NbEqYXdh0Ml42dzeKpBNXO+hkOh3SORQjuxl+MXAkPz0xAIffGG62zqPfHWqk1jRcvYOR7777DnfeeSdatjSena6oqAiPPvoolixZgpAQ8xGcvsTERBQUFIiP9PT0+jaTmhGlm+l/zuezi9B/zjZ8/KfhB81SnZ6PLWeyxGO1WkC7xA0G9Vc8ORDLnxyAf/RqiR6t/PH0kA51tk07TJNTZDiZNNhHiU3PD8H/De9k8v6XRnXBD9P6Y2wPwxU7rQK8jM4t0dUUVoJoNwk7ly0NPhqy2tbaVQff7DLea0LOp6Ja+t5H+nti48zB2PbSUPxnWn+nWMYd5uuJoZ1NZ2FNunxTsiLMkdVrEfWVK1ewdetWrF692mSdixcv4vLlyxg/frxYpq7pEnVzc0NKSgo6dDD+R1ypVEKpdIxkM+Q8Ms3s0/D9vsu4XqTCZ9svoG1wC9x3a2vx2s+H0sTjj/48h+l3aIKC6yZWoQR4u6NbpB8GdbA8yPbz1PR4rDicJim/t08ri+73dHfF0M6hGNg+CKE+f2Nsj0j4e7tj1ZGrmH5HR/gq3eDmokCViXHuEpXx7tq/MwvRJsjb7B46juimTpInS8bPTalr88KJt7ZGdpFKnH/TPrRFvV+LHIt+IOrr6Y7gRp74bgsJwzpil/bfZ0gLpNZkj9VafigNUwZFy9Ay69SrZ2Tp0qUICwvDuHGmZ+h37doVp06dwvHjx8XHP/7xDwwbNgzHjx/n0AvZ1I1ilaTX4cFvDkiyneoGAforWfSDmIKySqPlWn4mhlLMMTYfpV1IC7z7j1useh6lmyvevTsGA9oHo2uEH/51V3cEeHtAoVCIQ0HGGBum2XP+Ou78dA8eWnLQqjZUVaux7sQ15BQ17pCFp3vtn6vY2VvE4+WH0kzO96mL9r3uGuGLN/SSRj13ewd8OLEX/jOtv1j28ZZz9Xodcjz6S7U9zPSsOjLdXChT46MxLV46pHv0ys3GblK9WP3bV6vVWLp0KaZMmQI3N+kfv8mTJyMxMREA4OnpiZiYGMkjICAAvr6+iImJgYeH4y6bIufzvyPSobxDl/Lw3b5LuFlSgbd+SzZ5nyAIBt+sr97UJA6bu+Fvo/fUJyvjZJ3cIVo7Xr4dvp62W3pnbPa/W83PZmyY5p11pwFo8pYMnLMN/0uybDh0yZ5LmLHiGKZ+n9SA1lrPR2n8d5VbUoERHxumyjdn34Ub6PHOZvxn/2UAmt6uPm0DJHV0/120CtAs6W0KabdJI99MsjNnovv3qE+bQLw6pgt6tPIXywKdZHmv1cHI1q1bkZaWhmnTphlcS0tLQ2Zmpk0aRmQNY6tFDly8ganLkgwmjOp6ZdVJVOt9iFdWC0afc/59PTD33h7ikIs1tHtLaHl7uBqvaGPaYZs/TxvufXPxem13blZhOV5fc8qi59SmxD+T2Xir3Cqr1XUmbzM2/+NQai5e/O9xSRBRVlGNSd8eQlF5FbadzQGgCXQCvaVfkFQ6z6ftwYppZfnKJnJs2l4xZ+fiosDCB3vj7fHdEdPKH57urlj51EDxemkdQ5GOwupgZNSoURAEAZ07dza4tnPnTixbtszkvcuWLcPatWutfUkis/JLK7Bo50WD8qTLN3EiPd/oPdoAZNXRqwbXPqpZTRGhk+VwcKcQPNivDR7q36ZebVQoFPByrw1APvtnbL2ep67XMGXdiWt1LvOrUgtW/4FurNUl2/42v5EgAGQZGVZ7cPFBrD6WIeaeEQQBBy8ZJqjbfjYb7UN9MHN4J7TwcEVsmwA8obOCKdxP82/hupEJyOScdBMEfjelr4wtabgJsa3wmM7wTAulG/41TjPsWOYky3udc5CMqEZ+aQV+Omi658OU60UqXMgxnsV07wVNHpDimp6RRwe2xdeP3Fr/RtbQ/aMQo9ONaiu6o00Rfp7w93KXDA91fXOTZMjKWO/M4PnbDcoKSivFISD9uRnf7zWfg8VWnvmp7kR2eWa63fdfzMWHm8+iXeIGPLbUcHhJ2zn2wsjOOP3eGKx5Lh5hvrXBaGjN7q3ZhSqzibLIedys+fcyc3gnDHfwZbz1oZ2U/sfJTKdYks5ghJzWb8cz0Pu9LfjoT+snFeaWqLBkt/kPUu0Et+Hdwmy+2iSohe3nTOnOcdj8whDseW0Y7ugaJqmjO2TlaqQnRT/b7KqjV9HrvT/FSa76vQ+e7o0z3KRLu+kgAJx4a5R4nFusQlZBuZg9tbC89puvh5sLvtxh2HumNf8+8xl0dVODP//f402mi78500541waaTY1uT+yAOdscfq8aBiPklA6m5mLmyuMG5cfeHImPH+hl9J6VTw0UZ56P+2wvjusM4Wx6fjDevydGUl876dMe24jbY+b+E4M12y2M7B4Ofy93+Hm6o2uE4RyHqmo18koqUGQiEZpuKvSXa1YeHbqkyWpbUS3t8rX3h/LGU5mInrUeITXBwLT4dvjqkT7idX9vd9zeRZNn4fEfjmDg3G0Y8sEOlKiqMGJB7aTWuvKJPNDX/Oo+d72Eei/oZO4k55RT01ugHYJratxcpV821p9y7PmczpVcgKjG1jOGcwge7BuFwBYeRsdIP38oFgPbB0s2jkrJrh2miQr0lmQ/bZ+4Xuy6t3WviK+dcno8Obg9YqMC0LN1gFgW4W/4h/aR7w7h9DXTk08f/OYA9r52h9Fru/Sy0do7GHn2Z83wzI2aPXvahbZA1wg//D79NoT7K2uuSedxVKsFpOWVGk0wZ4q1u7NuP5uDI5fzDLZyJ8cnCAJullYiu1Dz7yPcr2n2jJzTyyY9ffkx3NXTeJJSR8CeEXJKgUaGObR5NrTLMHVpA43O4T4G114Y0RktlG7wdKvt1tRdYNPCwzbBg3YYpT55Six9/gHtg+FVx0qdg6l5kpVCz97eAc+PqM3+evWmpmdEvzehqlqNlXrLfxt7uMK7puu5R2t/cU5HcoZhYLXASKZdfcay2Vrj/q8PNOh+kse/1iajz+wtyKrpGdGdG9SUPGIknYAjYzBCTkMQBHEi5cmr+QbXtUmxhnQKxcIHe0uuDeoQDADoYmTYIjrEGwBMfojbqmfkx2n90bO1P76b2rgz96OCzG97/9qYrujfTvoNPzmjABevSyerPv3jUXG5a9tgze+sqLxhwcjXuy7iwW8OoFQnD0pOUTkmfLnPIHcMYHzS7Qf39TQo2/p3Tp2vfV+f1lj4YG9se8n0ruOSttpgEjPJTzfjskIBcQiwqQnz9UTqnLFyN8NiDEbIabRL3ID2r2/Akct52Gwkb4Z2wpaLiwITYlvhf0/HoXWgFzY/PwRuNWP+ncMMe0bah2jKTO1tY2rzOmsN6hiCddNvMzqPw576tq17KKF/dBD+0au2C/dgai6e+vGIpI42JwegWeoMmE4zb6l5G8/i0KU8rDxcG3jM3XAWx9Pz8eqqkwb1vY0Ehg/UsWOyKX5e7pgQ20qyQZo5Y2IiDAISR58USFI7zkqDVBeFQvzb0BS5uCjw4f21wboj/3ttuu8CNVkfbDLeBd8uRPqh0r9dEPa+dge6RNSmSx7QPlhcf6/VpuZbvkKhMLrpWkP2PnEE74y/Bf93R0fMnhBjso6bqws+e6g290mYnyfS88pM1o8O1qxoqVLbZhMu3eEec8sQTSWL2/Hy7Va/plc9VgKN6i5dAuosORxI48sdFyTn+gkPm6LxOl8ydqZcx/+tOGY0J4/cGIyQ0+ndJsBoeamFO9NqV51o6fZ8NMW/Tf7e7nhpVBdM6t/GYJ7ExpmDJefapcBZBaYDEQC4paUmT8q57GKjaegtscHE7H5zX95MBRDBZrrad5oIVOqaW2OMi4sCp98dLZ6XVzrHjqikod/L6dGEe0W0dJffP7YsCb+fuIY3LMy23Ji4moacQo7Ot+UVh9MwpHOouJOqlosVKyLujW2F1ccy8Pv028zW053Y6excXBT4apJmmOHzbedRUa1Gt0jpkNG5mhVGczacNftcuoFf+9c34PI805tmam1KzkROkQp+nu64kluKT7bW5ofRjT8EmI5GTOWE8FW6IcTHA8WqKrw4srOk/dEh0p123xjbDTeKVRYPz+hroXSDh6sLKqrV7BlxMiq9SdmH3xguU0vkdSm3pO5KjYzBCDmFfJ1u/KLyKlyp+Z+pTZA30vI0G9uNjrF8dcRHE3vhjXHdTG4Z7uqiwKHXhyPYDsnJHMH/DTceZGlX0uh6cnA7LNkjTRAX6S+dFLv+ZCbG9Yw0+5rmsqgu23cJL47UbDFhqmekX3SgyZwQCoUCe169A9WCgGNphruU3tunFVb/pcmc+uSQ9gbXreXprglG6kqxT46lUG/Cta3mgzkbYwkP5cZghJxCVbX0E+pKriYAeWlUZ1RWC7itYwh8rFj14uKiMBmIAJoMqSFmrjdVfdsG4ojOluPhfkp01tmiXKt7S2mPSsLyv3BnzFi4uCigVgtw0ZtnU9eHtm4AYiwYuTR3bJ25QLTDLrd1DBHLtAnR5t7bA9mF5RZN5rWEp7srCsurUGZkEzLtJEFrc5eQ/Wn3ownzVeLOmIhm+x454jy4pj9gRk1CeZXxD7O8kgrcf2tro8m96kM7LPPK6C42eT5nM0jngxzQZHM11VOxYYZ0vsmVvFI88+NRtH99AxKWS3tBCuvIR1KkqhLnnui/18/d3sGqDw2FQoHlTw7AhN4tsWCiJhuv0s0VPz8xEC+MNNzgsz60gY9Kr62CIKBd4ga0S9zQLCZHOpPKarXYi/rj4wPw7t2mJ3Q3Nc/d3kFyfjbL+L5ccmIwQk7B1DfrO2PMDw1Ya+bwTjj0+vA604M3VY8Nipac+3q6Q+nuonPuhk//2RuApndkywtDxGvF5VXYdDoLgGbYRrfXYIsFu+5qV9QU6+2P0zrQ26qfAQAGdQjBwn/Gmu39aghtgryyCukchGKdFPufbLF+zySyn8s3audJeLo3r48+/TxCjqh5vSPktFRGVi10j/SzWY+IlkKhaLJ7VVhCPzusq0KBMTERGNwpBC+N7IyTb4/C3b1bidc7hfuiQ6hmguj4L/ZK7v3x4GXx2NRy7P8+NVA8/r8VxwAYTjJ0xA8Oz5qeEf0gWXd1TbUD53Rojip1hnrbBFkf4DqzoZ1DsWhSHzGtQaC3482Vcbz/y4mM2JhsuAy0PkszyTz9seRd565D6eaKHx8fgP8b3snocMnF68Zn5uuuaJnQ23BPjKGdQzGgfbB4vvfCDQiCYLDXjP4mdY6gRc2/vXy94SfdHCn1yWNCtldZrcZbvyXjw821/x6b21wRhUKBO3tEYkA7zf9vN0srkVPkWLlGOIGVHN71IhX+d+SqQbkDzsFqcobVTAA1x9VFYXJ+RImqCsv2XzbYpfjEW6PEvYR0lVVWG/SM2GPX5IaKCvQGkGuQj2WhznLlvJKKRm4VGdPpjY1yN8Fh6K4e6v/+Nvz5whCjE9Tl4HhfOYj0PPPTUaPlSZcNl3BSw70wQjPJc3CnEJNLgHW118vjoWvQvO34cHOKZGlwpL8n/L3djc7o7/7WZvF4+rCOGNEtDIM71R0QNbagmiRrPxy4gs0182QEQZDsiVNUblkSPrIfY3PNYk0kTWwO/PWGZx74xnE2e3S8rxxEOraeycZRnaWmLTxcUWJkOSXZzswRnTDTimRvxnZQ1jK2q++mmUMk5xF+nuIOqrpeduAVTdr8M9eLVHj6x6PY+uIQg2ysDd1EkBrup4NXDMq+ebT5bnion1clv7TS6FJ8ObBnhBzaE/+Rbtb2xcN9xONHBzrXFtlN1b8nxJjMyRKkF6hEBXkZfDsb0T3Mbm2zl056Xdup10tw4GKupEw/wRY1Pm0+Il1hvs13gjoAtAqQJiz880yWTC2RYjBCTiUqyBudanbevdvIpEhqfJ3DfZH0xnAxOLwntna1jf68iZVPxRnc/2DfNvZtoB3o/0GvqFYbpLEvLOMwjdwC9ALfRwY63781Wxupt9mjo2yax2EachrRwd5oE+SN1c8NQkZ+GbpG+NV9EzUKhUKBt8d3xwN9o9C9pR9+P3ENVUYmtUYaWTYd08rwfbyvT2u7tNNW/PQm1SqgwHy95ctFKvaMyO1YWj4ATdKvu3u3Qtvg5rWk15iHB7TBsv2XxXNHWYDOnhFyaO1rclj89PgAbHlxKDzcXODr6c5AxAG5ubqgR2t/uLoojAYi3SL9jI5NKxQKDO9aO1QzLb4dPprY065tbSj9fCwJy/8yWFHEnhH5VVZr5vFUqQV0ifCV7GDbXHUO9xX3gQKAd38/I2NrajEYIYemzeLp5+XmkPkmyDJfPtwHaxMGmby+7WztKpTJcW0dPg+EuQ+1wZ00KfWLyivFfWoc2dhP9yB61nqD1PZNQUVNMBLTyl/mljiWUbdIh2ocYcNH/nUnh6bdot2bCc6c2riekVC6mX4Pdef/6Pc6OKo3xnYzWj60s2YpsloASiqqcS67CNGz1mPVUcNcOdaqVgtIzzOclFlfpRVVOJNZCAD4ZMt5mz2vo9Aurw7xaZq7b9dX1wg/9I4KEM/3nL8hX2NqMBghh6btGWH3qnN5bUxX8XjZY/3qrD9BZ9KrIyY5M+aJwe3E9Nq6btdJFLds3yWM+mQ3AODlX040+DVf/uUEBn+wA2uONTywAaTp67VDGk3JhZxiAICfp3MEuI3pP4/3F4/3XWAwQoT1JzOx5/x1VFarxZ1bAc23QG02TqbWdi6T49picKcQvH9PDG7vUvfS3UDv2m+uzjIcp1AojG7i56Os/eD76E/pZnnZRvKpWOri9WKsOZYBAHjhv7WBzamrBfXudTlxNV88bmq7DCdnFIjHzhLgNiY/T3f0aq0ZvmpnJnFhY+E7RLI6kZ4v2W4+vmMwfn5Cs3ma7jimtwf/qTqTFko3/Pj4AIvr92rtj4RhHdA2SP4/itYY0S0Mw7qEYkfKdbHMz8v0v9WvdlxAdEgLPBbfzurXGr5gl+Q8s6AMcXO3i+ctAzwxqEOIVc9ZrpNAMFMvtb2z0x160E/2RRpdI/xw4mqBZLdpuTjHVxBqsvSTmu27kCtO+ivV+UOpdOM/1aZMoVDgldFd8UC/KLmbYhU3Vxd8rpOIDzAfOP9w4Are/f0MUq8XI3rWekTPWo9LN4xvNFgX3UAEADaesj55le6eQY6Sb8JWdIPCAG/OGTFGuz8UgxFq9q4XqQzKtOPY1/I139QCvd0dIl0xkTEtjEyuNjaXRNdvx6+Jx8M+2mmTlSw/Gkl9bk7i6pN4/IfaLwPGUvI7M+3SakfPWSOnm6WapISLdl6UuSUMRsgBffSnJnnUwVRNem3mFCFHprsMuU/NJmx1LZX8dJt05UqXf21C9Kz1qKgyPonU0iXCV3I1vSzTliWh25ubTAY5BWWVWHE4XVJ2s6RpJWnLr/mgDfTmEI0p57KL5G6CyKpgJDo6GgqFwuCRkJBgtP6SJUswePBgBAYGIjAwECNGjMDhw4dt0nBqun7YfxkPLzmIuRvPAgBCfY3ve0LkaKJrJgIWq+rX09H5X8a3u7d0gupjy5Jws6QC28/moKyyGom/njKoU1mtRq93/zQor6hWo6oJrajJL9UEV+Y2cmzunhnaAYBjzKmxKhhJSkpCZmam+NiyZQsAYOLEiUbr79y5Ew899BB27NiBAwcOICoqCqNGjUJGRkbDW05Nlo+nG/brbDrm6c4OPHJsXzwci9s6huD1mtwjTw9pL7net22gxc+lXdWiVgtij8grq06K13u2libw0s0Pl3q9ROx6B4DVxwz/1i7Zk2rytY9cuYk7PtqJb83UcRZ5Nb8HR/igdVThNdsz6G9oKQer/sqHhoYiIiJCfPzxxx/o0KEDhg4darT+zz//jOeeew69e/dG165d8e2330KtVmPbtm02aTw5Pw8jE1O132i0dJdKEjmiu3q2xE9PDBB3Lw5s4SEJot8a3x0D2wdZ9FzpeaW4ll+G9q9vQLvEDcgtls6r0l/6fGnuOHQO9xHP79BbdXNZZ4LsmmNX8YHeHjq6/rn4IFJvlODf6/+2qK2ObMuZbACOs/eKI9Imkyxx5gmsFRUV+OmnnzBt2jSLUzeXlpaisrISQUGW/U9JTVu1WhDHyEN8PEyO7U6Oa9uYzSKyCd2EYj1bB+DjB3pjxvBOdd73xtpTeP6/x8Xz+xbtl1x3NfL3NmFYR5PPd6lmHokgCJL8JHVx5rwjullqPVw5+d2UFjUrv3RXLsql3sHI2rVrkZ+fj6lTp1p8z2uvvYaWLVtixIgRZuupVCoUFhZKHtT06E7y2/PqHbj/VsNZ77MnxIjj8ETOZMHEXgBqV9u0DPDCiyM7i70npuy7kIvDl/LE88u5tR+s62fchmojk1nv6tnSoExr5eE0AEB2oeHKNXP2nL9edyUHNfiDHeLx0M51J91rrryVNT0jFVWy76NU72Dku+++w5133omWLU3/T6Br3rx5WLlyJdasWQNPT8NtxHXNnTsX/v7+4iMqyrlyD1Ct/RdvYPryvyR/XLXyy2qHY5RuLnjQSI6JRwa0sWv7iOzlvltbY9crt+PYW6Mk5bo7plqre6R0Zdnf740BALiaWfqunQ/w4v+OW/VaJfWchCu3vXr7rAS24DCvKdqeEUGo3QdMLvUKRq5cuYKtW7fiiSeesKj+Rx99hHnz5uHPP/9Ez551bw2emJiIgoIC8ZGenl7nPeR4BEHAw0sO4Y+TmXjrt2SD69/sql3b7uJimFr7zxeGOPzurUTmtA1uYTAvqn+72smsL4/SBCbeHq4Gk16NUSgUeGNcN7QK8MIXD8fCy4INJLXJzHQnhQOanZTNqah2zmBk2rIk8XhU93CzGzQ2d7rbbGjzOsmlXsHI0qVLERYWhnHjxtVZ94MPPsDs2bOxadMm9O3b16LnVyqV8PPzkzzIsaXllmLJ7lSUVtROhFpe0z0MAFdyDXca/c8BaZIm3c3w7olthc7hvnZoKZG8Oob5Ys1zg7Bv1h2YfkcnXJ43DmfeG1PnEtRxPSMBAH3aBGLfrDsMhmZ+fXaQ5DysZkn8uWzNZnFT9OZetQ70Eo8PJN5h8HpX82o/nMocYE6BpSp0lid/8mBv+RriBHSTSf43Sd4v/VYHI2q1GkuXLsWUKVPg5iZNezx58mQkJiaK5/Pnz8ebb76J77//HtHR0cjKykJWVhaKi4sb3nJyKPd/vR/vb/gbT/94FLN+PYm03FK8saa2N8RcB4fuXJGFD/bG+F4t8fEDvezZXCJZxbYJRKsAL0mZsTlTWn6ebvjkgd5mn7NXa390CK2dX6UN5jPyy1BWUY0rOpM6nxrSHr2iAvDyqM74+IFeiPT3Qhe94H9xzfLejzanIOadzTienm/JjyYrtd6k2xZK7mlVF+3CAbk3I7U6GNm6dSvS0tIwbdo0g2tpaWnIzMwUzxctWoSKigrcf//9iIyMFB8fffRRw1pNDienJq37nvM3sDIpHUM+3CG5XlZZLZkglaOTelp3u/kJsa3w+UOxHJ6hZifER4m3x3c3eq2wvMroMnhdbq4u2PT8EPFcm0MCAJKvFWCnzmZ+2nwo0+/ohHtr0qV76g35FJVXIb+0Al/suIBqtYAZK45Z9wPJYGOy9fvzNHcP9dfMy/ts+wVZ22F12Dhq1CiTs2537twpOb98+XJ92kRNkCAAqiq1OBTTf05trhlvC8a9iZqDkd3D8e7vZwzKH+pv2SR+d1cXDO4Ugj3nb2ByXFv8+pcmc+usX00nTdPyMpJcsPd7W8TjtDzDoVZHk5JVu/Jy2WP9ZGyJ87iQ4xgjFezDokZTXlkNT3dXg2BW7u5BIkfROtAbBxLvEHfk/fHx/qiqFnB7l1CLn2PJ5L7IKVShTXDthPCL12sTnz0y0HjeHnO7DQPALS0df+6e7tYRt3fhkl5L6H4ZrKpWw81VnozXDEao0WiTQL2vl92RO/IS1Yr098Ka5wYh9XoJBneyPAjR8nR3lQQiWkEtPJBXUoHeUQFG72tr5B5dvp6O/3Hx8yHNpPmhna3/vTVXugFcSUU1/L3kCUa46Qc1mP6kMX2+NZPIyiqrcT67CN/uvdQYzSJyWrFtAnGfmQmtlppzTw/xOK9Es1eLqZ7I50d0xohuYSaX/JZVqnGzpAJ3f7kPv1q4cV9jO5tVVPNfJsq01MS+tUOABaXy7dzMYIQarKjc9L4GAd7uKKrZ9+BGsQojP9ndWM0iavaMJRL08zSeBMzfyx3fTuknLiHWV6qqQuzsLTiRno+XfjmBgjL5PrhM0Wa3fWlkF5lb4jx0Uyh8v0++L4oMRqjBSitNByNH3qhN/b9s/2WD61FBXgZlRGQbxjKz+lgw3GJswux5vYmOn249X/+G2Yk2t0q4v/ks32RcXUN19sRghBrM3CZLupOhQo3syfFbwm12aRMRGWcudbyWqd4TXXJ+izZF21vDSfHW+eC+nhjXI1Jc5isHBiPUYHVlZ3y0ZvZ+tk5uEQDoGuEr7ptBRPahO2FVu3lfXeTep6Q+BEFARk1Kc86Jt84D/aLw5aQ+kizYjY3BCDWYsT9cZ2ePwaW5YwEAwT6agOPSjRJJHaZqJrK/Off0QMcwH3w1qY/Fk2JvbVu7f06wiS8M2sydpiRnFODuL/chetZ6JGcUWN7getLtoeWXHOfDYITqrbJajdKKKpy5Zjhz3dPdVcyiGuarGb/VznQHgI0zB6NbpOPnLSBydt1b+mHri0MxtofxianG6O57k1uzCkffzdJKlJvoQREEAXd9vhcnalLI3/X5XssbXE/P/HRUPG4X0sJMTXJEDEao3jq9sRHd39qMt9edFsuUbi6S5YRA7aQyrf7RQQxEiByY7rwS/Z0Z/jOtv3g8+w/DbLGAJttyY6qoUmPP+RviObeTcD4MRqheMkxsN3363dF4eIB0ElSoXjBiyWx+IpLXksl90T6kBX6fLp1krjsEstLETq+/n7hm17bpe00n3T05J34qUL18vs1wWV+vqACjqYTD/PSCEe6kSeTwRnYPx8ju4ZKySH9PSSbWaiMJD09fK8ArqwyDg7XHMjAhtpXtGwpgzbEMuzwvNR72jJDVMgvKjH4jeqCv8clx2jkjWuwZIXJOt3cJNejp1PediQzLz//3uB1aZOitu4zvfEyOjcEIWe1KrvHdO++NNR6MuLoosGHGYPHclz0jRE6pdaB3nRvqrf7LdC/F7nPXbd0kALU7Eb80sjOm3dbOLq9B9sVghKy2IyXHoOz5EZ3g5WF6jXrLgNreEXeZdoUkovr57KFYjO/VEo/XfNA/d3sH8Zp2F+7yymqUqExnYwY0QzX2UFmtaUNPE5sAkuPjV1Sy2je7UiXnF+eMrTOro69ORscsveRnROTY/tGrJf7Rq3a577O3d8BXOy8C0KycUbq5YOyne3C9WAVvD1cx58eeV4dh8Ac7xPtKKswHK/WlDYJ8lMy86qz4FZWsssxICmhL0kvr1tl+1rBnhYich+4k9MKySpRVViP1RgmKyqvEQGRtQjyigrwxTie/yebT2TZvS3llNdLyNEPHdQ0hkeNiMEIWEwQB7/wuzSvw9SPGtxs3Z/Gjt9qqSUQkA908Hv3nbMPGU1kGdYK8NUuA3737Fru2RXeOSqtAbrzprBhGksX0Exmtn3Ebbmnpb/H9F+eMRW6JymB1DRE5N2Ob5kXWzBML8Kp7072GCPGpzXtiyQZ/5JjYM0IW05+c1i3Cuiyqri4KBiJETdBpI1tCaCequ7m6YES32nwlBaWVNn1tba6Tvjr76ZDzYTBCFitR1e5DcXuXULhwa0yiZqtrhK/Fdb+d0lfcSTclu8h8ZTMEQcCNYpWkTDtHxdxqPnJ8DEbIYrvP1+YI+H5KPxlbQkRyqyv5mb74jiEAgCu5JXXUNK1d4gb0/fdWbDiVKZaV1mzW581gxKkxGCGL/WttsnjMXhGi5u3fE2IMym6rCTg6hBrumhtQM6H1yOWb9Xo93WFibTZXtVrA9SJNT0mwj3XBETkWTmAlIiKrtQ1ugbbB3pKMzIsn34qLOSXoEGYYjFzIKQYA/PdIOubf39Pq1yuvrB0mrqhS479JaXjv9zNiENLSn/PRnBl7RshiITX/0/dqbfkKGiJquube00Ny7uXuih6t/Y3m+7ims9N3Ubn1k1hf/N8Jyflrv55CSUVtjhFtzws5JwYjZDHtbp0PD2gjc0uIyBEM6hiChwe0gZ+nG1Y/N0iSf0Sfh1vtx42p/a3M2aWzr02fNgEG1325AadTYzBCFtOOzXoxyyER1ZhzTw+cfGc0+rQxv7S2sro2T9Ej3x1q0Gv+lZZvUObDDTidGoMRspibq+ZbT6cwH5lbQkTO5m6dvW3ybZxrBADahRjOUyHnwWCELFZak2fE384ZFYmo6Zl1ZzfJ+YUcy/ONVOhlfzamfSi/JDkzBiNkkYoqNSpqullbcJiGiKzk5eGKf42rDUhOZRRYfG9DcpOQc2Aw0oxUVKmx/+INyRK5uhSrqnAwNRe5JbVZD5npkIjqY1p8O/HYR2l5D2thuSbHiLurAtteGmpwfdEk6zfsJMfCr7jNyLyNZ8UNrc6/f6e4d4Q5U78/jCNXbkI3x5nurHgiIku5uCgwqEMw9l/MRWlFVd031NAuBe4U5ovo4Nq5Id4ervj4gV4YExNp87ZS47LqUyU6OhoKhcLgkZCQYPKeX375BV27doWnpyd69OiBDRs2NLjRVD+6O2tuP5tj0T1HrmiyJdbsRUVE1CAtala9aPeUsURRTc+Ir6cbXHW+GXUO92Ug0kRYFYwkJSUhMzNTfGzZsgUAMHHiRKP19+/fj4ceegiPP/44jh07hgkTJmDChAlITk42Wp/sRxCk0YTKgglhRES21qJmmFd/F3Bz9l24AQDw9ZQO7XAyfdNhVTASGhqKiIgI8fHHH3+gQ4cOGDrUcAwPAD799FOMGTMGr7zyCrp164bZs2ejT58++OKLL2zSeLLc2uMZknP94MQY3SRDWiO7hxupSURkGe+anpEDF3MtvmdlUjoAoFglXRIc4M1gpKmo9+B/RUUFfvrpJ0ybNs1k1r0DBw5gxIgRkrLRo0fjwIEDZp9bpVKhsLBQ8qCG2XPuhuRcacG8j0U7LxiUbTmTbbM2EVHzo6rU9Mp6erji6s1S5BSVm+0l2X629m9OywAvybUIP+5H01TUOxhZu3Yt8vPzMXXqVJN1srKyEB4u/SYdHh6OrKwss889d+5c+Pv7i4+oqKj6NpNqxLaVZkd85qe/8PuJa1AbmQxSoqpCv/e34mBqnsG1UewZIaIGuL1LKABg/clM3DZ/B/q/vw13LNhpsv60ZUfE41Y1wcjTQ9qjVYAXnhrS3q5tpcZT72Dku+++w5133omWLVvWXdlKiYmJKCgoEB/p6ek2f43mpszIzPX/W3EMoxbuxra/pb0dn20/L6Z+1/e+3sZYRETWCPVVGpRlF6qMphzQX3Ez+pYIAEDi2G7Y+9owccdecn71CkauXLmCrVu34oknnjBbLyIiAtnZ0g+67OxsREREmL1PqVTCz89P8qCGKVEZn7l+IacYj/9wBDlF5WLZISM9IlohPtwZk4jqz1gwAgBleqtrVFXVWH8yU1IW06p2x3Bzm/KR86lXMLJ06VKEhYVh3LhxZuvFxcVh27ZtkrItW7YgLi6uPi9LDVDXmv6rN2u399b/ozCuh2bpXIfQFvwDQEQNYjIY0esZSfj5L7yy6qR4/u4/brFru0heVgcjarUaS5cuxZQpU+DmJs2ZNnnyZCQmJornM2fOxKZNm7BgwQKcPXsW77zzDo4cOYLp06c3vOVkFWO7XOq6XqQSV9ikZEv3jJh7Xw98/lAs1s8YbK/mEVEz4Wtid92Vh9Mk51v/luZCeqAv5w42ZVYHI1u3bkVaWhqmTZtmcC0tLQ2ZmbXdaoMGDcLy5cuxePFi9OrVC6tWrcLatWsRExPTsFaT1Y7WJC8z5ekfjyJh+V/IK6mQlM+++xb4ebpjfK+W8HRnGngiahhTvaufbdes3qtWCxj9yW7Jtdu7hHIbiibO6nTwo0aNMpmjYufOnQZlEydONJkUjWyvvLIaB1NzMbB9sNHgwd1VgZdGdcG8jWcNrm04lYVXRncVz0+8PYpJhYjI5u7r0xq//nXVoPxafhnOZhUa9M4undqvsZpGMuEmI03IzZIKdH1zE6YuTcIbazRZbg+l5iJ61nqxzpt3dcczQzsY3WwKANLzSgFoJqoyECEie1jwQC9cnjcOvaMCJOWjP9mNhVvPS8peG9OVc9WaAQYjTcjra06Jx9pvHQ8uPiip8+jAtgCADqE+6KX3hwAAvqpJdMYhGSKyt5VPDcTahHjxvEhVhZNXCyR1mEukeWAw0oRsTJYmkzt8yXCJru43jFAja/S1ic68GIwQkZ15ursa9I7o090Yj5ouBiNNxANfG6bY/+jPFLP3vPOP7ojvGGz0GieLEVFjMbXn1ernBjVyS0guDEaagKLyShy+bNgL0jpQuo/D03rdna0DvfHzEwMxtodhEjp3V/7TIKLG8fht7QzKLs4Ziz5tAo3UpqbI6tU05DjySirQZ/YWk9dX/yXdqffhAW2M1nvrrluw/WwOyms2sALqXgpMRGQrLTwMP4o4PNO88OuvE0v4+S+r6nuY2Kk3wt8TCx/sbYMWERFZT39Y+JdnmKW7uWEw4sQOpOZaVd/b3XRH2MD20rkjk0z0ohAR2Zq3XjDSLzpIppaQXBiMOCm12njiOWM+uL8nvn7kVvh7m84bEuDtgbOzx4jnheXm97IhIrIV3WGaB5n2vVliMOKkVh01zF741l3dsfuVYQblE3q3wpgY8zslA9LcIm2CvMzUJCKyHT+v2mDE050fS80R33UnVFWtxqu/npSUvXlXd0wdFI02wd4G9d1dLZ8I9vMTA/DwgDZ4anCHBreTiMgSCoUCTw9pDy93V0yNN1xZQ00fV9M4ofWnMiXnf705EkEtPMTzibe2xi86PSfWpFKO7xiC+I4hDW8kEZEVZt3ZFbPuZOr35oo9I07opt7OurqBCKCZI0JE5EwUCgUDkWaMwUgTpFAouJ8DERE5DQ7TOKGU7OI66yQM64i952/g9i6hjdAiIiKi+mMw4mROpOdjxeE08Vw/xbuWv5c7Nswc3FjNIiIiqjcO0zgRVVU17v5yn6Ts1TFdZWoNERGRbTAYcSKPfntYcr7muUHcv4GIiJwegxEnIQiCwc68UUGGOUWIiIicDYMRJ/Gr3g68ABDk7WGkJhERkXNhMOIkfjx4RXK+4smBcOEQDRERNQFcTeMEDl/Kw4n0fPH83L/vhIcb40giImoa+InmBB745oDknIEIERE1JfxUc3AFZZWS8w/uY6p3IiJqWhiMOLhCvWBkYPtgmVpCRERkHwxGHNxXOy9Kzj3d+ZYREVHTwk82B1atFiSp3wFA6eYqU2uIiIjsg8GIA9t+NsegzNODbxkRETUt/GRzYClZhQZl7BkhIqKmhsGIAyuvVMvdBCIiIrtjMOLAyiurJefjekbK1BIiIiL7YQZWB/bt3ksAgH/2i8KLIzsjxEcpc4uIiIhsz+qekYyMDDzyyCMIDg6Gl5cXevTogSNHjpi95+eff0avXr3g7e2NyMhITJs2Dbm5ufVudHOgqqrtFalSCwjz8+ReNERE1CRZFYzcvHkT8fHxcHd3x8aNG3HmzBksWLAAgYGBJu/Zt28fJk+ejMcffxynT5/GL7/8gsOHD+PJJ59scOObsoybZeKxuytH04iIqOmyaphm/vz5iIqKwtKlS8Wydu3amb3nwIEDiI6OxowZM8T6Tz/9NObPn1+P5jZ9VdVqrD6WgVdXnRTLRnYPk7FFRERE9mXVV+5169ahb9++mDhxIsLCwhAbG4slS5aYvScuLg7p6enYsGEDBEFAdnY2Vq1ahbFjx5q8R6VSobCwUPJwVrnFKtz9xV4s23epzrqCIKDjGxslgQgA3NE13F7NIyIikp1VwUhqaioWLVqETp06YfPmzXj22WcxY8YM/PDDDybviY+Px88//4wHH3wQHh4eiIiIgL+/P7788kuT98ydOxf+/v7iIyoqyppmOpSnfjyKE1cL8M7vZ1BUXmm27s6U6wZlfp6cY0xERE2bVcGIWq1Gnz59MGfOHMTGxuKpp57Ck08+ia+//trkPWfOnMHMmTPx1ltv4ejRo9i0aRMuX76MZ555xuQ9iYmJKCgoEB/p6enWNNNhlKiqcPTKTfG8xzt/Ir+0wmT95IwCg7LC8iq7tI2IiMhRWBWMREZGonv37pKybt26IS0tzcQdml6O+Ph4vPLKK+jZsydGjx6Nr776Ct9//z0yMzON3qNUKuHn5yd5OKPv9xoOzUz69pDJ+iG+XLpLRETNj1XBSHx8PFJSUiRl586dQ9u2bU3eU1paChcX6cu4umpSmguCYM3LO50FW84ZlJ2+VojMgjKjP7u6pqxrhK/d20ZEROQorApGXnjhBRw8eBBz5szBhQsXsHz5cixevBgJCQlincTEREyePFk8Hz9+PFavXo1FixYhNTUV+/btw4wZM9C/f3+0bNnSdj+JE4mbux2fbjtvUH6zRDOE06t1AH55Jg4B3u5YMLFXYzePiIioUVkVjPTr1w9r1qzBihUrEBMTg9mzZ2PhwoWYNGmSWCczM1MybDN16lR8/PHH+OKLLxATE4OJEyeiS5cuWL16te1+Cgc1+hbTq2AWbpUGI7nFKizaeREAENDCHf2ig3DszZG479bWdm0jERGR3BSCE4yVFBYWwt/fHwUFBU41f6Tf+1txvUiFGcM7wUfpijkbzkquvziyM2YM74QSVRVueXuzWJ54Z1c8PbRDYzeXiIjIpiz9/GZqTzuqVmvivO6RvnhqSAe0DvSSXP+4Zk7Jiav5kvIAb/dGaR8REZEjYDBiR5VVagBA53DNhFQvd1eDOot2XgT0+qb8vTzs3jYiIiJHwWDETgRBQGmlZrM7bw9N4rJilWHOkPmbziL1RomkjD0jRETUnDAYsZPKakEcpvHy0PSIZBaUG637r7XJknN3V+7OS0REzQeDETspq+kVAYwPz5jTPsTH1s0hIiJyWNz4xE7Ka4IRVxeF0Z4OFwWg1psr8sH9PTGgXRACW3DOCBERNR/sGbGT0oqa+SLurlAoNMHIbwnxAIBHBrbBlheHSur3jw7CA32j0Da4ReM2lIiISGbsGbGDORv+xo8HrgAAPD1qh2h6RQXg0tyxYnCiq22wd6O1j4iIyJEwGLGDxbtTxWP9+SLGAhEA8PHkW0FERM0Th2nszNzk1aeHtBePPa2c5EpERNRUMBixscpqteTcy8N0kNEtsjY1rqcbgxEiImqeGIzYmHbiqpa5nCG6vSHZRcZzkBARETV1DEZsrEQvy2qxqtpETcBXZ57I8kNpJusRERE1ZQxGbGzDqUzJuarSdDDSLzpIPH57fHe7tYmIiMiRcQmHjaVkFUnO9fed0eXh5oIvH+6D4+k3MSUu2s4tIyIickwMRmyoslqNX45eteqecT0jMa5npJ1aRERE5Pg4TGND8zeeNSg79PpwGVpCRETkPNgzYiOCIODbvZfE86eHtEfi2G4ytoiIiMg5sGfERr7elSo5LzczcZWIiIhqMRixkfmbpEM0lfpb8hIREZFRDEbsRBAYjBAREVmCwYidjOoeIXcTiIiInAKDETv4dnJfDOsaJncziIiInAKDETsY0T1c7iYQERE5DQYjNhLupwQAfDSxl8wtISIici4MRmykokoNAOjV2l/mlhARETkXBiM2UlaTV8TT3VXmlhARETkXBiM2oFYLKK/U9Ix4eTAYISIisgaDERtQ1QzRAIAXe0aIiIiswmDEBpKvFYjHHKYhIiKyDoMRG1jwZ4p47OqikLElREREzofBiA30bxcsdxOIiIicltXBSEZGBh555BEEBwfDy8sLPXr0wJEjR8zeo1Kp8MYbb6Bt27ZQKpWIjo7G999/X+9GO5oAL3cAwIhuTHZGRERkLTdrKt+8eRPx8fEYNmwYNm7ciNDQUJw/fx6BgYFm73vggQeQnZ2N7777Dh07dkRmZibUarXZe5xJaUUVACDEx0PmlhARETkfq4KR+fPnIyoqCkuXLhXL2rVrZ/aeTZs2YdeuXUhNTUVQUBAAIDo62vqWOrBilSbHiLeHVb9OIiIigpXDNOvWrUPfvn0xceJEhIWFITY2FkuWLLHong8++ACtWrVC586d8fLLL6OsrMzkPSqVCoWFhZKHIysqrwQA+HoyGCEiIrKWVcFIamoqFi1ahE6dOmHz5s149tlnMWPGDPzwww9m79m7dy+Sk5OxZs0aLFy4EKtWrcJzzz1n8p65c+fC399ffERFRVnTzEZXrNIM0zAYISIisp5CEATB0soeHh7o27cv9u/fL5bNmDEDSUlJOHDggNF7Ro0ahT179iArKwv+/pp9W1avXo37778fJSUl8PLyMrhHpVJBpVKJ54WFhYiKikJBQQH8/Pws/uEay+PLkrDtbA7m3dsD/+zfRu7mEBEROYTCwkL4+/vX+fltVc9IZGQkunfvLinr1q0b0tLSzN7TqlUrMRDR3iMIAq5evWr0HqVSCT8/P8nDkRWVa3tG3GVuCRERkfOxKhiJj49HSkqKpOzcuXNo27at2XuuXbuG4uJiyT0uLi5o3bq1lc11TEU1wzQ+HKYhIiKymlXByAsvvICDBw9izpw5uHDhApYvX47FixcjISFBrJOYmIjJkyeL5w8//DCCg4Px2GOP4cyZM9i9ezdeeeUVTJs2zegQjTPiBFYiIqL6syoY6devH9asWYMVK1YgJiYGs2fPxsKFCzFp0iSxTmZmpmTYxsfHB1u2bEF+fj769u2LSZMmYfz48fjss89s91PIqFot4OpNzcogXyWDESIiImtZNYFVLpZOgJHDb8czMHPlcQDAgcQ7EOnfNHp7iIiIGsouE1jJ0IWc2rkwnMBKRERkPQYjDVRSk30VALzdXWVsCRERkXNiMNJAbYO9xWMXF4WMLSEiInJODEYaqKRmk7z7b20ay5SJiIgaG4ORBirR5hjhShoiIqJ6YTDSQNo5IwxGiIiI6ofBSAPll1YAAFowGCEiIqoXBiMNtPb4NQBAWl6pzC0hIiJyTgxGbISp4ImIiOqHwUgD+XtpEp2N7REpc0uIiIicE4ORBnKryS3i6c5fJRERUX3wE7QBtp/NRm6JZgKrpxuzrxIREdUHg5EGeOl/J8RjT6aCJyIiqhcGIw1ws7RSPPbz4gRWIiKi+mAwYiPeHgxGiIiI6oPBiA20CvCSuwlEREROi8FIPZVXVovHiWO7ytgSIiIi58ZgpJ5eXXVSPL6ja5iMLSEiInJuDEbqad2Ja+Ix54sQERHVH4ORerq3TysAQNtgb5lbQkRE5NwYjNTT6r8yAAB392opc0uIiIicG4ORBrrC3XqJiIgahMFIA/2zXxu5m0BEROTUGIzUU4iPBwAgsIW7zC0hIiJybgxG6qmsQpNnhBvkERERNQyDkXoQBAHlVWoAgJcHgxEiIqKGYDBSD5XVAqrVAgD2jBARETUUg5F6KK+qTQXv6cFfIRERUUPwk7QeymvmiygUgIcrf4VEREQNwU/Sericq8ktIgiAQqGQuTVERETOjcFIPczfdFbuJhARETUZVgcjGRkZeOSRRxAcHAwvLy/06NEDR44csejeffv2wc3NDb1797b2ZR1KRc1KGiIiImo4q7abvXnzJuLj4zFs2DBs3LgRoaGhOH/+PAIDA+u8Nz8/H5MnT8bw4cORnZ1d7wbLrapajas3mQKeiIjIVqwKRubPn4+oqCgsXbpULGvXrp1F9z7zzDN4+OGH4erqirVr11rVSEeyIikdN0srAQBP3GbZz05ERESmWTVMs27dOvTt2xcTJ05EWFgYYmNjsWTJkjrvW7p0KVJTU/H222/Xu6GO4kR6vnjs78VU8ERERA1lVTCSmpqKRYsWoVOnTti8eTOeffZZzJgxAz/88IPJe86fP49Zs2bhp59+gpubZR0xKpUKhYWFkoejWHX0qngcFeQtY0uIiIiaBquGadRqNfr27Ys5c+YAAGJjY5GcnIyvv/4aU6ZMMahfXV2Nhx9+GO+++y46d+5s8evMnTsX7777rjVNaxQ/H7oiOQ/385SpJURERE2HVT0jkZGR6N69u6SsW7duSEtLM1q/qKgIR44cwfTp0+Hm5gY3Nze89957OHHiBNzc3LB9+3aj9yUmJqKgoEB8pKenW9NMu3ljTbLkXLtzLxEREdWfVT0j8fHxSElJkZSdO3cObdu2NVrfz88Pp06dkpR99dVX2L59O1atWmVy8qtSqYRSqbSmabLoGOYjdxOIiIicnlXByAsvvIBBgwZhzpw5eOCBB3D48GEsXrwYixcvFuskJiYiIyMD//nPf+Di4oKYmBjJc4SFhcHT09Og3NHp5xb54uFYZl8lIiKyAauGafr164c1a9ZgxYoViImJwezZs7Fw4UJMmjRJrJOZmWly2MaZXcgpFo+DWnhgXI9IGVtDRETUdCgEQRDkbkRdCgsL4e/vj4KCAvj5+cnShk3JWXjmp6MAgPPv3wl3bpBHRERklqWf3/xEtVBGfhkAYFzPSAYiRERENsRPVQtlF5YDACK4nJeIiMimGIyYcb1IhQ82nUVOYTnS8zT70QRzOS8REZFNWbWaprnp9/5WAMBXOy+KZYHeDEaIiIhsiT0jVmqhZPxGRERkSwxGrOTC1CJEREQ2xWDEhOSMAqPlHUKZdZWIiMiWGIyY8MmWcwZlc+7pgW6R8uQ5ISIiaqo4AcKE8qpq8bhLuC9WPzeI80WIiIjsgD0jJuy7kCseL558KwMRIiIiO2EwYgEvd1e5m0BERNRkMRgxQpvgTEvJYISIiMhuGIwYcelGiXg8Lb4d/L3cZWwNERFR08ZgxAilW+2v5dUxXWRsCRERUdPHYMSIKrUAAPBwdYEnh2iIiIjsisGIEaUVmmW93VsypwgREZG9MRgxorSiCgDg7cFeESIiIntjMGJEYbkmGPH1ZG4RIiIie2MwYkRReSUAwNeTq2iIiIjsjcGInmq1gA82pQBgzwgREVFjYDCiZ/f56+JxRZVaxpYQERE1DwxG9Hy69bx4fCA110xNIiIisgUGI3qOp+eLx3Pu6SFfQ4iIiJoJBiN6Wvp7isdtgrxlbAkREVHzwGBEzy2t/MXjCD9PMzWJiIjIFhiM6BAEAVvOZAMAFkzsBRcXhcwtIiIiavoYjOiYujRJPGb2VSIiosbBYETHrnO1y3rLq6plbAkREVHzwWDEhNaBnLxKRETUGBiMmNAvOkjuJhARETULDEaMmDooWu4mEBERNRsMRox4ZGBbuZtARETUbFgdjGRkZOCRRx5BcHAwvLy80KNHDxw5csRk/dWrV2PkyJEIDQ2Fn58f4uLisHnz5gY12h4EQYB2JS83yCMiImo8VgUjN2/eRHx8PNzd3bFx40acOXMGCxYsQGBgoMl7du/ejZEjR2LDhg04evQohg0bhvHjx+PYsWMNbrwtlVVWQy1ojn2UDEaIiIgai1WfuvPnz0dUVBSWLl0qlrVr187sPQsXLpScz5kzB7/99ht+//13xMbGWvPydlWsqgIAKBTMMUJERNSYrOoZWbduHfr27YuJEyciLCwMsbGxWLJkiVUvqFarUVRUhKAg06tVVCoVCgsLJQ97K1Fp8oq08HCDQsHMq0RERI3FqmAkNTUVixYtQqdOnbB582Y8++yzmDFjBn744QeLn+Ojjz5CcXExHnjgAZN15s6dC39/f/ERFRVlTTPrpbRC0zPixV4RIiKiRqUQBEGwtLKHhwf69u2L/fv3i2UzZsxAUlISDhw4UOf9y5cvx5NPPonffvsNI0aMMFlPpVJBpVKJ54WFhYiKikJBQQH8/Pwsba5Vki7nYeLXBxAd7I2drwyzy2sQERE1J4WFhfD396/z89uqnpHIyEh0795dUtatWzekpaXVee/KlSvxxBNP4H//+5/ZQAQAlEol/Pz8JA97K63QDNN4eXDyKhERUWOyKhiJj49HSkqKpOzcuXNo29Z8Xo4VK1bgsccew4oVKzBu3DjrW9kIymqGaTh5lYiIqHFZFYy88MILOHjwIObMmYMLFy5g+fLlWLx4MRISEsQ6iYmJmDx5sni+fPlyTJ48GQsWLMCAAQOQlZWFrKwsFBQU2O6nsAHtBFYGI0RERI3LqmCkX79+WLNmDVasWIGYmBjMnj0bCxcuxKRJk8Q6mZmZkmGbxYsXo6qqCgkJCYiMjBQfM2fOtN1PYQOllQxGiIiI5GDVBFa5WDoBpiGiZ60HANwb2wofP9jbLq9BRETUnNhlAmtTdS67SDxmjhEiIqLGxWAEwOM/JInHldVqGVtCRETU/DAYAZBbXCEeB/t4yNgSIiKi5ofBCIAR3cLF4+nDOsrYEiIiouaHwQiAkppN8ubd2wPBPkqZW0NERNS8MBgBsCMlBwDQQsnsq0RERI2t2Qcj57OLoHb4xc1ERERNV7MPRt75/bR4HMIhGiIiokbX7IORfRdyxeOB7YNkbAkREVHz1KyDkbyS2iW9HUJbMOEZERGRDJp1MLKzZuIqAAxsHyxjS4iIiJqvZh2MvPi/E+LxM0M7yNgSIiKi5qtZByO6ooK85W4CERFRs9Ssg5EWHq5yN4GIiKjZa9bByAf390KIjwfevydG7qYQERE1W8065ei4npEY1zNS7mYQERE1a826Z4SIiIjkx2CEiIiIZMVghIiIiGTFYISIiIhkxWCEiIiIZMVghIiIiGTFYISIiIhkxWCEiIiIZMVghIiIiGTFYISIiIhkxWCEiIiIZMVghIiIiGTFYISIiIhk5RS79gqCAAAoLCyUuSVERERkKe3ntvZz3BSnCEaKiooAAFFRUTK3hIiIiKxVVFQEf39/k9cVQl3higNQq9W4du0afH19oVAobPa8hYWFiIqKQnp6Ovz8/Gz2vFR/fE8cC98Px8L3w7Hw/aibIAgoKipCy5Yt4eJiemaIU/SMuLi4oHXr1nZ7fj8/P/5DcjB8TxwL3w/HwvfDsfD9MM9cj4gWJ7ASERGRrBiMEBERkayadTCiVCrx9ttvQ6lUyt0UqsH3xLHw/XAsfD8cC98P23GKCaxERETUdDXrnhEiIiKSH4MRIiIikhWDESIiIpIVgxEiIiKSVbMORr788ktER0fD09MTAwYMwOHDh+VuUpOwe/dujB8/Hi1btoRCocDatWsl1wVBwFtvvYXIyEh4eXlhxIgROH/+vKROXl4eJk2aBD8/PwQEBODxxx9HcXGxpM7JkycxePBgeHp6IioqCh988IG9fzSnM3fuXPTr1w++vr4ICwvDhAkTkJKSIqlTXl6OhIQEBAcHw8fHB/fddx+ys7MlddLS0jBu3Dh4e3sjLCwMr7zyCqqqqiR1du7ciT59+kCpVKJjx45YtmyZvX88p7Ro0SL07NlTTJQVFxeHjRs3itf5fshn3rx5UCgUeP7558Uyvh+NRGimVq5cKXh4eAjff/+9cPr0aeHJJ58UAgIChOzsbLmb5vQ2bNggvPHGG8Lq1asFAMKaNWsk1+fNmyf4+/sLa9euFU6cOCH84x//ENq1ayeUlZWJdcaMGSP06tVLOHjwoLBnzx6hY8eOwkMPPSReLygoEMLDw4VJkyYJycnJwooVKwQvLy/hm2++aawf0ymMHj1aWLp0qZCcnCwcP35cGDt2rNCmTRuhuLhYrPPMM88IUVFRwrZt24QjR44IAwcOFAYNGiRer6qqEmJiYoQRI0YIx44dEzZs2CCEhIQIiYmJYp3U1FTB29tbePHFF4UzZ84In3/+ueDq6ips2rSpUX9eZ7Bu3Tph/fr1wrlz54SUlBTh9ddfF9zd3YXk5GRBEPh+yOXw4cNCdHS00LNnT2HmzJliOd+PxtFsg5H+/fsLCQkJ4nl1dbXQsmVLYe7cuTK2qunRD0bUarUQEREhfPjhh2JZfn6+oFQqhRUrVgiCIAhnzpwRAAhJSUlinY0bNwoKhULIyMgQBEEQvvrqKyEwMFBQqVRinddee03o0qWLnX8i55aTkyMAEHbt2iUIguZ37+7uLvzyyy9inb///lsAIBw4cEAQBE1w6eLiImRlZYl1Fi1aJPj5+Ym//1dffVW45ZZbJK/14IMPCqNHj7b3j9QkBAYGCt9++y3fD5kUFRUJnTp1ErZs2SIMHTpUDEb4fjSeZjlMU1FRgaNHj2LEiBFimYuLC0aMGIEDBw7I2LKm79KlS8jKypL87v39/TFgwADxd3/gwAEEBASgb9++Yp0RI0bAxcUFhw4dEusMGTIEHh4eYp3Ro0cjJSUFN2/ebKSfxvkUFBQAAIKCggAAR48eRWVlpeT96Nq1K9q0aSN5P3r06IHw8HCxzujRo1FYWIjTp0+LdXSfQ1uH/z+ZV11djZUrV6KkpARxcXF8P2SSkJCAcePGGfzO+H40HqfYKM/Wbty4gerqask/HgAIDw/H2bNnZWpV85CVlQUARn/32mtZWVkICwuTXHdzc0NQUJCkTrt27QyeQ3stMDDQLu13Zmq1Gs8//zzi4+MRExMDQPO78vDwQEBAgKSu/vth7P3SXjNXp7CwEGVlZfDy8rLHj+S0Tp06hbi4OJSXl8PHxwdr1qxB9+7dcfz4cb4fjWzlypX466+/kJSUZHCN/380nmYZjBA1RwkJCUhOTsbevXvlbkqz16VLFxw/fhwFBQVYtWoVpkyZgl27dsndrGYnPT0dM2fOxJYtW+Dp6Sl3c5q1ZjlMExISAldXV4MZ0dnZ2YiIiJCpVc2D9vdr7ncfERGBnJwcyfWqqirk5eVJ6hh7Dt3XoFrTp0/HH3/8gR07dqB169ZieUREBCoqKpCfny+pr/9+1PW7NlXHz8+P3/qM8PDwQMeOHXHrrbdi7ty56NWrFz799FO+H43s6NGjyMnJQZ8+feDm5gY3Nzfs2rULn332Gdzc3BAeHs73o5E0y2DEw8MDt956K7Zt2yaWqdVqbNu2DXFxcTK2rOlr164dIiIiJL/7wsJCHDp0SPzdx8XFIT8/H0ePHhXrbN++HWq1GgMGDBDr7N69G5WVlWKdLVu2oEuXLhyi0SEIAqZPn441a9Zg+/btBkNbt956K9zd3SXvR0pKCtLS0iTvx6lTpyQB4pYtW+Dn54fu3buLdXSfQ1uH/z9ZRq1WQ6VS8f1oZMOHD8epU6dw/Phx8dG3b19MmjRJPOb70UjknkErl5UrVwpKpVJYtmyZcObMGeGpp54SAgICJDOiqX6KioqEY8eOCceOHRMACB9//LFw7Ngx4cqVK4IgaJb2BgQECL/99ptw8uRJ4e677za6tDc2NlY4dOiQsHfvXqFTp06Spb35+flCeHi48OijjwrJycnCypUrBW9vby7t1fPss88K/v7+ws6dO4XMzEzxUVpaKtZ55plnhDZt2gjbt28Xjhw5IsTFxQlxcXHide3SxVGjRgnHjx8XNm3aJISGhhpduvjKK68If//9t/Dll19y6aIJs2bNEnbt2iVcunRJOHnypDBr1ixBoVAIf/75pyAIfD/kpruaRhD4fjSWZhuMCIIgfP7550KbNm0EDw8PoX///sLBgwflblKTsGPHDgGAwWPKlCmCIGiW97755ptCeHi4oFQqheHDhwspKSmS58jNzRUeeughwcfHR/Dz8xMee+wxoaioSFLnxIkTwm233SYolUqhVatWwrx58xrrR3Qaxt4HAMLSpUvFOmVlZcJzzz0nBAYGCt7e3sI999wjZGZmSp7n8uXLwp133il4eXkJISEhwksvvSRUVlZK6uzYsUPo3bu34OHhIbRv317yGlRr2rRpQtu2bQUPDw8hNDRUGD58uBiICALfD7npByN8PxqHQhAEQZ4+GSIiIqJmOmeEiIiIHAeDESIiIpIVgxEiIiKSFYMRIiIikhWDESIiIpIVgxEiIiKSFYMRIiIikhWDESIiIpIVgxEiIiKSFYMRIiIikhWDESIiIpIVgxEiIiKS1f8D8em1UWEbw+kAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -545,9 +558,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -559,9 +572,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 3/Ch3_book.ipynb b/Chapter 3/Ch3_book.ipynb index bced552..062f85f 100644 --- a/Chapter 3/Ch3_book.ipynb +++ b/Chapter 3/Ch3_book.ipynb @@ -27,18 +27,46 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([['+', '-', ' ', 'P'],\n", + " [' ', 'W', ' ', ' '],\n", + " [' ', ' ', ' ', ' '],\n", + " [' ', ' ', ' ', ' ']], dtype='" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10,7))\n", "plt.plot(losses)\n", @@ -200,7 +297,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -215,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -225,16 +322,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "y.grad_fn" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -243,9 +351,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([1.])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m.grad" ] @@ -259,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -306,11 +425,114 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initial State:\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 0; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 1; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 2; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 3; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 4; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 5; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 6; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 7; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 8; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 9; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 10; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 11; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 12; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 13; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 14; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Move #: 15; Taking action: l\n", + "[[' ' '+' ' ' ' ']\n", + " [' ' ' ' ' ' 'W']\n", + " [' ' ' ' '-' ' ']\n", + " ['P' ' ' ' ' ' ']]\n", + "Game lost; too many moves.\n" + ] + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "test_model(model)" + "test_model(model, 'random')" ] }, { @@ -322,7 +544,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -351,14 +573,14 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "4999 0.06030523404479027\n" + "4999 0.04379083961248398\n" ] } ], @@ -442,7 +664,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -457,7 +679,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -466,20 +688,18 @@ "Text(0, 0.5, 'Loss')" ] }, - "execution_count": 36, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAG3CAYAAAD1kSKeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYG9W5x/HfccOmN1NCMxB6QgmGkJheTUtIuYEUSAiBkBBCcpObmF4CwYHQAoReTTG9Glfcjdu6917X9q7brtder7ed+4dGa5WRNJJGmtHu9/M8fqwdzYyOjkbSq1PeY6y1AgAAQLDaBV0AAAAAEJQBAACEAkEZAABACBCUAQAAhABBGQAAQAgQlAEAAIQAQRkAAEAIEJQBAACEAEEZAABACHQIugC52HvvvW23bt2CLgYAAEBGkyZNWmet7Zppv5IMyrp166aysrKgiwEAAJCRMWaZl/3ovgQAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCMgAAgBAgKAMAAAgBgjIAAIAQICjLoLa+UQ1NzUEXAwAAtHIEZRkce9dAXfPShKCLAQAAWjmCMg/GLl4fdBEAAEArR1AGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACoQnKjDHtjTFTjDGfB10WAACAYgtNUCbpFklzgi6EX96ZuFw/f3Fc0MUAAAAlIhRBmTHmQEmXSnox6LL45e8fzNCYheuDLgYAACgRoQjKJD0u6W+SmlPtYIy5wRhTZowpW7t2bfFKBgAAUASBB2XGmMskVVprJ6Xbz1r7vLW2u7W2e9euXYtUOgAAgOIIPCiT1EPS94wxSyX1lXSuMeaNYIsEAABQXIEHZdbaW621B1pru0m6StJQa+0vAi4WAABAUQUelAEAAEDqEHQBYllrh0saHnAxAAAAio6WMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCsjSamm3QRQAAAG0EQRkAAEAIEJQBAACEAEEZAABACBCUpWEtY8oAAEBxEJQBAACEAEEZAABACBCUAQAAhABBGQAAQAgQlKXBMH8AAFAsBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZWmQ0B8AABQLQRkAAEAIEJQBAACEAEEZAABACBCUAQAAhABBWRo2Jqf/yPlrAywJAABo7QjKPLrm5QlBFwEAALRiBGUAAAAhQFAGAAAQAgRlAAAAIUBQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlaRiZoIsAAADaCIIyAACAECAoAwAACAGCMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCsjSsbNBFAAAAbQRBGQAAQAgQlAEAAIQAQRkAAEAIEJQBAACEAEEZAABACBCUAQAAhABBGQAAQAgQlIXEwsoaDZi5JuhiAACAgHQIugCIOP/RkZKkpb0vDbgkAAAgCLSUAQAAhABBGQAAQAgEHpQZYzobYyYYY6YZY2YZY+4NukwAAADFFoYxZdsknWut3WyM6ShptDGmv7V2XNAFAwAAKJbAgzJrrZW02fmzo/PPBlciAACA4gu8+1KSjDHtjTFTJVVKGmytHe+yzw3GmDJjTNnatWuLX0gAAIACCkVQZq1tstaeKOlASacaY77hss/z1tru1truXbt2LX4hAQAACigUQVmUtbZK0jBJPYMuCwAAQDEFHpQZY7oaY3Z3bneRdIGkucGWCgAAoLgCH+gvaX9Jrxlj2isSJL5rrf084DIBAAAUVeBBmbV2uqSTgi4HAABAkALvvgyziuptQRcBAAC0EQRlaWypbwy6CAAAoI0gKAMAAAgBgjIAAIAQICgDAAAIAYKyNCwrcAIAgCIhKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoS8OKkf4AAKA4CMrSYPYlAAAoFoIyAACAECAoK7DFazcHXQQAAFACCMoKbMOW+qCLAAAASgBBGQAAQAgQlAEAAIQAQRkAAEAIEJQBAACEAEEZAABACBCUpUHyWAAAUCwEZQVGXAcAALwgKAMAAAgBgjIAAIAQICgDAAAIAYKyNGwAI8L6jF1a9McEAADBIygLmTs/mRV0EQAAQAAIygAAAEKAoKzAyHUGAAC8ICgDAAAIAYKyNGjlAgAAxdLBrxMZY9pJ+rWkEyQtk/SctbbGr/MHobG5OegiAACANiLrljJjTC9jTK0x5uyEu/pJek7STZL+JWmsMWan/IsYnKFzK123r63ZpmdHLJKlKQ0AAPgkl+7LiyRtkjQiusEYc6GzvVzS/ZImSDpGkZazkpUq5vrzO1PVu/9czSzfVNwCAQCAViuXoOzrkmbb+GaiHymy9vZV1tq7JJ0raaOkn+VfxPAZvXCdJKm2vjHgkgAAgNYil6Bsb0mrE7adLmmNtfYrSbLWbpX0laRueZUuYJk6JzfW1helHAAAoPXLJShrltQyVswYs5ukoyWNSdivWtLuuRetdWDcGQAA8CKXoGyJpG87sy0l6TJJRtLohP26SlqXR9kAAADajFyCsk8l7SvpI2PMHyU9LKlJ0ifRHYwxRtJJigRwJYtGLgAAUCy5BGX/kjRH0uWSHpe0n6R/W2uXxexzuiItZYmtZwAAAHCRdfJYa221Maa7pB8r0mI20Vo7ImG3vSQ9Ialv/kUMjs041B8AAMAfOWX0d2ZX9klz/8eSPs61UKFBTAYAAIrE97UvjTF7GWPa+33eIBCTAQCAYsllmaUTjTF/M8YcnbD9QmPMCkmVktYaY673q5BBaGxq1gujFqfdh4kAAADAL7m0lN0s6Z+KLLUkSTLG7CvpQ0kHKNLAtLukZ4wxp/hRyCB8MHmlL0EXcRsAAPAil6Dsu5KmW2tXxWy7RtKOiszG7Czph865b867hAGprW/KuI8xRSgIAABoE3IJyvaRtCJh2/mSGiTda61tdAb6l0n6dp7lCwzxFgAAKKZcgrJdJG1O2HaqpMnW2uqYbYsU6c4sScanZrAvZiQuEwoAAJAsl6Bso6RDon8YY06UtJuS175sp0jrWUnyq2ty7poaf04EAABatVyCsjJF1r6Mdk3+WZHx7EMT9jtCUsk2E9F9CQAAiimXoOwJSe0lfWWMWS/pakmLJQ2M7mCM2VvSNyVN9aOQgfDUVEboBgAA/JF1UGatHSTp15KWSdpB0nBJl1trY6crXq1I4DY8/yIGw7dwi5wYAADAg1yXWXpV0qtpdnlW0stKnhBQMkh3AQAAiimnoCwTZ23MrYU4d7EYT21lNIMBAAB/5BWUGWMOkHSmtqe+KJc00lpbnm/BgkZLGQAAKKacgjJjzO6Snpb0EyWPS2s2xrwj6Q/W2qo8yxdyRG4AAMAfWQdlxpguiqS/OEGR/rtxisy+lKTDFMni/1NJxxhjTne6MksO4RYAACimXFrK/iTpRElfSbreWjsn9k5jzDGSnpPUQ9IfJf0r30IGge5LAABQTLnkKfuJIln9L00MyCTJ2fY9SVWSrsqveAAAAG1DLkHZEZKGJaxzGccZSzbM2bckWZ8mVlpmaAIAAA9yCcoAAADgs1yCsoWSzjbG7JJqB2PMrpLOdvYFAABABrkEZe9J2lPSp8aYryfe6Wz7SNIekt7Nr3ilz1sSWgAA0NblMvvyMUlXSjpL0hxjzDhJSxRJj3GYpNMUWfdyhqTHfSpnSDFeDAAA+CProMxaW2uMOUfSM5J+pEjqix6xu0h6X9LvrLW1vpSyhE1YuiHoIgAAgBKQ64Lk6yX9xBhzsKQzFL/M0ihr7XJjzL7GmIOttct9KmvgNm6p165dOsZsoWsSAAD4I6+1L52A680Ud38s6ZR8HyNMTvrHYP3m9ENb/ibBLAAA8EuhU2JkDFuMMQcZY4YZY2YbY2YZY24pcJnyMmDWmqCLAAAAWqEwtGI1SvqLtXayk2ZjkjFmsLV2dtAFAwAAKJbAk8daa1dbayc7t2skzdH2MWqBYV4lAAAopsCDsljGmG6STpI0PtiSAAAAFFdogjJjzM6SPpD0J2vtJpf7bzDGlBljytauXVv8Aqbx1NAFGj6vMuhiAACAEhaKoMwY01GRgOxNa+2HbvtYa5+31na31nbv2rVrcQsYV47kbf8eNF+/emVi8QsDAABajYwD/Y0xZ+Z47l297GSMMZJekjTHWvtojo/lOy/ZLtwCNETUNTSpoalZu3TumHlnAADgafblcOU27t14PK6HpKslzTDGTHW23Wat/SKHx/QN8VZ+ej4+UkvX12pp70uDLgoAACXBS1C2XAWMUay1o1WiqfFJHpva0vVtfoUtAACykjEos9Z2K0I5AAAA2rRQDPRHel/OqdDdn8wMuhgAAKCACMpKwHWvlem1sct8O98rY5boj29P8e18AAAgfwRlKbTmmZX3fjZbn05bFXQxAABADIIyAACAECAoAwAACAGCshS8pLsgIwYAAPALQRkAAEAIEJSl0JoH+gMAgPAhKMuSLUK09tWideozzr8UGAAAIPy8LLOEIvvZC+MlSVefdkjAJQEAAMVCSxkAAEAIEJQBAACEAEFZllZV12V9zC19WdIIAACkR1BWBJ9MZUkjAACQHkEZAABACBCUpVBb3xh0EQAAQBtCUJbCtsbmoIsAAADaEIKyPKRKI7uqamtRywEAAEofQVkBfLf30KCLAAAASgxBGQAAQAgQlAEAAIQAQVkKxgRdAgAA0JYQlKVgU43ij0HcBgAA/EJQBgAAEAIEZQAAACFAUAYAABACBGUAAAAhQFCWh5Ubt+r1sUuDLgYAAGgFOgRdgFJ23+ezgy5Ckj/1naIzjuiqH518YNBFAQAAWaClrJX5eOoq/eW9aUEXAwAAZImgLAWSxwIAgGIiKCui6SurNHfNpqCLAQAAQogxZSmYAuTr/95TYyRJS3tf6vu5AQBAaaOlLAUrD+ssAQAA+ISgDAAAIAQIykrIorWbgy4CAAAoEIKyEvKTZ8cGXQQAAFAgBGUpFGKgf77qGpqCLgIAACgQgjIAAIAQICgDAAAIAYKyAExatkHlVVuDLkYglq3foinLNwZdDAAAQoegLAA/emasTv/X0JyPn19RozEL1/lYouI56+Hh+sF/vwq6GAAAhA4Z/QNic8xNW1VbrwsfGymJlQEAAGhNaCkrIcYY3fz2lKCLAQAACoCgLAW/l1maX1Hjy3kqNtXldfy2RtJqAAAQRgRlRRLtcszH5m2NeZ9j2fravM8BAAD8R1AWcssJogAAaBMIylIIS0b/lVUEZQAAtAUEZQAAACFAUNbGhKP9DwAAJCIoKzHzKzYHXQQAAFAABGUAAAAhQFAGAAAQAgRlbYxhUBkAAKFEUAYAABACBGUp0KJUWH3GLdO8Nf4sPQUAQGtAUNZKbdxSH3QR0rrz45m66HFvS0+t3Fgra/1dixQAgLAhKGullm1ItRJAaTUBzltTo9P/NUwvjV4SdFEAACgogrI2bN3mbXkdP2bhuoK3yC1bv0WSNG7xhoI+Tphs2daouWs2BV0MAECREZSF3Mj563w5T2NTc1IXYFOz9y7B5marTXUNLX9va2zSz18cr1++MsGX8mG73/aZpJ6Pj1JDU3PQRQEAFBFBWYhV1dbr2RGL8j5PdW2Dvn57fz07YnHc9uYsxmk9PmS+jr9nkDY4LWPNTrwwv4LB+n6bsCTSKpjN6wMAKH0EZSFW35h7S0nsyLG1m+skSe9PWhE3qzSb7/x+M1ZLkjZsya/LEwAAuCMoC7Msx+TPLK/Oav982mFsXkcDAIBEBGUp5DpHsWJTna/lyMZlT47Oav980kxEu9hM0WZzEgQCAFq3DkEXoDWZtGyjxi1e79v58gl4Yrsp3xy/3HWffIYs/eqVibkfDAAAkhCU+ehHz3wVdBFcvTJmacvt0spSFqt0Sw4AgBd0X7YhJmHtKD8m97EcFQAA/gg8KDPGvGyMqTTGzAy6LGGTT8Djpeszm8H6QWdnGDKnQj97YVywhQAAoIACD8okvSqpZ9CFSBSGYeVecoA1NDWr2WMS2HySxy5eF8msv2LjVs/H+O2rRf6N1wMAIGwCD8qstSMltZ01dBLUNTTp1THu6zr+7IXxGY8/4vb++mPfKZ4fL7YLc+CsCs/HRa2qig/Kwtp7+djg+brg0RFBFwMAAM8CD8rCaEFFjZY6LUOF9sSXC3TPZ7NzOjaaXPbz6as97Z84pswtOe3TwxamzXdW7G7MxDJ79cSXC7SgcrPPpQEAoHBKJigzxtxgjCkzxpStXbu2oI9189tT1HfiioI+RlRVbUPmnVI48o7+Ke/LdTzawwPnpc13VuxuXZYaAgC0FSUTlFlrn7fWdrfWdu/atWtBH6t9u7B2yuVn3eZtqq1v9LRvt179NHVFVfIdRQ6S5q9hbU0AQNtQMkFZMbVrpXkeqmob9IOnvedSGz6vMmlbYkiWa/ciAACIF3hQZox5W9JYSUcZY1YaY64LukztitpSVpiWp/Kqra6zMuubto8jy2X9SnoTAQAojMCDMmvtT621+1trO1prD7TWvhR0mdq3gsaf3/aZpKeGLcz7PKc+MEQvjlrc8nc+62Xm4rPpq4r6eAAABCXwoCyMWkv35dgMeb28xFeVNdt0f785249JuL/QA/FXBpgXDQCAYiIoc1HcoKy0AsDEGKy2vqmgj1fo8wMAEBYEZS5aSUNZRicctFva+92WamJIWfEwfg8A2haCMhfFaik786Fh2rLNW4qKXGR6Grt27pj1OYs9pqxNaiM/CgAA8ToEXYAwalekUHX5hlp1aA2zCtJYtn6LDtlrp6CLAQBA6NFS5qK1DPTP9DRyafPKdmB/NoueA0AmKzbUqqYu95VQgDAjKHNRzISolZu2FezcbmPCsjre5fB0Mdl6lxUDVlXV5VUG5GfQrDWq3MRrgNbjjIeG6cfPjA26GEBBEJS5KGbu2M0FHFNWWeP/l3G6dq+T7x+iY+8aGLdtfgXLJAWlsalZN/SZpKueHxd0UQBfzYv5XKmqrdeaan54oHUgKHPRWrov51dsTnt/LmP2sz1my7ZG/c+zX2nJui0p9/lg0koNmLkm+8IgrehLtXxDbaDlAArptAe/1GkPfhl0MQBfEJS5aKXrkfsi26WZhs2r1MSlG3XR4yNT7vOX96bpxjcmeTrfmIXr9Ob4ZVmVIVZNXYNmlldndcyD/eeoW69+OT9m1nwahsdEWbQFdQ3NmXcCSgRBmYvWtMh2RZrxRLmkt1hVtVV3fjzT8/7Ruqxv9OeD8+cvjtftH3l/fEkaMHO1qmsjA4OvfWWiLntydFbP/bkRizPvVAB+XYZhuZznrtmk8ipWaACAVAjKXLSmlrLqrbnPUnKrhjfGLVefcd5bqoKuylVVW3XjG5N101uTJUllyzYGXKK2q+fjo9Sj99Cgi9Fq3f7RDJ1436CgiwEgD+Qpc9FaxpRJ0sYt9Z73/Wxa/OLfDa0gncU2p4Vu5cb4cVXWhqcFCfDDm+OXB10EAHmipcxFawrKrsxi5t3Nb0+J+7uq1ntAl0o2Vbm2ZptWVxe2e6sVvbQZZTv+r1g+mVqu33kcQwgUUk1dg5atTz0JCSg2WspctKUv7kLLJlfaKQ8MkSRNvesC7b5jJ1/LEQ1Pwj743Vqr+iZ/By7nm6/Ob7f0nRp0EQBJ0o+e+UrzKzZrae9LfT3vproGdenYXh3b0+6B7HDFuGhNLWXpZIpPtmxrKko5Ek1ZUVXwxwhrbDZ5eeGfO4CITGmDcnX8PYP02z60BiN7BGUuWtNA/3x8MHllMA9cgIgp+pKGJd621mr5+uT8YXUNwQTCfrHW6r2yFdrWWNrPwy/WWvWbvprlxtqgoXMrgy4CShBBmYtSbClbEdYEoSGpysSvxFzSgXi1qmprXC60n784TsffE7/SQd+JK3Tmw8M0admGnB6j2cOXfBBdtYNmV+j/3p+uRwfPL/6Dh9CHk8t101uT9cqYJUEXpaTV1DWU/A8WwAuCMhelmKds9upNWR9TjC/tXGrSzwHqQbyS3+09VJc9Obrl7zEL12tTXfxyWpOc1ByL1sYPMvZS3i9mrNZht32hRWs9dr0UsRKmOV3Pa2sKt6Zr2DU3W01eHnl9122O1ENlK6qPmeXVWr+5uM/nm/cMintPAa0VQZkLui9bv3zCvpnl1Z5aqtKZk0MQHdXfWZIq25UJiuG/wxdJ8taS11o9M2KRfvjfrzR+8fqgi1IQlz05Whc/Maroj7uwsjDjv9qqFRtqC7I+MvJDUOaiBBvKclvHsgjD3cNWl5mKU13boC1pFomfsGSDLntytF4anV931KxVKYKyhAJ+Om2VuvXqp011uScB9rqawqK1mzV3Te7BYqzEmCwsY8zqGprU8/GRLS2VhTBvTWSx7DUxq2kUsrtckuuC3FW19RpWoHFNranlLx8bttS7jg0tBWc8NEynPsCaoWFDUOaiFMeUhVUu69IFmbbihPsG6cyHhqW8P5qENpfuYjcbMiT3fdZpecrlgz/bejzvkRHq+bg/LSDNCQ9+/qMjsj7HFzNWa3OaADkXs1dv0tw1NfrH57N9PW+s2GderI+SX748IWnbDX0m6dpXJ2aVQBrZ6dF7qM58OPXnBZAtgjIXpTimLKz8WvPSb+kClvUpvsRWFWDdxinL41tsYnOKxa46UFXboEYnf1kpXJ2J9btiQ3Z1N3fNJv3+zcn6+wfTJUkLKmr07IhFeZcr+oMrm5ar618v09F39vccIEbPfUvfqUW7/t26oRY7Yw4bmsP5HkzHWqunhy0MfffaViYfwGcEZS5KcUxZWGdf5hLfRr8v03Uj5nrOfBQiKBs4q0IXPzEq43iZX7w0Xnd+Miurc/vRPV1etdX7hIIY+aaAiObIi9b5FU+PUe/+c1sC01xFL8dsijd4doXqGpp1gcfWvthTzytQHqyt9U0699/D045bi17zYUse7MX0ldV6eOA8/fkdEg3Df9FhIdW1uQ8LKRSCMhel2H0Z5C+2D9PkM8ulKn/zepkk5T1uK/bxlycErV4ClspNdXpz/PbF1wvVqzpn9Sbd9/lsLazcnLa+Pk9YmzSfxea96tF7qM57JPuux8Tuy3z5dX23tJTl8Gqudhm35ZXfXfLzK2q0eN0WPfDFnNSP6fxfgh9nanSi5tp6WqIgjVqwVt169fNt/N6LoxZLkpaGcIktgjIXpdhSlkuRl6zbov8OX6gZK/ObxTc9z+NTyaW1xVqrkfPXxvwdf3+qrulhcys1fWV8Nv3rXy/T7R/NzLoMuRg5f23SuKvEskf/3OisSXpXhpazIMfmRV+6cx8ZriufG5vDGeIL79eQguhpMvXoVdc26NFB83Jr8Ys5JFrqF334geH6UGmKF+1GLcGPMyDOB5MiP/wnLc8tr2MpIShz0VbGlN3+0Uw9NGCeLn8qv/w/6b64Zpb7MyDeq3fLVugal0HPiRK/zK59daK+99SYuG0bE5q2Y4+ZsGSDbn57iu+z6mKvvJEL1sa1ckQfK6zj9GJFy7p47RaNX5L7B2niOzHf2o62lGVqyftHv9n6z9CFGjRrTdaPEZZZzdtbysL5eba1vkn/Hjgv7czcsK9Vm6uZ5dXq1qsfi6F7VO4MY9hc58+QljBfVwRlLtymlyO1pgJd4bl8l6zcGD/uK5/vo/YJTaZlMdn3y6u26rNpqwqaJLUhx/FT37xnoM57ZHig63v6fU1EX4l8T9uunbfzRLtLG3Jqrc36kJxZWTU3W9d1aqPlCGvL/zMjFumpYQvVZ+yypPtCGkf65r2yFZJUsJQlrc3EpZEJUf1mrPb1vGG8zgjKXAzI4ddx0IK8uEJ4XfsisU4fGjAvaZ91m1OnG/j6bV/o4ynl+ZUhdjamx2Nq6hqTVgqQIi0TYxe5Dwx/a/zyXIqXkt9rPfp1fXttKcv0cDe8XqYevYf6U6gcxF4Xjwyep3qXAH5792U436HRFjK3srcVIW6wycrGLfV5D4Pxwq/x3sVozc4VQRnapKeGLkx7/8j5az19laX7jGhstvrXgLnZFSxGU7PVDJes/V4/ThK7Vm//aIZ++sI41y6T2z6akfZcb41fntXag7m0Fq3YUNvyGKmOz/fDNNpq5HUiQqru6UGzK1q6VJKP2X57XIGz+lsrfTJ1lft90RtFismWr6/NKkmwl2AxvF+d+YntUq7cVKduvfrpnYn+/jAqpp88NzblMJi6hibfVrfwu/EhjD9YCMqQt0J9cBbyDfPUsIWqa2jS7BSZ9a95eYJra1Pid3Quv9zS5buK/bAetzh+LNb2FAe5metkmq/xOC7j05jZnrd9NEMPD0xuKUwl2+CpudnqjIeG6Q9vTY7f7nNaB9OSp8zbfrmI7XZ2y3xfvbUh567pKE9jyqJ1V4TvnZq6Bp358DDd+kH64N6N22sRvq/KwrBWWrwu8jnzweRyfTK1XDV5rN4RlAVpUvrc/cksXfn8uJxS6yTyq6UsOtEnjHVNUNZKhHUwb6x8lgryQ2IKib++N02X/GdUVhnPt9TnP9A0MWFsrJ/EzFTMZv3Ibr366cY+k+K25Rss3/dZfNZ7t9UH1tZs82UJpWhZhzpjbKKTGaauiJ8Rm/eYMp+6L9P5MsM4oRPuHaTfvTE57T5ezVq1KWkcZaJifDJsdVJXjFq4zvMxsR9ZL49ekvX4zM+mubcQFsuSddt/tEUVMNh6AAAgAElEQVRX+pDkaaJRlJXU3xknNWf1Jt3Sd6p6fZh9YJvJtsYm34cUeDW3IvJjcJMPKXz8+p6LrshyXwFX9sgVQRnyZiQNmV2Rcb/j7xlUlLKksrp6a9z9g50yJ37xp+PHIO5cz5Gp9SlxLOS37huc2wPFPGImpzwwRDe/NSX5yCyf42jnyzz6vbEtcYap88Lluyi11+Sx67dEAoTFLq2lfhgyJ/P7JV8tY8p8/MG2NUXesFwu6WipFlTU6L7PZ+umt1wC1TQXUmIdfrXIe0CYyrC5lVpd7S1J9Dn/Ht5yO3aiRWxKnvKqrZq4NPXs4+HzKvWaM9Ehmix7SQGuuaPuGKBfvDje9/MWm9+TVrz2GhQTQVkrUegFj9M+tqRVHj/Iii1x2aJY0S/+Z7JYviexnovZQJntS9xYwF/Gm+oa9MLISALGQR4C8kzmZFhLNFrNlz2ZX/qW6OuVKcAdszAyBublAuUXy1e66y4auLakxPDxcf/v/Wmu2/PpWm9oihycb0vKz17IP+i49tWJuvzJMZl3TJDqejrroWH6n2dT5+mLbX2OnsGvdXUTjS3w+MZiKMXE7tkiKIMvcn2r/PT5ca7bF6/drHkV+X84xX5Yxq4lGWtCHnm0Enn5Nep5oH7Aw5yTEu/G3L77k1lps8l7sW7z9u6qxJelUF0tYRzY67dot1ohxpRNW5m+VTmbx4rum3ZN0QC+hGOvy3xl+mGU7jr/xYvj1ctZ+7VUPD1soQbMLFz2gtb/7iUog19iPjyzmaWX6tfbuY+M0Bcz8n9zV2yK/4AtdIPi6IQxNfkszZMYQCR16WV7viw/0RKrKvbvTK0aXuo51Zi5dZu3tSy1FeXXd/Og2dldUzUuAcPkNGMCw+DhgZEZv81FTImRyw+I6EogI2K6+5JPnPq8YUoAmm1ZotdzukTQoxeuU9+JK/IoVfE9PHCebnxjkut9frxcfsfofi8H5weCslYiTH3jR985IOgitEhcOqmUrE3xiz3dB1O69TCz/fwJqkv8oTzSiIxdtD5tbrj7++XXuidJP/zvV3mfo5DmVyR0XyasCpHP67piQ/o0INEAcEFFTcbWzi0eZyGXgmyrdKnTmrl4XevP6O/nK0n3JUrGc874nqCUwltlY219oEl2s5lQIKUeVJ2On10vid+p0ZQaUnKXU2NTs/qMi128Pfcv/nfLkhe499ra89MXxulP70zNuF8IfyCn9e7EFRoT0wrrqT5cnuOht36hKwocVC6srNEFj43UY4Pnp90v3y/Y+RU1Sdtyvf4Tr+dCz+xc4hKMFeKa/HJOheusaT/UNTTprfHLi/rjLfaaGTavUp9MzS85dz49GYVCUIY2Y2gBljTJ5mvliqcjA4i9foilCmzSHe5nzJnY6hYdjD9+8fqk9SxfG7tMd35cnMXbvahraNLf35+u9T4GqX5ozDE/2d8+mK6fe5w9F52hFr1+EoOfaVn+OMhWdMhA7LJkbrJZv9NN7I+EqIk5jg9NTMdx89vJM4rTyfZHSDHCmOqtDbrutTJd99rEgpz/scHzddtHM9S/gGPIEsVeM9e+MlG39M38A6zUEJTBF8VugerWq1/StjfGLUtKuBrL2u0zvUpBoX6A5ptXbPLy5C/1xACu2UPs4ZZY1S+fTC3XO2UrPK+oUNfQpDfGLcsqN1wubujjPt4mW+neb9EgrJjJY2O7SofPi/z4SfdelNK39kXvyScFSlOz1e0fzYhbweK1r5ZqVYqVGMLkR8/k35oZTVC8bH1thj1Tm7x8o+a5BL+StN5pgfO6SPigWRV6e0J+qxbQfQl4FMSstoufGBWXiPWOj2dqQkJOoKra7cGCH7MZk7Ls533G1BJbo7xINxYnOtX+yufcZ7x6f4zM+0xYukGzVqVfC++yJ0er2nl9MtVjrp/FXgPbx4bM1x0fz9Q7ZStSrvLgB7fW2vrGZj3Qb7ZvyZW3p/1w/s7xPM+PXJR17i8jpVx+Kmlfl4JNWrYhLjCuTejCr66Nr6N0y/fMLK/Wm+OXt7R6VdbU6e5PZ+lXryQnd8330yv78Zrp75+0LP/JJPmuACJFxk9e9PhI1/ui5/X6ufrsiEW6Nd/EuM6D9hm7NL/zhBhBGSQp72VfgjBn9Sb9IMP4mKeGbV/j0o+Wp8QErRc+NjKrMRXrN2/Le8ZPugDFywdwvvnL5rrkUXJ7XLcWtUTnPjLc02Nm+8US/ZHg9ZlGV3W49cMZuuQ/o7J8tNzc99lsLays0UdTVuqFUUv0iIdlrIbNq9SAmavTXwMJqxbkOmj+n1/M9Zz7K/oeWJVmjM5jg+erW69+LUFXYrHmrqnRj54ZqxdHpx4fe8J98Qmo043TbO/040YnHERbb6tqg19ap5jpbgrVuOT1vNmOpU2nnTFasaFWd34yy7dzhg1BGSRJ93ya+0W+prpO/Weu9rE0hVHIAakLKzfr7IeHZdzv5PuH6IE8ZwCmHVOWxQfwmuo6TysxJKr3GsB7qO9oF8jqDK0rW1JMeqiqrXcfpxVtLUq1sHlSDrb8vrn6z1itQ2/tp9osluF6ecwS/fLliap3utQbm63Wb96mhZXu3UVSZBzNjW9MTlteL1nPp6+s0tC5/q0qEFufqeo8+gOpKUOqjoWVmz1fx+m6sxKDssQWxFi9+6fu5v7Plwtch0vEyvajJdUsVi+mr6zy9FlW6MAv2vI+cn7+Kyl4ZVTYpNhhQFAGSfllex46t1KjFhTvjZmrQr2XrY109Sz1OHbDbaHzIPzgv2OS8oF54bXlJZvq9lp3seoamnTifYN1t8sPikxdK+VVW+NnM3oMAganCGL/PWierFXW45ViU1QYE8nPd/6j7t1FsdKNC0wcU+bme0+N0a9fjX/tm5qths2rLNpsOj9acBLPUbZso5qarZqbrS5+ItLiGf0Sb7kmXJ5eYgt4rEczzCItpsGzK/S9p8bo3s+yWbOxME1lM8sjQdngFEuGVWyq0y9TrANa19CUNkdbKn4vsxRGBGWIKOEfH1u2NQb+y7GYY+piv4i8tsy4pdfIdTq42zPN9ws2m1cmOq4omqT4zfHJg4dNumYRh9fZjLH+lrDMUENTs6q3NngKtD+fnpxmwWp7kNDOmLR55mJ9lCYXW2L3uNeX5qXRi3XtKxM1cJb7l+wAj63hqVo1o6LlS9fKlWtc+NLoJXriywVxrSkt+dJaHi64D7sR89fqkidy7x6/3vkR9epXS1tynaXk8jQzJfbeuKVeR97eP2mVkxUb0vxoStUyOnRhysTAR985QOc/OiJtWdy0M61/TQ6CMkgq7SSGx909MC5HVirVWwuTYNdK+rIA6TbcJOZPqmuI/7WZ6iNrzpr4cWCxg6nHLsquldTrDKhCNbgkjityk/UYNI8HJK1yYCNLgkXNSjNJwK2VzdrYzPvebUpzLSdeE14td754b3xjkmsX6l/f87bkT32G2b1+zgp9yGUc3sLKmrgfYI3OYLKWcYYFuC69/uD75csTcl7bsv+M+KB4Y623/GOx9bx0ffrP+UnLNqq+qVnPJawHnEty8lSvbzRp8PJ0gV7Kk2Z/SKkhKEOrkKpbKVahEkJaa31N2prOmIXpu4m9ftEddtsXLbd/+kJ2szE9BzAhyNC6sbZe3Xr103tlmZar8fakElNmJH4Zp8ub5FYdzdbGBCnev3Gyqdt0p12xobalKzT2lBc+ltyF6rV0mdoytjU2Z5xY5LUq3LrAlqyrVV399u3RAf4eGk/TSlfn1kZy0L0/KTnxsV9+9+bkuL+NMXp34grXFlgpv/bAbI5NFZCmeglnlKeflV3X0JQyn197UmIApaHUlmXJVbO1mrxs+2wmz4lofYyP3Go6Or4kV+meR6qVDdLlnIteDtEcTV5aUr3YlNBi8KuXvSfmdJt1a5Xbl2c2M3inpJn9dsZDw3TUHQO0JqEr23X8pcsLv60x8gUaW5xUb8Xoa3zCvYN04WMjPbe4Zjv2aM7qTTrv0eFJ27ePKcvtzZDusGZr9epXS/XX96al3slnRpGkwn94a4qejpllHpVtSoy6hiY98eUCSZHxYF6lqpdUn8mZXvej7xyQ8oeiMf7PJg3Dj8dYBGVoFYIMyYr5ln63bGXa2Y+pPrBWV/uXMNNt9tMQl8G+ftVLTYr8Xfd9nnqwc76tIl5lM0HGrSzbGppy+lJYn8XSOdHxQT95bmzKff749pSMC967fZkedccA/c9zY+NaS7w8nSXrtqS8VhNb2vpOzD7h6LrN2+tn+0SK/D4l0j2tAbPWZPWa+OHF0Utabj+cJp2K16d99J0DWlqxErvhP5i8Ur0+8NZ9nYmXHxQTl7rnaStE8tjXx/rzg80vBGVoFdrCrBw3Xr/O//CW92VjMi0FNNmHxJbZOPWfXyZt+/5To9N2R28fP+SthtKlocgkUzATtdhlMsCmusaWdRBf/Wppy/bYCRyL1iZntU9MqppOtAoSB2/Hqmtsyvhlmeo9NmV5VdzsWa/jq4bPcx8ELsUHZnflmZMqVWl69B6a3Xmc+lm2fkvS9bK1vqnoPwwzDcdwex2slV4evUSVNdlN8nlp9BL1neg+BCBV/aaKn9rn8WFdiB4Rr2PzioWgDK1CLikV/BKm1m8/PrT+MzS5KyRWugShsVLNvHKTbbmnrUw/LiXblrJUv8y9uOp5b2Py5qQY4J247qIUf0390WUdxmxa16q2Zv7SaWq2GSsr3WuUKvVBLt4pW+HrTOnEqtrozN5NXHkgU51G7z3r4eFJaUsyzWoMUmyAu3jtFt33+Wz94c3s1vZMpylFrqFUYwu9tnZ94+6BLsdmPq6+sVm3fjhdlR67YMO2dBNBGVqFJQHOHh2YJsdRoRUiIPSrLtO1hMRaU13ny7gOtxQBmU6bTbLXYspUG9nk3POyNmGz3Z7UNRWvDRyxS5HFdptnU+ZUX/S5iAZ4mYqfzw+7pub0Y9/yXW82F24vZ3T5pvVbCj8xKVWsMzvD8mtRm7clX7de4qcv51To7QkrPLewhiskIygD8nazS0tGUPz4gMl3GahsnfZgcvdkLp5NmMYvbZ92Pz1Fy1oYFqd2q+0tMV9Ibmk2vLYCpDp/0j7Wasu2TIFD9lfXsLmRwHxjluOt/LwGo6fKlIIhMRBMbP1K1xpmrU272HY+SztV1dbHLaruxY19JrWs0hIbyMx1UuMUI4F1qqsl3yWS3Frglq+vbZmF2pKWzuPlmunHSLERlHnU87j9gi4CkCTxi8KPlviq2nrd/clM1/vKlma/SLoXbuOtsjFhyYaUY16i0i1eHSS3PHE9Hx/Z8gXqxmsXsuStNXXumhrXyRqxcrm2osGV16S4UX4uxRtJ0Gv1/afHeNhzu6PvHKDXYsb5XfbkaL053n1QeLO1akjTupdPkHneIyN01sPDM+4X29o8YNYaDXJJE+R1/KMfCtEr+MY498D34idGtoybjbaMBp1PMVcEZR7t2Kl90EUAkpz3SHxW7O88mN3gZTdjFq7XaylmJP342dQz+PKROL4nW4kzCze5BAFXehz7VWxu3TQbaxv0vacyBRHezCj3Z0HoXMZn5xoETFjiXwBtbeSazkXsEl7L1tfq9o/cf6x8PHVV2u7LfHpjvc7qTJmaIuZ2vutGZtPdP68ieYJKocSuItHyFGOeeMWmupSzuEMWk6lD0AUoFWF74QApi8XB25j+M72N83tq6ELttfMOBS5NbjIlWPUq3xxyUiTJbMWm7MchvVe2QtedfmjW4xT/Pci/9SattbqhT+Y1XgvZYpKYdLggj2Gt2rl07cVO0NiWxYSEez9L7mbMJqgbmcVEn2xkagBrSYESs+3bzgzupb0vdTvAp5L5g6AMQKvzlceloz6eWphVHvwQpu+K3v3n5nRcfWOz6hubde2r3pPs+s1rS9Mzw5PHJPqlGK+ll3hp7prk1C8zVlbrmwfulrT9lTFLk7aFbVC8JE1LkRy5qdlqa32TumTo5cq39dBvdF96FLasvwBav3P+PTyn47YkdIkuzzNlzPgcuxObrfW0BFoYfJhmkfd8nfnwMHXr1a9g55dS54fLNDTg8qdGa3aaNVsLqVuvfnk/9geT45e2in5V95+5RsfcNSDj8f8tYDCeC4Iyj9wu9z7XnapTu+1Z9LIAaBtyTU9yXEKOpzMfHpZXOWIz5Efd8fGMjMc128IM+EayfNoNvCaTNcaoudnqwf5zcn+wBGXLIpOHVlVt1W89dDMnzqSOTUZrrU2aVFGsdYn9QvelRzvtkFxVZxzRVWcc0VUzVlbrgD266Fv/GBxAydDWzcywwC9QCKlmwsVavqE2dMk5W6srnh6juWtq3MdNZZBNPDdh6QY9N2Jx2n2yyTPX6Kxh+68BczVwVnyrqrU2KWnxTW/FL8y+IGZCgbXJwalb/sIwo6XMg+euPlm3XXKM/u+io/TkT09Kuv+bB+6mXTv7G9/eeNbhvp4PrddlT44OughASn5NWEB60fFiuQy1+d0bkzztZ+RtRq3b7OdUHh+SelLHP7+Yk3G1hNEL17XcbrbJnbixf5fCMCSCMhcH7N4l7u8Lj91XO+/QQTed83Xt7ARfP/v2wXH7dGi/vSr/+YNv5vzYvz/7cO3WpaN6XXx00n13XHpMzucFgFzc9lHmbsp0wpRcOcrPFQPC5vrXM3cBJqpr8BY4zyyv9jTYf+VG7yluNtU16n+e/cr1vhdGLUmblDdRNCddyvtL4GUnKHPR4+t7xf0d23x69pFd9Y8rvuEaIA3/69l6/8bv6CfdD2zZ5hZcpXLLeUfobz2P1rS7L5Qk3XXZsXH3/+aMw/JazBUAsvXWeO9fiqXih8+4BwGtwZA5lQU795XPj/OUbubXr2U32zbd2rPZzIpttjYp8Ho75vq9oc+kgqXq8AtBmYtdOndsuX1l94Pi7jPG6OrTDtGOnZK7K7vtvZO6d9tTHdq305IHL9Eb131bvz3zME+P+feeR+vPFxwZt+0Xpx2iw/beKW7bpd/cX5LU94bTWrZ98LvveHoMAEDqNArIzEvL1doa/wbXV2ZxrqPuGNAycSAqdlbtkDkVuublCb6VrRAIylz89NTtXZNnHdU1p3MYY3T6EXvHtbK9eE13vXBNd9f9f3d28hiyTh3aaehfz47b9q8fHa+Pfv9dnXbYXlra+1It7X2pjtpv17h9chnoCQBAUD7xKWfgu2UrM+8UYgRlLmK7CP1cGPebB+6mkw/ZQ5J07tH7tGzPlFbj8StP1O2XRLpLu3Rqr5MO3iPufrcezVF/Oydjebp0zH/pqONdkg4Cfljy4CVBFwEAioqgLAM/xoPOvu8ijel1rvbdtbP23KmTJt1xvp6/+mRJ0i9OO1jv3pi++/GKkw7Q9Wm6QXfs1EHfPTwyDm7C7edJkg7ac8ek/a4/41AduEdkEsNuXTpq4h3n68h9d85Y/un3XKgTDtpdUnIr3Kd/OD1ty9wp3fZI2raLM1niiH121tWnHSJp++SKsbeeG7fv0t6Xap9dwrkMzqEJXct+GnvrudqpU3v1uvhozb//4oI9TjH1/mF2E2ASp8IDQGtHnrIM/FizbMdOHeLGoEXX2pv7j57q1N6fuPit609L2vb81Sfrhj6Rqc5/63mUfn/213XZ8V/T958eo6tOOUg779BBg/58lkbMX6tfvjxB3z/xa9qtS0ede/Q+mrO6Rv8aMFevXnuKdu3cUe/99jstU9uP2GdnLajcnDRL1c17N35X1lodeusXLdum331h3Bfufd8/TlJkHccdOiS33g3685nasKVeh3XdWZOWbdCSdbX663vTsqugBEt7X6qXRy9R92576MPJ5Xr1q6WSpId+dLyWbdiip4ct0rz7e6qp2erYuwa6nuORn5ygbx28R86Zui8/4Wt68Iff1EdTyvXJlHKVLduoHTu11+z7ekqSZjn/S9Knf+ih/XfropvfnqxxizekOqUkafxt5+mRQfP0btlKHbHPzvrd2Yfrf9+N1Ne7v/2OunRsr8ufck+jsWvnDtpUtz0b/IXH7qs/nX+kpq6oynsW3lWnHqxeH3o7x6x7L5Ikzbz3In0jJhHq1acdotXVdRoyJ9xZ4nfo0C7nxbgBtF0mDHk7jDE9JT0hqb2kF621vdPt3717d1tWlv20X6/Wbd6m7vcPkSR9fFMPnei0EpWirfVNemHUYv3u7MPV0QkAxy1er5MP2aPl72xZa/XU0IW66tSD1dVpxVpbs02/eHG8+t5wmhqam/W/70zT41edqL2dAPTFUYt1f79IFuhMY97qGpp08ROjdN/3j9MZR7iP6Zu+skpD5lTqzCP21o+fHRt338++fbB+d9bhWr6hVp9NW6W7Lj9Wjw2erxdGLWnZJ7EMTc1W1VsbtOdOnZIeyy3omn3fRS2B9oCZa3Sjk+dnwQMXq9/01erYvp3OO2YfnfPv4VpdXafdunTUa78+Vde/Xqbjvrarnvn5yXFrsm1rbFJF9TYdvFdyC2es6q0NOuHeQZKkt68/TT99YVzSPtHnNmtVtY7df1cZY1TvBAidOkRe85venKxFazfr8atOlJHRRY+PlLS9yzAaRMfW0y19pySN+xj217O1e5eO2lLfqH7TV2vHHTrosm/ur0cHz1efccskSTvv0EEH7N5FA/98pmasrNblT43WtT266e7Lj9OtH86IGzj8wjXddf4x+8QF7UvWbdGWbY067mu7tmxvbrZ6c8JyXfyN/Vreq7GO2X9XWWt141mH60/vTJUUyTf4W+dHSs/j9tNR++2iJ75ckLKuR/3tHC3fUKufvzi+pW421TW21H86S3tfqopNdS0LIXsxpte56tF7aMvfe+3UqWXdxp7H7acBs1LPettnlx305wuO1PMjF+e8CkCiVIHlXy880nXB8DsvO1aTlm3QFzO8LQYfdmce2VV779SpZaD4fd8/Tnd9krxIN0pfMcZhG2MmWWvdB5XH7hd0UGaMaS9pvqQLJK2UNFHST621s1MdU+igTNr+Rcyg+fAbOGuNfttnUlyg5Cb6mn7r4N314e97+FqGjVvqtUPHdmkf3y/VWxs0bvF6XXTcfrLWavLyjTrhwN318KB5uvz4r+kbB2Q/zm/K8o06ar9dWsrf2NSsxmarzgnjDmMD1Im3n98SlLvZvK1RM1ZW6zuH75VyHykS5D/Qb4527dJRfzzviKzL/se3p2hjbb2+c/he+v3ZX3fdp7nZql07o3lrarSqaqvOccZ0btxSr5OclThOPGh3PXbliWpqbtbX99ml5diFlTWqqm1Qd2fs51/fm6b3J20fTHzo3jtpybotmnTH+Ro0u0JH7rtLy9jRaH29eu0p+ucXczQ/Jvt43xtO060fztCSdVt0/jH76sVfdpe1VqMXrtMD/ebo85tPV31Tsx4fskD/e8GRqt7aoIcGzNOEpeu1YkMkD9TR++2iuWtqtOTBS1oC1pdGL9HEJRt0bY9u+vZhe2lmebUeHzI/LlXCj08+UEftu4uO2X9XjVqwVs+N3J6hfdTfztFuO3bUrp07atHazTrvkREt9+28QwfNuOdCDZ1bqete2/4Z3P+WM1oC4SkrqnTA7l1cA9Ih/3uWzn90RNL2fXfdQT879RAd+7Vddf3rZTr7qK76v4uO0qX/8ZYY+ZrvHKIrTjpAvT6YHlfH8+7vqaPuyLz+YeeO7fSb0w/TXy48Uofe+oW+feieeue3kWElFzw6Qrt07qAPf9/D9Qfa0t6Xqq6hSUffuf1xRv7fOTp4rx2T9v/4ph664ukxkqQv/3KWzntkhM4/Zt+sW34H//lMXfDYyKyOKQRj0uf+2qVzB9XUNabewQc/+taBSetfZougLLYAxnxH0j3W2oucv2+VJGvtg6mOKUZQhtanvrFZzTY50IB39Y3NuvvTWXrgim+oXRvOmbdhS706ewjC12/epvFLNugSJ5VNbX2j5q2p0bFf27Wlq76+sbmlBbOQlq7bov126+x6/Q+dW6Ffv1rm+uW0eO1mnesEZtl+ef2p7xR9PHWVJt5+vrp0aq+dneXqttZHsrR36dRem7c1tmxP9MnUcu2xYyeddPDu2qVzRw2ZXaHu3fZQh/bttPMOHWSdvFTprsXJyzdqVdVWXXb811q2zVm9SYd33VnLN9TqsL13iju+tr5RHdu3c+1J2FrfpEufHKX/XHWS5x8/Yxau0+ND5uvt60+LSzIeq7nZqr6pWb9/c7J6fmM//e396ZHnf1MPHb3/Lmpulm5+e7KGzKlsCfiilq3fovKqrbrjo5n66KYe2nmHDnpp9GJddNx+OmSvnbS2ZptOeWCIPvz9d/XD/0bys91/xTe0106d1H/mGn06bVVL8HTwnjtq+YZa9bnuVO2xY6eUq4V8+oceOv5A9x6k6toGXffaRJUt26gFD1ysju3baWZ5tV4ctVgP/fgEzSiv0p477aBz/j1ckvTYlSfoz+/ED0e55bwj9OcLjlSfcct058czW7Yfte8umldR0/J39Hr8aMrKpHMkmn//xXpk0LyWHyA3nHmYbrukeAnZSyko+7Gkntba3zh/Xy3p29baPyTsd4OkGyTp4IMPPnnZsmVFLysAACieuoYmbdraoH127Swp0rKeavxxVHTNTGuttjU2a4cO7QKfOOQ1KCuZ2ZfW2uettd2ttd27ds0tdxgAACgdnTu2bwnIpMis7HQBWXSf6P+dO7YPPCDLRhiCsnJJsWnzD3S2AQAAtBlhCMomSjrCGHOoMaaTpKskfRpwmQAAAIoq8Dxl1tpGY8wfJA1UJCXGy9Za5h0DAIA2JfCgTJKstV9I+iLjjgAAAK1UGLovAQAA2jyCMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCMgAAgBAgKAMAAAgBgjIAAIAQICgDAAAIAWOtDboMWTPGrJW0rMAPs7ekdQV+jFJDnSSjTuJRH8mok2TUSTLqJF5rq49DrLVdM+1UkmRxnIEAAAr3SURBVEFZMRhjyqy13YMuR5hQJ8mok3jURzLqJBl1kow6iddW64PuSwAAgBAgKAMAAAgBgrLUng+6ACFEnSSjTuJRH8mok2TUSTLqJF6brA/GlAEAAIQALWUAAAAhQFCWwBjT0xgzzxiz0BjTK+jyFJoxZqkxZoYxZqoxpszZtqcxZrAxZoHz/x7OdmOM+Y9TN9ONMd+KOc8vnf0XGGN+GdTzyYUx5mVjTKUxZmbMNt/qwBhzslPHC51jTXGfYfZS1Mk9xphy51qZaoy5JOa+W53nN88Yc1HMdtf3kzHmUGPMeGf7O8aYTsV7dtkzxhxkjBlmjJltjJlljLnF2d5mr5M0ddKWr5POxpgJxphpTp3c62x3fR7GmB2cvxc693eLOVdWdRVGaerjVWPMkphr5ERne6t/32RkreWf809Se0mLJB0mqZOkaZKODbpcBX7OSyXtnbDtIUm9nNu9JP3LuX2JpP6SjKTTJI13tu8pabHz/x7O7T2Cfm5Z1MGZkr4laWYh6kDSBGdf4xx7cdDPOcc6uUfSX132PdZ5r+wg6VDnPdQ+3ftJ0ruSrnJuPyvpd0E/5wz1sb+kbzm3d5E033nebfY6SVMnbfk6MZJ2dm53lDTeeU1dn4ek30t61rl9laR3cq2rMP5LUx+vSvqxy/6t/n2T6R8tZfFOlbTQWrvYWlsvqa+k7wdcpiB8X9Jrzu3XJF0Rs/11GzFO0u7GmP0lXSRpsLV2g7V2o6TBknoWu9C5staOlLQhYbMvdeDct6u1dpyNfIK8HnOu0EpRJ6l8X1Jfa+02a+0SSQsVeS+5vp+cX7LnSnrfOT62fkPJWrvaWjvZuV0jaY6kA9SGr5M0dZJKW7hOrLV2s/NnR+efVernEXv9vC/pPOd5Z1VXBX5aOUtTH6m0+vdNJgRl8Q6QtCLm75VK/yHTGlhJg4wxk4wxNzjb9rXWrnZur5G0r3M7Vf20xnrzqw4OcG4nbi9Vf3C6FV6OdtUp+zrZS1KVtbYxYXtJcLqYTlLkVz/XiZLqRGrD14kxpr0xZqqkSkWCh0VK/Txanrtzf7Uiz7vVfNYm1oe1NnqNPOBcI48ZY3ZwtrWp940bgjKcbq39lqSLJd1kjDkz9k7n10ebnqJLHbR4RtLhkk6UtFrSI8EWp/iMMTtL+kDSn6y1m2Lva6vXiUudtOnrxFrbZK09UdKBirRsHR1wkQKVWB/GmG9IulWRejlFkS7JvwdYxFAhKItXLumgmL8PdLa1Wtbacuf/SkkfKfIhUuE0C8v5v9LZPVX9tMZ686sOyp3bidtLjrW2wvmAbZb0giLXipR9naxXpFuiQ8L2UDPGdFQk+HjTWvuhs7lNXyduddLWr5Moa22VpGGSvqPUz6PluTv376bI8251n7Ux9dHT6fq21tptkl5R7tdISb5v0iEoizdR0hHOTJlOigy8/DTgMhWMMWYnY8wu0duSLpQ0U5HnHJ3d8ktJnzi3P5V0jTND5jRJ1U7XzUBJFxpj9nC6Ki50tpUyX+rAuW+TMeY0Z6zINTHnKinR4MPxA0WuFSlSJ1c5M8kOlXSEIoNvXd9PTovSMEk/do6Prd9Qcl67lyTNsdY+GnNXm71OUtVJG79Ouhpjdndud5F0gSJj7VI9j9jr58eShjrPO6u6Kvwzy02K+pgb80PGKDIGLPYaadXvm4zcRv+35X+KzP6Yr8g4gNuDLk+Bn+thiszemSZpVvT5KjKm4UtJCyQNkbSns91IetqpmxmSusec69eKDEZdKOnaoJ9blvXwtiLdLA2KjEm4zs86kNRdkQ+dRZKekpO0Ocz/UtRJH+c5T1fkw3P/mP1vd57fPMXMfkr1fnKuvQlOXb0naYegn3OG+jhdka7J6ZKmOv8uacvXSZo6acvXyfGSpjjPfaaku9I9D0mdnb8XOvcflmtdhfFfmvoY6lwjMyW9oe0zNFv9+ybTPzL6AwAAhADdlwAAACFAUAYAABACBGUAAAAhQFAGAAAQAgRlAAAAIUBQBqDojDFLjTHWw7+zgy6rF8aYe5zy3hN0WQCUrg6ZdwGAghmoyJqRqaS7DwBaFYIyAEHqba0dHnQhACAM6L4EAAAIAYIyAKFnjOnmjNlaaozpYIzpZYyZY4ypM8ZUGGNeM8YcnOb444wxrxtjVhhjthlj1hljvjDGXJzhcS8yxnxojFlljKk3xqwxxowxxvzdWcvP7Zh9jTHPGWNWOo+1xBjT2xjT2WXf9saYG40xXxljqp3HqDDGTDbGPGKM6Zp9bQEoVQRlAErNO5LulbRc0seStimyEPFEY8xRiTsbY74naZKkqyVVS/pA0mxJF0n6whjzD5djjDHmGUkDFFlUu9w5bpqkgyT1lrSvS9kOch7rMkljJQ2XtI+kv0t612X/lyQ9I+lESeMlve88xm6S/lfS4RnqAkArwpgyAKXkEEldJJ1krZ0tScaYTooEN79QZDHsU6M7G2P2c7btIOkv1tpHY+47W1I/SXcYY0ZbawfGPM4tkm6UVCHpCmvtuJjjjKRzJG10Kd+vJb0o6SZrbb2z/zGKLDZ9uTGmh7V2jLP9EEm/lLRC0inW2orYExljTpS0KqvaAVDSaCkDEKRhadJhVKU45h/RgEySnODnZkmbJJ1ijOkRs+/1knaVNCY2IHOOGy7pSefPv0a3G2M6SLrd+fNXsQGZc5y11g611la7lG2FpD9GAzJn/zmKBIaSdF7Mvvs4/09ODMic46ZaaytdHgNAK0VLGYAgpUuJUZti+xuJG6y1VcaYzyT9XNLZksY4d53l/P9ainO9rEjX4unGmPbW2iZJ3SXtLWmltXZAxmcQb6i1dqvL9rnO/19L2FYj6VJjzG2S3rTWLsvy8QC0IgRlAIKUbUqMKmttqha0pc7/B8ZsO8D5f0maY5oldZa0l6RKRbpIJWleFuWKWp5i+ybn/5bB/tbaGmPMrxUJDB+Q9IAxplyRsWj9JPW11tblUAYAJYruSwBtgS3Qvomas9nZWvu+pIMl/UqR4GyzpB9LekXSXGPMQXmUBUCJISgDUEp2N8bsluK+bs7/5THborcPS3NMO0l1kjY426KtXUkzOQvBWltlrX3NWnudtfZoSV+XNEyRFrt/FaMMAMKBoAxAqfl54gYnULvM+XN4zF0jnP+vSXGua53/R1trG53bkyStk3SgMeai/IqaPWvtIkW6MyXphGI/PoDgEJQBKDV3OWkmJEnGmI6SnlAkt9cka+3omH1fUGQw/enGmD/GnsQYc6YiszYl6ZHodmttg6QHnT9fMcacmnCcMcack6bFzhNjzEnGmCtTJKG93Pmfgf9AG8JAfwBB6mWM+VWa+9+y1g6K+Xu5Ii1ZU40xQxVJBvtdRZK2rlNCi5i1do0x5mpFEs4+YYz5jaSZisyCPEORH6b3u8yyfEzSMZJ+I2mcMaZM0kJJe0o61nm8Q53Hz9UhkvpKqjXGTFYknUYnSScp0t1aI+muPM4PoMQQlAEIUqbuwamSYoMyK+knknopkqH/EEVmNr4h6U5r7dLEE1hrPzHGdFck9cW5igykr3HO+6S19guXY6yk640xnyiSRPZURbLur1ckOHtSqVN5eDVO0q2KpO04WtLJkuoVCc4eccpGSxnQhpjIZw8AhJcxppsiaS2WWWu7BVoYACgQxpQBAACEAEEZAABACBCUAQAAhABjygAAAEKAljIAAIAQICgDAAAIAYIyAACAECAoAwAACAGCMgAAgBAgKAMAAAiB/wctBjTYc5pvIAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAJpCAYAAACjGdPgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2AElEQVR4nO3dd3hUVf7H8c8QSOhNOoIFRaSKNLGvYMVdu666a1nX3+ri7rq6FtxV7GDDtYIVXBuIAhaQ3juEXpNAIJRAEiC9Z+7vD8gwk8xM7kzuzJ1J3q/n4SGZuXPnzNyZyf3MOed7HIZhGAIAAAAAVKmO3Q0AAAAAgGhBgAIAAAAAkwhQAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkABQAAAAAmEaAAAAAAwKS6djfALk6nUwcPHlSTJk3kcDjsbg4AAAAAmxiGoZycHHXo0EF16vjvY6q1AergwYPq1KmT3c0AAAAAECH27dunU0891e82tTZANWnSRNLxJ6lp06Y2twYAAACAXbKzs9WpUydXRvCn1gao8mF7TZs2JUABAAAAMDW1hyISAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkABQAAAAAmEaAAAAAAwCQCFAAAAACYRIACAAAAAJMIUAAAAABgEgEKAAAAAEwiQAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAVAVbtPqJ7Pl+tPRl5djcFAAAAgB8EqAhwx8crtTghXf+YtMHupgAAAADwgwAVQTJyiuxuAgAAAAA/CFAR4MxWjSRJF511is0tAQAAAOAPASoC9DuthSTpjFaNbW4JAAAAAH8IUBHEkGF3EwAAAAD4QYCKAA6H3S0AAAAAYAYBCgAAAABMIkBFEIMRfAAAAEBEI0BFAIcYwwcAAABEAwJUBEhMy5EkbUvNtrklAAAAAPwhQEWAdSmZkqTpm1LtbQgAAAAAvwhQEWZPRp7dTQAAAADgAwEqwuQXl9ndBAAAAAA+EKAAAAAAwCQCFAAAAACYRICKMA4qmgMAAAARiwAFAAAAACYRoCLMrK2H7G4CAAAAAB8IUBHm+/j9djcBAAAAgA8EKAAAAAAwiQAFAAAAACYRoAAAAADAJAJUhKGMOQAAABC5CFARxjDsbgEAAAAAXwhQAAAAAGASASrCMIQPAAAAiFxRHaAOHDigP/zhDzrllFPUoEED9erVS2vXrrW7WQAAAABqqLp2NyBYx44d00UXXaTf/OY3+vXXX9W6dWslJiaqRYsWdjcNAAAAQA0VtQHqtddeU6dOnTR+/HjXZWeccYaNLbKGQ4zhAwAAACJV1A7h++mnn9S/f3/ddtttatOmjfr27atPPvnE7mYBAAAAqMGiNkDt3r1bY8eO1dlnn61Zs2bp4Ycf1t///nd98cUXXrcvKipSdna2x79IZIg65gAAAECkitohfE6nU/3799err74qSerbt6+2bNmicePG6d577620/ahRo/TCCy+Eu5kAAAAAapCo7YFq3769unfv7nHZueeeq5SUFK/bjxgxQllZWa5/+/btC0czA8YcKAAAACByRW0P1EUXXaSdO3d6XJaQkKDTTjvN6/ZxcXGKi4sLR9MAAAAA1FBR2wP1z3/+UytXrtSrr76qpKQkffPNN/r44481fPhwu5tWLSykCwAAAESuqA1QAwYM0NSpU/Xtt9+qZ8+eeumll/Tf//5Xd999t91Nq5acwlK7mwAAAADAh6gdwidJ119/va6//nq7m2Gpo3nFdjcBAAAAgA9R2wMFAAAAAOFGgAIAAAAAkwhQAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkABQAAAAAmEaAAAAAAwCQCFAAAAACYRIACAAAAAJMIUAAAAABgEgEKAAAAAEwiQAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAFAAAAACYRoAAAAADAJAIUAAAAAJhEgAIAAAAAkwhQAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkABQAAAAAmEaAAAAAAwCQCFAAAAACYRIACAAAAAJMIUAAAAABgEgEKAAAAAEwiQAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAFAAAAACYRoAAAAADAJAIUAAAAAJhEgAIAAAAAkwhQAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkAFQHqxTjsbgIAAAAAEwhQEWDUzb3tbgIAAAAAEwhQEaBp/bp2NwEAAACACQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAAgAAAACTCFARwLC7AQAAAABMIUABAAAAgEkEKAAAAAAwiQAFAAAAACZFbYB6/vnn5XA4PP5169bN7mYBAAAAqMHq2t2A6ujRo4fmzp3r+r1u3ah+OAAAAAAiXFQnjrp166pdu3Z2NwMAAABALRG1Q/gkKTExUR06dNCZZ56pu+++WykpKT63LSoqUnZ2tse/SGFQxxwAAACIClEboAYNGqQJEyZo5syZGjt2rJKTk3XJJZcoJyfH6/ajRo1Ss2bNXP86deoU5hYDAAAAiHYOw6gZ/R+ZmZk67bTTNGbMGD3wwAOVri8qKlJRUZHr9+zsbHXq1ElZWVlq2rRpOJtaycwth/TQV/Gu3/eMHmZjawAAAIDaJTs7W82aNTOVDaJ6DpS75s2bq2vXrkpKSvJ6fVxcnOLi4sLcKgAAAAA1SdQO4asoNzdXu3btUvv27e1uCgAAAIAaKmoD1L/+9S8tWrRIe/bs0fLly3XTTTcpJiZGd955p91NAwAAAFBDRe0Qvv379+vOO+/UkSNH1Lp1a1188cVauXKlWrdubXfTglAjpqEBAAAANV7UBqiJEyfa3QQAAAAAtUzUDuEDAAAAgHAjQAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAlQEMKhiDgAAAEQFAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAVAahiDgAAAEQHAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAFAAAAACYRoAAAAADAJAJUBHDY3QAAAAAAphCgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkBFAAdl+AAAAICoQIACAAAAAJMIUAAAAABgEgEqAhiG3S0AAAAAYAYBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAVAShjDgAAAEQHAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEqIhAGT4AAAAgGhCgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAFAAAAACYRoAAAAADAJAIUAAAAAJhEgAIAAAAAkwhQAAAAAGASASoCOBx2twAAAACAGQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYBIBKgJQxRwAAACIDgSoCGDY3QAAAAAAphCgAAAAAMAkAhQAAAAAmESAAgAAAACTCFAAAAAAYFKNCFCjR4+Ww+HQo48+andTgkIVPgAAACA6RH2AWrNmjT766CP17t3b7qYAAAAAqOGiOkDl5ubq7rvv1ieffKIWLVrY3RwAAAAANVxUB6jhw4dr2LBhGjp0aJXbFhUVKTs72+MfAAAAAASirt0NCNbEiRO1bt06rVmzxtT2o0aN0gsvvBDiVgEAAACoyaKyB2rfvn36xz/+oa+//lr169c3dZsRI0YoKyvL9W/fvn0hbiUAAACAmiYqe6Di4+OVlpam888/33VZWVmZFi9erPfff19FRUWKiYnxuE1cXJzi4uLC3VQAAAAANUhUBqghQ4Zo8+bNHpfdf//96tatm5566qlK4SnSORwUMgcAAACiQVQGqCZNmqhnz54elzVq1EinnHJKpcsBAAAAwCpROQcKAAAAAOwQlT1Q3ixcuNDuJgTNMAy7mwAAAADABHqgAAAAAMAkAhQAAAAAmESAigBU4QMAAACiAwEKAAAAAEwiQAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAigAUMQcAAACiAwEKAAAAAEwiQAEAAACASQQoAAAAADCJAAUAAAAAJhGgIkDrJnF2NwEAAACACQSoCNCnU3O7mwAAAADABAIUAAAAAJhEgAIAAAAAkwhQAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkABQAAAAAmEaAAAAAAwCQCFAAAAACYRIACAAAAAJPCHqDKysq0adMmrVu3Tnl5eeG++4jVvll9u5sAAAAAoAqWBai8vDxNmTJFU6ZMUUpKitdt/ve//6ldu3bq27evBgwYoDZt2uiZZ56RYRhWNQMAAAAAQqauVTv6/vvvdf/99ysmJka7d++udP3MmTN13333yeFwuAJTQUGBXnvtNeXl5emdd96xqilRqaTsZIgsKC5Tg9gYG1sDAAAAwBvLeqDmzp0rSRo4cKA6depU6fqnnnpKkmQYhvr06aMbb7xRTZo0kWEY+uCDD7Rx40armhKVCkvKXD8fyy+2sSUAAAAAfLEsQG3btk0Oh0OXXnpppes2bNigzZs3y+Fw6G9/+5vWr1+vKVOmaM2aNWrUqJEMw9Dnn39uVVOiksPuBgAAAACokmUBKiMjQ5J0zjnnVLpu9uzZkqS6devqueeec13etWtX3XrrrTIMQ8uWLbOqKdGJBAUAAABEPMsDVNOmTStdt3TpUknSBRdcoFNOOcXjuoEDB0qS13lTAAAAABBJLAtQTqdTkpSVlVXpuhUrVsjhcOiSSy6pdF3r1q0lSbm5uVY1BQAAAABCwrIAVd6ztHfvXo/LN2zYoCNHjkiSBg8eXOl2BQUFkqTY2FirmgIAAAAAIWFZgOrdu7cMw9DkyZM9Lv/iiy+O31GdOrr44osr3a58zaj27dtb1RQAAAAACAnLAtQNN9wgSdqxY4fuvPNOzZw5U6+88oo++OADORwODR06VM2aNat0uzVr1kjyXnwCAAAAACKJZQvp3n///RozZowSExP13Xff6bvvvpN0fN2nmJgYPfvss5Vuk5+fr7lz58rhcLiKSdRWFOEDAAAAIp9lPVCxsbGaNWuW+vbtK8MwXP8aNmyocePG6cILL6x0m4kTJyo/P1+SdMUVV1jVlKjkcBChAAAAgEhnWQ+UJJ1++umKj49XfHy8kpKS1KhRI1100UVq0aKF1+3r16+vkSNHyuFweA1YAAAAABBJLA1Q5fr166d+/fpVud1dd90ViruPSnRAAQAAAJHPsiF8AAAAAFDThaQHyp+0tDStXLlSpaWl6tOnj7p06RLuJkQkw7C7BQAAAACqYlmAOnr0qCZMmCBJGjZsmNey5C+99JJeeeUVlZSUuC6744479Pnnn6t+/fpWNSXqMZwPAAAAiEyWBahJkybpX//6l2JjY3XvvfdWuv7rr792FYww3LpbJk2aJKfTqYkTJ1rVlKjkHprojQIAAAAik2VzoBYsWCBJuuSSS3TKKadUuv65556TdHxdqBtuuEGPPvqoOnXqJMMwNHnyZC1ZssSqpgAAAABASFgWoBISEuRwODR48OBK1y1fvlzJyclyOBx6+eWXNXXqVI0ZM0Zr1qxxlTj/8ssvrWpKVGLUHgAAABD5LAtQGRkZkqSzzz670nVz586VJMXFxekf//iH6/I2bdrozjvvlGEYWrlypVVNiUospAsAAABEPssC1JEjRyRJjRo1qnTdsmXLJB0f3lfx+t69e0uSUlJSrGoKAAAAAISEZQGqvAfl2LFjHpc7nU6tWrVKDodDl1xySaXblc+Xys/Pt6opUcmgcgQAAAAQ8SwLUG3atJEkJSYmely+cuVKZWdnS5IuuOCCSrfLzc2VJDVo0MCqpkQl9yF8jOYDAAAAIpNlAapv374yDEMTJ05UcXGx6/JPPvlEkhQbG6uLLrqo0u12794tSerQoYNVTYlK7pmJzigAAAAgMlkWoG677TZJ0r59+zRkyBCNGzdODz74oL744gs5HA797ne/89rLtHLlSjkcDp177rlWNQUAAAAAQsKyhXTvvPNOvffee1q1apWWL1+u5cuXu66Li4vTyJEjK90mMzNTCxculCQNGjTIqqZEJYbtAQAAAJHP0iIS06dP14033iiHwyHDMGQYhjp27KgffvhB3bt3r3SbCRMmqKSkRJI0dOhQq5oCAAAAACFhWQ+UJLVs2VJTpkxRenq6du/erUaNGql79+6qU8d7TuvevbvGjx8vh8Ohfv36WdkUAAAAALCcpQGqXOvWrdW6desqt7vqqqtCcfdRicIRAAAAQOSzbAgfqsd9DtSGfZm2tQMAAACAbyHpgSpXXFys9evXKzU1VTk5OWrSpIk6dOigvn37ql69eqG86yh0MkF9sypF1/Vqb2NbAAAAAHgTkgC1evVqvfbaa5oxY4bHmlDlYmNjdf311+vJJ5/UgAEDQtGEqGaI8XwAAABAJLJ8CN/IkSN10UUXadq0aSoqKnJV43P/V1RUpClTpujCCy/UCy+8YHUTohJlzAEAAIDIZ2kP1CuvvKKXXnrJVca8SZMmuvjii9W1a1c1btxYubm5SkhI0NKlS5WTk6OysjK9+OKLqlevnp555hkrmxJ1yE8AAABA5LMsQCUmJuqFF16Qw+FQbGysXnjhBT3yyCNq2LBhpW0LCgr0/vvva+TIkSosLNQLL7yg22+/XWeddZZVzQEAAAAAy1k2hG/cuHEqLS2Vw+HQtGnT9OSTT3oNT5LUoEEDPfHEE5o6daocDodKS0s1btw4q5oSldxnPTnojwIAAAAikmUBau7cuXI4HLrlllt09dVXm7rN1Vdfrdtuu02GYWjOnDlWNSXqMR8KAAAAiEyWBah9+/ZJkunwVK58Md3y29dWZCYAAAAg8lkWoAoKCiRJjRs3Duh25duX396ssWPHqnfv3mratKmaNm2qwYMH69dffw1oHwAAAAAQCMsCVKtWrSRJO3bsCOh2O3fu9Li9WaeeeqpGjx6t+Ph4rV27VldccYVuuOEGbd26NaD9RAr3YXsGy0ABAAAAEcmyAHX++efLMAxNmDBBhYWFpm5TUFCg8ePHy+Fw6Pzzzw/o/n7729/quuuu09lnn62uXbvqlVdeUePGjbVy5cpgmm87CkcAAAAAkc+yAHXzzTdLkvbu3avbb79dubm5frfPzc3VHXfcoT179kiSbrnllqDvu6ysTBMnTlReXp4GDx7sdZuioiJlZ2d7/AMAAACAQFgWoP74xz+qe/fukqTp06erW7dueuWVV7R69WplZmaqpKREmZmZWrNmjV555RV169ZN06dPl8PhUPfu3fWHP/wh4PvcvHmzGjdurLi4OD300EOaOnWqqw0VjRo1Ss2aNXP969SpU7UebyhRhQ8AAACITA7DsG7Gza5du3TRRRcpLS1NDhMpwDAMtW3bVsuWLdOZZ54Z8P0VFxcrJSVFWVlZ+v777/Xpp59q0aJFXkNUUVGRioqKXL9nZ2erU6dOysrKUtOmTQO+b6td8Oo8Hco+PvTxkrNb6csHBtncIgAAAKB2yM7OVrNmzUxlA8t6oCSpS5cuWr9+va699loZhlHlv2HDhmndunVBhSdJio2N1VlnnaV+/fpp1KhR6tOnj9555x2v28bFxbkq9pX/AwAAAIBA1LV6h+3bt9f06dO1ZcsWTZkyRatWrVJqaqpycnLUpEkTtW/fXoMGDdItt9yiHj16WHrfTqfTo5cpmjBsDwAAAIh8lgeocj179lTPnj1DtXuNGDFC1157rTp37qycnBx98803WrhwoWbNmhWy+wwl8hMAAAAQ+UIWoMz68MMP9emnn8rhcCg+Pt707dLS0nTPPfcoNTVVzZo1U+/evTVr1ixdeeWVIWxt6JiZMwYAAADAXrYHqNTUVG3YsCHgAPHZZ5+FqEUAAAAA4J2lRSQQPAuLIQIAAAAIEQIUAAAAAJhEgAIAAAAAkwhQEYIiEgAAAEDkI0BFIMIUAAAAEJkIULBUmdPQmDkJWr4rw+6mAAAAAJYjQEUI906naK7I90P8fr07L1F3fbLK7qYAAAAAliNAwVJ7j+bZ3QQAAAAgZAhQEcK904k5UAAAAEBkqhvMjWJiYqxuB9wQnwAAAIDIFFSAMgxDDofDkrk69LZUFr0zoAAAAICaLeghfFYVOojmggkAAAAAapegeqCcTqfV7QAAAACAiEcRiQhRU8qYAwAAADUZASpCpecU6d9TN2vLgSy7mwIAAADgBAJUBFqSmKGHv4rX16tSdP17S+1uDgAAAIATCFARau3eY3Y3AQAAAEAFBCgAAAAAMIkABQAAAAAmEaAAAAAAwCQCVIRwL2MOAAAAIDIRoCKEQyQoAAAAINIRoCKEIRbPBQAAACIdASpCGOQnAAAAIOIRoAAAAADAJAIUAAAAAJhEgIoQVOEDAAAAIh8BCgAAAABMIkBFCMqYAwAAAJGPABUhKGMOAAAARD4CFAAAAACYRIACAAAAAJMIUBGCOVAAAABA5CNAwVI7D+Xa3QQAAAAgZAhQEeLis1vZ3QRL7E4nQAEAAKDmIkBFiLsGdra7CQAAAACqQICKEDF1mAMFAAAARDoCFAAAAACYRIACAAAAAJMIUAAAAABgEgEKAAAAAEwiQAEAAACASQSoCOGgCB8AAAAQ8QhQEcIwqt5m475MXThqnn7aeDD0DQIAAABQCQEqijz8VbwOZhXq79+ut7spAAAAQK1EgIoixWVOu5uAIJVw7AAAAGoEAhQQYlsOZKnrf37VmDkJdjcFAAAA1USAihDmikhEfqUJE1O5ap2Xp2+TYUjvzku0uykAAACoJgJUFImGSn2GmWoYAAAAQJQiQAEAAACASQSoCGGm4yYKOqAAAACAGo0ABYSYg+gLAABQYxCgokg0zIECAAAAajICVIQgHAEAAACRjwAVRRgKFp0IxwAAADUHAQqWoog5AAAAajICVBShJwMAAACwFwEqQrRsGGt3ExAiBF8AAICagwAVIdo0rV/lNpyHAwAAAPYiQAEAAACASQSoKOJgLBgAAABgKwIUEGKUnwcAAKg5CFCwlEEdcwAAANRgBChYymAlKAAAANRgBKgoYmYKlGEYMugGCpnd6bn6aePBgJ5jpq4BAADUHFEboEaNGqUBAwaoSZMmatOmjW688Ubt3LnT7mbZZmlihm76cJl6jJylez5fTYgKkSveWqS/f7tes7YesrspAAAAsEHUBqhFixZp+PDhWrlypebMmaOSkhJdddVVysvLs7tpIeOvJ+MPn63S+pRM5ReXaUlihsqcBKhQWr8v0+4mAAAAwAZ17W5AsGbOnOnx+4QJE9SmTRvFx8fr0ksvtalVkYOS5wAAAID1orYHqqKsrCxJUsuWLW1uSehQDhsAAACwV9T2QLlzOp169NFHddFFF6lnz55etykqKlJRUZHr9+zs7HA1r1Zh6hUAAABqshrRAzV8+HBt2bJFEydO9LnNqFGj1KxZM9e/Tp06hbGF1mBUXs11ILNA+cWldjcDAAAAVYj6APXII4/ol19+0YIFC3Tqqaf63G7EiBHKyspy/du3b18YW4narKr5aMkZebpo9HwNHjU/TC0CAABAsKJ2CJ9hGPrb3/6mqVOnauHChTrjjDP8bh8XF6e4uLgwtS406ICqmRbtTJMkZRWU2NwSAAAAVCVqA9Tw4cP1zTff6Mcff1STJk106NDxdXmaNWumBg0a2Nw6+x1fB4rIBQAAAFgpaofwjR07VllZWbr88svVvn17179JkybZ3bSQoTR5dOKoAQAA1BxR2wNlUO4tIpHxAAAAUJNFbQ8UIhO5FgAAADUZAaoWSjmSr0NZhXY3AwAAAIg6UTuErzayYnRcdmGJLn1jgSRpz+hhFuwRVWFYIwAAQM1BD1QtczCzwO4m1DoMawQAAKg5CFDRJICeDM7ZAQAAAOsRoBCwjNwi7Tuab3czogZD+AAAAGoOAlQUiZTz8P4vz9Ulry/QkdwirUs5puHfrNMBhgYCAACgFqCIBIK2Kz1Pt3+0QpKUnl2k7x4azHwfAAAA1Gj0QEURRwSPBUthSJ9PkXvUAAAAECgCFFBD5BSW2N0EAACAGo8AFUXoyYAvE1enqNfzs/Xpkt12NwUAAKBGI0DVUMxFih5WDM18espmSdLL07dXe18AAADwjQAVRayYAuUIUT/WoezCkOy3JojkuWsAAAAIDAEKQTMqdHMVlpTZ1BIb0MMHAABQKxGgokioeo+s4jSMSqEKAAAAqEkIULWMQddJ2EV27AUAAEAgCFBRhKk0AAAAgL0IULAU/VsAAACoyQhQNZSZoXoHMwvC0JLokpFbZG7DAHoD/fUcTlqTonGLdpnfGQAAAGxFgKrFkjPyqnX7mtbbNGZOgvq/PFdfrtwbtvt86ofNSs2iBDwAAEC0IEBFkUDWEzJTsY+CeSclpeXo3XmJkqRnp22xuTUAAACIVASoWibSS6HbYc2eoxo6ZrHdzQAAAEAUIEDBUtHYq/Xr5kMhvgdCKwAAQE1BgAIqoFw8AAAAfCFARRGrz+sJCgAAAEBgCFA1lJky5tWVmV8S8vuwA0EVAAAAvhCgELQnvt9odxMAAACAsCJAIWg5haV2N8ESFXuIAikXHyozt6Tqye83qqi0zO6mAAAAwE1duxuA8HIf2md/TKgdgnmeH/pqnSSpa9sm+vMlZ1rbIAAAAASNHqgoYnXHSChmSYVj7lWoRVKwTM8tsrsJAAAAcEOAqmVKy6I/4NilpMxpdxMAAABgMwJULfPBgiTT25Y5Df3163h9uND8bWqyqesO2N0EAAAA2IwAVcvM2XbY9XNVQ9UW7kzTjM2H9PrMnaFtlM3MDtk7ll8c3P4jaUwgAAAAqoUAVUMZFozUyy8OvAKcI6JmENUAjLgEAACIKASoGmpZUkaV23BuLmXmF+v7dfs9LqPHCAAAAL4QoKLUE5M3KuFwjs/rswpKwtia46Kx9+nPX6xVZn5on6tofF4AAADgHQEqSk2O368b3l9mdzM8HMwqiLoy5mv3Hqt0manAE8DDjLbnBAAAAL4RoKJIxaFlBSW+5yiVz4HKyC3S+/MTdTi70Os+rJSRw5pFAAAAqNkIUDXcQ1/G683ZCbr389WSIn84WWaQle7CIdjwGenPObwzDIO1vwAAQCUEqBqufIjajkO+50v58uXKvVY3x683Z+3UeS/O0dT1+6ve2I1hRclBN8URdNLM4D/73D9hjc7+9696YvJGu5sCAAAiCAEKXu07mq/VyUcDuk11T/bfP7HI7z8nmT9hjd97TOe9OEffrd1XzXsHPC3cmS7p+HxDAACAcgSoGspMmPE3sMyOKn7B+OvX8coqKNGT328K+X1Z3NEFAACAKESAiiLMpaksGkIN60oBAADUHAQoWOZgZkFUBBoAAAAgWAQoWGbahoN2N8FS2w5ma/6Ow7a2weoCGQAAAKieunY3ADaqAUPLQhkvrnt3iSRp5qOXqFu7pjqYWRDCewMAAEA0oAcqilgyl8ZtH3uP5Fuww5Nqam/JrrQ8SdIXK9zKuteA8AkAAIDAEaBqKG9hZntqtkeXzYgpm62/X8v3CAAAAEQOAlQN5S3IXPvOkohaJBbRLyktV/nFpXY3AwAAIGwIUDWUHSPM7BjBF477NGzsV3NEcA301clHNXTMIl05ZrHdTQEAAAgbAhQs5S3Q7D+Wr9Ia1vN1KKswLPcTyfPKpm86XnXxAMU1AABALUKAiiKB9EXYcdp9vKfG854X7EjTxa8t0H3j19jQotD5ccNBFZfWrFAIAACAqhGgYKmM3GKP3ycs3yNJWpqUEdB+Nu7LjJjeF1/NyCti7g8AAEBtQ4CCZazMOzd8sEyT4/ebuVfr7hQAAACoAgEKlRiGoYU70+xuhiav3Wd3EwAAAAAPBKhoEkhFtmp0zCxKSNebsxMCvl2EjLirUbILSnXXJys1cXWK3U0BAACApLp2NwCRZ82eo3Y3ISqEIy9OOtELt3zXEf1+YOcw3CMAAAD8oQcqCoxduEuHs8NTNttqEbyMkV/JGXl2NwEAAAARiB6oKPDazB36Yd1+NYqrfLj2Hc1Xp5YNbWhVZAjVsMFPl+wOzY4BAAAQ1eiBihJJableL0/LKQpzS3wzbKiIx7Qr6+04lK2s/JIqt3NEa/ciAABANRCgooi309U6ITiHdQS0ZO9JNbWIhK+HFSnrVFlp0/5MXfPfJbpg1Dy7mwIAABCRCFBRzlcvgNW9QWlBzMGatv5AkFHMvKN5xVVvZDO7O2rW7jmqr1buNRX4Fu5MlyQVlJSFulkAAABRiQAVQbq0bhTwbXydm5vtHClzmttw37ECczt08+ikDQHfBta7ddwK/WfaFi1JzAjr/Sal5WhxQrpKypxhvV8AAIBQIkBFkN+c0ybg29Tx0b1httfjp40Hgr5tRTVvQFvNsudI+CoL5haVauiYxbrn89W657PVYbtfAACAUCNARZCqOoO8BZvqDg87mBn+8ujRNnco2tobCdLdipus2H3E53YLdqZpyFsLtWFfZhhaBQAAUH0EqAgSV8+6wxHMOf+u9Fy9+PM2pWUHWdnPy31WnKP1xOSN6jFyllKzqh4SuO+o922yCkqUVVB1lbhQq4mxKtzTte4fv0a70vN0z2erwnzP4ZVfXKr/TNus5UnhHUYJAACsF7UBavHixfrtb3+rDh06yOFwaNq0aXY3qdpOaRTr93pvocjKAgU3vL9Mny9L1qS1+7zduyX3MTl+v/KLyzR41Pwqtz3kpXBFaZlTfV6YrT4vzFZxaejm1thd+KE6CqOwAER+cfS1ORAfLEjSVytTdNenNTsoAgBQG0RtgMrLy1OfPn30wQcf2N0Uyww645SAb+NrDlQwcotKq3X7cKwDlVd08kQ7Mz90Ffh+iK88Nyxa5FXzOJrF0EbzUnz0pgIAgOhT1+4GBOvaa6/Vtddea3czLBVMFoqknpKadD4daBnv+L3H1LllQ7VuEheiFkWXQF+WNeilAwAAarioDVCBKioqUlHRybk92dnZNrYmOF6LSPg4Va2pJ6Th6OUyq/yZX7X7iO74eKUkac/oYZW2i6ZgGUgg97UGGQAAQE0WtUP4AjVq1Cg1a9bM9a9Tp052N6mSYE60OYe1T/nhWloDCgP8uOGAHp24PqB5ZaVO1ncCAAC1T63pgRoxYoQee+wx1+/Z2dkRGaICFa78ZCbchaOjxVePG04K5jj8Y+IGSVUXMnE3c8thn9cFGuyZTwUAAKJFrQlQcXFxiourefNTFu5M19ltm9jdDEnBnwSn5RSaPuuPpCF85WrSuf/RAApzFBSHp1gFAABAJKk1Aaom8Pal/sb9maa3jUQlZU4NfGVeULfdcjDL4tYE5mhesVo1rlmhvCaFQQAAgFCI2jlQubm52rBhgzZs2CBJSk5O1oYNG5SSkmJvw6qhW/vAe5J8ne+OmZNg6vYLd6aZ2s5MVTpvbakqyOUWBtaL4T6EL7vA3h6Qaesjs9R5tITn2oRjAgBAzRG1AWrt2rXq27ev+vbtK0l67LHH1LdvXz333HM2tyx49WICPxzTN6V6vTwtp8jr5RV5W6zWm0lrvC2u6ykcvRd2DOGr6nFZ2ab1KceqvY9I6EQKdK5aJLQZAADAjKgdwnf55ZfXuonnZU77Hm9RANXZwqVioYI52w7ryu5tw3b/oTgax0K4ODAAAACqL2p7oGqjjfvtnfMTCtmFJUHftmJ+fvB/a6vZmprN6mFkrAMFAABqIwIUTDHT2ed1od8qzrH3HS3we/2fJqzRte8s0YIdledqRUpFvmjpCLW6mf4OLdnKU5S8RAAAgAkEKFgmFEFi/o40bU/N1v0T1lS6LlxrQq3de9Tr5d4e77E8huBJ0RMqAQAAAkWAgq2q01Px6KQNlrXDn69Weq/s6K0HbOfhnEqXhbs3JlzhhYwEAABqIwIUTKr6dLm2nVBvPZCtrIKSoB93ckZepcusDD9FpWW2Fh4JRE3vsSourXoZAAAAEB0IUDAl+BNc/90vVnfOLEvKsHiPvi1NytCQtxYGffvfvrfUusa4cTikguIynffCHF33zhK/22YVlKg4yAqLzIEyb9bWw3Y3AQAAWCRqy5gjvEzlp2BSVoAn2lXdxd2frlLyqOvCViEuIzf4OU+5RaFbCHjj/kwVlJR5HVIoSSlH8uVwSJe8vkBtmsSFrB0AAAA1DT1QCLEqV6G13MEsc4sDh8LyXUdsu2+zkjPydOkbC3TJ6wskmV902Z/lYez5AwAAsBMBqgbIKgh+LaVyadn+Q8fBTP/lxoNRWBL4vBAzHUt2LrBc1fMYDlU9/OW7rAk77ndz16erXD8XFJfpCNUIAdQywfxNAxCdGMJXA6TnBH/SXr4O0+DR8/1ut+OQ96Fg7rzVK0j307vx4cJdatmwXpX7jUY7DmXLMKRz2zcN6HZWjTy0cwpS/5fnKK+YEwkAtceWA1m6/r2luu/C0/X873rY3RwAIUaAgiSZrta2x0vluHLeynofzvYdoN6dl2jqPgMVrvlP5dx7fCau2adluzJcwXTHS9d4bLv/WL6+W7NPRT4KN0RTNTpfz3I4w1NRaZni6saE7f4AwJv/zj3+92zC8j0EKKAWYAhfjRC+wPDlyr0+r4umk38rzdic6vF7eXiSpJxCz0IRF7+2QO/OT9JHi3dX6z4zcot01duL9OmS6u2nWix+2b30yzat2m1+DtmWA1k65z8z9fIv26xtCPwqcxoqLQuuciMAADUBAaoGCGeHS50oKE8d7iamHM0P8z0e771LOJyrl6dv93q9v144h1XPkMWB+bOlybrj45Wmt39j1k5J0qdLk61tCHwyDENXvr1Il7+5MGrWGAPCg/cDUJsQoKAFO9NMb1vHT4Ly1gNV29cD8jas0Qr+Qluo7jNSFJWW6YEJa7QoId3uptQ6ecVl2p2ep/3HCnQ4gIIpu9NzddkbCzRpTUoIWwcAiARr9xzVPZ+v1q70XLubEjIEqBogOd33vCQz7h+/xvS2daIgEUVBE6tt4U7f4WF5kvdhcJH2tJQEOQxs8tr9mrfDfOivjUrKnLpt3HK98PNWu5siSXpm6mbtPZKvp37YbHdTgLBasCNNL/2yjWGvqFVuHbdCixPS9eD/1trdlJAhQNUAfw7jC9TfEL6a3e8RJBuelNyi0vCEyGrex7erzfdGrNlzVAknFgXOLqx+2f5AFZVGV1XBBTvStGbPMY1ftsfupkiSz6IpQDTILSpV/N6jQS2Rcf+ENfpsabK+W7s/BC2rfYpLnbr2nSV6YvJGu5sCE1Iz7V/aJVQIUAhIjJ8zczvXX3Jn2RwfG2zYl1ntffg6CpFxdE5KNbng8YHMAt02boWuenuxjuUV6/WZO0Pcssqy8sMf2qqD+UmAdW4du1y3jF2h79bu87lNVX/+UrOsX0uxNlqckK7tqdmaHE8ghb0IUAhIoCXCrY4yEZLRQmbV7qPV30kUPEn5xaUau3CXqW1Tjpyc7zVxje8TGEQuu7/ScDoNZeT6XlIB8Kd8HcSp6w8EvY8o+FiOCk6eyKhSk+dkE6AQkJgAi0jUdjXlKXE6DT02aYM+D7Li3epkz+EvX/kph19RvZiTr7ma/GEcicYt2qVPfJTcD+WRKHMayisqrXpDkx7+Ol79X56r5bsyLNsnAKD2IkAhIIF+k1xmQ6rafCDL1HaRMuQw3Mx2Iro/Pwt2pmnK+gN60W3NpUBeC7d/tEI/rDv57W1eke85RWVOQ1PW7Xf1PNWNOfkxZdUhczoN5dgwlypcrJgDdyyvWKN/3aFXZmxXfvHxMBOunqRbxi5Xj5GzlBZApT9/Zm09LEn6bAkl7xG8ip8/P208qDdn7ay1f0vsEOgoGCBUCFAIqcPZ1g6bMfNnyl/Vl+mbUpV4OEcjpmzSZW8stKxdvqzYZX5hWCtZ8SfG/Zwg10tvQKCnDD9vPGhqu29Wp+ix7zbq0jcWSJLquvV6bt5vLhxX5Z7PV6vX87O1J8NcBctoOz3anppT7X24F34oPTGnKtjnIdCTnvK5gLO2HQ7yHoHQ+/u36/X+giSt2HWkyvdGbe09Ly1zavyyZO04lG13UwBL1bW7Aag5IvEPxPqUY3p00gb9Z1h31a9XR8O/WRfW+3900gb17Ng0rPfp6yi4zyUK1AcLkjx+X5yQrpzCwIZYGT5+rmjVbs/QWddtCN/MrYcCuk9fliYdH8r1ffx+/evqcyzZZyR5Z15itffh/n7+ccNB/fGC06q9T7tF3icUoomv18+RvOKwtiOafLlyr174+fjIhT2jh1V7f/Q/RZea3DlLDxQC4u+L5ITDkbdg2r2fr9beI/l68H9rteWAPd+ABXK/oQyhnwY4f8m9JRWP7T2fr7agReb4q/xYXe7P956MPC0MYFHp2uTZaVu0sRoVIoM+gjX5r2+UKnMaWpyQrqyC6BgCu3BnmsbMSZAzxJUpq3qN19aX8iaLRg0AkYYAFWGa1o/sTsFVyRZUiauGQMeaF5Y43X6O/LV8rPgm0zD8B12zJ7NWj+s3uz/3KkvFJtcPOmSyJLo/l7+5UPeNX6M1eyq/xr09Z6VlTu2O8lXWD2cXVnpfpGUX6rCXuUd7jlRvwe5IwFyV6hu/LFn3fL5at45dbtk+txzI0jX/XaxFCb4XCA/WfePX6N15ifp1iwW9135ePryyqqfMaWhRQroy8+nNQ3QgQEWY2LqRe0iWJKZrSaJ9VayWJmZU64+UFcOaQm13euSdpFr1TbPZ8rPuBSbSTZaefnN2cGtDeWuSt54Wby3/y5fxuuKtRZqyLjrXI9mVnqtBr87T0DGLXJeVljk18NV5GvTqPI8vH8oF25NUcQ7de/MSdefHK6tcoJiT0sjz04m5jIlpvr88mLnlkH7z5kJtMVnQ577xq7XjUI7uDWHP9sFMe9dhqq2vZbNfWny5Yo/u/Xy1fvf+Mr/bUUMCkSJyz9YRccrnjQSrut/+/uGzVer/8txq7aP28FNu3uQeDB0f/tLnhdmWtGhZktvcJj+vBfc/kBeNnq+PfZTRdhfswrHVeUXO23F8uN/4ZXuqsRf7zDlRoGH/sZMnlgVuvVFH86wpAFNc6nSto1PurTkJWrH7iH7cYK6wiFVq60lsuD30VbySM/L00FfxprbPLqh6PmV2YYn++nW8Zm45pJ2HcvTYdxuqNa/TSpzUV9/0zamSpJSjkXFMgapE9nixWimCP4k5+4gK/oKq02ko0eRcNcMIvmenOioOxwvlivPeniqry+SGeu5FsLwt6ea+zltZhQ4ow5BSgxgq6W8B26IqhmhaPeIuI7dIj05cr7sGnaaBZ7S0dueopKDYumHT789P0ozNhzRj8yE1qBejgpIybTmQpdn/vMyy+6jK4Rzvr/935yXq1BYN/d42gv+yw4uC4jLF1HFE9KigaLQrPVczNqXq/ovPUOO46I4g0d16oAqRWBkw1Pw94ud+2qKvVqaY35cNT1/F3gozgu3dDOb1sT7lmEePV1V56+dN4e1lMauOW8PHL0tWbN06uqlvR9dl3p7Tp37YFJa2hcqWA9naciBb0zYctKQiGMInPedkEC/vKa1O4aKC4jJ9umS3rurRTue0a2LqNnt99HglHM5Vx+YNKl1+xO3Lg8woKbphNbOfsI4IipiFJWU697mZat0kTmv+PdTu5tQoQ946PmT8YFahRt3cy+bWVA/ROsJE8lCA6p5LM3+7egLpyfD1OgooPMmo+ccswMdXXOrUTR8u163jVrguq+ot6z5ELpK4B6gXft6mf0/dopJS30+IIcNjHkm0F2TILizR4oT0iBkGZrXRv+7QCz9vtXy/gfyJiqRXSMXPxLfnJuitOQm6+r+LvW4/YVmynv9pa7Ve5+4f2YHsJ6ugRPF7j0X9eywUwnGOVD5Kwz20Izi+XsHr9h4LaztCgR6oGszqD1+zFdF8SUir/uKetZnZo7k+JVM9OjSr9v2N/NH6k69ykXxa4O/vc3HFcW1m9lfFH/zPlibrm1V79c2DF6ht0/oB7z9Y3obwlTqr9x4PlJ3fF13x5iLX8MJVzwwJ63NvFafTUB0vB7KguEzjFu2SJD18eRe1aRLZjy3crztJ2rQ/0+/1z59Yu2hY7/aW3F8gf46vfnuxDmUXauzd5+vaXtbcv11Mv8cj6Mvj1V4qsSI41T1vjGT0QEUYKz9Dzhgxw8K9SROW76nW7Z/6PnqH/0RT23/aeFAv/lL98DNxzT4LWuNdZn5kDGexJMhV8yvRl37Zpl3peXorzPPNvJ14++vkDPb7mOo8x6H8Bt59btbWg8GvVeN0GtpyIEulQYTr6vh48S6d9+JsJRyu/MVUmdvzVuSlmmK4mF+6oPr3VVzq1HvzEqsMRoGqWEEyWGarkErSoRPLCFi1cLidTD/qCPpWbdr6A3Y3AVGAABVhep/a3O4mhEypDZPprRpXPWlt6MKEWb5ORrxVoLNq0eBQHTFv6wyFysHMAl00er7rG3l3VpygV/UKM/saLCkLzbPt6zHW8RL83LeteKtVu/lW1puxi3bp+veW6vHJG8N6v6/O2KHswlI99+OWSte5H9kfbCyzH85P/PHLkvXWnASPMtj+3t9Wz7mp6rHO2Bz9YSiUzPb6hGOuVCRPpUDkIEBFmD9c0NnuJoQMH0qhccGoeSHb9/ZUa4JYufJFar2dvIfKm7N26kBmgUb/uqPSdd6r8AW2/4rbG4ahw9mFrmBrdn/hfnt4a1eZnxPOil8i5BT6/2Y+PaeoyvLyVT03EfSltE8fLkiSpLCXZC+3sopgm2bxPA5/r5FABPrlRYmPHr7lJ5bX8FZ8ZqrNPQnubbaqJ6smcZ5YPPeIyfX+woVTldCrCeeDBKgIE+NtYkINYVWvSCACGTYR6Xw9kmia6Fp+klMnjJ88JX5O4s2+OsrLd3t7d65PydSPG06eqD0zdYsGvTpPXZ6Z4XNoWGFJmXanV6ggdmLnhmHoi+V7tDrZmh4fw/B+8uYtxHpOeve/32vfWaJHvlmnV2dsr3Td+pRjGvDKXP3xs1UBt7cqxaVOZeYX+93G/eTcTCntDfuy9Mg363TA5sVWreJ+aK3+CLTic/yjRbs06NV5ARXwmH1i3bKK7vrU92vsse989wqaPYGbuNqz8M7NHy7TM1M3V96fl9tuOxj+v3mhUJ2een83nbL+gO79fLXHYt5VCvMpkmEYendeoj7yMoIBtRsBCjWaHcMGUbVwDp/x98ff7HnBlgNZfu/nHxM3uH7+1u2E6/mftnp9pN2enakr3lqkuW4nheXPyaKEdI38aatu/2iFl1sG7vr3lqrnyFlavstzIWxv39W4V3r0VuK94k1+2ZTqdaHjr1cdfw6W7zpS6bpAeDs+V7y1UOe9OMfnMNB/Ttqgq/+72DV5+bp3l1R5P+/OS9Qvm1L16MT1gbcx4FuYN+rX7TpzxPSAey8831+ha2GwX96M+nWH0nKKvIZvX/xNRv/zF2u1YGdaUG2pKL+41GNe2aytnsFtXUqmvllVuZqpt2e5qmd+/LJkr/uKJGk5hRr06jy9NrNyD351lX/+HQtyTmxhiXXrjHlwS9fpOUUaMydBo37doaLSEN1fmHywIEl//GxVUIUdPliQpAnLkkPQquhFgAIijK8P6RrRmVb+ICz+FvHHDQeVXej9j7D701bxD4fZdaDMfFv91uyduufz1ZUu95fh//y/tZXuY09Gnqk2mbXtxDDMt2YneFzufQ5UcPcRznLL5WXhlyRmeL1+6voDSjicq89P/LFPDuD5TM6wr6T5e/MSNWaO5zH6aNFuOQ2p58hZpvZRUuastNyB4dGraCjPwqFkg16d6/f6ql4W3kYIZAVxMj13++GAC9P4ek/fOnaFrnrbe2lzK6XlFOqFn7fpmambfX7mR8J4lI8W7VZaTpHGLqx+D8wfPl1V5bDeQMzd7r1XsjoqFoMpcAtpkfw32Mz7+o1ZO7UkMUM/bwxsuPGBzAK9MWunnv95W8QuDG8HAhQQYe4fv8br5TVpUeDpm1It32fv52d7v8LtaXv4q3jPq7w8pYeyfBe48HdC8978JC1OSK+0/71HPE/gD/oYJla+b0eYBod7ux+PE1ovz42vV2DFk6Lv480VLijvKckvLvX6bXJ1XvHe5rzZZV3KMSV6qZZXLr+4VG/NSdC78xKDng9SWFKm/i/P1e8+WOoRDo7knRzu+OikDeoxcpYWVXidBisU51L5JfbOFdoW5LzP3emVg7q/Lxbyi6o+Mbf7E/9gZoE+W2pdr8PSpAyttbBEuBUjGQpLyjRmToI2789SWk6hej0/Wxv3Zbquj+TQVO6L5XvUY+QsfWeycu7SJO9fPvlSUHzyPVkT5i5ZhQCFGikpLUcLLRrSEW7VHfYET+7Bc96Oql8TGbn+59dU12VvLAjp/n3ZW2G+ibe/g+7nCn8PYDhbsEMopeM9rt2fm6XzXpwdUE9WaP6OB362lF/FHKtDWYW6+cPlutJPr4Z7z2gwa41J0qb9WcoqKKk0R2mO2zDR8kIX93rpKa1KML2MWQUlPos/+OIrlFX3xO2zpcm665OVpubEBSPlaOXeS7/LAgS4/9dn7gj7cL+bP1xu+T6rU4RkdfJRn18wBuvDBUl6d16ifvv+Un2zKsWjx0myP8SaMfKn48uWPPmDueVWzBZXWZKYrjs/Xqk9NvbMRzICFGqkoWMW6z6LP2jtFg3fhEWC+L1HlZR2skCDv+etoLhM/1uxp8riAdV57iue+PkqV16+na8TxV83p+rqtxf77cnwJ6NCz4bXKnxuZ3zegqSvoizVeX7Kh+QVljgrPTfhXlup/HFYOUzF24l1RR+cqOTnbqSX8uR2+W7NPg16dZ7WpRwL+LYVhyVWJVTDQVOzCrV81xG9Oz9RUnjKYZs9/fb1ni+/eMuBLH24cJfX4hWhdCiMy0148338fv3kNtzMqnmh7ral+v88Defw5KrkFZXqm1UpHl+KhNIfP1utFbuP6B9BzA2tDQhQAGqMA5kFumXsCo+qTv6q2U1au0/P/bhV17sVGvBWXME9kIVKeXhwv3v34gEPf71OOw/n6O9uBSuqw9tJ26wqFu48nO19eFmww0szcov0o59vQ72t3RUIb4vM+nMkr1i3jF2uM5+Z4TXUVJevITbfrq58+Rcr9ga070CH5fhTsWjFkz9sUlpOUVA9Et+uDqzXxKrzVV8nvlbM5THLX3h0b19VYc59fmdxqVNpOfYEm2vfWaKsAvNzzQ5mFngEIEkemXLPEd/zE4/mFetfkzfq79+uD6rogXn+X3Du11a3F/RYXrE2uA0PDNSfv1irZ6Zu1oP/W6tlFr7fq5JXode2zGntXMpoRYCKMOd3bmF3E4Co5a0Ag/scEF/cq0DVcTgqnaBMWL5HkoKcD2Dur275sAr3zo/XvMzjyS+25g+Xt5O2cUGeXAZ70jtmToLene87qPirzrV+X9W9IcGcZMTvPb7fN2btDPi23rifKPsaYmNFX8i78xJdP6f5CLpmfLMqRT1HztKXKwMLcP7M2Jyq53/aqjKn4TE/zltpcqsC1NtzE/1en1kQ2qG6kpRw2JovXtzfq9e9u0QDX5mnpLRcGYahKev2B/xFgXS8dyfQLwm2p2br8wA+A//69bpKly1JylBhSZkW7EjzunZXOfcTdCsLTwTKyh6owaPn6cYPlmlFkMP0V+w+ebv1QfQGW+WWscvVY+Qs24J8pCBARZhGcXXtbgIiVASNJIgKX67YE9SE/KP5xRr4SuXFiUvKnAEPRwqG+5wRK09iJf+loCX7100LpCfrq5WRXf7ZTtUZelU+TOzZadYNIfzr1+s0Yfke/bLpoP412ffaTJJ0zMcaX4GGTPdAWdHK3UdCui6hmSGgwb7TynvDZ25J1exth/XYdxt11duLNWZOgoa8tdB0D9G/Jm/UG7N2asehwJ6HwgBKeXvrbRm7cJdGTNnsWurAblV95M3Y7L9XPhCFJcc/fxcmVH9+tl0f1auTj7qOa/lQwtraG0WAAqLEnO2HNWLK5qj+sAr1Z777SdazP25Vv5f9l1n2xtf48mDCRTCPt6oqfNXprXjsuw1+r684VCPcrD4piJYvHXJseE8bhqHpm1L9ls1PzbJ2YWEz60b5GkZqZXVKbz0jVvI3NK1cxdfmjxsO6PSnp3tUSCx/zL4eevn6dNLxwLgrPU99XpitT5dUXpvNl0DLxlsxP/B4b7v5/fj6YsVbQQrDMDRhWbKWWzTEzcyxDJXiUmdY52AVlzp11ycr/X5R+Mi3J+dDlTkNfbY0WT1GztIPJiuv1iQEKCBK/P3b9fp2dYp6mFwTJlR8faDbOaQgklld9rU6J5K/uJWPt7JdgYTL8X4WY7Q8QFmwj437MjV9U6ryi0tDPBcjvGZtPaTh36zT5W8u9LnNmNnW9riaOb7VqdIWTv5ObKt6jxaWlFWaV1m+GLd7hcRgFwF/efp2ZReaq4C4OPFkYDNzsm7VaLqq7sr9KfS1rbcRBit3H9XzP2/TXZ+uknS8UNDdn670+7lTzttQwXp1Tp4mW1Z4pIrHPmlNis56Zoa6/udXn3NeQ/Eu+XVL6vFCK356b5u4jZLKLy7TS79skyQ9XkXPckU7DuVo6JhFYZ3LZTUCFICALEvyPn77JpMTzENaWS2EhbWC/eMZ6K2q2j4Sl+GYt933kJSKJz8v/LzN97Z+Tgt+3nhQayqsIXM4u1AfLkzSvZ+v1p+/WFvpBNCKb29v+GCZhn+zTt2fm6WLXptf7f2Fg5kT57V7Kn/hMa/CwqRWzz0xNWfCVxlzC9thxevC3y6qet5uG7dCD1VYk84bfz3ChqR9fio89n5+ti5/Y6HHZfuP5euPn63yeB8dPTFHdNr6AxrwytwqKy36emwlZU7tP2a+3HVVRyDYL4rc59hN35SqN2fv1LKkIz4/d9zbscDL0id1Y8L3ibs8KUOvz9yhp37YrNITz7OvRW9D0TNWZOILIvfnq7pr7SWl5eruE0E3GjHhBkBAdmcEPzF6aWKG6TUoQiXYk0KrhzP5UvG8wTAM7XJbpHO3nyFXZmTkFqlV4zhLh0RVLJEeLF8npQmHc/Q3t6Ej5e79fLXHRPStBz3nc1jdmVE+BK2kzKm6dRxen8NDWYUa9et23TP4dO09kqevLJ7HZsY0E+8xb4f/gS/WevxuxdOX6TZE7JMlVfcCeLtPM0P/ws3fc7Nmz1Gd1aaxz+s3uw2986d8OLG3d+qYOQk6r1Nzv7evuDzDNf9dotyiUi1JPPmtv/PEOfOjkzZIkh76Ml6r/z3U5z59hc/ff7xS8XuP6ZsHB+nCLq38titUMvOL9cO6kwFq+DeBDdX0tkZYnTCuHHuXjzDxztzESkNbp6w7oDG3n2fp/Zt5pNE8hcBqBCgAAfkywPLK7rxV3Qo3X9/oVSXYRSWr+/f3lrHLtS4ls3o7cXPbuBVa8K/LLf5G36L9+Lj8wDHv4bViFa/r31vq8Xt1y6B7k55TpItfm6+re7TTu3f2rXT9E99v1JLEDNeitXbIM1Gp0b2T6of4/bqgyymVtrFjDZyKc2ymb0oN+EQ4UIZhBPyFgr/nZmlihu4c2Nn0vmZsTvV7va8vfQJpcpnTqFSeXpJyijznQFU1HNfXEMvy6pUTV++rdoCqODTP7KvQTMXViqp6jQe7RIOV3p4b+uJFZqVF4JcZdmEIH4CAJPpZEykUa+cEwswwu2C/zQ7mj3NhSVlAQ/+8/TEPNDwlpfkvaZx8ogfLrjlQ/lh9wh7MMXP32Ilv5d1NWpOiolJn5fVtTrBj0nnF583Mt+afu80JeXzyRl00OjKGJ1bMCm/Mqt4woWDu0wx/N5leRSCq6FEvrzN3E32sHxZI78j38d73EWiVuaqeK7NPpb/3+rbUbI9PzXAF+aruxaowZdWj2bzfXE+mWVaOSqgNCFARqEeHpnY3AQiKVWvnhFI4v1HcejA7oFLkb81OqFbP0Kb9mRo6ZrGpbS2bEC3/PVCBnPvYuNyLV1O8DIU7kOl/Ho+Vz6s3hSVllXok3IdkSVKMt9Wgg/DLplRLqq4F4nBOYciHy1acWxRUhc0qbhLIfKCqVByKVy6Qo1zxNeLb8b36GqpV1eM2G3b8bWUYnl/wOA15rfKWmuX5XgzmVe++j6ISa+fnlpQ5Q7qG1W/fX1r1RggZAlQEeuPWPnY3AaixzK6TYof3FyQF9C3gvqP5Hic6/oo5uHvqe+8LugbL3wnoloMBfEtq+DgBi6AvRr9d7X/9mupmF8OQ9vroxdq4L1Pdnp2pa9/xDMkVA8ehLGsWuCx1Gho9M7Q9QMMrlBSfvilVg0fNdz2mUHwrXrGaYijWP7v4tQWW7cvXMxDIU1M3wBemr8/Jiu/PT5fs1ulPT3f97m0ekff9+Lmuwu8/bTjgtcrb9xVCVTBHsdQt4FjZ01Va5tRlry/QlWMWVdpvoKXjEZkIUBEonFVfgNrmgwXWz4sJt74vztaXK/fqktcXqMfIWVq5O7CV7Set3WfpED5/pacDWXPHkKHiUFZptNhnSysXRajuCX9GbpEuq1A9TTq+TMANHyyTJCUc9hxGW/E+VyV7Viusjo8Xm19TKBi+hrsNHjVfRaVlriGnoRTMeXM4e7J9vaTyisyv21bHZIAqLwhj9mX88vTtHr8fPBHeqyqecriKxZ7de3K9vc+Ob3Pc8UI7uQH19hSXOpVXVOpRTr6qEvqB7P9AZoEOZhVqd0Zepep2k9Z6H05pN/dDvj01dAtN1xQEqAjUomGs3U0AolJNGMK9dm/V62kdyy/Rs9O2uH7//ccrJdn3+C0rIhGGEtZWKl8DxV1127oj1fscNl8LPEtSUYm9CyCHytR14anYGYohfFbyNSx0WwAnuTEWfThU9bjLT7z/4/b55E3FAjD+7DnifTjksfzjcxy/j9+vIW8t0iMBFBu5cPS8SmsqlpZ5W5j35M/dn5uljfsyfe7zYGaBq7fJfRitr2UFDMPQJ4t3V1qeIVycTsOjt9v9JXLtO0tsaFF0IUBFoNZN4uxuAgCbBFslUAps/s30TYFNdPfHqnkyhryfoEXL5OZvV6eoxFnNHjQfD/XDhb57Tp/9cWv17rMaliVl6G/frtcdH62wfL7HJpPlvisKdCjWwSrmtdnOgpd/oCNbfH2WhGK4Y0Vmj1/5y628l7Riz6w/GbmVC8x4Wyi7Ykue/dF7MHx/fqIuHD1fvzmxMHVdtwV4fb0vZmw+pFdmbNdt41aYa7TFHp+8UZe9sbDKYcmhFsp5YqFEgIpQMx+9xO4mAFEn3BPeI0lRaVlA32QGWinMH6uedadh6J15iRbtLfxGTNmsfUerVwDBjtLh1XH3p6v088aDWpV8VLO2HtKNJ4YZWuGbVcGd2K3cHdg3+utM9PpWFI6hheWs+PrAqi8hwvHqNBTg/K4Ya05lS738/cj2M2f20yW7NXTMIqXlFOrN2cdLjZf3lrn3QHnbryTtTg9+TUUrlK/J+N6Jz9w9IXpNV/WZVnH5iWhBgIpQ3dpRiQ8IlK+FCGuDi0bP19Iks5W2rGXVN4iGIY2t0NNyvBR8zbFpf6bf65cmBTafLZK8Mn27NvgZ4hQud36yMqDtX5mxveqNKoi2IU6Bvod8BZjyHqjUrAL900f59Ye+jA/w3rzcv8ntktJyQzpf5xc/PfUvT9+upLRcvevlSx/3KWfePh8Nw/BYZuFoNZdc8Gbi6hRd/96SKueblbfu3fmhWYbklrHL5XQaPh9jtM63YiFdAKgBvA1JCRf3YT3P/xT8cDJvE/O7PTsz6P1Fooxc/+uQma1iFqip6yuXgbaar3LbkS6SK3NWV/kiwf56dCpWcfxxwwENPrPywsrHd3j8vzs+WqmUo97nJs3cGtjaUhUt2JGmHu3NfYk8dMyiat2Xu0AKg7j3jpaUVr6de4+ftzlQP29K9eiZCbbnOafQ92v36SmbJUmvzdyhMbef53M7w1f1U4usS8nUkz9sqlQ10bMNgS9mbTd6oAAA1fLe/CQ9OnG9/vjZKk1Yvifo/Rw4VlAjCoFUR1l151D58M9JlctA46Qyp6ErTsxfCZWtB7O0JYh5XdU5td1yoOpv9weP8lxE+R8TN1TZFl/hyQr/W7E3JJVjikr9fzkRSIZ4Zupm18/f+Vik2N9+v1m11yMwBLuG4nXvVt0TWlhFkZlwVJT0F54k6VAVvWSRiB6oKHbfhadX62QFAKwybUPwxS/K3fThcgtaEt0WJaRbvk9fVcBwUpdnZoT8Poa9G/65Hrd9tFxXdGujRrHWnO4ZhhG1k/7PfXamVv97qFo19l6oy8yj2nqwciCtGJBSswo01+SafOUmrgmutLmZOZcLd1b+TEk4fLIK4uHsIo36NbTrvVUlGl9S9EBFsE3PX6VzfXRjv3pTLz3/ux5hbhEAoLo27c/Ud2v2eR02E4oTiVCv5YTQOf3p6VpdjXW9CkucmrH5kMcJsxkDX53n9fIjecVanGh9yK8okIqiZjkN6Ud/X/SYeO+ZCY+Xvb7QY5kJu+UXl2lpouf82Kve9lyM28rPiGCGA07fVP0v4MKNHqgI1rR+Pf36j0sUv/eobhnrWebyrkGdbWoVACBYhiH97v3jleqaNqinC8/yMdfEQnatM4PIEWNyId2qLEnM0JLE0Berec5HufDqWpqYrpaN6nm9zuwi3pn5/uebVtyP0zCqLB5jtYqhe3IVwwytMH/HYV3RrW1QxYxenbFD/3dplxC0KnQIUFGg32ktXT83jI3RxpFX2dgaAECw3L+cfeir6lcrM8PbEB7ULutSMu1uQkB+3VK9QhS+LNiZrgXVfD98HWB5/ddn7fS67l4oh0Le/pHnl+5+e94s8qcJazX7n5fqs6XJIb+vSMAQvigzrFd71XNb8+CW80+ttM2SJ3+jkb/tbsn9LX3qN0Hf9qM/9nP9/LxF7QGAaPbn/621uwkAqiHQgg/ewtPK3UerLC8ejCWJ6er6n18t369ZV729uNZ8YUOAihJfPTBIN5zXQc9cd67H5c95CSadWjbUfRee7nd/sXXr6PVbe/vdpmPzBjq1RUP9/YqzAm6vJF3do53r5wu6eB+m8tZtfbxe3qV1I13do21Q9wsAABDJZm87bPk+//jZahWXUjQmHAhQUeLis1vpnd/3VYtGsR6XN2vgfSyvr3r6sx69VM9c101z/3mZbu/fyeO6Mbf30bntm+qmvh0lSa/c1FOS9OdLz6y0n5dv7Onxe7d2Tbze3/pnr9TMRy9Rt3ZNdW3PdpWuv6XfqVr37JWVLp/72GX66I/99a+runrdr52eu767Hrj4DA3/TRfLevoiTc+OLOQMAADgDXOgaph/DDnb9fPE/7tAv//45Irsm5+/Sk3q19M5PsLOzeefqptPDAl89aZeahAbI+l4MYuv/zxId3+6yrXtHy44TetSjmnKugOSpGnDL1JMHYfmbT+sh75ap3+f6Clr0SjWFfpeu7W3zm7TWC0bxWpxYoY+PjHEr2WFUCidDICPXHG2xi/bo2P5xV6rU712Sy91a9dUw79ZpxHXnqsJy5O1Zs8xc09WkK7u2U4dmzeQJCVn5OmFn7d53e6Z67qpdZM41/orn9/XX5ec3VopR/P14YJd+mHdyXUR7ujfSZPWhn6Sp1ntmzUwtX4IAABAbeMwQrn8cATLzs5Ws2bNlJWVpaZNo/vb9k37M11VncpDUrkb3l+qjfuztPrfQ9SmSf1Ktz396emSjvco/eGC0/zeT8+Rs5RbVKp3fn+ebjivo4pLnfpgQZKGnttWvU5tVq3H8PPGg/rbt+slST88fKH6ndbCdV1xqVNOw9DSxAyP+QPJo67z2tNWUFymc5+b6XHZma0aKbuwRBm5xfrNOa11eqtGGr9sT6XbfnZvf43+dYcS03LVJK6uHrniLI/1ES4/p7Um3D/Q4zblz6G77S9e4wqgBcVlKiwpq9R7KEk7DmWrdeM4ndI4ToZhKD23SANf8V4+NhinNIrVkbyTFYPmP36Zft6YqpIyp95fkOS6/Lu/DNaYOTu1cvfxyj3/GXauXp6+3dR9vHRDDw3ucoqGjllc9cYBeu2WXnrqh81VbxhCm56/Sr2fn23Jvp6+tptG27zehlXmPX6Zhry1yO5m1HodmzfQgcyq14IBgEi2Z/Qwu5sQUDaI+gD1wQcf6I033tChQ4fUp08fvffeexo4cGCVt6tJAUqSDmQWKK5uHZ8LxPkyc0uqDmUV6r6LzjC1vWEYPocHVlf83qNq36yBOpzo3fHGPaz4e7NVDDW7Xr1OMXUcSsspdAXJ5UkZusutV618m8z8YsXvPabLurZWTB2HzhhxfIHFFSOuUPtmldt2y9jlit/r2etVnQ+CnYdy9PWqvcdXYz/h8Su76q05CVXe9rKurfXFnzxf/1PX79foX3fok3v6q/epzV2XvzZzh8Yu3OVqr2EYuv69pUrNKtTyp69QTmGpBrwy17X9L3+7WNe/57kQZMLL1yq27vGRwEPHLFJSWm6lNq0cMUSr9xxV4uEcvTc/yeO612/trTNaNdLTP2zSkHPbeqxFMaRbG3123wCvAVU6HvLq1nGoT6fmIV2ANXnUdcorLtMfPl2ldk3ra+bWqqtD9erYTJsPZHlc9t87ztONfTvK6TSUfCQvLOGjVeM4ZeQWSZLqOKxdY2jP6GEqLXPqrH8HPmF58RO/0a6MXN0/fo11DaqlNo68SjF1HOo5cpbdTQGAoBGgwmjSpEm65557NG7cOA0aNEj//e9/NXnyZO3cuVNt2rTxe9uaFqBqiy+W79HIn7bqyWvO0V8v913cYsKyZD1/Ymid+0l+Rdf8d7F2HMrRzpevUVzdGJ/7qyo4ztl2WK2bxOnjxbv0+wGddWnX1iYfkW/FpU59s2qvNh3I0pu39tGc7Yf16+ZUTfNRjvTz+/rrsq5tAlrvo6C4zNVT5s287Yf1xqyd+vKBQWrdJE5bDmS5QlTFsJZfXKruzx0/iVv61G/044aDunNg50pDNHs8N1N5xWVej0u3Z39VYYlTH/+xn646UYTkl00H9cg3x3sn37+rrx75Zr2WPPkbdWrZ0HU7wzBcQdebl2/sqf+4LWx4VpvG+vrPg9QgNkaFJWX68xdrtWn/8cBzZfe2muM2ubfih/r8HYf13Zr9ur5Pe53SKE4XnNlSixLSdd/4NWoYG6Onr+2mPww6TU7DUPzeYxpwekuVGYZH9UxJ2nc0X5Pj9+vdeYleA5d0fO2W8lK3c/55qa6ssPjh1L9eqL6dWygpLVdxdevo9x+vdPVGvH5rb916/qn6zVsLtfdIvh6/sqsevPRMLU5IV35xmRwO6R8TN/h8zvxx7/1du+eobh23oopbnDT03Lb69N7+rt+f/2mrFiWkKzkjL6i2mFX+/F1yditT69i8dEMPndI4Tpd2be01nIy4tptH73S4ff/QYHVt10RNT4w4OOc/v6qowuTxLx8YqD9+ttrjsiHd2mjejjRJlXsRX7qxp5rWr6uEwzka1quDDmYW+Kwa+NZtffT45I1WPqSAfXpPf83YkuoaSu7LjpeukSR1e3am3+38efO2PvqXj8cb/5+h6vfyXK/XATCHABVGgwYN0oABA/T+++9LkpxOpzp16qS//e1vevrpp/3elgAVvbLyS9SsoffiGeUMw9Cm/Vk6s3UjjyGNNUF5j8yG565UcZlTf/tmve4a1Fk3nNcxLPf/6ZLdWp+SqQ/uPr/SddXtoczKL1FSeo7O79zCYz9bDmTptFMaVnks84tLFRtTR8kZeWrVOE7NG9ZTUalT9evFaE9GntbuPaab+nb0GjIPZhaoRcNYNYiN0dG8Yj3/01Y9cPEZ6tOpedCPJxDFpU7lFJa4eukevPRMdWzeQOtTjulYfrGu6NZWWfkl6vPi8eGEFYfrlkvLLlSzhvVcXwgUFJdp4/5MDTi9pc9wfezEMM/mDevJMKS84lIN/2a9Fiekq3PLhppw/wDtTs/Tlyv36v27+lZ5HHYeytHV/12sz+7trwe+OHkCPurmXrpzoPdFwI/lFavvS3M8Lpv0fxeoe4emrvtLyy7UrvQ8ndu+ic578eS2y56+Qk6noY7NG6jOicc4btEuj+GS5b2sDodDm/dn6fNlyep3Wgtd37u96teL0ehfd2jC8j0e25fLKijR9e8t0as39VKPDs3UomE9ORwOn72jkvTs9d31+wGdtP9Ygdo1re86bmaUf7lgGIYSDufq6v96BudGsTHa+uI1lW735cq9evbEFwUPXHyGnr2+u0cb7x7UWa/c1MvjNuXX/zj8Iq+vdfcvRp64+hz99fIuKikzFFu3jsqchpIz8tSldSON+nWHPl68W38fcrZmbTmknYdzNOrmXurVsZmuf2+p7rvwdD3/ux5+n7O1/xmq3723VAezPMs7f3ZvfzWMras7Pzk5p9fXEG7p+JcuMQ6HLunaWvViHK73wuHsQg16dZ6u6NZGn983QJL01cq9mrPtsBIP5+hgVqHaN6uv63q112dLk1UvxqGJ/3eBWjSM1ZmtG6uwpExLEzM0uMspyi8u03vzE/Wni87Q6a0aaVlShsc8YTO+fGCgLuzSSl2e8f3ljyT95dIz9ZFb73xVFj/xG3Vs0cDnft2Hdg/r1V7TNx8vs317/1P19LXnKi2nUHuP5OsvX3quU7bz5Wu0cvdRFZaU6cnvN+nZ67v7DJXuPr2nv2ZsTlWvU5t5nTO8/OkrdOHo+VXu57nru+v3AzupYWxdfbJ4t16Z4XuYeaPYGOUVl1W5T0SGHS9do/r1fH+ZGy61IkAVFxerYcOG+v7773XjjTe6Lr/33nuVmZmpH3/80WP7oqIiFRUVuX7Pzs5Wp06dCFCIOmk5hSoqcXr0wKB2cToNV1CIBrvSc9WqcZzPqqHuyv8kVRXEy5yGypyGz97lcvuP5atj8wamgv3GfZn6eeNBDf/NWV7nLHqz5UCWOrVsqGYN6iktp1DXvbNEw3q113O/7eE1sH69aq9yC0uVnJGn6ZtT9dEf+mnNnmNKOJyj9+/q67WdU9fv1/6jBXprToK++fMgXXhWK1Ntk44H8wOZBTq1RYNKvaCSVFhSpuzCEq9zZEPBMAzXyXvT+vUUW7eO157w0jKn7p+wRvcOPl1Dux9f0qLMaeiPn63STX076rYKVWQjhWEYri9t0nIK9dikjbr/otPV/7SW2pWRq/p1Y+Q0DPXo0NR1rMuchga9Olc5haXa9PxV2nYwW/uOFei0lg3Vo0NT1T1x3FKzjofxiq+RY3nFmrPtsG46v2OlY+w+auDxK7vq4cu7qG5MHZWWOV37rYqv+/WlqLRM9erU0eo9R3Vep+aVToyLS50yZLgee8PYusrILdLTP2zSsN7tXYWXyk3564U6v3ML+eM+CuGewafpxRtOVgrOKSzRvqMFuu7dJZKkhrEx+sMFp1VaFmb41+s0fXOqzm7TWLP/eanHqIZvH7xAg7ucoqveXqSEwyeHqi97+gr9b8UetWwYq9v7d9I78xI9voiRpNn/vFT/mbpFq/ccrdTuv17eRU9cfU6lERQv3dBD4xbt1mNXdnX19D5w8Rn6bGmya4RGTmGJej0/W1f3aKt3ft9XcXXr6Lu1+/TTxoNalnREkvSni87Qf4adq9ziUhWXOrXvaP6JL+tKPXqXn72+u27rf6rW7jmqP03w7HVu3rCeMvNL9OUDA3V2mya67aPl+v2Azhr+m7O0LClDzRrUU8+OlefBG4ah4d+s0+/6dNA1Pdt7fMFaUubUsbxiDXx1np67vrv+dLG5aSShVisC1MGDB9WxY0ctX75cgwcPdl3+5JNPatGiRVq1yvOboOeff14vvPBCpf0QoAAAACJHblGp6tetYzrkRZq07EIdzS9Wt3Ynzy/NfjkUaQzDUE5RqWu4cE0WSICKzldmEEaMGKGsrCzXv337IqdkNAAAAI5rHFc3asOTJLVpWt8jPEnHg1O0hSfpeLtrQ3gKVNSuA9WqVSvFxMTo8GHPlZwPHz6sdu0qL9gaFxenuLjAKtQBAAAAgLuojfexsbHq16+f5s07uWaO0+nUvHnzPIb0AQAAAIBVorYHSpIee+wx3Xvvverfv78GDhyo//73v8rLy9P9999vd9MAAAAA1EBRHaDuuOMOpaen67nnntOhQ4d03nnnaebMmWrbtq3dTQMAAABQA0VtFb7qYh0oAAAAABJV+AAAAAAgJAhQAAAAAGASAQoAAAAATCJAAQAAAIBJBCgAAAAAMIkABQAAAAAmEaAAAAAAwCQCFAAAAACYRIACAAAAAJMIUAAAAABgEgEKAAAAAEwiQAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmFTX7gbYxTAMSVJ2drbNLQEAAABgp/JMUJ4R/Km1ASonJ0eS1KlTJ5tbAgAAACAS5OTkqFmzZn63cRhmYlYN5HQ6dfDgQTVp0kQOh8PWtmRnZ6tTp07at2+fmjZtamtbajuORWTgOEQOjkXk4FhEBo5D5OBYRIaachwMw1BOTo46dOigOnX8z3KqtT1QderU0amnnmp3Mzw0bdo0ql94NQnHIjJwHCIHxyJycCwiA8chcnAsIkNNOA5V9TyVo4gEAAAAAJhEgAIAAAAAkwhQESAuLk4jR45UXFyc3U2p9TgWkYHjEDk4FpGDYxEZOA6Rg2MRGWrjcai1RSQAAAAAIFD0QAEAAACASQQoAAAAADCJAAUAAAAAJhGgAAAAAMAkAlQE+OCDD3T66aerfv36GjRokFavXm13k6LW888/L4fD4fGvW7durusLCws1fPhwnXLKKWrcuLFuueUWHT582GMfKSkpGjZsmBo2bKg2bdroiSeeUGlpqcc2Cxcu1Pnnn6+4uDidddZZmjBhQjgeXkRbvHixfvvb36pDhw5yOByaNm2ax/WGYei5555T+/bt1aBBAw0dOlSJiYke2xw9elR33323mjZtqubNm+uBBx5Qbm6uxzabNm3SJZdcovr166tTp056/fXXK7Vl8uTJ6tatm+rXr69evXppxowZlj/eSFbVsbjvvvsqvU+uueYaj204FtU3atQoDRgwQE2aNFGbNm104403aufOnR7bhPMzqbb+rTFzHC6//PJK74mHHnrIYxuOQ/WNHTtWvXv3di24OnjwYP3666+u63k/hEdVx4H3gwkGbDVx4kQjNjbW+Pzzz42tW7caDz74oNG8eXPj8OHDdjctKo0cOdLo0aOHkZqa6vqXnp7uuv6hhx4yOnXqZMybN89Yu3atccEFFxgXXnih6/rS0lKjZ8+extChQ43169cbM2bMMFq1amWMGDHCtc3u3buNhg0bGo899pixbds247333jNiYmKMmTNnhvWxRpoZM2YY//73v40pU6YYkoypU6d6XD969GijWbNmxrRp04yNGzcav/vd74wzzjjDKCgocG1zzTXXGH369DFWrlxpLFmyxDjrrLOMO++803V9VlaW0bZtW+Puu+82tmzZYnz77bdGgwYNjI8++si1zbJly4yYmBjj9ddfN7Zt22b85z//MerVq2ds3rw55M9BpKjqWNx7773GNddc4/E+OXr0qMc2HIvqu/rqq43x48cbW7ZsMTZs2GBcd911RufOnY3c3FzXNuH6TKrNf2vMHIfLLrvMePDBBz3eE1lZWa7rOQ7W+Omnn4zp06cbCQkJxs6dO41nnnnGqFevnrFlyxbDMHg/hEtVx4H3Q9UIUDYbOHCgMXz4cNfvZWVlRocOHYxRo0bZ2KroNXLkSKNPnz5er8vMzDTq1atnTJ482XXZ9u3bDUnGihUrDMM4fuJZp04d49ChQ65txo4dazRt2tQoKioyDMMwnnzySaNHjx4e+77jjjuMq6++2uJHE70qnrQ7nU6jXbt2xhtvvOG6LDMz04iLizO+/fZbwzAMY9u2bYYkY82aNa5tfv31V8PhcBgHDhwwDMMwPvzwQ6NFixauY2EYhvHUU08Z55xzjuv322+/3Rg2bJhHewYNGmT85S9/sfQxRgtfAeqGG27weRuORWikpaUZkoxFixYZhhHezyT+1pxU8TgYxvETxn/84x8+b8NxCJ0WLVoYn376Ke8Hm5UfB8Pg/WAGQ/hsVFxcrPj4eA0dOtR1WZ06dTR06FCtWLHCxpZFt8TERHXo0EFnnnmm7r77bqWkpEiS4uPjVVJS4vF8d+vWTZ07d3Y93ytWrFCvXr3Utm1b1zZXX321srOztXXrVtc27vso34Zj5ltycrIOHTrk8bw1a9ZMgwYN8njumzdvrv79+7u2GTp0qOrUqaNVq1a5trn00ksVGxvr2ubqq6/Wzp07dezYMdc2HJ+qLVy4UG3atNE555yjhx9+WEeOHHFdx7EIjaysLElSy5YtJYXvM4m/NZ4qHodyX3/9tVq1aqWePXtqxIgRys/Pd13HcbBeWVmZJk6cqLy8PA0ePJj3g00qHodyvB/8q2t3A2qzjIwMlZWVebwAJalt27basWOHTa2KboMGDdKECRN0zjnnKDU1VS+88IIuueQSbdmyRYcOHVJsbKyaN2/ucZu2bdvq0KFDkqRDhw55PR7l1/nbJjs7WwUFBWrQoEGIHl30Kn/uvD1v7s9rmzZtPK6vW7euWrZs6bHNGWecUWkf5de1aNHC5/Ep3weka665RjfffLPOOOMM7dq1S88884yuvfZarVixQjExMRyLEHA6nXr00Ud10UUXqWfPnpIUts+kY8eO8bfmBG/HQZLuuusunXbaaerQoYM2bdqkp556Sjt37tSUKVMkcRystHnzZg0ePFiFhYVq3Lixpk6dqu7du2vDhg28H8LI13GQeD+YQYBCjXLttde6fu7du7cGDRqk0047Td999x3BBjjh97//vevnXr16qXfv3urSpYsWLlyoIUOG2Niymmv48OHasmWLli5dandTajVfx+H//u//XD/36tVL7du315AhQ7Rr1y516dIl3M2s0c455xxt2LBBWVlZ+v7773Xvvfdq0aJFdjer1vF1HLp37877wQSG8NmoVatWiomJqVRh5vDhw2rXrp1NrapZmjdvrq5duyopKUnt2rVTcXGxMjMzPbZxf77btWvn9XiUX+dvm6ZNmxLSfCh/7vy91tu1a6e0tDSP60tLS3X06FFLjg/vKd/OPPNMtWrVSklJSZI4FlZ75JFH9Msvv2jBggU69dRTXZeH6zOJvzXH+ToO3gwaNEiSPN4THAdrxMbG6qyzzlK/fv00atQo9enTR++88w7vhzDzdRy84f1QGQHKRrGxserXr5/mzZvnuszpdGrevHke41ARvNzcXO3atUvt27dXv379VK9ePY/ne+fOnUpJSXE934MHD9bmzZs9Th7nzJmjpk2burq2Bw8e7LGP8m04Zr6dccYZateuncfzlp2drVWrVnk895mZmYqPj3dtM3/+fDmdTteH9+DBg7V48WKVlJS4tpkzZ47OOecctWjRwrUNxycw+/fv15EjR9S+fXtJHAurGIahRx55RFOnTtX8+fMrDXkM12dSbf9bU9Vx8GbDhg2S5PGe4DiEhtPpVFFREe8Hm5UfB294P3hhdxWL2m7ixIlGXFycMWHCBGPbtm3G//3f/xnNmzf3qGwC8x5//HFj4cKFRnJysrFs2TJj6NChRqtWrYy0tDTDMI6XSO3cubMxf/58Y+3atcbgwYONwYMHu25fXprzqquuMjZs2GDMnDnTaN26tdfSnE888YSxfft244MPPqCMuWEYOTk5xvr1643169cbkowxY8YY69evN/bu3WsYxvEy5s2bNzd+/PFHY9OmTcYNN9zgtYx53759jVWrVhlLly41zj77bI/S2ZmZmUbbtm2NP/7xj8aWLVuMiRMnGg0bNqxUOrtu3brGm2++aWzfvt0YOXJkrSqdbRj+j0VOTo7xr3/9y1ixYoWRnJxszJ071zj//PONs88+2ygsLHTtg2NRfQ8//LDRrFkzY+HChR7lgPPz813bhOszqTb/ranqOCQlJRkvvviisXbtWiM5Odn48ccfjTPPPNO49NJLXfvgOFjj6aefNhYtWmQkJycbmzZtMp5++mnD4XAYs2fPNgyD90O4+DsOvB/MIUBFgPfee8/o3LmzERsbawwcONBYuXKl3U2KWnfccYfRvn17IzY21ujYsaNxxx13GElJSa7rCwoKjL/+9a9GixYtjIYNGxo33XSTkZqa6rGPPXv2GNdee63RoEEDo1WrVsbjjz9ulJSUeGyzYMEC47zzzjNiY2ONM8880xg/fnw4Hl5EW7BggSGp0r97773XMIzjpcyfffZZo23btkZcXJwxZMgQY+fOnR77OHLkiHHnnXcajRs3Npo2bWrcf//9Rk5Ojsc2GzduNC6++GIjLi7O6NixozF69OhKbfnuu++Mrl27GrGxsUaPHj2M6dOnh+xxRyJ/xyI/P9+46qqrjNatWxv16tUzTjvtNOPBBx+s9AeLY1F93o6BJI/Pi3B+JtXWvzVVHYeUlBTj0ksvNVq2bGnExcUZZ511lvHEE094rHtjGBwHK/zpT38yTjvtNCM2NtZo3bq1MWTIEFd4MgzeD+Hi7zjwfjDHYRiGEb7+LgAAAACIXsyBAgAAAACTCFAAAAAAYBIBCgAAAABMIkABAAAAgEkEKAAAAAAwiQAFAAAAACYRoAAAAADAJAIUAAAhMGHCBDkcDjkcDk2YMMHu5gAALEKAAgAErDwYBPovMzPT7qYDAFAtBCgAAAAAMKmu3Q0AAES3qVOnmt62UaNGIWwJAAChR4ACAFTLjTfeaHcTAAAIG4bwAQAAAIBJBCgAgK3KC0xcfvnlkqRjx47plVde0fnnn6+WLVuqUaNG6t69u5544gkdOnTI9H6nTp2qO+64Q6effroaNmyopk2b6txzz9VDDz2k+Ph40/txOp2aNGmS7rrrLnXp0kVNmjRRbGys2rdvryFDhuill15SUlKSqX0lJCTob3/7m7p27aqGDRuqefPmGjx4sN555x0VFxdXefslS5boT3/6k84991w1adJE9erVU5s2bdS9e3ddc801eumll5SQkGD6sQEAAucwDMOwuxEAgOjicDhcP1f3z0j5vi677DK9//77uv7667V3716v2zZv3lwTJ07U1Vdf7XN/6enpuuWWW7RkyRK/9/nwww/r3XffVUxMjM/tNm3apDvuuEM7duzw+xiaN2+uY8eOeVw2YcIE3X///ZKk8ePHKyYmRn/5y19UUFDgdR+DBw/WzJkz1bRp00rXOZ1O/fWvf9VHH33ktx2SNGzYMP3yyy9VbgcACA5zoAAAESErK0s33HCD9u7dq0svvVS33nqr2rZtq5SUFH399dfasGGDMjMzdeONN2rx4sUaMGBApX3k5ubq0ksvdQWe1q1b6/7771efPn1UXFysxYsX66uvvlJJSYk+/PBDZWdn68svv/TanlWrVmnIkCHKy8uTJHXs2FF33HGHevXqpUaNGik9PV3x8fH65ZdfVFRU5PexzZw5U99//70aNmyo4cOHa8CAAYqLi9OGDRs0btw4ZWVlacWKFfrXv/6ljz/+uNLt33//fVd4atKkiW699Vb169dPrVu3VnFxsfbv36+1a9dq7ty5AT3nAIAgGAAABEiS65+V+5JkvPbaa5W2KS0tNR555BHXNt27dzfKysoqbffXv/7VtU2/fv2M9PT0StusXbvWaNGihWu7SZMmVdomOzvb6Nixo2ubv/zlL0ZBQYHX9peWlhrTpk2rdPn48eM9HlePHj2M/fv3V9pu+/btRuPGjQ1JRr169YxDhw5V2qZHjx6GJKNFixbGnj17vLbDMAyjoKDAWLlypc/rAQDVxxwoAEC1mF1E97777qtyXzfffLOefPLJSpfHxMTonXfeUf/+/SVJ27ZtqzRMLT09XZ9//rkkqWHDhvrhhx/UqlWrSvvq16+fxo4d6/p99OjRlbb58MMPdeDAAUnHh8SNGzdO9evX99rmmJgY3XDDDX4fV926dTVlyhR17Nix0nXdunXT8OHDJUklJSVee5HK51gNHTpUp512ms/7qV+/vgYNGuS3LQCA6iFAAQAihrfwVK5OnTp6/PHHXb9///33HtfPmDFDhYWFkqQ77rjDb9C4/fbb1aVLF0nS+vXrlZyc7HG9+7C+UaNGmX8APlx//fXq2rWrz+uvvPJK189btmypdH35+lmbN282VWwCABA6zIECAFSL2YV0O3fu7Pf6pk2bauDAgX63GTp0qOvn1atXe1y3atUq189XXXWV3/04HA5dddVVrp6olStX6owzzpAkHT16VFu3bpUknXHGGerVq5fffZkxePBgv9efeuqprp8rFqOQjj+eiRMnaseOHRoyZIgee+wxXX311WrYsGG12wYACAwBCgBQLVYtpNulSxeP6n7etGrVSs2bN1dmZqYOHjzocV1qaqrrZ3+9Pd62cb9t+dA9SerevXuV+zHD21BCd3Fxca6fy3vR3L322mtaunSp9u/fr6VLl2rp0qWqV6+ezj//fF144YW6/PLLddVVV/kcZggAsA5D+AAAEaF8mJrZ7XJzcz0uz8nJCWhfjRs39nrb7Oxsr9tUR5061ftz27lzZ61fv16PPvqoWrZsKen4fKlVq1bp7bff1g033KC2bdvqueeeq7IiIACgeghQAICIUF4u3Ox2FcNNkyZNAtqXewBzv637OkwVQ5qdWrVqpbfffluHDx92BafbbrvNFaiys7P10ksv6brrrpPT6bS5tQBQcxGgAAARYdeuXVUuynvkyBFlZmZKkjp06OBxXfv27V0/JyYmVnl/CQkJrp/d99WxY0fXUMJt27ZVuZ9wq1u3rgYOHKhHH31U3333ndLS0jR58mQ1a9ZMkjR//nzT89IAAIEjQAEAIkJ2dnalwhAVuZf4rliu2/332bNnV3l/c+bM8Xrbli1bqkePHpKk5ORkbd68ucp92SkmJka33nqrnn/+eddlS5Yssa9BAFDDEaAAABHjzTff9Hmd0+nUmDFjXL/feuutHtcPGzbMVURh4sSJ2rt3r899TZ482bW2Ut++fV0V+Mrdc889rp9HjBhh/gHYyP0xlJaW2tgSAKjZCFAAgIjx/fffe4Skck6nU4899pirh6pHjx4aNmyYxzatWrXSAw88IEnKz8/XrbfeqiNHjlTa1/r16/XQQw+5fvcWkB566CFXafHp06froYce8lodr7xtP//8s8lHGLjU1FQ9/vjj2rVrl89tSktL9cknn7h+P++880LWHgCo7RxGVQPOAQCowL3ceCDzbQYNGuQxV8l9X+edd56ys7O1e/duXXbZZbr11lvVpk0b7du3T19//bXWr18v6XjJ7yVLlmjAgAGV9p+bm6sBAwZox44dkqTWrVvrgQceUO/evVVcXKwlS5boyy+/dC1G+4c//MFj0Vx3q1at0pAhQ1wFKTp27Kjf//736tWrlxo2bKiMjAxt2LBBv/zyi/Ly8lxzs8pNmDBB999/vyRp/Pjxuu+++3w+L3v27HH1IN17772aMGGC1+v69eunSy65ROeee65atGih3Nxc7d69W99++60rYJ155pnauHGjZRUEAQCeWAcKAFAtN910k+ltp06d6nPdqGbNmunLL7/Ub3/7Wy1atEiLFi3yus2kSZO8hifpeGW+xYsX6+abb9bSpUuVnp6u0aNHV9rO4XDooYce0nvvveezrYMGDdKSJUt0++23KykpSQcOHNBbb73lddsWLVr43E91uYfV+Ph4xcfH+9y2Z8+emjZtGuEJAEKIAAUAiBg9e/bU+vXr9f7772vKlClKTk5WUVGROnfurOuvv16PP/54pR6silq3bq0lS5ZoypQpmjhxolauXKn09HTVrVtXHTp00OWXX64HH3xQ/fv3r7I9ffv21fbt2/XNN99o2rRpWrt2rTIyMlRWVqZWrVqpe/fuuuKKK3TXXXdZ9RRUctppp2nXrl2aNWuWli9frk2bNiklJUU5OTmKjY1Vu3bt1LdvX91yyy26/fbbVbcuf9oBIJQYwgcAsFV5D8tll12mhQsX2tsYAACqQBEJAAAAADCJAAUAAAAAJhGgAAAAAMAkAhQAAAAAmESAAgAAAACTqHUKALAVxWABANGEHigAAAAAMIkABQAAAAAmEaAAAAAAwCQCFAAAAACYRIACAAAAAJMIUAAAAABgEgEKAAAAAEwiQAEAAACASQQoAAAAADDp/wFy4Wu5WGEIFgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -492,15 +712,15 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Games played: 1000, # of wins: 927\n", - "Win percentage: 92.7%\n" + "Games played: 1000, # of wins: 894\n", + "Win percentage: 89.4%\n" ] } ], @@ -518,7 +738,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -526,30 +746,25 @@ "output_type": "stream", "text": [ "Initial State:\n", - "[['P' ' ' ' ' '-']\n", - " [' ' 'W' ' ' ' ']\n", - " [' ' ' ' '+' ' ']\n", - " [' ' ' ' ' ' ' ']]\n", - "Move #: 0; Taking action: r\n", - "[[' ' 'P' ' ' '-']\n", - " [' ' 'W' ' ' ' ']\n", - " [' ' ' ' '+' ' ']\n", - " [' ' ' ' ' ' ' ']]\n", - "Move #: 1; Taking action: r\n", - "[[' ' ' ' 'P' '-']\n", - " [' ' 'W' ' ' ' ']\n", - " [' ' ' ' '+' ' ']\n", - " [' ' ' ' ' ' ' ']]\n", + "[[' ' ' ' 'P' ' ']\n", + " [' ' ' ' ' ' ' ']\n", + " ['W' '+' ' ' ' ']\n", + " [' ' '-' ' ' ' ']]\n", + "Move #: 0; Taking action: d\n", + "[[' ' ' ' ' ' ' ']\n", + " [' ' ' ' 'P' ' ']\n", + " ['W' '+' ' ' ' ']\n", + " [' ' '-' ' ' ' ']]\n", + "Move #: 1; Taking action: l\n", + "[[' ' ' ' ' ' ' ']\n", + " [' ' 'P' ' ' ' ']\n", + " ['W' '+' ' ' ' ']\n", + " [' ' '-' ' ' ' ']]\n", "Move #: 2; Taking action: d\n", - "[[' ' ' ' ' ' '-']\n", - " [' ' 'W' 'P' ' ']\n", - " [' ' ' ' '+' ' ']\n", - " [' ' ' ' ' ' ' ']]\n", - "Move #: 3; Taking action: d\n", - "[[' ' ' ' ' ' '-']\n", - " [' ' 'W' ' ' ' ']\n", - " [' ' ' ' '+' ' ']\n", - " [' ' ' ' ' ' ' ']]\n", + "[[' ' ' ' ' ' ' ']\n", + " [' ' ' ' ' ' ' ']\n", + " ['W' '+' ' ' ' ']\n", + " [' ' '-' ' ' ' ']]\n", "Game won! Reward: 10\n" ] }, @@ -559,7 +774,7 @@ "True" ] }, - "execution_count": 14, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -577,7 +792,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -610,14 +825,14 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2999 0.02813359536230564\n" + "4999 0.018897129222750664\n" ] } ], @@ -694,7 +909,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -703,20 +918,18 @@ "Text(0, 0.5, 'Loss')" ] }, - "execution_count": 94, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG3CAYAAAANcdlpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XecXGW9x/Hvb5PQSxRCB0NTiggoTQEFRUBA8Cp6QS+CXnu/ctUACparggUQUIqAFJFeJUAoCSmkJ5Dee91s2maTTbLtuX/Mmd0zs2dmzsw5U87u580r7O7MmTPPnDnld57ye8w5JwAAANS+umoXAAAAAOEQuAEAACQEgRsAAEBCELgBAAAkBIEbAABAQhC4AQAAJASBGwAAQEIQuAEAACQEgRsAAEBC9K12Acpl7733dgMHDqx2MQAAAAqaNGnSWufcgELL9djAbeDAgZo4cWK1iwEAAFCQmS0JsxxNpQAAAAlB4AYAAJAQBG4AAAAJQeAGAACQEARuAAAACUHgBgAAkBAEbgAAAAlB4AYAAJAQBG4AAAAJQeAGAACQEFUP3MzsYDMbZmYzzWyGmf0wYJmzzKzRzN7x/l1fjbICAABUUy3MVdom6Wrn3GQz213SJDN7zTk3M2u5kc65i6pQPgAAgJpQ9Ro359wq59xk7/cmSbMkHVjdUgEAANSeqgdufmY2UNKJksYFPP1hM5tiZi+b2bE5Xv8NM5toZhMbGhrKWFIAAIDKq5nAzcx2k/S0pB855zZlPT1Z0nucc8dLul3Sc0HrcM7d45w7yTl30oABA8pa3m2t7Zq9epM2bWst6/sAAACk1UTgZmb9lAraHnHOPZP9vHNuk3Nus/f7S5L6mdneFS5mhgUNm3X+rSM1ZsG6ahYDAAD0IlUP3MzMJN0naZZz7uYcy+znLSczO0WpchMxAQCAXqUWRpWeLukKSdPM7B3vsWslHSJJzrm7JF0q6dtm1iZpq6TLnHOuGoUFAAColqoHbs65UZKswDJ3SLqjMiUCAACoTVVvKk066v0AAEClELiVyPJXEgIAAMSOwA0AACAhCNwAAAASgsANAAAgIQjcImN0AgAAqAwCtxIZYxMAAECFEbgBAAAkBIEbAABAQhC4AQAAJASBW0TMnAAAACqFwK1EDE4AAACVRuAGAACQEARuAAAACUHgBgAAkBAEbhExNgEAAFQKgVuJTIxOAAAAlUXgBgAAkBAEbgAAAAlB4AYAAJAQBG4RMXMCAACoFAK3EjFzAgAAqDQCNwAAgIQgcAMAAEgIAjcAAICEIHCLyDF3AgAAqBACtxIxNgEAAFQagRsAAEBCELgBAAAkBIEbAABAQhC4RcTMCQAAoFII3ErEzAkAAKDSCNwAAAASgsANAAAgIQjcAAAAEoLALSLGJgAAgEohcCsZoxMAAEBlEbgBAAAkBIEbAABAQhC4AQAAJASBW0SOqRMAAECFELiViJkTAABApRG4AQAAJASBGwAAQEIQuAEAACQEgRsAAEBCELiViLEJAACg0gjcAAAAEoLADQAAICEI3AAAABKCwC0iJk4AAACVQuBWImPqBAAAUGEEbgAAAAlB4AYAAJAQBG4AAAAJQeAGAACQEARuETkxrBQAAFQGgVuJGFMKAAAqjcANAAAgIQjcAAAAEqLqgZuZHWxmw8xsppnNMLMfBixjZnabmc03s6lm9sFqlBUAAKCa+la7AJLaJF3tnJtsZrtLmmRmrznnZvqW+ZSkI71/p0q60/tZdUx5BQAAKqXqNW7OuVXOucne702SZkk6MGuxSyQ95FLGSupvZvtXuKgZmPEKAABUWtUDNz8zGyjpREnjsp46UNIy39/L1T24AwAA6NFqJnAzs90kPS3pR865TSWu4xtmNtHMJjY0NMRbQAAAgCqricDNzPopFbQ94px7JmCRFZIO9v19kPdYBufcPc65k5xzJw0YMKA8hQUAAKiSqgduZmaS7pM0yzl3c47FXpD0ZW906WmSGp1zqypWyDwYnAAAACqlFkaVni7pCknTzOwd77FrJR0iSc65uyS9JOkCSfMlNUv6ShXKmcGYOwEAAFRY1QM359woFZhByjnnJH23MiUCAACoTVVvKgUAAEA4BG4AAAAJQeAWEWMTAABApRC4lYiZEwAAQKURuAEAACQEgRsAAEBCELgBAAAkBIFbRI6pEwAAQIUQuAEAACQEgRsAAEBCELgBAAAkBIEbAABAQhC4RcTQBAAAUCkEbiVi5gQAAFBpBG4AAAAJQeAGAACQEARuAAAACUHgFhWjEwAAQIUQuJXIGJ0AAAAqjMANAAAgIQjcAAAAEoLADQAAICEI3CJyjE4AAAAVQuBWIoYmAACASiNwAwAASAgCNwAAgIQgcAMAAEgIAreIHGMTAABAhRC4lYiJEwAAQKURuAEAACQEgRsAAEBCELgBAAAkBIFbRIxNAAAAlULgViJj7gQAAFBhBG4AAAAJQeAGAACQEARuAAAACUHgFhEzJwAAgEohcCsRMycAAIBKI3ADAABICAI3AACAhCBwAwAASAgCt4gccycAAIAKIXArEWMTAABApRG4AQAAJASBGwAAQEIQuAEAACQEgVtEzJwAAAAqhcCtVIxOAAAAFUbgBgAAkBAEbgAAAAlB4AYAAJAQBG4RMTYBAABUCoFbiYzRCQAAoMII3AAAABKCwA0AACAhCNwAAAASgsAtKqZOAAAAFULgViJjbAIAAKgwAjcAAICEIHADAABIiKoHbmZ2v5mtMbPpOZ4/y8wazewd79/1lS4jAABALehb7QJIekDSHZIeyrPMSOfcRZUpTnEYmgAAACql6jVuzrkRktZXuxzFYmwCAACotKoHbiF92MymmNnLZnZstQsDAABQDbXQVFrIZEnvcc5tNrMLJD0n6cigBc3sG5K+IUmHHHJI5UoIAABQATVf4+ac2+Sc2+z9/pKkfma2d45l73HOneScO2nAgAEVLScAAEC51XzgZmb7maXS3ZrZKUqVeV11S9WFiRMAAEClVL2p1MwelXSWpL3NbLmkGyT1kyTn3F2SLpX0bTNrk7RV0mXOVT9cMqZOAAAAFVb1wM05d3mB5+9QKl0IAABAr1bzTaUAAABIIXADAABICAK3iGqgux0AAOglCNxKxNAEAABQaQRuAAAACUHgBgAAkBAEbgAAAAlB4BYRQxMAAEClELiViIkTAABApRG4AQAAJASBGwAAQELENlepmdVJ+qqk4yUtkXS3c64prvUDAAD0dkXXuJnZIDNrNrOzsp4aLOluSd+VdJOkMWa2a/Qi1jYmTgAAAJVSSlPpeZI2SRqefsDMzvUeXyHp/ySNl3S0UjVwPZIxdwIAAKiwUgK3IyTNdJmTdH5OqcwYlznnrpf0cUkbJH0xehEBAAAglRa47S1pVdZjZ0ha7ZwbLUnOua2SRksaGKl0AAAA6FRK4NYhqbPvmpntKekoSW9lLdcoqX/pRQMAAIBfKYHbIkmneqNIJekiSSZpVNZyAyStjVC2RGBsAgAAqJRSArcXJO0r6Vkz+4GkP0pql/R8egEzM0knKhXk9UyMTQAAABVWSuB2k6RZkj4t6VZJ+0n6k3NuiW+ZM5SqccuuhQMAAECJik7A65xrNLOTJF2qVM3bBOfc8KzF9pL0F0mPRS8iAAAApBJnTvBGjT6c5/nnJD1XaqEAAADQXexzlZrZXmbWJ+711irH1AkAAKBCSpny6gQz+6mZHZX1+LlmtkzSGkkNZvb1uApZi4zBCQAAoMJKqXH7vqTfKTXtlSTJzPaV9IykA5XKkNFf0p1mdnIchQQAAEBpgdtHJE11zq30PfZlSbsoNcp0J0mf9db9/cglBAAAgKTSArd9JC3LeuwcSa2SfuWca/MGJ0yUdGrE8gEAAMBTSuC2u6TNWY+dImmyc67R99gCpZpOAQAAEINSArcNkt6T/sPMTpC0p7rPVVqnVC1cj8TYBAAAUGmlBG4TlZqrNN0M+j9KDUgYmrXckZJWRSgbAAAAfEoJ3P4iqY+k0Wa2TtIVkhZKGpJewMz2lnScpHfiKCQAAABKCNycc69K+qqkJZJ2lPSmpE8759p9i12hVHD3ZvQiAgAAQCp9yqsHJD2QZ5G7JN2v7oMYehwmTgAAAJVSUuBWiDeX6dZyrLtWGFMnAACACosUuJnZgZI+qq60HyskjXDOrYhaMAAAAGQqKXAzs/6S/irpC+reT67DzB6X9D3n3MaI5QMAAICn6MDNzHZWKvXH8UqlARmr1KhSSTpMqdkSLpd0tJmd4TWbAgAAIKJSatx+JOkESaMlfd05N8v/pJkdLeluSadL+oGkm6IWspY5MToBAABURil53L6g1OwJF2YHbZLkPXaxpI2SLotWvNrF0AQAAFBppQRuR0oaljUvaQavb9swb1kAAADEoJTADQAAAFVQSuA2X9JZZrZ7rgXMbA9JZ3nLAgAAIAalBG5PSnq3pBfM7IjsJ73HnpX0LklPRCte7WPmBAAAUCmljCq9RdJ/SvqYpFlmNlbSIqVSgxwm6TSl5imdJunWmMpZc5g4AQAAVFrRgZtzrtnMzpZ0p6TPKZX243T/IpKekvRt51xzLKUEAABAyZPMr5P0BTM7RNKZypzyaqRzbqmZ7WtmhzjnlsZUVgAAgF4t0lylXlD2SI6nn5N0ctT3AAAAQEq504H0+J5gjE0AAACVQh63ElnPj0kBAECNIXADAABICAI3AACAhCBwAwAASAgCt4iYOQEAAFRKwVQdZvbREte9R4mvSwRmTgAAAJUWJsfamyot64WV+DoAAAAECBO4LRUBGAAAQNUVDNyccwMrUA4AAAAUwOCEiByVkQAAoEII3AAAABKCwA0AACAhCNwAAAASouqBm5ndb2ZrzGx6jufNzG4zs/lmNtXMPljpMgIAANSCqgdukh6QdH6e5z8l6Ujv3zck3VmBMoXGzAkAAKBSqh64OedGSFqfZ5FLJD3kUsZK6m9m+1emdLkxcwIAAKi0qgduIRwoaZnv7+XeY92Y2TfMbKKZTWxoaKhI4QAAAColCYFbaM65e5xzJznnThowYEC1iwMAABCrJARuKyQd7Pv7IO8xAACAXiUJgdsLkr7sjS49TVKjc25VtQsFAABQaWEmmS8rM3tU0lmS9jaz5ZJukNRPkpxzd0l6SdIFkuZLapb0leqUNJOJ0QkAAKCyqh64OecuL/C8k/TdChUHAACgZiWhqRQAAAAicAMAAEgMAreIHFMnAACACiFwKxEzJwAAgEojcAMAAEgIAjcAAICEIHADAABICAK3iBibAAAAKoXArUSMTQAAAJVG4AYAAJAQBG4AAAAJQeAGAACQEARuETE2AQAAVAqBW4mMqRMAAECFEbgBAAAkBIEbAABAQhC4AQAAJASBW0TMnAAAACqFwK1EDE0AAACVRuAGAACQEARuAAAACUHgBgAAkBAEbhE55k4AAAAVQuBWIiZOAAAAlUbgBgAAkBAEbgAAAAlB4AYgMTZvb9OW7W3VLgYAVE3fahcg6Zg5Aaic998wRJK0+MYLq1wSAKgOatxKZIxOAAAAFUbgBgAAkBAEbgAAAAlB4AYAAJAQBG4RMTYBAABUCoEbAABAQhC4AQAAJASBGwAAQEIQuAEAACQEgVtUTJ0AAAAqhMAtAiZPAAAAlUTgBgAAkBAEbgAAAAlB4AYAAJAQBG4RMTQBAABUCoFbBIxN6Dla2zv048ff0bL1zdUuCgAAORG4AZLGLlynZ95eoWuemVbtoiAhnpm8XHcMnVftYgDoZfpWuwAAkEQ/fmKKJOl7Hz+yyiUB0JtQ4wYAAJAQBG4RMXECAACoFAK3CIypEwAAQAURuAEAACQEgRsAAEBCELgBMXptZr2ef2dFtYsBAOihSAcSkWPuBPh8/aGJkqRLTjiwyiUBAPRE1LhFwNAEAABQSQRugEjrAgBIBgI3AACAhCBwA3wmL91Q7SIAAJATgVtENLH1DJu3t0mSmlvaq1wShNHRwYEHoHcicIvATIwpBapg2Jw11S4CAFQFgVsEJqPGrYfge0yW1na+MAC9U00EbmZ2vpnNMbP5ZjYo4PmrzKzBzN7x/n2tGuXMlqpx4wICAAAqo+qBm5n1kfRXSZ+SdIyky83smIBFH3fOneD9u7eihczBjJoa1K4HRy/WBX8ZWe1iAABiVPXATdIpkuY75xY651okPSbpkiqXKZRUUymRW09gPTCb8g0vzNDMVZuqXQwAyGv+miYt39AcaR3L1jfr4TGLYylPrauFwO1ASct8fy/3Hsv2OTObamZPmdnBlSlaftS4RTNx8Xp96DevqXFra7WLAiAmCxo26/5Ri6pdDCTIOTeP0Bk3DYu0ji/dO06/eH5Gr7ie1ELgFsa/JQ10zn1A0muSHgxayMy+YWYTzWxiQ0ND2QtlYlRpFLe+Pk/rtrRoyrKN1S6KNjS3VLsIKEJPrCGtBXPrm9TS1hFpHV+4a4x+/eLMyOsBirHRO4f3hlawWgjcVkjy16Ad5D3WyTm3zjm33fvzXkkfClqRc+4e59xJzrmTBgwYUJbC+tUZo0qjqKWL73XPTq92EVAEjrv4rWrcqnNvGaFfvzgj0nrSuRBb2wncUDnmXVB6w7mhFgK3CZKONLNDzWwHSZdJesG/gJnt7/vzYkmzKli+3EzqCLGXzK1v0rDZ0fJObWtt18BBg3XvyIWR1lOLesFxBtS8jc2pJqaJi6PNHpK+IeO4RiX1pv2u6oGbc65N0vckDVEqIHvCOTfDzH5tZhd7i/3AzGaY2RRJP5B0VXVKmylshdG5t4zQVx6YEOm90ifVe0b0vMANmdZvadHAQYM1duG6ahcFvUj6whfmZjTvemIoC1Cs9H7XG5pK+1a7AJLknHtJ0ktZj13v+/0aSddUulyFmFVuVGktNSvGrTccaMWYvCRV43HPiIU67bC9qlwa9BameJuaOK5RSZ1NpVUuRyVUvcYtySo55VWUc+Dn7hytJycuK7xghcV1oA2f26DpKxqjF6hGdFb518iFb+Cgwbr5tbnVLgbKLK6mpt50AUXtSNdtnPR/r9fk9S5OBG4RJGVwwqQlG/STp6ZWuxjdxFWJeOX943XR7aNiWlv11WLt6m1vzKt2ETLU4jZKurqYbhi6mqyilQcohv+c8MsXog2wqXUEbhGYovcHCf1ePflCxQk+UE/aLC1tHVqxcWts6yMoKIeYmko7I7eI6wEQiMAtgko2lfZEXU0zbEW/uPsa1YJBT0/V6TcOVXNLW7WLEtn6LS2a1QNnpIh7VB7HNSqrJ9duZKqJwQnJVfmm0p50Kuw9h1mReuCw9qFzUulwtrV2aJcdqlyYiC68baRWNW6rdjFiF9eoPJpKUQ3+VqmevutR4xZBakdJ7SLNLW1qK2PCyZ4c5HCCz9QTv+ueNFS/JwZtUnyDChicgGqI67w5ftF6PTZ+aUxrKw8CtwjqfHOVHnP9EH33X5OrW6CE6U2ZrkvRE4KcNC7mtS+umrJaGxWN3iGufuBfuHuMBj0zLZ6VlQmBWwQmyxicMGRGfRVLkzw9sWYpDtYDR6LE3XxWS5uoo6NnBCh1ncF1TE2lEcuTdN/+56SMmW5a2jr04OjFau8h+0utsV50RSFwi8Cs8rVF3MT2fD2xj1AtDUTZtK1V33x4otZt3l544TLbsr1NV9w3TsvWN1e7KF0zJxTo8fHGrHotWrslz3pSK6rUiPta9fL01fq/wV2zM941fIFueGFGj88xVi21dDNXbgRuEZi4q4wD2zBTLQU58Yl3xEWUmOCx8Us1ZEa97hq+IJ7CRPDazHqNnLdWfxwyp9pFCe2/H5yos//0Zs7nO6+fPWn3jcGmralpC5u2JX9kdS3qRXEbgVsUVoUEvD3proK+MMFqKR1IXN9NLe23fetSp73W9upv4FqaGLuuLp6aslr6TLUkru2Lwnr6JiZwiyCVx62ye0iUHbKlrUOzVm3S9c9Pr5FgqYau5jWkK6CtbjnKIa6PNGX5xpjWFF2Uz1RLzYpxN9HXwEeqKZ1N0WyXsuiJfYNzIXCLoKJ93GLYJ1vaO3TFfeP00JglaqiB/j1pvfE8NmbBOl15//jAjspxn35qIUiPOyi4Z8TCwgvlKktWTe8r01dpbZWOh7rODVOVt88Q33UvnkEOPU1dDQXpSDYCtwhMVrmLYo0d6xMXr9fqiPmsenLNUiHf/ddkDZ/boI3NLTmXievCt621fPkFw4q7316UGMP/2k3bWvWtf07WVf8YH7VIJZal9i7mkUeVVvi4XtO0Tdta2yvzZhHENRcsgtX1omimF33U+FVnyqvaOOgvvWuMPvHnNyOto+sCWhufqWbEfOEr9kLc0LRdAwcN1lOTlseXviPmfntx7THtXj+35Rvim0e1GHEFOWs2bdPs1dGm4arV76iQU377hq68vzqBd9rL01bp/FtH5E0N0xWkV6pUvUsfmkoRRl0FByfE8Tbm+38ctrREu8vtRcdZUTovoDGtr9h9NJ3q4fEJ8WUPL0eH9db2Dg0cNFgPjVlcZFni3r6lr6kupprIM24apvNvHRlpHXH1warGLBnjFq2v2HsF+dHj72j26ia15Jk9p64XtzBUQp+63nNBIXCLwFS5Jo7Y36YGTh5dfT6qXJAyGzZ7jZauC5+nqycGtOXot7fZS6tw82tziytLwAW0WhdTi+kYyBcwFC9ZTaWV0NbeETlxbi0NROmJ6nwnzq0JaDqPgsAtiio0lcY1HU0t6LrD79knsq88MEFn/WlY6OXTF4iJi+OpRYiydWO/X6ix77rax0MtzOH68rRVGQmAI59jeuBo8SOue1kX3zGq4HL5th3pj8qr2sdyJRG4ReCbY77s4ujU7XL8Xi29aa7SYm7Wd9mhT9Gvyf/e1d/AcX/X/qH/pa6zFkY91sIx8O1HJuuCv3Q1s8a1v0RdzbDZa7RyY3X6HgaZsTJ3H8IwQUNdTE3021rbtTViNxUEa9rWWu0ihELgFoGZxXbyb25py3snln4qyl3FvPqmmroXZnh8sB36pg7Lo/bbPZb1Fbt5k1Aj4Jwr+ViIPV9ZhNfW1Uitc9P2rmz+UUsS1wjirzwwQeffOiJiaSor32dO73dRv+tTf/eGjr7+lUjrCOODv3lNX67yoI9i1MVQ5Xb538fGUJLyI3CLoC6mPG4bm1t0zPVDdOg1LxW8k4ryfv4+GrVwbe6Jc3LGIZ3ZP7aLeYTVxD1zQk181zXUplJL/TzT3030ptJ41iNJm3rQ9FBx7XaNW6PXCm3e3qaL7xilOaubci6zfkuLRsxtiPxeSTJ9RbSR2ZVC4BaByWK5uG5s7joQ73xzfuAycZzXnWrqmhXbiLqeJr1d5tZv1votufO8hVXsPlqODOS1OP9qRteBKkWUtTg9VNRtsdLL7+gkjZzXoIGDBkdOVdKT1MLNy5gF6zR1eaP+8MrsahclNnHUuCUFgVsEuWZOaO9wWtUYvm9GumlMkra3BY8Oi+PC4l/FP95aFHl9UXXWNuQYEBc1wa8kbdlem3fs6YBsQ3P+u+e59bnviMOqdjOc1JVjqRZqlvw1QnF0pI+yfTv7PdXAd5QWpSQLGjZ3rcc5vTJ9tSRpwuINEUtV28LsR3GnoYmij3fJaa+h/S6qXhS3EbhFFbTb/2HIbH3490NVvykz8Mh1cu7bp2uPKzTkPNIIQec6TzB3R5gyKJdl65v1xyGzQ1+E8g2PHzG3Qaf9/o3OE38ppi1v1LE3DNHL01aVvI5ye3tp/gtaHOfVYoOlcgQRcfdnjFJbFvcJfvT8dSW/Nl2WTTE0f8UmwlfkryHOWE0Z9qntbe1qLHDjU0tqqbtA+niMmuIkitEL1qq5Jb4ba2rcEIrlSMA7fE6qX8C6zZnNXLkOWP/dWq7jqBYO9kK+/cgk/XXYAs2t31x4YeU/kU1b0Sgp2mTiU1ekXjtiXnA/jflrmqp64qqUUpsnTRZb7UA5UiGUWlv28rT0zUA8ZWmNkEMtfbGZsrwxlrLEIY4aRMmr0SzjtfTK+8fr+F+/Wr43KEHedCCqndrVdLLaqDdSfxwyWwMHDS76dSs2btUX/z5O//vklEjv79eL4jYCtyhSgxPyjATNujDkOkj8y5WzWcvMyrpzt7alyh42UOiaX7vwaNpS5JvCZ259k865eYRue2Ne6W+QEGG2YVt7h258eXbG3Klx9kfrusOPZ33+3bjYUo6av7bbY5u2tamjw+mBtxZVdN7LWrzYRPnWM7PXlzdAGbuwurMl+IX5HtPLbN7epoGDBuvu4QvKW6g8+sRU4/bXYaV9hmavC8vc+s15a91a2jo0NeTNew0eSmVD4BZBnXWvkRi7cJ2ac4wMDXOI5AoE44jnauFOz6+rf0/35+K4oOWr0Vvl9Z+bXKCpslRRtnXc31KYm4EhM+p11/AF+vWLM8syOCGuO/w0/1pacvQLLbiOrKIMnrZKv/z3TP351TmlF6xItdi8E+Ur6pNV41Ztzjmt2RS9r2wc0lsm3Zz88NglVStLXfp4jHPCjSL4k6/nqzn/7eCZuviOt7SwIUQrTg0eS+VC4BZBnXW/Y7nsnrFauj54eqMwF61yt9xVatd+a/7avAM0Ji5er1dnppqsyvWZS/2scQS4cX2mWBIvF1hFc0tbZ3NfS1tHxuePO2Fu2Dv8xq2tofu/5BrQU0j2Z0u/XxzpFsKKO3ALu+/OX9OkobPrA5+L1FTqu6L419KwOfro6FLcPWKhTvndG1rszb9bTdk3ktUMbMO0dlSkBAWa06d6XWYKDeKSukbj9wYEbhHU1RWXDiRMH7dco3zSB1iU9BBOXUP1y+1L947Tp/6Se9LrS+8a03kwlvvkEbT+fMd4HBfuWhjJmZavLM45HXP9EF377LRuz8U5dVF6FFvYzXL8r17VWX98M7b3zyngI1byq4v7YhM2MD7n5hH66gMTMx6L4zjM7uOWdtsb8zKm1aqUdB6y5RvKOwNDupVlfJ5p6jq7btTAuNL0jVRco33D3jCMnr9Wc+ubylI51oviNgK3KPpY/sAt+6lci4Y5kONpKi3tdVf9Y3xJ+X42hhzxVbYatyoeyTUVuHWkvsOROQZpSF0XnnKVOn3RKma7rGnaXmilsSo1UI2yzeINczKWAAAgAElEQVTeR+NI7xDXPuCU2Qy2qkI3jX6jF6RG/I5bVPrI32Lc+trcbo+lg+laGlUat7Cf6Yv3jtO5t3TNhhHnpoi79rqWB64RuEVQZ1bUl1tLF/NivDmnQX97s3wdaWevyp2cs9xNhSPnde+oHgfnUnehr88Mbo5Ke6lQqpIYdpnN29v05pwGfevhSUW9znn/xaFWpnbyq6Waj7jEcbGJ0lXA/3Gy+09Vs4/t+EWpmrD3/fzlivZhlKKNOi6XuG8YWovsLFeO/IVxf6ahs9fEu8IYEbhFUFdXXOfOd5YVHh2Ta9+LY/eupQmb/R4Zt7TbY3E003U1TeRXju3S4Zxem1mvrz00Me9yYVOnRC1LWPPrN5dlcEJnZ+i4+v5VsQY6TrVYSxDHSG6ptoL0dFm2t3Xo9qHBs9OUS4sXuMU1yXwtKtTPtLG5Vaf+7vXOv7vmbY2vDHGft2o1ebtE4BZJnyL7uK3dXKDpR7kP6lLvTGau7KrNujrGnDmJkOc49h/jH7lxaMZzcVxv5qxuUkOI77sS8p2Asj/rnPqmWO6CRy9Ym5FqZdXGVDPZWwGpOGpNU4Lnx4xjlGBbTFfTsEHk6sZtZRvdnbZkXeX716W1tQc3ldbaKP9SpEeLF/ooYxauU/2mrvNhoRircWurmrYV19c47tvNWh6kSuAWQZ1ZUX1KDui/c+DjcXYCz/Zf940r27qzzfGmZ6qFEVx+xZ4fm2PI4zUxQqdff3lvjSHP3M+fmy5J2pIjTU0upuAE02F88e/jdLOvv89qLyXDzQF9gKqlubU98+Ts/f7KjOJm66il628tTWHU1uFCXfzO+tMwffZvo0Ovd+bKTUUHPQX7S8YkqFSlBGjD5zZoWBmb6uK64nSup8TdzskFHj/H/+pVHffL4pIr13KgFTcCtwjqzNQR4q5y9536di4fJNTghOKKVlWxJsbsNsDD6fcvzwo1Qq3UIe/3j1pU1PJBWjs6YgnI031zinHza3P1/huGdP5dalNwvhFytSDqiXrw1Mz+hYWmHytXOfza2jv08+emFTXXsV+1O1T7t0X2MZqrZNtaw1cTvjJ9lS64baRemLKyhNJVR/pzd82Rm/s7+vif39R//O0tXXn/eH3lgQllK1Nc+6w/H1tRr8uTHL1UYQfDhVWOLiNxIXCLINVUWni5fl4uhCgn1Rq6ka6IdLC1Niv/09z6zbp7+EJ9M0RH+84Dr8htF8fFL908UkhLGTou3/bGPG32NY/2sl0np9dn1mtNU+6Rjelp1iop+yI+esE6/XPsUv3s6e7pWcIo9gIad3Od/1L3k6fi75oxf02qT+ic1U2xr7tc0ps4XeP9Rp6atIUNW/T20tKn+au0UkaLS+UZYbuwobZaesqJwC2CoAS8fumdMt0PoK0GRxeVQxydkid4NU1PT16uJyYu0wYvf106oGsL6MyTPXorjvul3780K28+ulzC9hNqqEATTt6UNWV4v0p8Jkn68ePvhF62rb1DX3tooi6/Z2yeZUrbGqXu7k9OXNYtL2N6VaUGVLV0c9ha4vbMp9RakHft0i/mkgQL2obp7zI7P2SPuKEq7d64M3BbsXGrlm3I3XpSqXNJ0hC4RVBXII9bWt904BapJqc2D/NxC7vnR4rjAuDfVj99aqp+8NjbkvI3qyzIMS1KlOLcPWKhZuVJV5JLW3tH6OaIDVtaNHxu7hxrUe3Qp7KH+cm/fb3wQjF4fVb4PkDpfWBxnk7qlRwFuWx9s37y1FR9+5HJGY9HrQErNnCL+yNn7/O10ti0c78+VRsM8E9v1HyurjKf+POb+lfAyPryiuebSa8lyvy+j47P/dmLSZxcC+l9KoXALYKwgVtnjVuEIV+lnnOizLQQxrw13YOlKJ8zLfvOuqFpuxq3tuozf31LUvD2yK4x6aqOr/wBXUyQ/pUHJujK+8eXbfh5P1/g9uDoxQWXf7VA7jnnXEUnYo9DmP5FcY2mDCOdPqHUeVZzee7tFUUtH/YTt3c43TV8gbYWOcAl470KvFkxx2nYJQ/YcydJ0q479g297nzC9GnOlh5d3TfHNBkLGrYEzlySBOn9+BfeAKiw/Of3Wu0GVMujfgncIuhTFy4Bb/rC2dru1Li1VTe+PDuzWc+3ioll7hAed5PBiICaokfHL4u83uxTnHPqbC6Vgk/c2d9Fvi5u5RzJK0n3jFgYugZngRf8pkcExn3n6C/HDS/MKLj8fQUGZ9z/1mId9YtXVF8jk3dHkbEXVPk8PWNlY+QO0StLHNRQyLNvr9CNL8/Wra8XGhVcevmLqS0Me0295MQDJQXfYJYiSs34kfvulvF31LiglCAybbc8geysVZv0xyHFzZQzbE5x28W/l9RSvr+kIHCLoK4uf7qE9AU4XePW3uF048uzddfwBd1GtKXlSsga16697x47xbSmlEK1M3EqlKw0u6YvzuDsphKm/Fodcoqfcp+28p3fC91VBj394tTUiL5imjHet+/uoZetpHi2fTxraWxujXyXv9euOxa1fNj32+rVsDYVqBX2H6KXn3JIt+cHDhqckd/PX+NYjlQmcY+yjVLTvOsOqWDpiH12K7BkOGFriNvaO4oK8j5/1xj9dVi8M+V0a0L3/f3QmCWxvMfnTzo4lvWkPTO5uNrrSiJwi6DO8p9s0k+lq8hb2zu0va298/e0n4eoZs71Nu0drqiTfdyZ2sslqJj+x4I+8/Yc/d/iuB7cWcKUX7VyIxnlztwvSlBRF/ds6iXK9wlK/XT5Nm/uC333F7VG+J723i0VsJ1y6LuLel2udxy9YK1eC7gpe7GINBy5AhR/Lr8bX+66ISrH8eIP3PzrX56nQ3w+cTSnxxVMhq2pOuK6l/WjIgbylCOlTHZRy9Hi0X/n3K1J949aFCqFlF85+x1HReAWQZ+Qc5X6a9yCdtjsWqv2DqdP3z5KQ2fnr83avL1Nh1/7kv46LPwULmHituaWtprrw+SUmcwzaKtnfxUJiVHL3oE7rv49UU7o/ritGrnGyvmOO+/QJ/Dx8YvW66hfvKKR88JdAJ5/Z0XJTaU79vVSDsUU/Xzx7+P09YDp2jYVMauEcy6zL1PAt5BrQFEuXd0fwn3OXPvaGTcNK+p9C60vLUy54pq7tJjjqJi8d9m7YNC1YPmG5kh9cstxbu6T4+awsblVv35xpi7/e+4R5UlD4BZBoabSdMTe1+vj5u88n++Q29jcomkrGnX1E1N8y3d/RXp4eTEjksLUuB1z/RB99A+lndjiElTKQmXPdQca2Mctz6oeCNGBP0nOO3bfkl/r3++ixFv+k2o1J93O27XB92Qxs3/kqumd4PVXHb2g+8jrIIfutWtgrea1z07TNc9Mzfva9Pa9rciZNmIfVer7vVCN0LL1zRnzN+dafsm60vNz7bNHcU3HhcRx05Hu0B+1L2t2kL5pW2tG/sa4BH0vZ9w0TP95z5jQ68jOV/nrf88MXO6V6cFdiMJYl2MgXrr8SZ7KLhuBWwSF8rils5/704F0Bgx5jtmgu+6gc1ofKz7NSL6cOX7FThEzbXl8yUunr2jUmwHV1BmbJeAjZ4/aCtMEHZfhcxs0cNDgsqy7MWJG8Aez+pD4g4NiLh2lNi9J1c9CvrnIk3aYeYXTvvXP4GTQ6RuNoAtf0PHs77y+yZfz61/jlhYc8JMO3IpN3uoPHiYuiT5fqP97LnRaOvMPwzJym+WK86LMM7rHTqnms3OPKf3mxS9MjearM1bnPRfENXp8Xn1mEuIP/PJVHf+rcNNEjV4Qfs7gpeubA28opq8InyYp+/WDpwUHaLlucmavzv9ei9ZuyVmBkZSWl2IQuEXQpy7/XKXpvvL+dCClTsMUGLj5mmDDKmZakNHz14YORj59x6i8zy9ZtyV0X6uLbh8V+HnrMppdussODtJ3WKX0zSo25cUTE0sfSVuoZiLuDPQ3vjK7pGmwZqwsPp9dWrXPnSf+5rWKv2e6ZjHstGUdrmsfnlLkjVAcXQh/8Ojb0Vfik71ff/HvXfMmD5vTPQdfruPAf36zEjO+drh4xmq/mGNQWZpzufOSpd+/2UupErW2c/jc7sFX9rUg17nvVzlqvIKcf+vI2AYQFBK0X0jSdc/mvwkPc1NZy+k9ikXgFkGdWd6dIX2q6NcndbKZW9/UGf3/7Olp+tqD3fuQhJE+OPvEktg3tyFFTrady6K1W/SxP74ZacJ05wpf/NMn/o3NLRm1VKVsnT+/OldH/eKV0MtHuW6mp8KZ7l2ss3epDc3x5uK7e/hC/fCx4i/SUXKOnXnk3iW/NqyFDZu1roiaMilzW8d9FC30+m+FrQVzLtzFZU3TNv1zbOaFtNQaze0x55Hz27Q1d83SV/7RfR7OXKexjMCtyLgtvdzkmKaRamnLfzO3sbm1YrXLYbocFErtEySo9BMKpKn6zAkH5F9nyG3SXuJsG/kGO5Q79VM1ELhFsHR9c7e5NIP0qUtt5n+OzbwTe31W/sEHG5pbtcKrGfHfLz42IbWect9BZB9sG0sMINL5vsYGzLJQXIG6fg367Au9fkkn/Po1Hf/rriaD1wNGxxU6lJ+cFD0XXbEW5uhXVY4Tz9aQtYn+zRzlIt+vArM3fPzPw0vudC7F39+rb57PHDy4JlwBvvnwJP38uekZo+RKzYU1vYzzs941vMiR2LkCtxi+mLgSkadH7+ayIkdNdlANd9R5iltzHI+rfLn8huaZF7VzPdlTBYbsqiNJFx+fCtiOO6h/3vcIewbLd8xE1XPq2wjcIhk5L1VVnevOJzsdSFj+pU+/cWjGuiTpiYnLU4+ll6/QDUWh6upc0k2cUQNNfwATtKZc2bu3t3WU1DRYjMCTXbHN4TnXXUKBCkgPlCnmK6m1kcZBwgaknTJq3OI9tadr2ospSpiaiXQiav95p9QJtsvdelTMvpsr+Aw6vzZty9/lwzmnh8cuyegrGMeNbpj5bIM+clB3lo3NrZGOqVzXnQ//fmhXWUJs/zCbJVd3nLhnp1laZMqO7HIEP+n97EGRG4FbDGbm6PuT3aQpxVN7kg4EK91kX+qIpfTHj9KiG/WjlrNJKJeiv58cLyhH7r1Samg6R8MV8dK59U16fWZ9ZpNkDZ1Ac22HOPaXvnW5T69jAjpht3d0hLoApoM7/5IfOGjPossnFbEfFFjuT0Pm6JI7RkW6gOd6pb+JPn0kFBqsMWV5o37x3HT9ccickssTZKd+pV0yz/zDsMBtHSZwc87p31NWdgvUWtqdxi1cp4GDBkcaeRvmhiXXfpI+NzUU6KJQzF7x0JjFgY9vbWnXyHmpQWDlrClOAgK3GOTqfPyMN29gnyIvvP6RVkEavBGfUWoI9tk93mHy+Vhn4BbhpJ712igjzaT4Z3wI+oaLjbdyBbblqHGbW79ZzS2FA3F/kUpJ43HuLSP0tax8YLU0GbS/0/Wy9V21sveMWBh53X3z1LjNWtX9Zi9sH8KgtR6w585hi5Uhrpx6dwybrynLGwOnwAsr1/khI3ALeSxEqcl6edoqXX5PcM6vs4/ap+Drc5UxaFuHOSW+NrNe33/07W6pXjZvb9PTk1OtL7m6ofgrCnI1F6/ZVLhfaM5zk/fz7uH5j5diAvrrnw+elu/7j76tK+4bLyl3cNdbELjFoJiTRJgTz/cendztMf9+31md7D1WynV9TdP2suT8yTZpyYauGoIqXq+nZd2hlZKr7eGxS/T5u0aHXr7Y2tVcwULYPGC55KqNeWfZxqKCqHTG+6iBZC3VuN2SY+7NYrOmNza36s+vzsm4OBfbRWLnHYpLlOzfjunvpNi5iEPfTIX80n9ZxGjFbLmK0lzCxPZRdtFvPzJZY3IEQv6a0qcnLe+8iQ7z7kGfL0wC4o3ejfztQ+erzXfzNGpeQ+f7FxrtKuX+rrNTPwWVPmd/vAr2+x/jS2GyNUfuRL90H9Cz/lhav9cdKtAvt1S1W7IESCc2zdfJ9OlJyzVpaVd+pDDnyZUbi5u8u9Tr4Ed+/0be57PP1bkuZmuacpd30pL1ofq4FbojW9CwJVJNTfAJtji/eG66JiwOznUVdF17KSuZ5NysvEvZcnVsjmpqjtQS1Zr+bHUPmJw+269fnKnbh87X4de+1DlHbbEDMjZl1bSvatyqDwalMQn42tKHT7FzEXdUvgdBTrnOAaXUfgZNsRbH/cJjE1JNtKsbt+nqJ6fomw+HzwwQFDhdelf+JLbz6psyjtP1vgFiG5pbO+e2Tve3zrbSN1AhvZ43s1JudKvpDdi/Rsxt0N3DF3T7jip5DsmYhSOrHEGl+MLdqW27wcswUOz3v9duOxT5isohcIvge2cfKSl1J5TL1U9OKTpoyK7Sds5pcUAfhuwdcWtLuwYOGqz7Ri3K2e/Ozz99zZbtbdq8vS3jji5fjZH/vHjKb3MHgM51LZtvdFgpTTbpRJbhOuAWOVAgz+LpVAwPj1mct69Fdofx+0MOza9UjVSYk27Y7baxuSV0+piHfc2Tl/z1rbyjD5MwIEJSxgjPGStT+4R/hNzvX56VsXzQZs1OGP3ytNUZ54Iw+eBmr27SZO9G8ZpnpnUObsolrj5ucUifAjY2t2Tkj1y9aZvm1Tdp5catWpRnRgv/d/Dc2+WdIDzdbSAoUfmc+uBzbylb8JO3jMg8Cxe5Ev85KL2eq7JSsazYuFWbt7d1jv7P5fcvz+5WQxh0Bplb36RvPDQxUvqgIP4WojCbYVVjtBvEqK8vJwK3CHboW/zmyw5eTvtd/lovKZVl+vtZyTHHLVzXeS5NJ9VN34395sWZuuC2kZqyrHDuovTQ8eN/9aref8MQHXHdy3mXX1jk3IJSVwCY79wfZqaG7AAxneiyn68TeK4A8G9vLtBPnownke3Pn5uuiYvX6xfPz9BFt6cSD4e573xswrKCgdCfhszRBbeNLKlc05Y3xt5sH9QvJugjfPufk/XNhydpTYjaNP/7Tlm2MWOi8Wxn3DS06MmhRy9YWzDvVBjOOT09abm2F8jdJUnjfe/X7N1APTGhqwN9dh+gMLXH2YGaP81Dei1B6/vs31LN+Y+OX6oVG7eqtb1Djc2t+vTto7oFPmEDt5kBffImhtjGq4poPUh/hnQtkt8nbxmhj9w4NO+gBP93PjGgZjxoQIgkdXS4wKDFf6zuv2dXTea21nad6U0JuHxD91pyf1/JXOsrhn+Mi5N0wsH5U29I0hX3jev2WJ2Zlgb0De5TJ3369lE6NcS1aGtLduqQ7sv89KmpenVmvaavLN8AgsFTV4WeAzgt1/Zva+/QwEGD9cBb3W+s2ztc0eefSiBwi6DY4f5S92rpMM1Gc1d3b2L7z3vGdjv5Z5cmzPRW6Wa0sEl8u/LKhfPqzHo9907q7nfGyk05p29KL1OM9GjdfffsGmjx9tLgpsz1W1r05KTlRb9HLtlNHKETTBbYznePKDL3lWd14zZ9+o5RRaVsMRWuSMmXwHNba7tGz1+rSUs2dPa7DJObase+wZOyB1m7uUX3jizcVLbad3f8xb+P0+cLNEGF8erMel395BTd+npxiaPT02VlH9vn3zpCl/z1rdDreSWrBtM56Y1Z9Z21KNl5IXO56LZR+uHjb2vaisZuE8cvKDGNiCS9NK1wDWtzETcSn7x5hLa2tKutxPbb9g6njg6ndv/Ugj7Zg2TSfv78dJ36uzc0Ym6DJvmm/fIfqv7a6Q9kTSsVdgqrfxcx0btfxowxLnNka67uFYFNpyYt39j9mrBhS2vemky/7OPb3ypztJewvDOLQJkSw6ddcd/4rvNpiNPvFl9fyVemr9a5twxXe4fr3Ef/9Gr3/q43vzZHZ/5hWKTp/sqhuN6wyFBKUtFSqo83bw8++WVfdLNPVmGOm4mL1+u8Y/cLXn9AeNbhUjmUwt48TlqyIeNkeMZNQ/XNjx3WbblbX5un75x1RLiVeuoCBj20FsiztHbz9oJJNKX4Rttla25t1x559ptc5V+xcasO7N81cvBjfxymc47et1tg9fay8PNNzli5Se8/MH8aiaCRpOmJwW94YYbmr0nVjvhrJIL496Wg5uX2DpeRNsdvm9cROd+F4LQC/TVLkR7dXWxXh1zTCc0OuAHLli8NiZPTf/tmW8nXdOofZTinvklzvP6V89dszmiGLJQu48LbRurf3ztDQVfGlvbCQdmkImo+N29v05z6ppwTkBfiXKpf08QlG3T0/nt0ez7XuTc9x+WX7x+vC47rOhfeM2KhvvnRw1RXZxnn1uz1hE058vqs/MlwwwQ6xfTzDQrGgs5rv34xc3vni4E+d+dovfKjMwOf29raLudcZyLxufWb9eacBl197nvL1tK+bst27bP7TjnPmxtyjKRNzy+8aO3mzn6hQTVyw2anavUamrbroHftEkeRY0GNWwQ7ltBUur6E2QfuD6jClboPAc/usxSmav7vIxdl1FZkvr77Yys3btVxvww3kXGQpu1tgXc2pWQR//OrczRw0OCMk1GhgCuoaSPIupgyrWcrNYnx6TcO7WxW37y9TUvWNQfWhhVzl5trome/7KYpfxCTDtqkwv1B/PvSqPndawPufDN3P9HWjg41bWstauL3WHhlfmrScv3mxZn65M3DYxlA4pzLGaB98+HgCesl6X8ez2zq98//m32sXpYjnUWxZqzcpMvuGasXp3avLZrmTTKe7zyzpcgRoX8fuTBUgBuk3TlN9G4Sswd6hOWvRbzpldl6ZHx6lprcryllhHqQXPuEvxk3NS1auPV99m9ZtbuucALh8YvWZ/R9DnL+rV1dObIDyUOveamz6861z07THcPmdw4OKIcbvNQh7TlqaQvNUTx7dVNgXsS0oC4CtYDALYJSatzCTjgdhv9Ob+CgwRkXUqlw7VNartqKoBPSNc9MC1/AMkufYPxBw38F9O3w+0wRTVVhzVndpGdDdoZ+KUSwlMvqTds0at7anH11pOJmDihlPNjJv3097/O5RkRnjwx8eMxifeeRriDlT6/O1eMTluqwawZnDJCRUsHocb98VaeE6IPjN+jpqZFqTv1dDe4btUjz1mzWkpBNSvk8OWm5nn+ntGYzvy0t7Trs2pc0bM6a2PMS+o1fvF5NARfzKcs26l/jlmbUqEc1OERai1z856YwAfbAQYP18JjFeZf5xXPTKzY5ea7a8t+91NUHdMbKTRoX8hqSHYDNWNnYmfctl/RIzLDCbJo6K1/uxpenpwLtUueH/d6/3u6slcuXduY//ja623mpmmgqjaBfCTVucco+aL50b2bQcs0zUytYmuiaW9q0UxH9n6K8T5zOu3VE6GXbO5yu+sf4kt+rUGBaHyKZZtq4RetL7neTS64Tf3ZA+YuAJJs/ezp14c0O/p4rMch5bMIyPTZhmUb+9OySXj8ioJ/QTTFk4v/pU/Eel0ETtlfKtc/Wzo1cKYL2w2y3D52vLTGfM4Lc+lrhvpTZfRTzyb5p+eK9+c8d5XLjy7N1yqHvLu+bhIwLh81e020AV3qgSSGPjl+qKz48sMiClYdV6m6i0k466SQ3cWL4nbwUre0dOrLAKEwAAHqiSz90kJ4KMejro+8dEGlWjXwW/O4CDZ+7Rl99oLzXe0lafOOFZV2/mU1yzp1UaLmaaCo1s/PNbI6ZzTezQQHP72hmj3vPjzOzgZUvZXelNJVGtcsO5a+R6s2O2m/3ahcBFXLVRwZWuwidDtt712oXAShamKBNUtmCNkm67Y15NTUbSyVUPXAzsz6S/irpU5KOkXS5mR2Ttdh/S9rgnDtC0i2SbqpsKXP733PfW9H3e+++8QQWr//4Y7Gsp6e57OSDq12ETr/7j+OqXYTYTbnh3FjWM3Cv6CO8vnP24ZHX8e2zoq9Dkk49LJ6mpHOO3jeW9dSKUid1z3ZAgVHPlVRK/s8gnz3xwFjWE4evnn5o1d77L2/M04O+pN73X1Wwwirxqh64STpF0nzn3ELnXIukxyRdkrXMJZIe9H5/StInrNTeiDH73seP1LD/PUuLb7xQ111wtEb85Gz96+un6olvfrjbsoXu8G+//ER98pj8J94rTntPyX12/I7YZzdNuO6cSOuY9stztfjGCyNXH9/0udoJUOLqwzD4B2dk/F1KoHHaYe/W7ZefGLks0391nq7+ZLQbjEtOOEBTro8edO25c3Fzaeby5k/O1k/Pf1+kdeyz+076w6UfKPn1z37nI/rZ+UdlbJfHvnFaSes67sD++ud/n1pyWdJu+c/jdeaRe0daxzlH76u7r/hQ5LIs+v0Fkdcx7tpzNOIn0c93w396dixB7bRfRj8GvnvWEdqvyKnJgvz5C8dHXsdfLjsh8jok6fpPZ9e1FG+f3XfUyz8MTjVSiL9G7+NH7VvycZj2yWP21YmHZCY6jnpcxanqfdzM7FJJ5zvnvub9fYWkU51z3/MtM91bZrn39wJvmeAJ2lSZPm6FdHQ41dWZtnqjVXbeoY+2t7VrXv1mtbR3aP89d9LyDVu1U98+Oi5rIvBtre1yLvWaOaubtHxDs1Y1btN/nfYeSdLPnpqqxyemUjWM+MnZuv+tRXr27RXaZ/cd9ecvHK+L73hLfeqss4Pq4hsvVHNLm465foie/NaHdfLA1B1+/aZt+vY/J2ny0o2698sn6eonp+izHzxQ115wtC69a4z22KmvDh+wm/73vPdp1x36aE59k9Y2tejwfXbV/nvunFHmNZu26aExS7Trjn31wUP669C9d9XQ2Wt08qHv1m1vzNO5x+ynDuc6Z4E4fMCuev57Z2i3Hftq6Ox6LVizRb99KXNqoJ+c9z79a9xS3fDpY3TCwf319Ycn6a7/+qB27NtHW1vbdcCeO+nQa17S1888VNddeIyemLBMR++/h449YA81eYkx/+Ovb+nm/zxBb81fmzES9ztnHa6fnn+UJOlL947VZScfok8ff4CkVKLTb/1zkj723n30+qx6fffsw3Vg/11094gF+sBB/dW4tVU//MQROn4Lh9IAABEYSURBVLD/Lt1G5U65/lztuUs/rdm0TXPqm3TmkQM6n/ufx9/JGIF63rH7asiMeh02YFf137mfJi9N5Uj7xFH76L6rTu5cbtaqTfrUX7rPqLDfHjtp9aZt+swJB+gzJx6oEXPXatT8Bp155AB9+vgDdGD/nTVg91TeuvSxvnzDVrV3OJ31pzc71/Pi98/QsQfsoXGL1qtfH1PTtjadeeQAPTRmsX7175ma99tPqV+fOq3bvF0f+r/XddVHBmaMOs7+22/sNZ/Q0NlrdNHx+2uPnfppy/Y2HXvDkMBld9+xb+f39n+feX+3aaDGX/sJ7bFzP+3UL9VlYHtbu+au3qwv3D1GW1vb1bfOciaTvu/KkzRq/lrtskMfHXfgnjr//ft3W+a0372hb3z0MJ33/v10+o1DdfzB/TtnIHn9xx/TOTcPlyS99IMzdcwBXbnCVmzcqnfvsoN29royzFy5SSs2btWZR+6t2aubdOmdozPK9aVTD9GXPzxQo+av1cqNW/WLi1IXvoam7Vq+oVm779RP59w8XD+/8Gg9M3lFRlqCL516iE4a+C79z+NTdMQ+u+m2y07UhMXr9eHD9+qskX960nJd7Zsp5MLj9td7991dt7zelYrnz58/Xu/bb3dddPsovfSDM3XEPrvpiYnLdNnJB6tvnzptbWnX1U++o7Pft49+4g2o+MdVJ2uHvnX6yOF76X2/eCUjp9kBe+6klY3b9MBXTtZZ79un8/GZKzfpyn+M1+Dvn6F99thJLW0d6nBOO/Xro1Hz1qp+0zZ96rj9tHzDVn3twYmdyZyf++7pGbMEzF69Seu3tOgjh++ttvYOzVi5Se3O6a15a7Vo3RY9Mzl1XL1rl37a0Nyq33zm/Rqw2w46sP8uGefXtvYOzVy1SW/NX6ebXuk+a8cOfev0g48foftGLdLxB/fXm3NSQUH2Deo/3lqkxycs0+zVTXrtfz6qwwbspj+8Mlt3+0ZQv/C90/XOso16776767/uHae2DqcFv7ugM2fhyHkN+tlTU/WevXbNmNj+guP208XHH6CfPzddaze3dH7vI+Y1aNn6rZpw3TkasPuO2rK9TVu2t2no7DUa9Mw0fenUQ3TQu3bRTa/MzjiWfnXxsbrhha6BGKcd9m498JVTtFO/Ppq5clO32Vp27tdHt11+oo7ab3c9On6pPn7UPjpp4Ls1f83mzmMgLX0e7ehw+vnz03XdBUeroWm7trW1646h8/Wib6Twbz7zfjnndP3zM/Snzx+vTx6zr9raO/TazHpddsohklJzX4+cu1ZH7LNbzoTV3z37cB17wJ76ziOTuz3n/56emrRc//vkFJ1/7H56debqbrlN37PXLloSMJtE+jv6+4iFmrGyURd+4ACdeeTeneedcgnbx61HBW5m9g1J35CkQw455ENLliwRkM05V/Lw8bjMXr1JO/fro/fsldm3qb3DqbW9o+wniLik84gFTeod9vWlvrY3qoV9F+Wzva29qJlFkPLK9FV69647ln/0apmFDdxqIR3ICkn+jkUHeY8FLbPczPpK2lNSt2RWzrl7JN0jpWrcylJaJF4tXPiO2q97ZncpNY1Xn7rknLijBl0EbcWphX0X5UPQVpqg2vOerBb6uE2QdKSZHWpmO0i6TNILWcu8IOlK7/dLJQ111a4qBAAAqLCq17g559rM7HuShkjqI+l+59wMM/u1pInOuRck3SfpYTObL2m9UsEdAABAr1L1wE2SnHMvSXop67Hrfb9vk/T5SpcLAACgltRCUykAAABCIHADAABICAI3AACAhCBwAwAASAgCNwAAgIQgcAMAAEgIAjcAAICEIHADAABICAI3AACAhCBwAwAASAgCNwAAgIQgcAMAAEgIc85VuwxlYWYNkpZU4K32lrS2Au+TNGyXYGyXYGyX3Ng2wdguwdguwZKwXd7jnBtQaKEeG7hViplNdM6dVO1y1Bq2SzC2SzC2S25sm2Bsl2Bsl2A9abvQVAoAAJAQBG4AAAAJQeAW3T3VLkCNYrsEY7sEY7vkxrYJxnYJxnYJ1mO2C33cAAAAEoIaNwAAgIQgcCuRmZ1vZnPMbL6ZDap2ecrNzA42s2FmNtPMZpjZD73H321mr5nZPO/nu7zHzcxu87bPVDP7oG9dV3rLzzOzK6v1meJkZn3M7G0ze9H7+1AzG+d9/sfNbAfv8R29v+d7zw/0reMa7/E5ZnZedT5JvMysv5k9ZWazzWyWmX2YfUYys//xjqPpZvaome3UG/cZM7vfzNaY2XTfY7HtH2b2ITOb5r3mNjOzyn7C0uTYLn/0jqOpZvasmfX3PRe4H+S6TuXa15IgaNv4nrvazJyZ7e393TP3Gecc/4r8J6mPpAWSDpO0g6Qpko6pdrnK/Jn3l/RB7/fdJc2VdIykP0ga5D0+SNJN3u8XSHpZkkk6TdI47/F3S1ro/XyX9/u7qv35Ytg+P5b0L0kven8/Ieky7/e7JH3b+/07ku7yfr9M0uPe78d4+9GOkg719q8+1f5cMWyXByV9zft9B0n9e/s+I+lASYsk7ezbV67qjfuMpI9K+qCk6b7HYts/JI33ljXvtZ+q9meOsF3OldTX+/0m33YJ3A+U5zqVa19Lwr+gbeM9frCkIUrlb927J+8z1LiV5hRJ851zC51zLZIek3RJlctUVs65Vc65yd7vTZJmKXUBukSpi7O8n5/xfr9E0kMuZayk/ma2v6TzJL3mnFvvnNsg6TVJ51fwo8TOzA6SdKGke72/TdLHJT3lLZK9XdLb6ylJn/CWv0TSY8657c65RZLmK7WfJZaZ7anUSfY+SXLOtTjnNop9RpL6StrZzPpK2kXSKvXCfcY5N0LS+qyHY9k/vOf2cM6Ndakr8kO+ddW0oO3inHvVOdfm/TlW0kHe77n2g8DrVIHzU83Lsc9I0i2SfirJ33G/R+4zBG6lOVDSMt/fy73HegWvqeZESeMk7eucW+U9tVrSvt7vubZRT9x2typ1wujw/t5L0kbfSdb/GTs/v/d8o7d8T9wuh0pqkPQPSzUj32tmu6qX7zPOuRWS/iRpqVIBW6OkSWKfSYtr/zjQ+z378Z7gq0rVBknFb5d856dEMrNLJK1wzk3JeqpH7jMEbiiKme0m6WlJP3LObfI/592h9KphymZ2kaQ1zrlJ1S5LDeqrVJPGnc65EyVtUarpq1Mv3WfepVRNwKGSDpC0q5Jfg1gWvXH/KMTMrpPUJumRapelFpjZLpKulXR9tctSKQRupVmhVHt62kHeYz2amfVTKmh7xDn3jPdwvVe9LO/nGu/xXNuop2270yVdbGaLlWqK+LikvyhVJd/XW8b/GTs/v/f8npLWqedtFyl1t7rcOTfO+/sppQK53r7PnCNpkXOuwTnXKukZpfYj9pmUuPaPFepqTvQ/nlhmdpWkiyR9yQtqpeK3yzrl3teS6HClboKmeOfhgyRNNrP91EP3GQK30kyQdKQ3MmcHpToMv1DlMpWV1y/iPkmznHM3+556QVJ6RM6Vkp73Pf5lb1TPaZIaveaPIZLONbN3eTUP53qPJZJz7hrn3EHOuYFK7QdDnXNfkjRM0qXeYtnbJb29LvWWd97jl1lqBOGhko5UqpNsYjnnVktaZmbv8x76hKSZ6uX7jFJNpKeZ2S7ecZXeLr1+n/HEsn94z20ys9O87fxl37oSx8zOV6pLxsXOuWbfU7n2g8DrlLfv5NrXEsc5N805t49zbqB3Hl6u1EC61eqp+0y5Rz/01H9KjVaZq9SoneuqXZ4KfN4zlGqymCrpHe/fBUr1l3hD0jxJr0t6t7e8Sfqrt32mSTrJt66vKtWBdr6kr1T7s8W4jc5S16jSw5Q6ec6X9KSkHb3Hd/L+nu89f5jv9dd522uOanAkU4nb5ARJE7395jmlRnD1+n1G0q8kzZY0XdLDSo0I7HX7jKRHlern16rUBfe/49w/JJ3kbeMFku6Ql3S+1v/l2C7zleqXlT7/3lVoP1CO61SufS0J/4K2Tdbzi9U1qrRH7jPMnAAAAJAQNJUCAAAkBIEbAABAQhC4AQAAJASBGwAAQEIQuAEAACQEgRuAmmVmi83Mhfh3VrXLGoaZ/dIr7y+rXRYAydS38CIAUHVDlJq3Mpd8zwFAj0HgBiAJbnTOvVntQgBAtdFUCgAAkBAEbgB6DDMb6PUhW2xmfc1skJnNMrNtZlZvZg+a2SF5Xn+smT1kZsvMbLuZrTWzl8zsUwXe9zwze8bMVppZi5mtNrO3zOxnZrZzjtfsa2Z3m9ly770WmdmNZrZTwLJ9zOxbZjbazBq996g3s8lm9mczG1D81gKQRARuAHqqx5WaE3SpUvOkbldq0ugJvonvO5nZxZImSbpCUqOkp5Wa/P08SS+Z2W8CXmNmdqekVyT9h6QV3uumSDpY0o2S9g0o28Hee10kaYykNyXtI+lnkp4IWP4+SXcqNffrOElPee+xp6QfSzq8wLYA0EPQxw1AT/QeSTtLOtE5N1OSzGwHpQKg/1JqYvdT0gub2X7qmuz9aufczb7nzpI0WNLPzWyUc26I731+KOlbkuolfcY5N9b3OpN0tqQNAeX7qqR7JX3XOdfiLX+0UhN/f9rMTnfOveU9/h5JVyo1wfjJzrl6/4rM7ARJK4vaOgASixo3AEkwLE8qkI05XvObdNAmSV6A9H1JmySdbGan+5b9uqQ9JL3lD9q8170p6Xbvz/9NP25mfSVd5/15lT9o817nnHNDnXONAWVbJukH6aDNW36WUsGjJH3Ct+w+3s/J2UGb97p3nHNrAt4DQA9EjRuAJMiXDqQ5x+P/zH7AObfRzP4t6UuSzpL0lvfUx7yfD+ZY1/1KNWOeYWZ9nHPtkk6StLek5c65Vwp+gkxDnXNbAx6f7f08IOuxJkkXmtm1kh5xzi0p8v0A9BAEbgCSoNh0IBudc7lq4hZ7Pw/yPXag93NRntd0SNpJ0l6S1ijVHCtJc4ooV9rSHI9v8n52DlBwzjWZ2VeVCh5/K+m3ZrZCqb5xgyU95pzbVkIZACQQTaUA0MWVadlsHcUs7Jx7StIhkq5SKoDbLOlSSf+QNNvMDo5QFgAJQuAGoCfqb2Z75nhuoPdzhe+x9O+H5XlNnaRtktZ7j6VrzbqNUC0H59xG59yDzrn/ds4dJekIScOUqvm7qRJlAFB9BG74//bu0DWLOI7j+PsT9A8wC5tNLTKUBVFBi0WrBlEUZjXP4JJgGjIWDRYR64rBIAoLC04WjApqMsw0MKjwNfxOeBibToeO3/Z+lXvu7rnfXXr4PL+77/ek3erK+g1DmLswrL4Y2fVyWF7bZKwbw3Kxqr4Pn5eBVeBgkvPbu9Q/V1XvaLdOAY797/NL2hkGN0m71czQYgOAJPuAOVrvs+WqWhz57gNaAcCpJLdGB0lyhlaNCjD7c3tVfQPuDasPk0yuOy5Jzv5i5m9LkkwkubxJI9+Lw9JiBWmPsDhBUg+mk1z/xf7HVfVsZP0jbUZsJclzWkPdk7TGt6usm1mrqk9JrtKa9s4lmQLe0Ko7T9P+5N7doHr0PnAEmAKWkrwC3gIHgKPD+Q4N5/9bY8AT4EuS17RWIvuBCdqt3TVgZhvjS+qIwU1SD353K3IFGA1uBVwCpmlvQhijVWw+Au5U1fv1A1TVQpITtLYf52gP/68N485X1dMNjingZpIFWiPeSdrbDT7TAtw8m7cx2aol4DatZclh4DjwlRbgZodrc8ZN2iPSfnckqX9JxmktPT5U1fiOXowk/QM+4yZJktQJg5skSVInDG6SJEmd8Bk3SZKkTjjjJkmS1AmDmyRJUicMbpIkSZ0wuEmSJHXC4CZJktQJg5skSVInfgDGoxjCMwLgwQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAJqCAYAAAA2WuG6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB08UlEQVR4nO3deXxU1f3/8fckIWHfZFdQ3GURERHRarXwFSlarVqtWovan1WLba3Whbbiiri07ihqK7ijIKCCsu/7vu97gABhyb5nzu+PkGEmmblzJ3Mzk5m8no9HHo9k5tx7T+7cmTmfe875HJcxxggAAAAAELaEaFcAAAAAAOIFARYAAAAAOIQACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHBIUrQrUJO53W4dOHBAjRo1ksvlinZ1AAAAAESJMUbZ2dlq166dEhIs+qlMjJozZ465/vrrTdu2bY0kM378+IBlH3jgASPJvPHGGyEdIzU11Ujihx9++OGHH3744YcffvgxkkxqaqplDBGzPVi5ubnq1q2b7rvvPt18880By40fP16LFy9Wu3btQj5Go0aNJEmpqalq3LhxlesKAAAAILZlZWWpffv2nhghkJgNsPr376/+/ftbltm/f7/+/Oc/a8qUKRowYEDIxygfFti4cWMCLAAAAABBpw7FbIAVjNvt1t13363HH39cnTt3trVNYWGhCgsLPX9nZWVVV/UAAAAAxKG4zSL4yiuvKCkpSX/5y19sbzNs2DA1adLE89O+fftqrCEAAACAeBOXAdaKFSv01ltvadSoUSFl/xs8eLAyMzM9P6mpqdVYSwAAAADxJi4DrHnz5unw4cPq0KGDkpKSlJSUpD179uixxx7TGWecEXC7lJQUz3wr5l0BAAAACFVczsG6++671bdvX5/H+vXrp7vvvlv33ntvlGoFAAAAIN7FbICVk5Oj7du3e/7etWuXVq9erebNm6tDhw465ZRTfMrXqVNHbdq00XnnnRfpqgIAAACoJWI2wFq+fLmuueYaz9+PPvqoJGngwIEaNWpUlGoFAAAAoDaL2QDr6quvljHGdvndu3dXX2UAAAAAQHGa5AIAAAAAooEACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgxbD8olLd/+lyjVmeGu2qAAAAABABVkwbtXC3pm08pMfHro12VQAAAACIACumZeQXRbsKAAAAALwQYAEAAACAQwiwAAAAAMAhBFgAAAAA4BACLAAAAABwCAEWAAAAADiEAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYAEAAACAQwiwAAAAAMAhBFgAAAAA4BACLAAAAABwCAFWDHPJFe0qAAAAAPBCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAqwY5nJFuwYAAAAAvBFgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQAK4a5ol0BAAAAAD4IsAAAAADAIQRYAAAAAOAQAqwYZqJdAQAAAAA+CLAAAAAAwCEEWAAAAADgEAIsAAAAAHBIzAZYc+fO1Q033KB27drJ5XJpwoQJnueKi4v15JNPqmvXrmrQoIHatWun3//+9zpw4ED0KgwAAAAg7sVsgJWbm6tu3bpp+PDhlZ7Ly8vTypUr9fTTT2vlypUaN26ctmzZol/96ldRqCkAAACA2iIp2hWoqv79+6t///5+n2vSpImmTZvm89i7776rSy+9VHv37lWHDh0iUUUAAAAAtUzMBlihyszMlMvlUtOmTQOWKSwsVGFhoefvrKysCNQMAAAAQLyI2SGCoSgoKNCTTz6pO+64Q40bNw5YbtiwYWrSpInnp3379hGsJQAAAIBYF/cBVnFxsW677TYZY/T+++9blh08eLAyMzM9P6mpqRGqJQAAAIB4ENdDBMuDqz179mjmzJmWvVeSlJKSopSUlAjVLnyuaFcAAAAAgI+4DbDKg6tt27Zp1qxZOuWUU6JdJQAAAABxLmYDrJycHG3fvt3z965du7R69Wo1b95cbdu21a233qqVK1dq4sSJKi0t1cGDByVJzZs3V3JycrSqDQAAACCOxWyAtXz5cl1zzTWevx999FFJ0sCBA/Xss8/q+++/lyRddNFFPtvNmjVLV199daSqCQAAAKAWidkA6+qrr5YxJuDzVs8BAAAAQHWI+yyCAAAAABApBFgAAAAA4BACLAAAAABwCAEWAAAAADiEAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYAEAAACAQwiwAAAAAMAhBFgxzOWKdg0AAAAAeCPAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBVgxzyRXtKgAAAADwQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQAK4YZmWhXAQAAAIAXAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGDFMJdc0a4CAAAAAC8EWAAAAADgEAIsAAAAAHAIARYAAAAAOIQACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQACwAAAAAcQoAVw1yuaNcAAAAAgDcCLAAAAABwCAEWAAAAADiEAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYAEAAACAQwiwAAAAAMAhBFgAAAAA4BACLAAAAABwCAEWAAAAADiEAAsAAAAAHBKzAdbcuXN1ww03qF27dnK5XJowYYLP88YYDRkyRG3btlW9evXUt29fbdu2LTqVBQAAAFArxGyAlZubq27dumn48OF+n3/11Vf19ttva8SIEVqyZIkaNGigfv36qaCgIMI1BQAAAFBbJEW7AlXVv39/9e/f3+9zxhi9+eab+te//qUbb7xRkvTpp5+qdevWmjBhgn7729/63a6wsFCFhYWev7OyspyvuINc0a4AAAAAAB8x24NlZdeuXTp48KD69u3reaxJkybq1auXFi1aFHC7YcOGqUmTJp6f9u3bR6K6AAAAAOJEXAZYBw8elCS1bt3a5/HWrVt7nvNn8ODByszM9PykpqZWaz0BAAAAxJeYHSJYHVJSUpSSkhLtagAAAACIUXHZg9WmTRtJ0qFDh3weP3TokOc5AAAAAHBaXAZYHTt2VJs2bTRjxgzPY1lZWVqyZIl69+4dxZoBAAAAiGcxO0QwJydH27dv9/y9a9curV69Ws2bN1eHDh30yCOP6MUXX9Q555yjjh076umnn1a7du100003Ra/SAAAAAOJazAZYy5cv1zXXXOP5+9FHH5UkDRw4UKNGjdITTzyh3Nxc/fGPf1RGRoZ+9rOfafLkyapbt260qgwAAAAgzsVsgHX11VfLGBPweZfLpeeff17PP/98BGsFAAAAoDaLyzlYAAAAABANBFgAAAAA4BACLAAAAABwCAFWDAs8Aw0AAABANBBgAQAAAIBDCLBimCvaFQAAAADggwALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsGKZyxXtGgAAAADwQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCEEWAAAAADgEAKsGOaKdgUAAAAA+CDAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBVgxzuaJdAwAAAADeCLAAAAAAwCEEWDHMmGjXAAAAAIA3AiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAArhrlc0a4BAAAAAG8EWAAAAADgEAIsAAAAAHBI3AZYpaWlevrpp9WxY0fVq1dPZ511ll544QUZY6JdNQAAAABxKinaFagur7zyit5//3198skn6ty5s5YvX657771XTZo00V/+8pdoVw8AAABAHIrbAGvhwoW68cYbNWDAAEnSGWecoa+++kpLly4NuE1hYaEKCws9f2dlZVV7PQEAAADEj7gdInj55ZdrxowZ2rp1qyRpzZo1mj9/vvr37x9wm2HDhqlJkyaen/bt20equgAAAADiQNz2YD311FPKysrS+eefr8TERJWWlmro0KG66667Am4zePBgPfroo56/s7KyCLIAAAAA2Ba3AdY333yjL774Ql9++aU6d+6s1atX65FHHlG7du00cOBAv9ukpKQoJSUlwjUFAAAAEC/iNsB6/PHH9dRTT+m3v/2tJKlr167as2ePhg0bFjDAAgAAAIBwxO0crLy8PCUk+P57iYmJcrvdUaoRAAAAgHgXtz1YN9xwg4YOHaoOHTqoc+fOWrVqlV5//XXdd9990a4aAAAAgDgVtwHWO++8o6efflp/+tOfdPjwYbVr104PPPCAhgwZEu2qAQAAAIhTcRtgNWrUSG+++abefPPNaFcFAAAAQC0Rt3OwagOXXNGuAgAAAAAvBFgAAAAA4BACLAAAAABwCAEWAAAAADiEAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYAEAAACAQwiwAAAAAMAhBFgAAAAA4BACLAAAAABwCAEWAAAAADgkKdIHLC0t1YYNG1RSUqLzzjtPDRo0iHQVAAAAAKBaONaDlZubq3HjxmncuHHau3ev3zKffvqp2rRpo+7du6tnz55q1aqV/vGPf8gY41Q1AAAAACBqHOvBGjt2rO69914lJiZq586dlZ6fPHmy7rnnHrlcLk9AlZ+fr1deeUW5ubl66623nKpKreFyRbsGAAAAALw51oM1ffp0SdKll16q9u3bV3r+ySeflCQZY9StWzfddNNNatSokYwxGj58uNasWeNUVQAAAAAgKhwLsDZu3CiXy6Wrrrqq0nOrV6/WunXr5HK59Oc//1mrVq3SuHHjtGzZMjVo0EDGGH388cdOVQUAAAAAosKxAOvIkSOSpPPOO6/Sc1OnTpUkJSUlaciQIZ7Hzz33XN16660yxmjBggVOVQUAAAAAosLxAKtx48aVnps/f74k6bLLLtMpp5zi89yll14qSX7nbQEAAABALHEswHK73ZKkzMzMSs8tWrRILpdLV155ZaXnWrZsKUnKyclxqioAAAAAEBWOBVjlPVN79uzxeXz16tU6evSoJKl3796VtsvPz5ckJScnO1UVAAAAAIgKxwKsCy+8UMYYjRkzxufxTz75pOxACQn62c9+Vmm78jWz2rZt61RVag2WDwMAAABqFscCrBtvvFGStHnzZt1xxx2aPHmyhg4dquHDh8vlcqlv375q0qRJpe2WLVsmyX9yDAAAAACIJY4tNHzvvffq9ddf17Zt2/TNN9/om2++kVS27lViYqKefvrpStvk5eVp+vTpcrlcnmQXAAAAABCrHOvBSk5O1pQpU9S9e3cZYzw/9evX14gRI3T55ZdX2mb06NHKy8uTJP3iF79wqioAAAAAEBWO9WBJ0hlnnKEVK1ZoxYoV2r59uxo0aKArrrhCzZo181u+bt26euaZZ+RyufwGYAAAAAAQSxwNsMr16NFDPXr0CFruzjvvrI7DAwAAAEBUODZEEJHnckW7BgAAAAC8VUsPlpXDhw9r8eLFKikpUbdu3XTWWWdFugoAAAAAUC0cC7COHTumUaNGSZIGDBjgN+36Cy+8oKFDh6q4uNjz2O23366PP/5YdevWdaoqAAAAABAVjgVYX3/9tf7+978rOTlZAwcOrPT8F1984UloYbxWyP3666/ldrs1evRop6oCAAAAAFHh2BysWbNmSZKuvPJKnXLKKZWeHzJkiKSydbFuvPFGPfLII2rfvr2MMRozZozmzZvnVFUAAAAAICocC7C2bt0ql8ul3r17V3pu4cKF2rVrl1wul1588UWNHz9er7/+upYtW+ZJ4f7ZZ585VRUAAAAAiArHAqwjR45Iks4555xKz02fPl2SlJKSor/+9a+ex1u1aqU77rhDxhgtXrzYqaoAAAAAQFQ4FmAdPXpUktSgQYNKzy1YsEBS2fDBis9feOGFkqS9e/c6VRUAAAAAiArHAizXiUWZjh8/7vO42+3WkiVL5HK5dOWVV1barny+Vl5enlNVAQAAAICocCzAatWqlSRp27ZtPo8vXrxYWVlZkqTLLrus0nY5OTmSpHr16jlVFQAAAACICscCrO7du8sYo9GjR6uoqMjz+EcffSRJSk5O1hVXXFFpu507d0qS2rVr51RVAAAAACAqHAuwfvOb30iSUlNT1adPH40YMUL333+/PvnkE7lcLv3qV7/y20u1ePFiuVwuXXDBBU5VBQAAAACiwrGFhu+44w698847WrJkiRYuXKiFCxd6nktJSdEzzzxTaZuMjAzNnj1bktSrVy+nqgIAAAAAUeFokotJkybppptuksvlkjFGxhideuqp+vbbb9WpU6dK24waNUrFxcWSpL59+zpVFQAAAACICsd6sCSpefPmGjdunNLT07Vz5041aNBAnTp1UkKC/ziuU6dOGjlypFwul3r06OFkVWoFV7QrAAAAAMCHowFWuZYtW6ply5ZBy1177bXVcXgAAAAAiArHhggCAAAAQG1XLT1Y5YqKirRq1SqlpaUpOztbjRo1Urt27dS9e3fVqVOnOg8NAAAAABFXLQHW0qVL9corr+jHH3/0WROrXHJysq6//no98cQT6tmzZ3VUAQAAAAAizvEhgs8884yuuOIKTZgwQYWFhZ5sgt4/hYWFGjdunC6//HI999xzTlcBAAAAAKLC0R6soUOH6oUXXvCkaW/UqJF+9rOf6dxzz1XDhg2Vk5OjrVu3av78+crOzlZpaamef/551alTR//4xz+crAoAAAAARJxjAda2bdv03HPPyeVyKTk5Wc8995wefvhh1a9fv1LZ/Px8vfvuu3rmmWdUUFCg5557TrfddpvOPvtsp6oDAAAAABHn2BDBESNGqKSkRC6XSxMmTNATTzzhN7iSpHr16unxxx/X+PHj5XK5VFJSohEjRjhVFQAAAACICscCrOnTp8vlcumWW25Rv379bG3Tr18//eY3v5ExRtOmTXOqKgAAAAAQFY4FWKmpqZJkO7gqV77YcPn2AAAAABCrHAuw8vPzJUkNGzYMabvy8uXbAwAAAECscizAatGihSRp8+bNIW23ZcsWn+0BAAAAIFY5FmBdfPHFMsZo1KhRKigosLVNfn6+Ro4cKZfLpYsvvtipqgAAAABAVDgWYN18882SpD179ui2225TTk6OZfmcnBzdfvvt2r17tyTplltucaoqtYbLFe0aAAAAAPDmWIB19913q1OnTpKkSZMm6fzzz9fQoUO1dOlSZWRkqLi4WBkZGVq2bJmGDh2q888/X5MmTZLL5VKnTp30u9/9zqmqAAAAAEBUOLbQcEJCgr777jtdccUVOnz4sNLS0jRkyBANGTIk4DbGGLVu3VrfffedEhIci/VqDRddWAAAAECN4mhUc9ZZZ2nVqlXq37+/jDFBfwYMGKCVK1fqzDPPdLIaAAAAABAVjvVglWvbtq0mTZqk9evXa9y4cVqyZInS0tKUnZ2tRo0aqW3bturVq5duueUWde7c2enDAwAAAEDUOB5glevSpYu6dOlSXbuHSHIBAAAA1DRRn/j03nvv6eKLL1aPHj2iXRUAAAAACEvUA6y0tDStXr1aq1evdnzf+/fv1+9+9zudcsopqlevnrp27arly5c7fpxocYkuLAAAAKAmqbYhgtF2/PhxXXHFFbrmmmv0008/qWXLltq2bZuaNWsW7ao5hiGCAAAAQM0StwHWK6+8ovbt22vkyJGexzp27Gi5TWFhoQoLCz1/Z2VlVVv9AAAAAMSfqA8RrC7ff/+9LrnkEv3mN79Rq1at1L17d3300UeW2wwbNkxNmjTx/LRv3z5CtQUAAAAQD+I2wNq5c6fef/99nXPOOZoyZYoeeugh/eUvf9Enn3wScJvBgwcrMzPT85OamhrBGofOmGjXAAAAAIC3uB0i6Ha7dckll+ill16SJHXv3l3r16/XiBEjNHDgQL/bpKSkKCUlJZLVBAAAABBH4rYHq23bturUqZPPYxdccIH27t0bpRoBAAAAiHdxG2BdccUV2rJli89jW7du1emnnx6lGjmPLIIAAABAzRK3Adbf/vY3LV68WC+99JK2b9+uL7/8Uh9++KEGDRoU7aoBAAAAiFNxG2D17NlT48eP11dffaUuXbrohRde0Jtvvqm77ror2lUDAAAAEKeqlOQiMTHR6XpUi+uvv17XX399tKsBAAAAoJaoUoBljJHL5ZJxIE+4i4lEAAAAAOJElYcIOhFcObmf2ojQFAAAAKhZqtSD5Xa7na4HAAAAAMS8uE1yAQAAAACRRoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLBiGBnuAQAAgJqFAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYAEAAACAQwiwYphLZLkAAAAAahICLAAAAABwCAEWAAAAADiEAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYMUwF0kEAQAAgBqFAAsAAAAAHEKABQAAAAAOIcACAAAAAIcQYAEAAACAQwiwAAAAAMAhBFgAAAAA4BACLAAAAABwCAEWgEoOZxeouNQd7WoAAADEHAIsAD42H8zSpUNn6FfvLoh2VQAAAGIOARYAH9+tPiBJ2pSWFeWaAAAAxB4CrBjmcrmiXQUAAAAAXgiwAAAAAMAhBFgAfNAvCgAAUHUEWAAAAADgEAIsAAAAAHAIAVYMYygXqgO5UwAAAKqOAAsAAAAAHEKABQAAAAAOIcAC4MPF4FMAAIAqI8ACAAAAAIcQYAEAAACAQwiwAPggiyAAAEDVEWABAAAAgEMIsAAAAADAIQRYAHwwQhAAAKDqCLAAAAAAwCEEWDGMZAQAAABAzUKABcAXkTsAAECVEWABAAAAgEOSol0B2DNmearyi0v1q27t1LR+crSrAwAAAMAPAqwY8fJPm3U0t0iXnXkKARaqFQMEAQAAqo4hgjHCdWJeTKnbRLkmAAAAAAIhwIoRiSdeKe8Ai54GVAdyXAAAAFQdAVaMSDzR6nUberAAAACAmooAK0a4PAFWlCsCAAAAICACrBiRmMAcLESGi8GnAAAAVUaAFSPKAyyGCAIAAAA1FwFWjChPPOCT5IJsBAAAAECNQoAVI0hygUghbgcAAKg6AqwY4Rki6I5yRQAAAAAERIAVIzwLDdODBQAAANRYBFgxonyhYTdZBFHNGCEIAABQdQRYMYI5WAAAAEDNV2sCrJdfflkul0uPPPJItKtSNX4WGiYZAQAAAFCz1IoAa9myZfrggw904YUXRrsqVVYeSxl6sAAAAIAaK+4DrJycHN1111366KOP1KxZM8uyhYWFysrK8vmpKeitAgAAAGq+uA+wBg0apAEDBqhv375Byw4bNkxNmjTx/LRv3z4CNQwN/VcAAABAzRXXAdbo0aO1cuVKDRs2zFb5wYMHKzMz0/OTmppazTW0jw4sRAq9pQAAAFWXFO0KVJfU1FT99a9/1bRp01S3bl1b26SkpCglJaWaa1Y15etgeU/Boh0MAAAA1CxxG2CtWLFChw8f1sUXX+x5rLS0VHPnztW7776rwsJCJSYmRrGGVcUgQQAAAKCmitsAq0+fPlq3bp3PY/fee6/OP/98PfnkkzEXXNFbhUhxhTBG0BgTUnkAAIB4F7cBVqNGjdSlSxefxxo0aKBTTjml0uOxhCztqCmeGLtGC3cc1ZRHrlKDlLj9KAEAAAhJXCe5iCd0EqCm+Wb5Pu07nq8f1hyIdlUAAABqjFp123n27NnRrkKV7TqSK0nKzC+Ock0AXwT/AAAAJ9GDFSOO5BRJkoZ8t+Hkg7RsUQMwbBUAAOAkAqwYU1TqjnYVEOeI2wEAAKqOAAsAAAAAHEKABSAsjBAEAAA4iQALgA8Xq64BAABUGQFWDKMZDAAAANQsBFgAwkIWQQAAgJMIsAD4IIsgAABA1RFgAQAAAIBDCLAAhMWQRxAAAMCDAAuAD0YIAgAAVB0BFgAAAAA4hAALQFjIIggAAHASARYAH2QRBAAAqDoCLAAAAABwCAEWgLAwQhAAAOAkAqwYxlAuVAcXeQQBAACqjAALAAAAABxCgAUgPKQRBAAA8CDAAuCDoacAAABVR4AF1CLGGB3PLXJ2n47uDQAAILYRYAG1yIuTNqn7C9M0ce2BaFcFAAAgLhFgxTCyvSFU/5u/S5I0dNKmKNcEAAAgPhFgAQgLOS4AAABOIsACaiGCIgAAgOpBgAXAh4s0ggAAAFVGgAXAR6jhlaE7DAAAwIMAK4bR0QAAAADULARYQC1kWL0KAACgWhBgAQgLoRoAAMBJBFgAfDD0FAAAoOoIsIBayCovBfEVAABA1RFgxaC0zPxoVwEAAACAHwRYMaioxC2JngZUD9bBAgAAqDoCLKAWskpMQXwFAABQdQRYMai41B3tKgAerDMMAABwEgFWDFq2+3i0q4A4RgcWAABA1RFgAbUQvU4AAADVgwArhjFXBtUixAvLKlYrLnVr8c6jKiwpDa9OAAAAMYIAK04cziqIdhUQJ5yM24dO2qTffrhYj49Z6+BeAQAAai4CrBjkb3hX6vG8yFcEMcy5MYLGYrzhqIW7JUnfrzng2PEAAABqMgIsAD4YegoAAFB1BFgxyH8DmFYxAAAAEG0EWDHI34gseh0QCqssgi6CdQAAgCojwIphNIRRHQjWAQAAqo4AKwaR8hrhIogCAACoHgRYMei5HzZWeoz2MkJhPUTQuX0BAADUNgRYcWJHem60qwAggKM5hdp4ICva1QAAABFAgBUnDrHQMBzC8EHn9Xhxun759jxtOZgd7aoAAIBqRoAVy2gIR4UxRuv3Z6q41B3tqlSZ1ai+UJOnGAcXLY53S3cfi3YVAABANSPAihGN6yZVfpB2bVSMmLNT178zX3/7enW0q4JYw4Q1AADiHgFWjEhOSox2FXDC+7O3S5Imrk2Lck2qCT2jAAAAVUaAFSPcfu58MzQLVWUc7EmhU8Y+ThUAAPGPACtGlPiZ70PDFtWBDiwAAICqI8CKEQRTiBQXaQSrDe9jAADiHwFWjCiNs5ZZZl6x/jVhnVbuPR7tqiBM8XVlVi8nh2YCAICaiQArRpS6/c3BOinWOh1enLRRny/eq5vfWxjtqtRK1mnaAQAAUFUEWDHCX5IL78dCXbso2ran50S7CkDE0X8FAED8I8CKEf56sBAd8T5HKdR/j1FvAAAAJxFgxYh4i6/iO0Sp+ayCojiPH6OKYBQAgPhHgBUjnr+xc6XHaKzZV1Lq1n+mbtGiHUejXRUAAADEMQKsGPH73mdEuwqOivQwu6+Wpeqdmdt1x0eLI3rcWBTqfD6rBa/pDfPFPREAAOJf3AZYw4YNU8+ePdWoUSO1atVKN910k7Zs2RLtajmKxpp9e47kRrsKNYrddOGkFXcW5xMAgPgXtwHWnDlzNGjQIC1evFjTpk1TcXGxrr32WuXmxlFD2zuLoEVPwfHcIu0iwIBN3teSnXiAmAEAAOCkpGhXoLpMnjzZ5+9Ro0apVatWWrFiha666iq/2xQWFqqwsNDzd1ZWVrXW0UlWI7G6vzBNkjTviWvUvnn9yFQoiEiPHGOoGgAAACIhbnuwKsrMzJQkNW/ePGCZYcOGqUmTJp6f9u3bR6p6YbPTibBy7/Fqrwdig91Op0h1Tu0+kquDmQUROhoAAED1qRUBltvt1iOPPKIrrrhCXbp0CVhu8ODByszM9PykpqZGsJahY2SWfTV57aqaPC8n3LrZOeuZecW6+t+zddmwGWEdKxbU4JcaAAA4JG6HCHobNGiQ1q9fr/nz51uWS0lJUUpKSoRqFZ7cwhINnbTJ87edhiyNu5rnjWlb9fniPfru4St0WrMaMnwzwsHo3mN5ET0eAABAdYr7HqyHH35YEydO1KxZs3TaaadFuzqOeXP6VhWWuD1/22kTW6XTjrRIdyg5eTgn6/7WjG06mluk16dudW6nDqo5V0x8sHoPrthzTL2HzdBP69IiWCMAAOC0uA2wjDF6+OGHNX78eM2cOVMdO3aMdpUctfVQjs/foa5dFCtKSt3KLyqNdjVqlVCvJKthhDV5aGZNc8/IZUrLLNBDX6yMdlUAAEAY4naI4KBBg/Tll1/qu+++U6NGjXTw4EFJUpMmTVSvXr0o1855tnqwYrA74hf/maO9x/K0/rl+apgSxuVaw9v5NfWliUSadmKwMkVePdIAACB2xW0P1vvvv6/MzExdffXVatu2refn66+/jnbVqkW95MSgZZwIsCauPaC5W9PD3o/dHrfy+TlrUjMCltl+OFsv/bhJR3MKA5ap6SKe6MLicD7rYNkI/axKEDv5snqZCTQBAIgPcduDVZMzs9VkpW6jxAT/Lb39Gfl6+MtVkqTdLw+IZLUs9XtznkrdRjvTc/TfgT39lqnpQyiduFqzC4rldktN6tcJXrawJOBzoZ4r3moAAAAnxW0PFioL1g7eezRPFz47RS//tNnv80eyHewhcjDeKXWX/Wdr9mU6t9MICzdIcbuNuj47Vd2en6qCYufmrNkaImhxZcV7r4zbbfS/+btsrzFn3dsX5ycLAIBaggArTtibK2Nd6M0ZW5VbVKoRc3Y4VCvnhJuG3m5Dv7CkVIezY2/B26LSk/N30sMMhEMNimpzD9bEdWl6YeJG3fzewogdc+SCXfqRTIMAANRYBFiII+G39Pv8Z44uHTpDu4/kOlAf+5yMUWpzwBNp2w/nBC/kJdybANsOZeu5HzbqT2QaBACgxiLAqkVqc7vbbqfMvuP5kqTpmw5VX2X8qElzBr3Plb0hglb7iu9hb5H+747mFkX4iAAAIFQEWHHCVvM8ltNpx2ka+nKO9mCFubeQX2cHT3xNCjTtCHk4ZbivTVhbAwCASCDAihc2GqbhNu7sKi51K/VEevVAYrmhWC11r6HBb7hp2mP6hbYh0j10LNwMAEDNR4AVJ85u1SjsfYTSWLTqabjroyW68tVZmuPAellOqentUieD36p2Ap18TUnTbpeTCUHs7KqmX8cAAIAAK24kJ0X2pbRqKC7dfUyS9NWSvQHLhNpQtBP81eJ2vs/5qcp5ePCzFbpx+AJPynvPvsJN027j2D4LG8fYixjpeIf4CgCAmo8AK24YbT+coxcmbgyYZtzJxmuMtYMdHcpVE4dphVulyRsOau2+TK3dl+Eb8NjYNtzrqqYGVev3Z+rxMWt0MDNw2n4nLwU711UNvPQAAEAFSdGuAJxzwzvzlV9cqs0Hs/TF/7vM8f2HGqRY92w431KMtQQJ3hwNfsPcGW34Mte/M1+SlHo8T6P/2NtvmVCD7bBfGyIsAABqPHqw4oQxUn5xqSRpbWqm/zKS9h3PU/+35mnM8tRKz4fSdquJwczxvOKAz0W6XWqM0VPfrtXwWdttlq/mCtlUsRp2XmfLNO02znuoPWbBZOYVO3p9bjsU2lpX1YnwCgCAmo8AK0bN3eabQMLuUK7nf9ioTWlZenzs2rCOb+d48b4GkpXVqRkavSxVr03ZYqu8o0kuwtw+9F6ZMA/ooPnbjqjb81P15LfhXd/ewg0gffYVdrbI2vueAgAgVhBgxaiqNNSMjPKKSqt0vDWpGVqy62hIx3cyaLDbrhy/ap/fFPGRbpYWFLtDKu/kPKZIz7ULdyiok4H4WzO2SpK+Wb7PsX1a9YY5OrcvxDI1sRcZAAAwBytuONHWstrHjcMXhH+ACPjb12skSbtfHuDzeKSboqEvQFszGFOxEW9nozCP6bWDsqCh6kGL3R6e8uDETnlHe7BCK255PGNIegEAQE1ED1acsDVXxtGejeA7W7j9aMDnIt0wXLLrWEjlwx7KFd7mYQo3kUIkj+Ysu1UfOHKZbhq+QG53eO+bUF9ny+vKzny1MNPxx4Kth7L107q0aFcDAIAqI8CqRYysG8/ez+UUlujLJXt1JKfQ/75stO6yC0tCq6CFcAOW/CoOjayqWJ7H5MNGvdbv959UxS67QYPbbXQ8t8hyXwk2zrvbbTR3a7rW7MvUziO5QctHaihe6MFaTb1ownPtG3P10BcrtWhH4Bs0AADUZARYccKnqWXRUrPbJvvX+HX6x/h1+t1/l4RTrYAi3YNV849XUxrLJuS6L4xQQ/iBz1eo+wvTtHLv8YBlEkL+RIt0b59zx6spV0x12ZiWFe0qAABQJQRYccIncArU8grhjvdP6w9KkjYfzK56pWqQSA/Zc3ToWBTlFIXXCxlqmnYr0zYekiR9PH9X4H2FulabrWQt9uSG2WPrZK/n6tQM/XvKFhUUR7bn1kk1qYdu95FcXfHyTI1aEPjaAwCgHAFWHNt+OEc70k+u4eNkcyX8OUqhNSZrUnpqW9neojiPycnXJtzhf3aEmgEx4kknLAqVeiWLPJztfzitk3x7sAJX7KbhC/TurO16f/aOaq9TbfD8xI3an5GvZ3/YGO2qAABiAFkE44R3Yyu7sEQFxaXq+/qcSuU2eQ27OZZbpOYNkiVJx3OLNHbFydTWwRqq4Q51cjKFuy2h9g6En+8ttOM5eLc+7D35ZKoLc0hbmFXxxzJtejXMfatR62B5z1ezsa+th2K3B7oGdWCpuDS0ZRcAALUbPVjxokJj5NXJ/he4PeqVJCAzv9jz+19GrwrtcDWo8VMT1aAOt7BE4nV2MkhJiPScqBDLWwWH3u/HgMeLk+vKjojfhLFgJ3kKAADlCLDi1Md+5gpYNUznbTvi83ewIXzh9+9EtsES6tHCrV+oC8LWrCGCXvsKb1eh9yjZOKLb4h8MtSFsqwfLwSjTRlZ4SxXXwQomlm+E1KS6E18BAEJBgBUnbK0HW6HF4lTDceqGgzV+8nfks72dPGC4jeqC4lJ9tXSv9mfkh7cjGypeEjWpkVsuYutSlZexeM77urJzbKvg0A7flPZ2AvfAZQqKSzV81nZtPFAzs/UF++/SswtrbAp9AEDtRoAVJ5xuZwSdg+V1wD9+tkLP/rBRGw7YT4gQasATa3eQQ+7Bsijy7sztGjxunf7Pz5w6v/tyNDiseXOwrALW6gikrQO60A5Yk3qw3pu1Xa9N2aJfvj0vvEpJmrLhoK7592yt2xf4M6CguFT3jFyqTxbutrVPq7p/uWSveg6drtem+B8K7bSalGQHAFDzEWDVIhXbK1aNhmDNCX9tn/QIZFGrqoinaQ9xvSKrMpPWpUmS8iwWS66u+SrhBlihnnh7h7PsUwpra//lHUxA4mDAGu51tc7BDJEPfLZCu47k6v99uixgma+W7tXsLel65vsNtvZpde0N+W69JOm9CGVJJLwCAISCACtOVOVOvN3Gnr9ykR46lpkXPAGAlUjfgQ4125vVa7HrSG5Ixw7ntXH6ZbUzJyrUl8aqFyjkJBdh9gKFXvea07tYHYkb8goD3wSwukEQqpq/cDgAoDYjwIoTRSXB0whXd0xUXFp9R/hiyZ5q23eoQl08N+xeoBCtTs0Ia3vvYC/cqoca8ISrOhrCVqfA+/yU2jhZNWmIoN1zNXjcWv3x0+W2bsg4ea1bpuOv8UuHAwBqMwKsODHKxrwGd7itO29+dnX/p8s1d2u6c8dwUG1qHi3ccdSxfYU7PK46ekmsGt7VkUXQcnuv8/PTiaGc1Xk8n/8uAsMpJemrpamauvGQth3OCVrWyflxlmzsyxijhz5foRcnhr84MD1YAIBQEGDFiZ3pwYeRhdJYDjakLtC+HhuzxvYxQhHuEL+ILwhbTem07fQihHqmvJMOOJ1FMNTXzU4PiPUQwWpYUNqiiHd1M2wMY430EEEnO09LbPRQW9Up1F6ncLNFrtufqZ/WH9R/54ef4ZT4CgAQCgKsWsTJxtb6/f5TO1fXaLhwGziRHlLk3dAPN522t/Sc4IlEvl9zQN8sT7W1P0mWSQecHNIW8Bheo1uftZEAwbJK1TEHy+KIoZ4eJ7MyhvtWq45FmZ2cr2Y3PX4gdoZN20UPFgAgFARYtUgojeVg7Ym0zPDWZKqOoWPeKvX0eB0uEuv++M7BCl7e6cD0ibFrHdnP61O36Klv11Y5+52dRnxhycnkB98s3xe0vKNDBO2UsdmDZceni8KbS+jbMxpub1ho5e0czroHy/njWW4f3uYAAFQZAVac+L9OrYOWcTbddOCj2GGncefdgHQyHvvv/J1hbW8nYPLNIli9c9+q04HMAo1elqqNaWVB6ZGcQn00d6eO2uhJk+wFPCGnTXc0i2Dwo5fYvDMRiV4O7+vKVuBuc19OcTTJhUXt7dTdyTmnkU+q4axSJ+ffAgCCIsCKE5ed2Txome2Hgk9S9wjSngjUkDqSU2Rr994N72W7j2nP0dBSkYcq9OQAgR3LDf4/hroO1noH1ySqDgXFZcOt7v90uYb+uEkPfb7S1nZ2AqxGKUkh1cXRXpIQy1uJdBvW3pA9i3NVDSnmHV0EOsx9OflyxPIQwcU7j6rTkMn6auneaFcFAGoNAqwYkhRmzutxq/b7/G23AeJv3k+4jRfv/+Q3Ixbp56/NrnwMn4M418KJRDvYZ66MjakgWQUl1VYXZ5SdtVV7MyRJS3cfs7WVnYZpSlJiSDWxDLCimEVwQoX3V7WLwPw4n8OFnbLfueGbdvbkZMdxNAKstfsydMRmT7GVP32xUoUlbg0et86BWgEA7CDAiiGtGqUEfM7pOTzZXg3+S4fOcHbnCr3BEm4DJzP/ZIa34lL7k9+P5xZVqZHj24NVtRdn3rZ07T2a5/NYdQeHgXo8qnp9VUfD1G3x8oU69DRc3rs6aqNn00k1cYigo8IMpJ18ne2eK2OMI0MT1+7L0K/eXaBLXpwe9r5q+KsMAHGJACtORHqEffmQNjvD5fyJ9JyALK8Ay+48EbfbqPsL03TJi9NVUFwafIMTjDE+83aq0s5bvvuY7v7fUl312iybxwz9GP7sPOJ/qGZVd18dyUycTAW+Mz2EYbP+6uLgdXzNeS1DKh9uVr+QMy6GVrzy4aohAUl1bu/DZtX/+NkK9XtzruVNnILiUi3YfsQyy+Hinc6tZefkW/BwVoF+WpfGnC4ACIIAK04cyAg9q9+R7KoPP/liyV59v+aALn5hWpW2L7LRi+T9FR52mnavVsaP6w4Gvbtt5FvH9BDO1e8/Xqrr3pzn+dtuY2nroWxd9eosjVu5zzMUryK7CReqavaWw34fr2oAF+kAK9RRtJPXHwyrLk6+GokJoX0cu42UW1iipyes16IAi0s7GF85mmLejnDXwXIy4Ybduk87sSDzyj3HA5b56+hVuuu/S/TyT5stjmf/bAUPdpx7D/Z9fY4e+mKlPlu0O2CZwpJSvTV9m9btq9nzSgGgOhFgxRCrO8AvTtoU8v5u/3BxONXRX75aFbTM54v9p6XeZpFwo6C4VIezC3wec7mkpbuO6fVpW1USwhC/ci0aJvv8Heod2FDaavO2HfH5e9nuwI0tb38fs0Z7j+Xp0W/WBFzvau7WdPsVqYJA/2ewgPSHNQf8Pl4dQwSt1rsNNaCbsfmwth7KrnJdnByaW5UMiO/O2q7PFu/RHR/5fy9bJ7mI7Hy1UFn20NkaCupcXZzsfZuy4ZAkaeTCwAsg2z3c4HHr1HPodB23GEng5HuwfK7ojM3+b8RI0n/n7dIb07fqhnfnW+7r+R826p6RSx3tBQaAmoIAK4bEYiarf01Y7/dxqx6srs9O0aVDZ+iLJb7B2W0fLNLbM7bZyoZVsXHV68xTfP7+7/zAjRu/+wujr8LunfTC4pPnZN/xPL9lQhmqWBWB2jrB/oM/Bwi2bSUjCPHcWjXIqvIeufaNuaFvVF4XB1vxISeBMNLeY/6vEztCP1WRXXfLMiOhje0dzSIYYnlbC1g7cKPgq6V7dSy3SF9bLCxeHV8bVnXflGZvncGPF+zS7C3pthPmWHG7TUijDABE3qIdR/XalM1VukkeiwiwYsgLN3VxfJ+7j+TqpR9D7/0Kl1UDovhEF8WQ7zZ4HvMeMhNonpCV05rV8/nbaniO55g2WiZ2PijsTrb3Pp4TCQgy8opCHqbj6JpdCv3Ovx1WvY/VcTwrTp6vRBtdWN7BqDHhDcH0PlyqjUAt3H/VySGJdl7njLyTvTrhZuPzPty3K/YFzRgZ7pqDofZmWp+rsKril5PvQau5aHb9v0+Xq+fQ6Vri4Ny1WLPhQKYGfblSu6vw/YjaafvhHC3dFf4NDrvu+Gixhs/aUWuWjCDAiiHntW7k+D5//d4CfTg3vIV3qyLUBkSJVeo4G1o3rhvW9oHaL/k2epT2Z+QrM684aDkfAc5PKI3cK16eqRvenR9SoyNQQ62qjevth08OBXUqGHFyDla4HB3dFHLSCRPW/+sdnPldisEYzfEakhru/+rkkEQ7u/K+Tqx6PadsOKg/jFpmmbDH+3CPjVmjR75ebd2bHOFzZdmrW8MXlLbaV0Zekcav2qe8IutlLGaeGLL4icXcsGhwIni061fvLtCktWm675NlETsmYlvf1+fotg8WRTwo33206iMvYgkBVgypjoQBx0Nt+Dsk1AbE9E2Bx/z7U/FLuyrnzk7DpOJ+Nx6oPDxm+qbD6vb8VEll2QED3U23lXo6aImTcovKGoAzAySuCGX/TgRH87cfCV7IBuu751Xf78zNh/T61C1+G6v/75Nlnt7AQ1kF+uOny7Vg+5Gweyq8VWWIYLBtKs4H9OZ9vS3wU27axkMa+PFSz98fhzistiLvYLDiHEt/rIMG5zzw2QrN2HxYr1glnfBznq0yBdq9KhZuP+J3kXFHh1NWx1IJEVrs+75Ry/S3r9fo6QkbLErVTG9M26pz//WTVu61Nwc3XOWfizvT6cFCaHYEyKa7bl+m/jl+nY46sB6fN6vPD2OMth3KjothhARYMSTSd+erU3X/L5PWpYV1vIrpuwN9HFRs4N4zcmmAktL8bUd064hF6j2sbF0xywQEAR53eghf5f0HeNyBfWflO7OY8o70HH2xZI/P2mblwrkJcd+o5Xp75nZN2VA5s+D0TYc9k/b/OX6dpm48pLv+uySsYXMVG+iJVRgWFs7bKNHr0/8/07ZWen5BhYB4sp/zEoqcwpM9Poezgn9hl1qcXDs3hrw3t/MyHbII+vxdVlY3ROxeF3f+d4muf6dyMohQb0CFmzbdGKP/98ky/XO8vcWInQzorD7TVp7IpvrdanuLeEc6EYuVt2Zsk1SWzCMQY4yW7jpmmaTEaRsPZNm6weGUzPxi5RQ689mP6hHo/XzDu/P1xZK9evo7/3Ppq8rqffrl0r36vzfmatCXKx09ZjQQYMWQSM8vqU7hDFspKA5+ZyMts3IWwlB8s3yfT3a5QOslVdyv1VyPUSeyhpXPMfvDJ8t9nq8J2bTmBMhSaLfhUlLq9pn74q2o1P+QqlAbRW4j/XP8ej369epKz9l5mUcvC5wQQKp87Vg9X9WX7H/zd+mcf/7kE8SE3IOl8D4T7Mz5ctIqrzv5dhb7Drex7BNg2dhXiUV6Sn+vTXZB4CAv8intQ6t7RRvTsjR902F9sWSv+r4+J2iiCid7sOyM/rYKtiM5DK/c+FX7NG3jIb/PLd99TJ95Zc+1uhImrz+o2z5YpP97Y47l8R4fs0a3vr8w7EB6++Ec/fLtebp06IygZe18Hx3MLLC89gqKS9Xtuanq8syUar85GKrCktASRk1ef1C//3hp2PM5I8HtNvppXZr221y+J9jnlVXW56qwuhbKp6yUZ1uNZQRYMSTee7ACdVNX5H03M1A3csX3b1UCuoU7TjZ+KwZD5SrOw7D6mKoYGM6skOp4i1dAF81g2t8Qk6fGrbX1hXv9O/N10fPT/CZN+M/Uyr0k4fCXKtrOeQuU2dIu70NUtdHwwsSyu9p3/XeJ134D172k1F3pWMb49kKFqjqGHFuZ6tUgtXPscBuT3o0GO0M5dx/1ve7Tsws98xcT/dT3QEbgQDzcpmRVgm3JXuDqj3dwuf1wTtC7xxVfGu9gM+T5YzbeQ1ZFflqfFvjJEK1JzdCVr87UT+sC7/NQVoH+9vUa3f+p/++EW0cs0tPenzEBKl9c6vb0Ch/Jse7BGrNin5bvOa7lYWZcXGVzuOLzP2xUr2EzLIOJsSv26bJhMyx7N7zX56xJi1OPXrpX5/1rcsDlRfx58PMVmrs1XS9ODNwjGa7th7O1y4H5UONX7ddDX6zUFS/PtFW+JgW/kf5eqk4EWDEk1nuwXpm8WTe/t0CFJaVK8BNh+ZuL4I93Y+AX//F/58+JuTEVgzJjTKUPoop3Aq0+p0KpU+AhgrZ34X1gvw5nFegZP1+O/oZz7DueH7B3y9vmg2VB4tgV+9T3dd/XZt/x0BfDDlUk3iLe14WTX0uBgqWC4lJdNmymfjNikc/jxpgwswhab1udX7l2es+sei3sCLUXqeL1edmwGbr9w8WauzVd/taA3nsscEPI+3PCGBPy3fJQb6btOZqnt2ds0zn//Ekr9vg2wv29zMYYnxsmFc9VfpF1fcu33ZSWpeGztqvrs1P1yuSyOWyhXpGrUzNC3MJXsdXCeCH642fLlXosXw99ETjA9B6abOemk78Sw37apHP++ZPfObtWwg1S7H5efLxgl9KzCzVqwe6AZV498Xp/vjhwRjjv44X7fpbKPgudCAaeGlc2FDbQ8iJWDldYDmDGpkN69vsNVb65US63sER9X5+ra/4923L+0VdL9+ryYTO0zWL9xoUBFp4PxG3KbuJlBeiV33Y4x/byC3ZYvYJx1ZEQ7Qqg9nh/9g6t3JuhH9elhTU8yfuDOtA6QE7ckKkYEHUc/KMuen6az2NW63lVd51yCktsrf1yNMD4/r+MXqVPFlVeCDpQPQN9+Prz6aLdPhkEy1XMVrTveJ6u/vds2/sNJhJ3v7wPkRxOF9IJz/1QNoE/UN1Xp2boSE6hlu/xvftcakxMDREMld2GVKD5K95vzaq898obs/O2pft9bf729ZqAd5u9D3fnR0vUecgUW5lEyxtWob6s3685oNdPzKN75vuTCSEKS0r93tj43f+W6Jdvz/P8jxXb7cHOV6nbKL+oVP3fmqfXpmyRVPb5XravkxunZQa/qVJ+U6aqkpNOvgfD/YwttDHc0PtaKCp1683pWysFtd78BfofzCkbBrXNz2eklXC/QkK9rqyCBu/zHoj3Z4zVUNCSUrf2HLXuudmZnqPzn56sjoN/tBwW+tqUzfrdf5eEHfAEUnEo8R8+Wa5RC3fryyX+A83iUrfGr9qnzQetA5SjXr2YVjcNBo9bpwOZBfr72LUBy4T6teQ2Rje8u0AXPjtVh7L898wHWsy+KqwzAdfs76VQEGAhIrx7p0pKw7vz7tRQgxcnbtTfx6wJ2JD7Zvm+So/5S6wQSd7/epdnpqjn0OlVniC9eKf/RoETKZgDvUZX/3u2z7CTVyZvCftY3iIdNFzasXnY+xh54i6x91ti9pbDlZJMVPTj2jS/d/vsTiiv2KsyasGuapmMvmD7Ef1YYchVq0YpQbcrdVfuMfbHey5Mqdvotg8W6dFvVvvciAnnmrbK1rg40BIIXodbtPOoStxGMzZbzymYsuGgzv7nT/p2xT7HUqsHavQt2H5Umw9ma9vh8uDG//kpKC7V+v2ZlV6HUrexnIN2cvvgjdwBXdsGLWOljtebwCoRy+aDWRq/al/Y89W833OfLtqtN6dv0y3vLwpY3snRV+HuK9TvXasbiHZuLnkfzuo9+MBnK/Tz12ZX+pzw9tG8k8vJBHzfSRo+a4fmbz+izxfv0b0jl2p2kCy6oc59DrRkTKD5TqMW7Nbfvl6j696cp2E/BV5z1Ptc2enty7X4rA71dXabkwuEB5pbmOFgxmknFlmPBQRYqHYlpW6fTFkJLlfAbuBAd09CZadh9t/5uzR2xb6ACxf764EJh3fvTbD6BfqM8bfZpiB3xkL9Ug5U/K+jV1tu5z0fzd8Q0HLe5zVYEBHM/+bv0r0jl3rOZyQCLO8jOPll4N0bdc/IZbrrv0ss79TuPprn9zp550T2smAqZvJ79oeNevZ778W9nXHXf5foTxZDrgLJLSxVn9fnaEiQDFbe52Dd/kwt3XVM41burzBML+TDn9xWga+rQDcSqjJE+YHPVkgqW2dr7IrKN3fs8v5frdb28i5bMRAqr/+dHy3W9e/Mr1SfErfb1gVi5+0Y7nvWbi/udW/O09++XlNp7qs3O1Xxfs9vORj8O8LJAMttjIpK3NqUllWloXJO9mDVsRFgeZ+rEotApnw+rXcQVVGS1zhdO//5cz9s1Kwt6bpnpPW6YCMX7g743NgV+yql2Q/0ng/0+NxtJ4fWl/dc+uP9PrBzE9lq2HHoaw56z1etmnnb0m23mayOEUfxFQEWql/FYRcJCdIv/dy1PJxVqF4vBc9uZEfFBYCtGjzhZqGy26NW5NXtH2yTQJ8xk9en6VhukW4cvsBm7apw976KLQLvO1x273YFawAG88LEsi/Rz09k7UqqYmPt+wqTnf86OvDY/OqaC+kvkYJVA6dunQS/PR0HKmRBnLHpkE/CFive8+z83UUtXwvslcmbPb2/T30beKhKIHausEnr0rQzPVef+hnG6m321nQ989165ReV+gwzKrWYYxQKqx6sQPsNdXRSxcby0jCTGZSzG7xU/Aw8dCL4Lk+TXjHzZqnb2Opls1Mm3Pmyob7l11jM+bLz3va+FuwEOU7OZTSSHvp8hfq/NU+fB+idlKSlu/xfP3lB5tZVVPG7LTO/2DOKw+omWjnv62+RjXlBVt+lSaGuY2HT18v8n8elu47p72PW6Ob3Fvo8XuI2yi0s0W8/XKSRC3Z5Hg9Ud7vfF97X1W8/DD4cr7jEqifW1iE9fD7HqvBZufFAlu7+39JK864DKS5x6/3ZO/zOu6cHC1HRtF6daFehSio21BJcLrX0M0Ro6I+Bu8/9sUpBOnzWDtv7CXfIYUFxqQ5nFVg2yiXfFO7BjhnoQ3nNvky9M3ObZSOhovGr7K0hU66qZyOaU3qWnGhQ+GtQWg2lKOf9RZlXVKLvVgfOLhXK539uYYntrFD+zp9VYHBtpzZ+61JxP3/4ZLnu/OhktsLy8+FvW+85ff6GipSvBfb+7B0au2Kf5m8/Ypn2PlBDL9T33K/fW6CC4lKNXrpXw2dt93lu0to0fbJojy4YMtmnl9X7GHaPd8ZTkyo99vGCXZoQYB2mwHezQ4uwqiuJl7+g3Vv59RUsyKkYSJS4TcD3QchZBMOcKhNqD1ihRfRrqwfLq9VkZyiXd3KAohK37v7fEovS1tzGeHp7rBb+vu2DykMWd6bnaPA4e+uclfOeb1RS6la356aq23NTVVTi9pnns3z3MfV7Y26lIMr7UrAzX9nfUgklpW49+/0Gz1BqqXISmXCG7gd6CSvOF/b2zsztWrzzmJ7zWuMsULBt9/L0PleBEkp4D8s9aDHaJ9T3hHfVq9IcCja/rKIxK/bplcmb/a4BWNPnBoeCACuG2LljVBMZB+aadu/Q1Odvt9s4tjhj2OvtSHri27WWjfKKgjX6re6MOpnNx1EOXZ4Ltx/Rh3N3+JyDYAHlxLVpysgr8mlQ9ntjrs54apI6PzMlYEO/XKHXECmrYRwfzt0R9Ato/f5MbT8xt+UX/5mta2wm8fDXMK14KO9jJyT4v9sXqFFtjNGQ79ar8zNTtGz3MQV7wQIt5vu21xDEYNdxoOD+xUknGyYbDmTqmn9bz79YtTdD1705V0+NW+dJqhCMd3Aa7rTNQD2tz/2wUdP9BKL+hkNZ9UZaVS+crGkVvzPenblNo7xuJszYVNZY9xfkWB3XKmD1PqKdWGudzeyxgYQ8r8hixIKdxdC9G4ChfOZL0g9rDmjeNvvDoiu9Bj4N4dCui4rz8QZ9sVL/DvJe8n6dswtOnpuKn7W3jlikLYeyKyVCCLW3z991NX7Vfo2qMIzPu9Sj36xRt+emaqqNhdAz8oo0aa3v50ygWlk19EfMqXwDN9B8Q7tXp53L+FubQ4f9vScmrz+oS4dO9yw94c37tFfl88bJoCiOOrAIsFD9Kn4RVGWI1aoTQ1XKLd5lPw3pkZxC3TfK/5olUvhJHYwxIa9d8VWAYQnlrIZyBEpOYce5rRsGLRPtz7c7/7tEL/24WbO3nByuZmdI5JDvNijRaxiJ97pi/55q3ZDY6BW0ZlsEDS/9uNkn2PtdhbvRx3OLdP0789X39bmSTg618lZx7bRy/r6kKt6c2OKVcW3W5spp8/cczfX5X3z2ZeQZbvefqVvU5dTGfsud3MD/w+XZ6qTKQ3ErCvRW/3HdycbQw1+u0q4juUHnae0+6j9jaCC+WQR9/5m9R/P089dm+SwIW1X/z896SP7uxD/57bqAjXurzyB/GcXcFglAjCm7xtIy8ysNmf331K161uuue3lSE389MfeOCjx3pcRtkajI6+FA17q3io3nUFl9nZS6jaZtPOQzesBqQWnv6zm/qNTvKIlwhjDl2Tgf5XIKS3TVa7P0iNfIiH1e9Qn1a6titSetS9O7FXqDK7KaNxXqDV8737P+EkhUTIsuSXO8vhvKb+L88cQcRit3fLSk0hpvgeYNhTok8evl1gvYBxOst1myP7rEX2/hg5+v0OHswkrfWZJvj3tVWkPVNRd53rZ0Hcst0nuztzs2Pz+SCLBQ7QaOXOrzt/eHY1W9PWObJ721lUNZBbrkxemWZdaGeQfVKPQgLVh2rakBMvkEYndsvb+hmRWlVnG9KqeHOe2zuQp9ue/XHNCrAbISRipoTMsM/iVw/tOT/T7ur73S7fmpPj023nd4P1u8p9IX6c9fmx0w7bX3y5NXVKo3p1snw3BmLbng7DTCq8J7uGPFRcyfn7hBe47m+S4Ie0Koa1b5E6hheu6/fvL7+M9fnRVwX+sP+H4+FZaUJf946POTDcXmDZJ9yvzy7XnqPWxmpcWTA/GXSc37BkfFZ0tK3bZe20BDK51UsXHn/b98umi37v90uc93QKAscBX1+c9sXfHyTE9vdHlAG9ZnSQgfkpPWHlDqsXxN8Ool875eg70/KyYQCnZjM/VYnm5+b4HPEEarnspQG9VtGtcLWsbuUN6qBOWpx/ICjv6Yty1dt41YpJ1enxNOBQ12byhXLOfvc9GqTsYYLdt9TJn5xZqxKXD7wd8NG+/HrC7RvV43udKzC5VXVHaDxskeLO+soHf/b6kGfbFSr07eEtbQ2mghwIoxbRrXjXYVQrZ2n28D4duV+7Sywpo+oVq885iW7bbeR6nbaMDb84Lu6w2vO/JVYdyhzyMINTVsMC/ZnL9WaCNtcqhztsLdLhAnR8SWfy+FMnctXKGswzJ+1b6A52+F13ulYiAfSoKWkym5K78n/bHTFgx10ry38nkT3kHpLIsMb6Ha6tWD2bjC/FWr9Y6+sZhTZldaiDcHKiYm8VY+yd4Yo3Er9+mThbu160iuT0py7yGMx3KLtDO9LLCassH6Rk35WyzYXKKKiwFb9WxUpVwosguKfRZCrtjo9O6t/mld5WFjRRbJAbyVvybjV+3Xm9O3quPgH7Vk51GNXRlGhscQygZbZyrYd87zXj2VUvDAcPC4dVq5N8NnCKNVMBqox2VMgJ6ciol23p25rdL3ViiLRle8aSLJ7/A3qWxx3istbmLc/b+lWrr7mE8veqCESd5DJe2wPUSwwt/nPz1ZCysFyYG3n7B6v34zYpGueHmmzm4VfKSKN+/vKqubxVe9NktLdh5Venaheg6d7rlx4eR3dcXrftGJ13TrIWezOkcCAVaMGX5X92hXwRGzHOjFCqbE7bY1pt5q1XQ7jucVhTxp3+nu7kBrV1RUTXPpJUkv/7TZVrklNoc4Wk0yDlV59rtwh3EEs8wr+1vFsf5W/vb1Gh3JCT6ncO5W3/dNKN9rE9fYr49k71rx1wv29oxtmry+rGFr9bbwl33QalhaqLwbDSlJiT7PbUoLvLhtVogNKH/+E+ZNm4qMMZq0Lk2PfrNGL/1Y+X3m3YPlPfm9MEjvoFHZZ1Gwz6+Kba6C4tKANxB8RijYuIjq1UkMXuiEwpJSdX12qro8O8XTo5RQoRXz3uyT82P8NUjt9mCVGz5rh+c6v/3DxQF7ye2wimMrDvkMlgY92FwZ7yHS0slEQIFk5Ff+/PEePud9NCPpQIBFpB8PsADu9E2HPXU2xujfU7fqw7k7lXrsZK+Iv2sq0JzLPv+pnLFu+Gz/ya3+M9Xe+9H7MzjJ6/x7n+u9x4IPVT6cXaBBX67Uwh1HbM8p8vdqPl1hiQqrXZV/vucUlmjBduspFJWS1oQQ2H678mTq+vIbbN7zde2sj+dt4toDPm0wOwtYx4r4+U9qiYYpsZlJsKJILNj77PcbbX24hXuX9bPFe0IeIjgmjHVuKnpj2tagH2rTNh5Sn//M9ukNiZY3ptv7svtoXtlkfO8Mf1WVe+KLoLrzxDzjtY6U3dTooZheYeiH9/UdrMFllXXKW/k6WnYmO6f7mR/x+rStevDzsvkQVoF/xWDRaVZp2r3n5FTkxMigU04EPE4t3Pznr1bp4S9XBXw+UBKO3CA9jB/O3aleL80IusadJN3vNdesuNT4BDLejnrVpbwBZozRlA0HfRrT5a48p4XP3+nZhRq/ap8+nFt5/0dPNIBL3UafLd6j34xYaNl49jeP5sd1aZq3rfpv8Plj9Z6q2HAPFmAdyCzQB3PKUl1f8fJMy7Jzt6ZX6oWsyF9K/R3pJ29yefcuz92arn02hpJ7/7ub0rI0bmXlXnrvoXDhfhcHOr82luzy2X7W5sN6YeLJHkA7GRAledKOD5mwQZPWpvlkb62KSqfD4sMpUAA9b1u63q/wXn3uh40+ox+8/79gH/v5xZWHB4ey9l5FD3+5Ss96Tfews75arEiKdgUQmnjKsFLdvlpqnUiiXChDufxJcIWfpSwcwYZKSr6No1hSUur2SYUb7r4iucbGN8udC6LLVbzMvI+Resy6wbN2X4atY/xn2lb9uc85IdasMmOMZSAjSZ+EmeDAindjbf/xfPU8w952Tlwjt/VsL0n6hc0MksFMDKE3tLpUDJbt3Kz5bPEevXBTF327cr/+PmaNJGn3ywN8ykzdeEjfrd6vklKjW3qcpp5D/c+Z/fuYNRp0zdmev4d8F3gO7tsztmnsin1q3bjynNPiUqO7/7dUO1/6ZaVEDe2b1wv6PgrEGBN0vo3V10TF7yE7V+Ewm6MG5lss6F5e79wi/zcDBn2xUu/e2d1nrcDjeVXL4Pv9mgNq2SjFZ/Fe78Qi3o3zjQeydGoz63lbFecpBepdsvueLn99Kvak59scCv3Sj5t0butGPsN3p2+q+rDn8htDH8/fpYy8IrWymCIS6GbO3f9bWumxUQt3e+ZPSb5DzYPN7fthzQH9qls7n8c6NK/v+X3XkVydfkoDz9+Hsgp0OKtQXU9rEnCfny/eqxdv6irJ/9DPWEWAFWOIr5wXyrhvf8p7WmDf8Fnb9fNzWwYtlx6kgR6K2z5YpAtPa+rY/qLBagHn14JkSgx1DHu4Nw2C9VLnFpX69Pg5zXsYbig9zE58xpYfz18GtHhhN4vcun2ZnuBKkr5bvV/fVBiqW96DZtUIG7tin+2RD+WZLq2Gc5UaowS5VFzq9tw1r2pwJZX1qgXLPGc1FDOroEQv/bhJfS9orXZNnZ1rbbW0x9SNh9SvcxvPvL2KJq1LU8b/iioNOzuvdaNKwxDt+P3Hvg3+qRXmCd42YpH+eNWZ+n+fLq+UvKWibs9N9fl7T4BMo3YDrECfE6HMNa1KAo60zHy/yb/Kr5fnT/Sm/e6yDiHvOxDvm3NFPnOwgm9b8Wz+Y/zJ9dXO8AquSt1GvV6aIUma/MiVQfeblpkf8DqMRQRYMaZuCOPVYd+UDQf1i/NbRbsatcZrU7bYWs+o9zDroS+hWLk3Q11ODdyAi3U/rAltTR4rFz0/NXihIMY6OAy2KryTZ4xdsU/PT9yoHx7+mdo0sW68fr08VZedeUpYx/5gzk4N7n9BWPuo6Y76ufnhL4AoX5y6nNVwxIc+t061vTfEVP1WjucWafKGgxry3Qb96eqzdNsl7cPaX35xqRpZDG+atvGQvlgSeFTFA5+tUHp2oT6cG3gdvqqySu7zwGcrKvUqVlQxuHLJpVaNU0IOsA74Sf5SMahZuvuYlp6YyxpsuJlVspqqlMvIK/abOGi2zTnjduYylZS6feZ3SdLlL8/0OzSv1G186vP5YnujckL1vVemSn/DeCvyvtGxZOdRnxsZmw9m699Tt+jX3U/1GULuryetIie/72uC+BnsWEu0b15f913RMdrViDsPfLZC5/zTfwplxI9g8xBQxqqnzK4XJ9nLbBkJC3ccVUZesa58dVbQxtbO9Fxb665VVHH+h5MZEWsif3NwzguQht6uHUHuXoe7ZqG3DQeyPMMM35u9Q3tsNCytPDF2bcDPl53pObr/0+WW6yX6m88Yrv0Z+Xp/9g5HErd4G/rjJp1+Sv2g5f7fJ75D7bb5WXMqEsPrgw1V9nb5yzMqPfbuTOslLcot3R08gVOBn8+fQJd1WmaBhlusVbbrSK4W7jii78JcDsF7vTermwDlHvPqka6YkfbBz1do4to0/eGT5T5JUoJd31khJseIBS4TzjLxcS4rK0tNmjRRZmamGjcOsihnhJ3x1KRoVwEAYk7PM5rZmreI+NYoJclyUXFU3frn+umujxZrjY3lIO7s1UFf2mjUR1O39k0dW+Kjbp0EFRS7ten56/Th3J1Bkz41TElyLFmOXee3aaTfXNLeJ9FHIFef1zJgD5+T502qPH8zWuzGBnEfYA0fPlyvvfaaDh48qG7duumdd97RpZdeamvbWAqwLj/rFC3cYZ2aEwAAAIg1m56/TvWSoz9NhgBL0tdff63f//73GjFihHr16qU333xTY8aM0ZYtW9SqVfD5NjU5wMorKtGUDQdVJzFBPc9ortaN6+qbZal6ws/aMgAAAEAsqwm9WHZjg7ieg/X666/r/vvv17333qtOnTppxIgRql+/vj7++GO/5QsLC5WVleXzU1PVT07Sr7ufpusvbKfWJ1J33tazvXa/PCCsC/CyM5sH3P6slmXZYd65o/Jix5ec3kwPXX2Wz2PXnBc8S5yTXvp1V1uJKv7W99wI1AYAAAC1Udz2YBUVFal+/foaO3asbrrpJs/jAwcOVEZGhr777rtK2zz77LN67rnnKj1eE3uwgvl88R79a8J6vXxzVzWtn6yzWzXQ2a0aSSpbO6JunUTtO56nv45erYYpSXrp5q46kJGvnmc0l1Q24XBzWraKSty6sH0TNa5beYHjS4dO15XntNR/busWsB7lQxl/0+M0dWrXWFec3UL3f7rck0710/su1RVnt9DBrALPYolzHr9ap5/SQB/M2aFhP23WkOs7aeDlZ2jJzqPakZ6jp/2sf/LxPZfoF+e3llS2HsSAt+f5TdnarX1TfTfoCi3ZeVS3f7g4YL2/fehy3fL+Qp/HruvcRgUlpZ7xxuuevVZdn/Wfba114xQdyirUA1edqW+Wp+rRa8/TrM2HNdPPxPen+p+vJvXq6HBWobIKivW/+f7Tvt/QrZ1PprhAY58XPPWLoAtPznviGl356izLMndfdrpeuKmLp2f0nsvP8KSgPatlA+1Iz1VyUoJ+/MvP1Pf1uZb7Wj3k/zR902GfdM0VndIg2WeR0urWrkldPXrteZZ1kqSfnd1CpzRM1nerA2fp633mKVq0M/gQ3b4XtLJcF6X3mado1H09dd6/JgfdVzDv3XWx/vTFyqDlvv7jZZbvBUn6/uErVD85SX1fnxN2vWJZi4bJOpITuWsUAFCmZaMULftn32hXgyGCBw4c0KmnnqqFCxeqd+/ensefeOIJzZkzR0uWVF5hu7CwUIWFJzOdZGVlqX379jEZYCE0brdRQoJLaZn5atWorhJtrvFSLrugWC6XSw2SE1VU6lZKUvBxwsYYGWN/PRkr5emRg9W7pNStxARX0AUxgx3L33HsLLQZall/KW2rsu/yxw5lFaioxK3TmtXzKeN2G7lcksvlktttlFVQrKTEBNWrkxjyteB9zLyiUiW4XCoqcatJ/co3KULdnzHy1NP7/5LKbpwUlrjVpF54x5FOvh/8KSguVUpSQtDXr9RtdCy3SC0blS32uutIropK3DqvTSNbx6mq1GN5lV5f7zrtPpqr05rVU3Ji2f/gfQ6NMSouNUpOsr7m3G6jYnfZ+9z7K7Ti+9ntNioscSslKcHzeKDrs3zb8veXd7n8olKVGqOGKUk++8gqKJbbbdS0frIKisuuteSkBM8+Kp7fQO8777Wgyh3OKtDS3cd0Xec2+sf4derXuY36XFB2E6uoxK0St1t1kxKVkFBWj8y8YmXkFWvroWz94vxWanZiDaNDWQVq0TDFpz7GGO09lqe2TepVOtd5RSWqn5zkeU8Wlrg9y5OUb5dbWKqzWjVQcmKCCkvccrnkeS3cpuz/qVsn0ef/zcgrUpN6dTzv8SO5hcouKNFZLRt6PhelsvdWqdvow7k7dddlHdQgOUklbrcSXWWfmwle779ymfnFemT0Kv3jlxeoeYNkndLw5ALHxaVuFRSXqmFKktIyC9S6cV1l5Rer1Bi1aOi7ELIxRiVuo6z8YuUWlsrlkk5rVq/S+778mPWTE3U8t0i5RaVq26Su6iQm+HxeFRSX7aNOQoInA2PFz9O8ohK55DpxDsuunQSXy+e6KXUbpWcXqlWjFBlJCS7peF6xjucV6ayWDT3nvXyT+duP6IxTGqhxvTpqlJLkqfux3CKlJCWobp1ELdh+RO2a1jtxM7JAzeqXnTdjjA6WXzOusnoZU7ZweILLt/6lbiO3MUo68Z3m7zo2xmj30TyVuo06tmigxISyz2Mj4/meLl+wuG6dROUWligxwaW6dRI93z/FpW4lJbg879GcwhIlulxl58vr+AXFpSooLlWjunVUUFyqenUSVVjiVk5hiVo2SvFcdy0apGjsin1aufe4nrjufG08kKUL2jZSclKCGnndzC4qcaugpOzztvz69v58MsZow4EsNalXR+2a1vO89iWlbs3bdkRXn9fSc81MXn9QWfnF+tVF7ZRTWKJTGiT7fP6Vn8v9x/PVpkldFRa7VTc5wactY4xRqduo1JR9riUnJuh4XpGa1U9WUoJLSYkJOpJTqCb16igpwaWMvGJtPpjtuT4uOaOZ57vD+71ZUuqWy+Xy+12bXVCsw9mFOqtlw0rPRQsBVhUCrIpq8hwsAAAAAJFT6+dgtWjRQomJiTp0yHeV8EOHDqlNmzZRqhUAAACAeBa3AVZycrJ69OihGTNOLhrndrs1Y8YMnx4tAAAAAHBKUrQrUJ0effRRDRw4UJdccokuvfRSvfnmm8rNzdW9994b7aoBAAAAiENxHWDdfvvtSk9P15AhQ3Tw4EFddNFFmjx5slq3bh3tqgEAAACIQ3Gb5MIJJLkAAAAAIJHkAgAAAAAijgALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsAAAAADAIQRYAAAAAOAQAiwAAAAAcEhStCtQkxljJElZWVlRrgkAAACAaCqPCcpjhEAIsCxkZ2dLktq3bx/lmgAAAACoCbKzs9WkSZOAz7tMsBCsFnO73Tpw4IAaNWokl8sV1bpkZWWpffv2Sk1NVePGjaNal9qE8x4dnPfI45xHB+c9Ojjv0cF5jzzOubOMMcrOzla7du2UkBB4phU9WBYSEhJ02mmnRbsaPho3bswbJAo479HBeY88znl0cN6jg/MeHZz3yOOcO8eq56ocSS4AAAAAwCEEWAAAAADgEAKsGJGSkqJnnnlGKSkp0a5KrcJ5jw7Oe+RxzqOD8x4dnPfo4LxHHuc8OkhyAQAAAAAOoQcLAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEMIsGLE8OHDdcYZZ6hu3brq1auXli5dGu0qxYRnn31WLpfL5+f888/3PF9QUKBBgwbplFNOUcOGDXXLLbfo0KFDPvvYu3evBgwYoPr166tVq1Z6/PHHVVJS4lNm9uzZuvjii5WSkqKzzz5bo0aNisS/V2PMnTtXN9xwg9q1ayeXy6UJEyb4PG+M0ZAhQ9S2bVvVq1dPffv21bZt23zKHDt2THfddZcaN26spk2b6g9/+INycnJ8yqxdu1ZXXnml6tatq/bt2+vVV1+tVJcxY8bo/PPPV926ddW1a1f9+OOPjv+/NUWw837PPfdUuv6vu+46nzKc99AMGzZMPXv2VKNGjdSqVSvddNNN2rJli0+ZSH6u1JbvBjvn/eqrr650vT/44IM+ZTjvoXn//fd14YUXehap7d27t3766SfP81zr1SPYeedajwEGNd7o0aNNcnKy+fjjj82GDRvM/fffb5o2bWoOHToU7arVeM8884zp3LmzSUtL8/ykp6d7nn/wwQdN+/btzYwZM8zy5cvNZZddZi6//HLP8yUlJaZLly6mb9++ZtWqVebHH380LVq0MIMHD/aU2blzp6lfv7559NFHzcaNG80777xjEhMTzeTJkyP6v0bTjz/+aP75z3+acePGGUlm/PjxPs+//PLLpkmTJmbChAlmzZo15le/+pXp2LGjyc/P95S57rrrTLdu3czixYvNvHnzzNlnn23uuOMOz/OZmZmmdevW5q677jLr1683X331lalXr5754IMPPGUWLFhgEhMTzauvvmo2btxo/vWvf5k6deqYdevWVfs5iIZg533gwIHmuuuu87n+jx075lOG8x6afv36mZEjR5r169eb1atXm1/+8pemQ4cOJicnx1MmUp8rtem7wc55//nPf27uv/9+n+s9MzPT8zznPXTff/+9mTRpktm6davZsmWL+cc//mHq1Klj1q9fb4zhWq8uwc4713rNR4AVAy699FIzaNAgz9+lpaWmXbt2ZtiwYVGsVWx45plnTLdu3fw+l5GRYerUqWPGjBnjeWzTpk1Gklm0aJExpqwBm5CQYA4ePOgp8/7775vGjRubwsJCY4wxTzzxhOncubPPvm+//XbTr18/h/+b2FCxoe92u02bNm3Ma6+95nksIyPDpKSkmK+++soYY8zGjRuNJLNs2TJPmZ9++sm4XC6zf/9+Y4wx7733nmnWrJnnvBtjzJNPPmnOO+88z9+33XabGTBggE99evXqZR544AFH/8eaKFCAdeONNwbchvMevsOHDxtJZs6cOcaYyH6u1Obvhorn3ZiyRudf//rXgNtw3p3RrFkz89///pdrPcLKz7sxXOuxgCGCNVxRUZFWrFihvn37eh5LSEhQ3759tWjRoijWLHZs27ZN7dq105lnnqm77rpLe/fulSStWLFCxcXFPuf2/PPPV4cOHTzndtGiReratatat27tKdOvXz9lZWVpw4YNnjLe+ygvw+tTZteuXTp48KDPOWrSpIl69erlc56bNm2qSy65xFOmb9++SkhI0JIlSzxlrrrqKiUnJ3vK9OvXT1u2bNHx48c9ZXgtfM2ePVutWrXSeeedp4ceekhHjx71PMd5D19mZqYkqXnz5pIi97lS278bKp73cl988YVatGihLl26aPDgwcrLy/M8x3kPT2lpqUaPHq3c3Fz17t2baz1CKp73clzrNVtStCsAa0eOHFFpaanPm0SSWrdurc2bN0epVrGjV69eGjVqlM477zylpaXpueee05VXXqn169fr4MGDSk5OVtOmTX22ad26tQ4ePChJOnjwoN9zX/6cVZmsrCzl5+erXr161fTfxYby8+TvHHmfw1atWvk8n5SUpObNm/uU6dixY6V9lD/XrFmzgK9F+T5qm+uuu04333yzOnbsqB07dugf//iH+vfvr0WLFikxMZHzHia3261HHnlEV1xxhbp06SJJEftcOX78eK39bvB33iXpzjvv1Omnn6527dpp7dq1evLJJ7VlyxaNGzdOEue9qtatW6fevXuroKBADRs21Pjx49WpUyetXr2aa70aBTrvEtd6LCDAQlzr37+/5/cLL7xQvXr10umnn65vvvmm1gc+iH+//e1vPb937dpVF154oc466yzNnj1bffr0iWLN4sOgQYO0fv16zZ8/P9pVqVUCnfc//vGPnt+7du2qtm3bqk+fPtqxY4fOOuusSFczbpx33nlavXq1MjMzNXbsWA0cOFBz5syJdrXiXqDz3qlTJ671GMAQwRquRYsWSkxMrJSV59ChQ2rTpk2UahW7mjZtqnPPPVfbt29XmzZtVFRUpIyMDJ8y3ue2TZs2fs99+XNWZRo3bkwQp5PnyeoabtOmjQ4fPuzzfElJiY4dO+bIa8F7pcyZZ56pFi1aaPv27ZI47+F4+OGHNXHiRM2aNUunnXaa5/FIfa7U1u+GQOfdn169ekmSz/XOeQ9dcnKyzj77bPXo0UPDhg1Tt27d9NZbb3GtV7NA590frvWahwCrhktOTlaPHj00Y8YMz2Nut1szZszwGYsLe3JycrRjxw61bdtWPXr0UJ06dXzO7ZYtW7R3717Pue3du7fWrVvn0widNm2aGjdu7Omq7927t88+ysvw+pTp2LGj2rRp43OOsrKytGTJEp/znJGRoRUrVnjKzJw5U2632/PF0bt3b82dO1fFxcWeMtOmTdN5552nZs2aecrwWgS2b98+HT16VG3btpXEea8KY4wefvhhjR8/XjNnzqw0fDJSnyu17bsh2Hn3Z/Xq1ZLkc71z3sPndrtVWFjItR5h5efdH671GijaWTYQ3OjRo01KSooZNWqU2bhxo/njH/9omjZt6pMdBv499thjZvbs2WbXrl1mwYIFpm/fvqZFixbm8OHDxpiyFLMdOnQwM2fONMuXLze9e/c2vXv39mxfnur02muvNatXrzaTJ082LVu29Jvq9PHHHzebNm0yw4cPr3Vp2rOzs82qVavMqlWrjCTz+uuvm1WrVpk9e/YYY8rStDdt2tR89913Zu3atebGG2/0m6a9e/fuZsmSJWb+/PnmnHPO8UkXnpGRYVq3bm3uvvtus379ejN69GhTv379SunCk5KSzL///W+zadMm88wzz8RtunBjrM97dna2+fvf/24WLVpkdu3aZaZPn24uvvhic84555iCggLPPjjvoXnooYdMkyZNzOzZs31SJOfl5XnKROpzpTZ9NwQ779u3bzfPP/+8Wb58udm1a5f57rvvzJlnnmmuuuoqzz4476F76qmnzJw5c8yuXbvM2rVrzVNPPWVcLpeZOnWqMYZrvbpYnXeu9dhAgBUj3nnnHdOhQweTnJxsLr30UrN48eJoVykm3H777aZt27YmOTnZnHrqqeb2228327dv9zyfn59v/vSnP5lmzZqZ+vXrm1//+tcmLS3NZx+7d+82/fv3N/Xq1TMtWrQwjz32mCkuLvYpM2vWLHPRRReZ5ORkc+aZZ5qRI0dG4t+rMWbNmmUkVfoZOHCgMaYsVfvTTz9tWrdubVJSUkyfPn3Mli1bfPZx9OhRc8cdd5iGDRuaxo0bm3vvvddkZ2f7lFmzZo352c9+ZlJSUsypp55qXn755Up1+eabb8y5555rkpOTTefOnc2kSZOq7f+ONqvznpeXZ6699lrTsmVLU6dOHXP66aeb+++/v9IXI+c9NP7OtySf93wkP1dqy3dDsPO+d+9ec9VVV5nmzZublJQUc/bZZ5vHH3/cZ20gYzjvobrvvvvM6aefbpKTk03Lli1Nnz59PMGVMVzr1cXqvHOtxwaXMcZErr8MAAAAAOIXc7AAAAAAwCEEWAAAAADgEAIsAAAAAHAIARYAAAAAOIQACwAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAIiSUaNGyeVyyeVyadSoUdGuDgDAAQRYAIBqUR44hPqTkZER7aoDAFBlBFgAAAAA4JCkaFcAABD/xo8fb7tsgwYNqrEmAABULwIsAEC1u+mmm6JdBQAAIoIhggAAAADgEAIsAECNV54A4+qrr5YkHT9+XEOHDtXFF1+s5s2bq0GDBurUqZMef/xxHTx40PZ+x48fr9tvv11nnHGG6tevr8aNG+uCCy7Qgw8+qBUrVtjej9vt1tdff60777xTZ511lho1aqTk5GS1bdtWffr00QsvvKDt27fb2tfWrVv15z//Weeee67q16+vpk2bqnfv3nrrrbdUVFQUdPt58+bpvvvu0wUXXKBGjRqpTp06atWqlTp16qTrrrtOL7zwgrZu3Wr7fwMAhMZljDHRrgQAIP64XC7P7+F+1ZTv6+c//7neffddXX/99dqzZ4/fsk2bNtXo0aPVr1+/gPtLT0/XLbfconnz5lke86GHHtLbb7+txMTEgOXWrl2r22+/XZs3b7b8H5o2barjx4/7PDZq1Cjde++9kqSRI0cqMTFRDzzwgPLz8/3uo3fv3po8ebIaN25c6Tm3260//elP+uCDDyzrIUkDBgzQxIkTg5YDAISOOVgAgJiRmZmpG2+8UXv27NFVV12lW2+9Va1bt9bevXv1xRdfaPXq1crIyNBNN92kuXPnqmfPnpX2kZOTo6uuusoTELVs2VL33nuvunXrpqKiIs2dO1eff/65iouL9d577ykrK0ufffaZ3/osWbJEffr0UW5uriTp1FNP1e23366uXbuqQYMGSk9P14oVKzRx4kQVFhZa/m+TJ0/W2LFjVb9+fQ0aNEg9e/ZUSkqKVq9erREjRigzM1OLFi3S3//+d3344YeVtn/33Xc9wVWjRo106623qkePHmrZsqWKioq0b98+LV++XNOnTw/pnAMAQmQAAKgGkjw/Tu5LknnllVcqlSkpKTEPP/ywp0ynTp1MaWlppXJ/+tOfPGV69Ohh0tPTK5VZvny5adasmafc119/XalMVlaWOfXUUz1lHnjgAZOfn++3/iUlJWbChAmVHh85cqTP/9W5c2ezb9++SuU2bdpkGjZsaCSZOnXqmIMHD1Yq07lzZyPJNGvWzOzevdtvPYwxJj8/3yxevDjg8wCA8DAHCwBQ7ewuMnzPPfcE3dfNN9+sJ554otLjiYmJeuutt3TJJZdIkjZu3FhpGFx6ero+/vhjSVL9+vX17bffqkWLFpX21aNHD73//vuev19++eVKZd577z3t379fUtmQuxEjRqhu3bp+65yYmKgbb7zR8v9KSkrSuHHjdOqpp1Z67vzzz9egQYMkScXFxX57ocrnePXt21enn356wOPUrVtXvXr1sqwLAKDqCLAAADHFX3BVLiEhQY899pjn77Fjx/o8/+OPP6qgoECSdPvtt1sGIrfddpvOOussSdKqVau0a9cun+e9hw0OGzbM/j8QwPXXX69zzz034PP/93//5/l9/fr1lZ4vXz9s3bp1tpJhAACqB3OwAADVzu5Cwx06dLB8vnHjxrr00ksty/Tt29fz+9KlS32eW7Jkief3a6+91nI/LpdL1157racna/HixerYsaMk6dixY9qwYYMkqWPHjuratavlvuzo3bu35fOnnXaa5/eKyTKksv9n9OjR2rx5s/r06aNHH31U/fr1U/369cOuGwDAPgIsAEC1c2qh4bPOOssnO6E/LVq0UNOmTZWRkaEDBw74PJeWlub53aq3yF8Z723LhwZKUqdOnYLuxw5/QxW9paSkeH4v74Xz9sorr2j+/Pnat2+f5s+fr/nz56tOnTq6+OKLdfnll+vqq6/WtddeG3AYIwDAGQwRBADEjPJhcHbL5eTk+DyenZ0d0r4aNmzod9usrCy/ZcKRkBDeV3KHDh20atUqPfLII2revLmksvlaS5Ys0RtvvKEbb7xRrVu31pAhQ4JmNAQAVB0BFgAgZpSnQ7dbrmLw06hRo5D25R2geW/rvQ5VxSAumlq0aKE33nhDhw4d8gRWv/nNbzwBV1ZWll544QX98pe/lNvtjnJtASA+EWABAGLGjh07gi5afPToUWVkZEiS2rVr5/Nc27ZtPb9v27Yt6PG2bt3q+d17X6eeeqpnqOLGjRuD7ifSkpKSdOmll+qRRx7RN998o8OHD2vMmDFq0qSJJGnmzJm258UBAEJDgAUAiBlZWVmVEldU5J3CvGI6cu+/p06dGvR406ZN87tt8+bN1blzZ0nSrl27tG7duqD7iqbExETdeuutevbZZz2PzZs3L3oVAoA4RoAFAIgp//73vwM+53a79frrr3v+vvXWW32eHzBggCfJw+jRo7Vnz56A+xozZoxnbanu3bt7MgiW+/3vf+/5ffDgwfb/gSjy/h9KSkqiWBMAiF8EWACAmDJ27FifIKqc2+3Wo48+6unh6ty5swYMGOBTpkWLFvrDH/4gScrLy9Ott96qo0ePVtrXqlWr9OCDD3r+9hdAPfjgg57U6ZMmTdKDDz7oN7tfed1++OEHm/9h6NLS0vTYY49px44dAcuUlJToo48+8vx90UUXVVt9AKA2c5lgg9kBAKgC73Tqocz36dWrl89cKe99XXTRRcrKytLOnTv185//XLfeeqtatWql1NRUffHFF1q1apWkspTm8+bNU8+ePSvtPycnRz179tTmzZslSS1bttQf/vAHXXjhhSoqKtK8efP02WefeRbr/d3vfuezqLC3JUuWqE+fPp6EGaeeeqp++9vfqmvXrqpfv76OHDmi1atXa+LEicrNzfXMDSs3atQo3XvvvZKkkSNH6p577gl4Xnbv3u3pgRo4cKBGjRrl97kePXroyiuv1AUXXKBmzZopJydHO3fu1FdffeUJwM4880ytWbPGsQyIAICTWAcLAFDtfv3rX9suO378+IDrZjVp0kSfffaZbrjhBs2ZM0dz5szxW+brr7/2G1xJZZkF586dq5tvvlnz589Xenq6Xn755UrlXC6XHnzwQb3zzjsB69qrVy/NmzdPt912m7Zv3679+/frP//5j9+yzZo1C7ifcHkHsytWrNCKFSsClu3SpYsmTJhAcAUA1YQACwAQU7p06aJVq1bp3Xff1bhx47Rr1y4VFhaqQ4cOuv766/XYY49V6gGrqGXLlpo3b57GjRun0aNHa/HixUpPT1dSUpLatWunq6++Wvfff78uueSSoPXp3r27Nm3apC+//FITJkzQ8uXLdeTIEZWWlqpFixbq1KmTfvGLX+jOO+906hRUcvrpp2vHjh2aMmWKFi5cqLVr12rv3r3Kzs5WcnKy2rRpo+7du+uWW27RbbfdpqQkvv4BoLowRBAAUOOV99D8/Oc/1+zZs6NbGQAALJDkAgAAAAAcQoAFAAAAAA4hwAIAAAAAhxBgAQAAAIBDCLAAAAAAwCHkaQUA1HgkvAUAxAp6sAAAAADAIQRYAAAAAOAQAiwAAAAAcAgBFgAAAAA4hAALAAAAABxCgAUAAAAADiHAAgAAAACHEGABAAAAgEP+PxsQIgpLVuLVAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -729,15 +942,15 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Games played: 1000, # of wins: 942\n", - "Win percentage: 94.19999999999999%\n" + "Games played: 1000, # of wins: 905\n", + "Win percentage: 90.5%\n" ] } ], @@ -763,9 +976,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -777,9 +990,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 4/Ch4_book.ipynb b/Chapter 4/Ch4_book.ipynb index f03ca6b..86c3f07 100644 --- a/Chapter 4/Ch4_book.ipynb +++ b/Chapter 4/Ch4_book.ipynb @@ -15,13 +15,13 @@ "source": [ "import numpy as np\n", "import torch\n", - "import gym\n", + "import gymnasium as gym\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", - "execution_count": 315, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -37,11 +37,11 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ - "env = gym.make(\"CartPole-v0\")" + "env = gym.make(\"CartPole-v1\")" ] }, { @@ -53,11 +53,10 @@ }, { "cell_type": "code", - "execution_count": 483, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "import gym\n", "import numpy as np\n", "import torch\n", "\n", @@ -89,14 +88,14 @@ }, { "cell_type": "code", - "execution_count": 484, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "state1 = env.reset()\n", - "pred = model(torch.from_numpy(state1).float()) #G\n", + "pred = model(torch.from_numpy(state1[0])) #G\n", "action = np.random.choice(np.array([0,1]), p=pred.data.numpy()) #H\n", - "state2, reward, done, info = env.step(action) #I\n", + "state2, reward, done, info, _ = env.step(action) #I\n", "\n", "#G Call policy network model to produce predicted action probabilities\n", "#H Sample an action from the probability distribution produced by the policy network\n", @@ -112,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 485, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -135,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": 486, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -155,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 487, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -165,7 +164,7 @@ "score = [] #A\n", "expectation = 0.0\n", "for episode in range(MAX_EPISODES):\n", - " curr_state = env.reset()\n", + " curr_state = env.reset()[0]\n", " done = False\n", " transitions = [] #B\n", " \n", @@ -173,7 +172,7 @@ " act_prob = model(torch.from_numpy(curr_state).float()) #D\n", " action = np.random.choice(np.array([0,1]), p=act_prob.data.numpy()) #E\n", " prev_state = curr_state\n", - " curr_state, _, done, info = env.step(action) #F\n", + " curr_state, _, done, _, info = env.step(action) #F\n", " transitions.append((prev_state, action, t+1)) #G\n", " if done: #H\n", " break\n", @@ -210,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 488, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -220,29 +219,27 @@ }, { "cell_type": "code", - "execution_count": 489, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 489, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAG3CAYAAADb1AMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8ltX9//HXySaM7JBBBgkJGUDCCKBMcQAucHxddVRtnbVqVdTan62tHVo71NbVVqmjTlCRJSJTkBFIwgghi0DIICELSCDz/P7IEFAggfvOucfn+XjkYXLd131fbyQkn/uc63yO0lojhBBCCCHsi4vpAEIIIYQQouekiBNCCCGEsENSxAkhhBBC2CEp4oQQQggh7JAUcUIIIYQQdkiKOCGEEEIIOyRFnBBCCCGEHZIiTgghhBDCDkkRJ4QQQghhh9xMB+gNgYGBOjo62nQMIYQQQogz2rJly0GtddCZznOKIi46Opr09HTTMYQQQgghzkgptbc758l0qhBCCCGEHZIiTgghhBDCDkkRJ4QQQghhh6SIE0IIIYSwQ1LECSGEEELYISnihBBCCCHskBRxQgghhBB2SIo4IYQQQgg7JEWcEEIIIYQdkiJOCCGEEMIOSREnhBBCCGGHpIgTQgghhLBDUsQJIYQQQtghKeKEEEIIIeyQ8SJOKfWmUqpCKbXjuGOpSqkNSqlMpVS6Umpsx3GllHpJKZWvlNqmlBplLrkQwtnVHaujta3VdAwhhJMyXsQBc4EZJx17HnhGa50KPN3xNcBMIK7j4y7g1V7KKIQQJ6g7VkfMSzFMeHMC+w/tNx1HCOGEjBdxWus1QPXJh4EBHZ/7AKUdn88C3tbtNgC+SqnQ3kkqhDBJa92j82d9MIuJb05kddFqNu7fyJ6aPRbN897296g+Ws22A9u45qNraNNtFn19IYQ4E+NF3Ck8BPxZKVUMvAA82XE8HCg+7rz9Hce+Ryl1V8dUbHplZaVVwwohrCujLAPf53x5YvkTLCtYRmNL42nPb2xpZMHuBawrXsfU/05l/H/Gk/DPBA4cOWCRPFpr3tjyBiNDRvLa5a+xqWQT7217zyKvLYQQ3WWrRdy9wMNa6wjgYeA/PX0BrfUbWusxWusxQUFBFg8ohOg9H+78kEONh3hu3XNMf3c6V314VdfIV2V9JV8VfHXC+TsrdwLw4owXWXzTYt6a9RZNrU18lvPZOeWoaqji/e3vc/vnt5N1IIv70u7j5hE3kxqSykubXjqn1xZCiJ6y1SLuNmB+x+cfA2M7Pi8BIo47b1DHMSGEA1uct5gLoi8g5/4c/njhH1mSv4TEfyby6LJHuf6T67nk3UvYV7ev6/yMsgwALo27lJlxM7kt5TbiA+L5OPvjs87wxe4viPp7FDfNv4n/Zv2XpyY9xZ0j78RFuTA5cjK7KnfJlKowZv+h/QT/OZiN+zeajiJ6ka0WcaXAlI7PpwF5HZ8vAG7tWKU6HqjTWpeZCCiEsD6tNVtKt7C9Yjszh8xkaOBQHp/wOH+88I9EDIjgL9/+hZVFKwH4eOd3BVpmeSb9PfoT4xcDgFKKaxOvZWXRSt7MeBOtNXtr97J279qujx0VO055311zazMPLn2QaN9oNv5kI2WPlPHstGdRSgGQGJRIfXM9JYfkPaUwY1nBMiobKlm7b63pKKIXuZkOoJR6H5gKBCql9gO/Bn4KvKiUcgOO0b4SFWAxcCmQDzQAt/d6YCGEVdUdq2P/of00NDfw+PLHu4q0y+IvA9oLsicmPsETE5/ghfUvkFeVx+bSzXyw8wN+NOJHAKSXpZMSkoKL+u596r1p97IobxF3LrgTgEeXPUrNsZoTrj00YChrb19LUN8Tb8F4O+tt9tTuYeGNCxkbPpaTJQQmALDr4C4ifCK+97gQ1rZ672oAcqtyDScRvcl4Eae1vvEUD43+gXM1cL91EwkhTNFak/p6KkW1RQB4unryh2l/YGToSJKCkr53/qPnPwrAn9f9mTnL5xD6l+8Wqz847sETzh00YBAZd2cQ/WI0j331GDXHanhxxoskByUDUFhTyH2L7+Oxrx7jn5f+k74efbueOz9nPvEB8Vwad+kP5k4MTAQg52AOl8Recvb/A4Q4S2v2rgGkiHM2xos4IYToVHyomKLaIu4dcy/TY6eTHJzMEP8hZ3zefWn3EeAdQFNrEwAuyoVZQ2d97zylFNclXccL375AcN9g7ku7DzeX9h+DF3IhBTUFPLfuOd7OeptltyzjopiLANh+YDuToyZ3TZ+eLLhvMH5efjy49EFe3Pgi2+/djre799n+bxCi22qP1fJ21tsU1Rbh4epxQhH3dtbb/GPTP0gITOCNK97Ay83LYFJhDVLECSFsRnppOgA/Tv3xD05bnkpfj77cMfKObp17/bDreeHbF/i/pP/rKuA6PTP1GeID4rln4T18Xfg1F8VcRM3RGooPFTM8ePgpX1Mp1fULsrCmkKX5S7k68epu5xfibP1m1W94ceOLuCpXbhx2I//N+i+HGw/T37M/L218iX11+9hcuhlvd29eu/w103GFhdnqwgYhhBNKL03HzcWNEQNHWO0ao0NH8+8r/s1Tk5763mOebp7cMfIOhg8czubSzQDsqGjfEXD4wFMXcQDnR5wPgJ+X3zmtghWiuw41HuLNjDe5Pvl6quZUceXQKwHIq87jUOMhMsozuGfMPTxy3iO8vuV1dlXuMpxYWJoUcUIIm7GlbAvDgodZddpHKcWdo+4ktP+pN3tJC0sjvTSdNt3GtgPbAM5YWP7nyv9Q8PMCrk26loW5CznafNSiuYU43sGGgzyw5AEONx3mkfMewcfLh/iAeACyK7P5tvhb2nQbkyIn8fNxPwdgYe5C3tv2HocbD5uMLixIijghhE3QWpNems6Y0DGmozAmbAx1jXUUVBewvWI7vl6+hPf/wc1huvh4+RDjF8MtI27hSNMR/rbhb72UVjij2z67jXe3vcsDYx8gLTwNgCH+QwjyDuKehffw9KqncVWunBdxHpE+kSQHJfP7tb/n5k9v5q/f/hWA97a9x0c7PzL5xxDnSIo4IYRNKKotovpoNWPCzBdxaWHtvxTvX3w/72x7hzFhY065qOFkk6ImcXXi1Ty75ln2H9pvzZjCSVUfrWZZwTIeO/8xXpr53U4hXm5ebPrpJi6OvZhNJZsYFTqKfh79gPbG13WNdUD7vr9fF37NzZ/ezPWfXG/kzyAsQ4o4IYRN6FzUYAtFXHJwMiNDRrKpZBMzhszgP1f2bOe/5y96nqMtR2U/VWEVC3YvoKWthWsSr/neY9G+0Xx6/aesum0Vc2fP7Tp+bdK1uLu4c8uIW8irzuOK96/oeuxYy7HeiC2sQIo4IYRNSC9Nx8PVg2HBw0xHwc3Fja13b6X2iVrmXTePSJ/IHj0/1j+WMWFj+DTnUyslFM5gUe4iZrw7g9a21hOOz981n0ifyNO+4ZkSPeWE3opjw8dy+MnDvDzzZXw8fRg+cDgvXPwC0N7fUNgnKeKEEDYhvSydEQNH4OnmaTqKRVyVcBUbSzZ2LZAQoida2lp4cOmDfFnwJQU1BV3HtdZ8s+8bLom5pNtT/J083Tzx8fKh8MFC1t2xjplxM4HvVmAL+yNFnBDCuM49Um1hUYOldPaJS/tXGr9e+WvDaYS9eXfbu13F286KnV3H99btpeZYDaNCR531a/v38cfNxY04/zjcXdyliDvJ21lvc/E7F/P0yqdNRzkjKeKEEMblV+dT11jH6LDv7bZntxICE/jy5i8ZMXAEi/MXm44j7MzC3IWE9Q8DYGfld0VcRlkGwDkVcZ3cXd1JDEqUIu4kr6W/xvLC5Ty75lmONB0xHee0pIgTQhi3rngdAOcNOs9wEsu6JPYSrkq4ioyyDGqO1piOI+zIzsqdjA0fS5RP1IlFXHkGLsrljM2nu2tY8DC2lm2lfWtyaNNtvJ7+Ontq9ljk9e1RfnU+of1C0WiyyrNMxzktKeKEEMat3bsW/z7+JAYlmo5icRdEX4BGs3bfWtNRhJ1oam0iryqP5KBkkoOTT5hOzSjPICEwwWJ7814ScwllR8q6dihZt28d9yy6h2lvT+PjnR9TdrjMItexF3XH6qhsqOT65PbWK1vLthpOdHpSxAkhjFu7by0TIibgohzvR9L4QePxcvNi5Z6VpqMIO5FXlUerbiUpKInkoGR2V+1mcd5iRr0+iqX5SxkZMtJi17py6JW4ubgxL3seAJ9kf4KnqycHGw5y3SfXcdtnt1nsWvYgvzofaO/3OLDvQLaWb6WlrYW5mXNZlLuIdfvWUVBdcIZX6T2O9xNTCGFXyo+Uk1edx6TISaajWIWnmyfjB43nm+JvTEcRdqJz+jQpKIkRA0fQ1NrEZf+7jMNNh7l1xK08PP5hi13Lr48f0wZP44OdH7CpZBPzds1jZtxM9jy4h/vT7ufrPV9TWV9psevZsq1lW9lStgWAOP84RoWOYkvpFn67+rfc/vntXP7+5Ux8ayJ/+fYvhpN+x810ACGON+erObyZ8SZp4Wks+dES03FEL1i3r/1+uElRjlnEAYwPH88L377A0eaj9HHvYzqOsHHZldm4KBeGBgwlMTARV+UKwKyEWRabRj3eQ+Me4uqPrmbcv8cB8HzS8wR6B3LX6Lv45+Z/Mn/XfO4ec7fFr2tLXk9/nXsW3YObS3tZFOsfy+jQ0SzJX8L2iu3cMuIW7hp9F0ebjzJowCDDab8jRZywGVUNVby08SX6e/Znaf5S8qvzGeI/xHQsYWVr962lj1sfi6y2s1XnRZxHy7oWtpRtYWLkRNNxhI3bWbmTGL+YroL/xuE3WvV6M+Nmsv/h/XxV+BXuLu7MTpgNwPDg4cQHxPNR9kcOXcQV1RZx76J78fPyo+ZYDeH9w/F29+Yno37C4abD+Hj6MGfCHPp69DUd9XtkOlXYjHe2vUNjayNvXP4GAEvzlxpOJHrD2n1rGTdoHB6uHqajWM34QeMB2LB/g+Ekwh5sO7Ct13cuCfAO4IZhN3BN0jW4urSP/CmluDrhatbsXUPtsdpezdObvtj9BRrNvOvm4apcuwYPonyj+PuMv/PMBc/YZAEHUsQJG1FztIa/b/g748LHcVXiVQzxH8KS/Pbp1MaWxq7ziuuKqaivMBVTWNjhxsNklmc67P1wnYL7BhPjF8O3+781HUXYuPqmevKq8kgdmGo6CgBXDL2ClrYWluYvpbK+kjlfzTnhZ7Ij+CL3C4YGDOWCwRfw4owXeWj8Q6YjdZsUccK45tZmbpx3I6WHS/nb9L8BMCN2Biv3rOTVza/i+5wvb2W8xdayrSS/kszN8282nFhYyrf7v6VNtzl8EQeQFpbGltItpmMIG7ejYgcaTUpIiukoAIwLH0egdyBf5H7Bmxlv8uf1f2Z98XrTsSzmUOMhVhWt4or4KwC4f+z9XdPJ9kCKOGGU1poff/5jviz4klcve5XzItqbvT4w7gE83Ty5b/F9NLY0ct/i+5j81mQONx1mVdEqm++iLbpn5Z6VuLm4dU03OrLkoGT21u2lvqnedBRhw7IOtDeXTRloG0Wcq4srl8VdxsLchXyc/THwXRsOR7A4bzHNbc1cOfRK01HOihRxwqil+Uv53/b/8dupv+XOUXd2HY8PiOez6z9j2uBprL19LcOCh3Ft0rX8+4p/09zWLD23HMTSgqWcH3E+/T37m45idUlBSQDkHMwxnETYsszyTAZ4DiDaN9p0lC73jrmXQ42Hutpv5FXnGU507uqb6lm7dy0fZ39MaL9Qzo8433SksyJFnDDq+fXPM2jAIB6f+Pj3HpsSPYWvb/2aCZET2PzTzcydPZebR9yMt7s3XxZ8aSCtsKTyI+VklmcyI3aG6Si9Ijk4GWhvHyHEqWQdyGLEwBEopUxH6TJu0DguiL4AAA9XD4co4h5Z9giT507ms5zPuDbp2q7FHPZGijhhzLYD21hVtIqHxj3U7ZWJnm6eTBs8jXm75smUqp1bVrAMgBlDnKOIi/WLxd3FXYo4cUptuo1tB7bZzKKG4/11+l95YOwDXBJ7id1Pp9YcreGdbe/g7e5Nm27r2mLLHkkRJ4zpbCHyoxE/6tHzfjnxl5QfKedP3/zJGrGElb2T9Q5vZ73NX7/9KxEDImzmBm5rc3d1Jz4gnuyDUsSJH7anZg9Hmo7Y5L+J1JBUXpr5EkMDhpJfnU+bbjMd6az9Y9M/aGhuYMWtK9hw5wYmRE4wHemsSbNfYcyKPStICkoipF9Ij553XsR53DT8Jv7y7V/4xXm/wL+PP9DerqKfRz+bmoYQJ9Ja8+DSB6k5VgPAp9d/6pD7pZ5KUlCSzW+oLczJLM8EbGdRww8Z4j+EYy3HKDlUQoRPhOk43VZcV8wbW96goKaA93e8z9WJVzNu0DjTsc6Z8/z0FDalqbWJtfvWMi162lk9f875czjWcoy5mXMBONZyjMi/R/LsmmctmFJYWlFtETXHajhv0Hk8PuFxu1rKbwnDgodRWFMotwKIH5R1IAsX5dLrjX57Is4/DoAr3r+CSW9NYtJbk3hl8yuGU51e9dFqUl5L4Q/f/IFVRau4Lvk63rv6PdOxLEJG4oQRG/dvpKG5gQtjLjyr56eEpDAhYgKvpr/Kz8f9nPzqfGqP1fL8+ue5Z8w9BPUNsnBiYQnppekAvDTzJcaEjTGcpveNDBmJRpNVnmXXUzjCOrIOZBEfEG/T++uOGzSOqxOv7trBoaK+gvsX34+XmxfxAfGE9w9nsN9gwylP9OrmV6k5VsPGn2xkbPhY03EsSoo4YcS64o5Nz8+hyetj5z/G7A9nc/+i+7k49mIAjjQd4cWNL/LsNBmRs0Vbyrbg7uLO8ODhpqMYMTJ0JAAZ5RlSxInvySrP6uqVaav6efRj3nXzur4+2nyUsf8ey50L2ltEuSpX1t+53maKpcaWRl7a9BIzh8y0mUyWJNOpwoj00nRi/GII8A4469eYlTCLxyc8zhtb3+CtzLeA9ntJ1uxdY6mYwsLSS9MZPnA4nm6epqMYEd4/nCDvILkvTnzP4cbD7K3ba3dvcPq492H9Hev56pav+PLmLwnqG8SDSx9Ea03tsVpa21qN5ss6kEVFfQV3jLzDaA5rkSJOGJFemk5aWNo5v87jEx5HoVict5iIARFMipxERnmGXa+cclQtbS2kl6YzOnS06SjGKKUYGTqSjPIM01GEjcmtygUgITDBcJKe6+/Zn4tiLuKS2Ev4/bTfs2H/Bj7O/pjov0fztw1/M5ptR8UOoH11rSOSIk70usr6SvbW7bXIPVF+ffy6/nEODRzK6LDRHGk6Ql6V/TejdDQr9qygrrGOS+MuNR3FqJEhI9lZsZOm1ibTUYQN6dzJwx6LuOPdNPwmBngO4GeLf0ZdYx3zds0785OsaEfFDvq49WGwr23dp2cpUsSJXtd5c7slRuKArk7iQwOGdo3ydG4PI2zHBzs+YIDnAKdp7nsqw4OH09zWTEF1gekowobkHMzBVbkS6xdrOso58XLzYnbCbCobKoH2RWxVDVX8euWv+b+P/6/X8+yo2EFycLLd7shwJlLEiV63pWwLCsWo0FEWeb2p0VOB9newiUGJeLl5saVUijhb0tTaxKc5nzJr6Cy83LxMxzEqPiAe+G76TAiAnKocBvsNdoj7RTt3QJgeOx2N5umVT/O7Nb/jk+xPqGqo6pUMVQ1VvLr5VTLKM2y6Zcu5kiJO9LrtFdsZ7DfYYpueXxRzEfeOuZfZCbNxc3FjTNgY3tn2TlfjTGHejood1B6r5bK4y0xHMS4uoL3PlhRxAuBQ4yF+8eUvWF202u6nUjtNj53OizNe5N2r3yW4bzCvpL+Ct7s3QK8tPHtl8yvct/g+DjYcZFiQFHFCWMyOih0WfWfUx70Pr1z2CoMGDALgjcvfwNPNkxs+ucFi1xDnpnM15ugw513U0MnXy5fgvsFSxAkAPsv5jL9t+BuVDZVE+0SbjmMRri6u/Hzczwn0DmT1j1fz2fWfkfOzHLzcvFi9d3WvZFiSv6Trc1vcxsxSpIgTvSK/Op/1xes53HiY3Kpcq74zSgxK5Odjf87uqt1U1lda7Tqi+zLKMhjgOYAYvxjTUWxCfEA8udVSxAlYVbQKRftWgeMHjTecxvISAhOYlTCLQQMGcd6g81hWsOx794O+u+1dVhWtstg1q49Ws7FkI7+a9CtW3baKCwefXVN5eyBFnOgVF79zMRPenMDoN0bT0tZCcnCyVa/X2dSxcxGFMGtr+VZSQ1Kdap/U04n3j5eROAG0F3GzE2ZT/HAxNw6/0XQcq5o5ZCa7Du4i4Z8JbNy/EYDWtlbuW3Qfv1/7e4tcQ2vNO1nv0KbbuCz+MqZET3Ho/bTlJ6qwuiNNRyiqLSLKJ4q86vbWH9a+0XRU6CgUis2lm616HXFmrW2tZJVnMSrEMgtZHEF8QDzlR8o51HjIdBRh0N7aveyp3cPU6KkMGjDI4d/kPHL+I2TcnYF/H38e++oxiuuK2VGxg8NNh9lZsdMi13j4y4d56MuHGB483GIdEGyZY3/HCJvQ2bPt6SlP08+jH67KlaEBQ616zf6e/UkMSmRTySarXkec2a6DuzjacrRryynx3QrVzt5gwjl13uQ/JWqK4SS9w0W5kBqSym+m/Ia1+9YS+fdI7lp4FwBlR8qoOVpzTq+fczCHlze9zO2pt7P5p5sdtq3I8aSIE1bXOfo2JmwMc86fw+Xxl/fKMvq0sDQ2l25Ga231a4lTW5i7EPiuFYz4bg9V2X7LuW3Yv4H+Hv0dugXGD7lnzD0svHEhqSGpJ7zR3ll5bqNxT379JN7u3jx30XMO0aqlO6SIE1bXee/PEP8h/L8p/4/PbvisV66bFpZGRX0FxYeKe+V64ofN2zWPseFjifSJNB3FZkT5RBHQJ4D00nR5k+HENpRsYGz4WKcYMTqeUorL4i/j6clPA3Tt3vNt8bcsyl3UNbW6uWQzt356Kxll321T19rWSkNzw/dec0neEj7L+YwnJz5JUN+gXvhT2AYp4oTV5VXnMWjAoK4+Qb0lLbz9fojNJXJfnClFtUWkl6ZzTeI1pqPYFKUUY8LGsKpoFeF/Daf/H/vz763/Nh1L9KKG5gayyrMcckVqd1059EpuHnEzv5nyGxSKOcvncPn7lzPitRH86Zs/Me7f43hn2zvMWT6n6zl/WPsH4l+O51jLsRNea87yOQwNGMoj5z3S238Mo6SIE1aXW5VLnH9cr183ZWAK7i7usrjBoGUFywCYNXSW4SS2Z0zYGApqCig7UkbEgAieWvGU7KfqRLaUbqFVtzp1Eefq4so7V73DZfGX0ce9DwBvXvkmQd5BPPn1k8QFxPGrSb9ieeFy5mbOpaK+guV7llNyuIQFuxd0vU5VQxU7KnZwx8g7nGYatZMUccKqFuctJrsyu+tG7t7k6ebJiIEjpIgzaFPJJvz7+Bv5+7d1nVNIl8Vdxl+n/5WK+grm75pvOJXoLV8WfAnAuPBxhpPYhkU3LeLT6z/l9pG38/cZf6efRz/+c+V/ePT8R/H18uX2z2/nhk9u6Gob9VbmW13P7dwru/PflDMxXsQppd5USlUopXacdPwBpVSOUmqnUur5444/qZTKV0rtVkpN7/3EoruW5i/lsv9dRmNLI5fEXmIkw9jwsaSXptOm24xc39ltLt3MmLAxDt2n6WxNiZrCpMhJ/O6C33FJ7CXE+MUwN3Ou6ViiF+yq3MUL61/gmsRrnOr+rdOZGj2V2QmzAbhh2A1UzaliYuREfLx82HbPNu4efTcri1bS0NxAfEA8ywqWsW7fOoCuvbIttR+3PTFexAFzgRnHH1BKXQDMAlK01snACx3Hk4AbgOSO57yilHKuO0LthNaaZ1Y/Q6RPJLVP1HJ14tVGcowLH8ehxkNklWcZub4za2huYGfFTqfo1XQ2/Pr4seb2NYwMHYmLcmF67HTWF6+nta3VdDRhZc+tew4vNy/+eek/TUexWR6uHl2fR/hEcPfou7u+fveqdxnsO5hZH8xi9gezmbdrHkP8h+Dr5WsiqlHGizit9Rqg+qTD9wJ/0lo3dpxT0XF8FvCB1rpRa70HyAfG9lpY0W2bSjaxYf8GnpjwBF5uXsZyzIybiYty4bOc3lkRK76TUZZBq27t2j1DnN6EiAkcbjrM9ortpqMIK9tdtZsxYWMY2G+g6Sh2IzUklcG+g/Hz8mNM2Bg+v+FzRoWOYu2+tWwp2+KUU6lgA0XcKcQDk5RSG5VSq5VSnW/lw4Hj+0Xs7zgmbEzWgfaRr0vjLjWaI7hvMBMjJ/JpzqdGcziTptYmvi3+tmsbHRmJ654JkRMAuqaIhOMqqC6QfYR7SCnFC5e8wB8u/ANKKZKDk1l2yzJW3LoCXy9fh94f9XTcTAc4BTfAHxgPpAEfKaV69B2vlLoLuAsgMlL6U/W2vKo8PF09ifCJMB2FqxKu4uEvHya/Op8h/kNMx3F4N867kfm75uPl5sVzFz1HaP9Q05HsQpRPFOH9w1lXvI77x95vOo6wksONh6lsqCTWL9Z0FLvzQ7flpISkUPFoBe6u7gYSmWerI3H7gfm63SagDQgESoDjq4JBHce+R2v9htZ6jNZ6TFCQ3Dja2/Kq84j1j7WJvQBnDpkJwOqi1YaTOL423caKPSu4KuEq9j60lzkT5pz5SQJoH2mYGj2VBbsXyD2cDqywphBARuIsyFkLOLDdIu4z4AIApVQ84AEcBBYANyilPJVSg4E4QDbHtEF51XlGesP9kLiAOHy9fNlYstF0FIeXV5VH7bFaLo+/nOC+wabj2J3nLnoOXy9fZn84W1ZUO6iCmgIAYv1lJE6cO+NFnFLqfeBbYKhSar9S6k7gTSCmo+3IB8BtHaNyO4GPgGxgKXC/1lqWctmYNt1GQXWBzRRxLsqFceHjpIjrBZ3/j2Uxw9kJHxDO01Oepqi2iKLaItNxhBXISJywJOP3xGmtbzzFQzef4vzfA7+3XiJxrvYf2k9ja6NN3X82Lnwcz659liNNR+jn0c90HIe1qWQT/Tz6kRiYaDqK3RoZMhKAzPJM+UXvgAqqC/Dv4++U7TCE5RkfiROOJ68qD2ifxrQV4waNo023dXX7FtYfaC4BAAAgAElEQVSxYf8G0sLSnG5Db0saFjwMV+VKZnmm6SjCCgpqZGWqsBwp4oTFfbv/WwASAhMMJ/lO5/6E0r7BeirqK9hatpUpUVNMR7Frfdz7kBCYQEZ5hukowsK01mQdyGJY8DDTUYSDkCJOWNTR5qO8vOllZgyZQVj/MNNxuvj38WdY8DDW7FtDU2uT3DRuBYtyF6HRzEqQze7PVWpIqozEOaD9h/ZTUV/BmFDnbEwrLE+KOGFR72x7h4r6Cp6Y8ITpKN8zJWoK6/atY+TrI3lg8QOm4zicBbkLiPSJJGVgiukodi81JJX9h/ZTcqiEb/Z9Q1Nrk+lIwgI6b+dw1t0FhOVJEScsanHeYmL9YpkcNdl0lO+ZHDWZ+uZ6siuz+Tj7YxmNs6BDjYdYVrCMK+KvkM3uLWB2wmwUihvm3cCktybx3DfPmY4kLCC9NB03FzdGDBxhOopwEFLECYvRWrO+eD0TIyfa5C/yzsLS292byoZKtpRuMZzIcby37T0amhu4NeVW01EcwhD/IVwx9Aq+2fcNAC9teomjzUcNpxLnKr0snWHBw+jj3sd0FOEgpIgTFpNXnUdlQyUTIiaYjvKDQvqF8Prlr/PlzV+iUCzJX2I6kt3bXLKZWz69hefXP8+o0FGyT6oFPT7hcfq49eGZqc9wsOEgczPnmo4kzkFrWyubSjbJ/XDCooz3iROOo3PlZ+dG3rbortF3Ae3NaJcVLOPpKU8bTmS/1hevZ8rcKXi4etDQ3MAzU5+xyRFYe3V+xPkc+eURFIpFeYt44dsXuGv0XdK+xU5lHcii9lgtU6Jl9bawHBmJExazvng9fl5+NtVa5FTGhY8jszyT1jbZ8ONsLcxdCMC+h/ZR+Vglt4y4xXAix+OiXFBK8fiExymsKWTernmmI4mztKpoFQBTo6cazSEcixRxwmJyqnIYPnC4TWx6fyapIanUN9d37WMoei6jPIOkoCQCvAMI9A6UUTgrmjV0FjF+Mfxr679MRxFnaWXRSob4D2HQgEGmowgHYvu/bYXdKKguINbPPjZ1Tglpb4ORVZ5lOIn9yizPJDUk1XQMp+Dq4sp1Sdexcs9KqhqqTMcRPdSm21izdw0XRF9gOopwMFLECYtoaG6g7EiZ3RRxSUFJuLm4SUPVs1R+pJzyI+WkDpQirrdck3QNrbqVBbsXmI4ieqjscBmHGg917YsrhKVIEScsorCmEIBYf/so4rzcvEgMTCTzgBRxZ6NzBHNkqPxS6i2jQ0cT5RPFT7/4KZf97zLTcUQP7K3bC0C0b7TZIMLhSBEnLKKguv3eMnsZiYP2AmR98Xqqj1abjmJ3Ovf1lN0Zeo9Siv9c+R8mRU1iSd4S6pvqTUcS3VRUWwRAlG+U2SDC4UgRJyyic4GAvYzEATw8/mEONx7mkWWPmI5idzLLM4nyicKvj5/pKE7lwpgLeWjcQ2g0Oyp2mI4jumlvbftIXJSPFHHCsqSIE+esobmBnIM5+Hr54t/H33ScbksNSeXh8Q8zN3Mu5UfKTcexK5nlmTKVakjnohy5n9N+FNUWEegdSF+PvqajCAcjRZw4Z6mvpfKvrf8irH+Y6Sg9dk3SNQBd2xuJM6tvqie3KlcWNRgS5ROFj6cPWQdkZbW92Fu3V+6HE1YhRZw4J5X1leRV5xEfEM/do+82HafHRoWOoo9bH9buXWs6it3YdmAbGi0jcYYopUgJSZGRODtSVFskU6nCKqSIE+dk18FdALw04yV+Pu7nhtP0nIerB+MHjWftPiniuquzeJAeceakDExh24FttLS1mI4izkBrLSNxwmqkiBPnZGfFTqC975q9mhQ5iawDWdw8/2be3/4+bbrNdCSbllmeiZ+XHxEDIkxHcVpTo6dS31zPmr1rTEcRZ1BRX8GxlmMyEieswq2nT1BKnQdcCIQBXqc4TWut7zyXYMI+ZFdm08+jn11vJfN/yf/H57s/Z3nhct7b/h6VDZV2OarYW/Kq80gMSpRttgyaMWQG3u7efJL9CdMGTzMdR5xG58r9GL8Yw0mEI+p2EaeU8gQ+BK7oPHSa0zUgRZwTyD6YTVJQkl3/Qh8WPIzMezJp022M/ddY3t32rhRxp1FYU8ikqEmmYzg1b3dvLou7jPm75vPyzJdxdXE1HUmcQs7BHAASgxINJxGOqCcjcb8BrgSOAO8AOcAhK2QSdiS7MpuZQ2aajmERLsqF65OvZ87yORTWFMo75x/Q1NpE8aFiYnzl/41ps4bO4uPsj9lesV3uT7RhOQdz8HT1lOlUYRU9KeKuB+qBNK31bivlEXakor6C8iPldn0/3MmuS76OOcvn8PHOj3l84uOm49icvbV7adNtUuDagBEDRwDtRYIUcbYr52AO8QHxMloqrKInCxvCgG+kgBOd1hevB+C8QecZTmI5Ub5RjAsfx0fZH5mOYpPsbY9cRxYXEIeLcmFX5S7TUcRp5BzMYWjgUNMxhIPqSRFXiUyfiuN8s+8bPF09GRM2xnQUi7o++Xq2lm0lvzrfdBSb01nEyUiceV5uXgz2HdzV5kfYnqbWJgprCkkISDAdRTionhRxi4HzlVI9XtEqHNO64nWkhafh6eZpOopFXZt0LQAf7vjQcBLbU1hTiJebFyH9QkxHEUBCYELXjfPC9hRUF9CqW0kIlCJOWEdPirj/1/Hff3SsVBVOrKG5gS2lW5gQMcF0FIuL8IlgdOhoVhStMB3F5hTUFBDjF4OLkhaTtiAxMJHcqlxa21pNRxE/oLMxdnJwsuEkwlH1ZFTtHuBL4KfADKXUCmAf8EOdUbXW+ncWyCds1NayrTS3NTtkEQftN40vyV9iOobNya3KJdZP7oezFYlBiTS2NlJUWyT3Kdqg1XtXM8BzAMODh5uOIhxUT1uMaNr7w0UCP/6Bczof14AUcQ5sU8kmAMaGjzWcxDqSgpJ4K/Mtqo9W49/H33Qcm9DY0kjOwRxmJ8w2HUV06FwZnlmeKUWcDVpVtIpJkZNkZaqwmp4Ucc9YLYWwO5tLNxMxIIKB/QaajmIVnb8cd1XuYkKkY4429tSug7to1a1drS2EeaNCR+Ht7s2qolVck3SN6TjiOOVHytldtZs7R0rfe2E93S7itNZSxIkum0s2kxaeZjqG1XQWcdmV2VLEddh2YBuAFHE2xMPVg0mRk+T+TRu0du9aAKZETzGcRDgyuTtZ9Fj10WoKagpIC3PcIi7SJxJvd2+yK7NNR7EZ2w9sx9PVkyH+Q0xHEceZNnga2ZXZlB8pNx1FHGfbgW24KldpxCys6qyLOKVUqFJqTMdHqCVDCdu2pXQLgEMXcS7KhcTARHZW7jQdxWZsq9hGcnAybi7SZciWXDj4QgDiXo7j6g+vZvdB6cduC3KrcxnsNxgPVw/TUYQD63ERp5T6qVJqN7Af2NjxsV8plaOU+omlAwrbs6NiBwApISmGk1jX8IHDyTqQhdbadBTjjrUcY3PJZlIGOvbfuT0aFTqKP174R24adhMr9qxg+rvTOdQofdlNy63KJT4g3nQM4eB6VMQppeYCrwFxHYdKOz4A4oHXlVJvWSydsEnZldkEeQcR6B1oOopVjQoZRUV9BSWHS0xHMe7DHR9Sc6yGHw3/keko4iRKKZ6Y+ASvX/E6S29eSvGhYuZ8Ncd0LKemtW4v4vyliBPW1e0iTil1I3Ar7dtv3Qt4a60jtNYRgHfHsQrgVqXUDdYIK2xD9sFsEoMSTcewus7txDqnj52V1pqXNr1EclAy0wZPMx1HnMb4QeO5ZcQtfLDjA2kAbFDJ4RIamhtkJE5YXU9G4n4KNAHTtNava60bOx/QWjdqrV8HLgRagLssG1PYCq012ZXZJAUmmY5idSkhKbgoF7aUOXcRt6d2D1vLtnLX6LtQSpmOI87gwsEXUtdY13Xbg+h9uVW5AFLECavrSRGXCqzSWp9yuV7HYys7zhUOqPxIObXHartacDgyb3dvkoKSnL6IW1W0CoCLYy42G0R0y+SoyQCs3bfWcBLn1VnEDQ0cajiJcHQ9KeK8gepunFcN9Dm7OMLW7Tq4C8ApijiA0aGj2VK6xakXN6wqWkVw32DZxNtORPlGEekTyZq9a0xHcVq7Knfh7e5NWP8w01GEg+tJEVcCjFWnmU/peCyN7xY7CAfT2TfNmYq4A/UHKD3snN/SWmtWFa1iavRUmUq1I5OjJrN672ra9A9tbS2sLetAFiMGjsBFSStWYV09+Q77EhgM/Fkp9b2N4JRSLsBzQAyw1DLxhK3JrszG18uXkH4hpqP0itFhowGcdkp1b91eig8VMyVKus7bk4tjLqaivoKMsgzTUZyO1prM8kxSB8pdRcL6elLE/QmoAx4GcpVSv1NK3aGUul0p9TsgF3gEqO04Vzig7MpskoKSnGZUJjUktX1xg5OuUM0qzwK+W6kr7MPMITNRKBblLTIdxekU1RZR11jHyNCRpqMIJ9DtIk5rvQ+4lPZp1cHAL4F/Af/u+DyG9gbAl2qtiy0fVdiC7MpsEgMdv71IJ293bxIDE512JK5zhaOzTJ87iqC+QYwNHytFnAGZ5ZkAst2W6BU9mrDXWm+gvdHvrcCbtE+xftnx+a1AvNZ6o6VDCttwsOEglQ2VTvcLfXTYaOct4ip3MNh3MP08+pmOInro0rhL2VyymdpjtaajOJXM8kxclAvDgoeZjiKcQI/vuuzoCfeu1vqnWutLOz5+2nGs8cyvcCKl1JtKqQql1PeaGimlHlFKaaVUYMfXSin1klIqXym1TSk1qqfXE2enqbXJaUdlJkVOovxIOU8uf9LpVqnuqNghv4zs1OjQ0Wg0Oytk/9/elHUgi6EBQ/F29zYdRTgBW1g6MxeYcfJBpVQEcAmw77jDM2kfCYyjvaHwq72QTwD3LbqPC/57AeB8Rdztqbfzk5E/4U/r/kR6abrpOL2mqbWJnIM5UsTZqc6/N2n627uyK7NJDk42HUM4CeNFnNZ6DT/cf+5vwBzg+KGPWcDbut0GwFcpFdoLMZ3ehzs/7Po8YkCEwSS9z9XFlV9N/hXgXKtU86ryaGlrkSLOTkX6RNLPox87K2UkrrccazlGQU2BU+xoI2yD26keUEoV0l5AXaS13tPxdXdprXXs2YZSSs0CSrTWWSetggwHjl80sb/jWNnZXkucmdaa1rZWbku5jV9O+qXTrEw9XqRPJL5evl2rNZ1B56jjiIEjDCcRZ0MpRXJQsozE9aLcqlzadJvTzVYIc043Ehfd8eF+0tfd/TgrSilv2le7Pn22r9HxOncppdKVUumVlZXn8lJOr/xIOUdbjpIWlua0ewEqpRgxcARZB5yniFtZtJJA70D5hWTHkoOSTxiJ+6rgKwqqC044Z0/NHia+OdFpG1pbUmcz9MQg51nBL8w6XRE3mPa2IYXHfd3dj5hzyBTb8RpZSqkiYBCwVSkVQnt7k+Pn8gZ1HPserfUbWusxWusxQUFB5xBHFNa0fwvE+J3LX6v9SxmYwrYD25yiC77WmhV7VnBB9AXSdd6ODQseRkV9BQ8vfZjdB3dz6f8u5YL/XsDBhoNd58zfNZ91xeuYv2u+waSOIbsyGxfl4rRvdkXvO+V0qtZ67+m+that9XYguPPrjkJujNb6oFJqAfAzpdQHwDigTmstU6lWVlDT/s491v+sZ8gdQsrAFOqb6ymsKWSI/xDTcayqsKaQ4kPFPBn9pOko4hxcGHMhof1CeXHji8zPmU9LWwtlR8p4dNmjTI+dztysubi7tE+2LC9czs/G/sxwYvu26+AuYv1i8XLzMh1FOIlTFnEnU0pNBsq11rlnOC8OCO1YsNCd130fmAoEKqX2A7/WWv/nFKcvpr3hcD7QANzezfjiHBTWFKJQRPlEmY5iVGfzzvTSdIcv4ubtmgfABYMvMJxEnIsRA0dQ+kgpt39+O3Mz55IclMyw4GGsKlpFzbEalhUs6zp3ZdFKWtpacHPp9q8FcZKtZVtJGZhiOoZwIj2ZJ1kFPN6N8+YAK7v7olrrG7XWoVprd631oJMLOK11tNb6YMfnWmt9v9Y6Vms9XGvtPP0eDCqoKSDCJwJPN0/TUYxKCUnB18uXrwq+cuh+ccV1xfxuze+YMWQGQwOGmo4jLOCpSU/h4erBbSm3MSZsDHvr9rK6aHXX45fHX86hxkNsKtlkMKV9K6otorCmkKnRU01HEU6kpze7ON+yREFhTaHT3w8H4ObixkUxF7G0YCkjXhvBH9b+wXQkq3h+3fO0tLXwyqWvOOVKZEc0xH8IhT8v5OHzHmZ06GgA6hrriPKJQqH45cRfApBRlmEypl37uvBrAC4cfKHhJMKZWOOO5WDgqBVeVxhSUF1ArJ9z3w/XaUbsDEoPl7KjYgcf7fzIdByL01qzKG8RF8dczGC/wabjCAsKHxCOm4sbo0K/2+jmv7P/y9a7tzJ+0Hj6uPXpuv9V9NzXe74mpF+IrOYWveq0Nz903Ad3vJAfOHb8ayXSvsvCLgtkEzagvqmeA/UHZCSuw/Qh01EovN29yTqQRVVDFQHeAaZjWUx+dT57avfw6PmPmo4irMTHy4f4gHgKqgtIC0/r2h4qxi9GirizpLVmZdFKpg2eJqPXoled6Q7WVZy4Y8L0jo/TUcDr55BJ2JDO9iIyEtdu0IBBrPrxKo42H2XGezNYVbSKa5KuMR3LYpbmLwVgeuyZ/pkLezY9djo7+u84YX/PWP/Yrn/vomdKD5dSfqSc8wadZzqKcDJnKuLW8F0RNwWoAHJOcW4T7T3bPtVaf2GZeMI06RH3fZOjJtPc2kxf976s2LPCoYq4JflLiPWLdfp2Mo7uxRkvfu9YrF8sywuXo7WW0aQe2lq2FeCEqWohesNpizit9dTOz5VSbcASrfUd1g4lbIf0iPth7q7unB9xPuuK15mOYjFHmo6wYs8K7h1zr+kowsp+qEiL8YuhobmBA/UHCOkXYiCV/dpStgWFkvYiotf1ZGHDBcBz1goibFNhTSE+nj74efmZjmJzxoWPY0fFDuqb6k1HsYivCr6isbWRK4ZeYTqKMKDzlomTt+USZ7a1bCsJgQn09ehrOopwMt0u4rTWq7XWu60ZRtiegpoCYv1jZXrlB4wbNI5W3UpGuWO0Zfgi9wt8PH2YFDnJdBRhQOctE7K4oee2lm2VqVRhxFm35lZK+QADOEXvOK31vrN9bWE7CmsKZYrgFNLC0gDYVLKJiZETDac5N61trSzMXcjMuJm4u7qbjiMMiPaNRqFkcUMP7avbR8nhEsaEjTEdRTihHhVxSil/4HfANcDpdpXXPX1tYXvqm9r3Cb028VrTUWzSwH4DifKJYmPJRtNRztmmkk1UNlRyZfyVpqMIQzzdPInwiZCRuB5amLsQgJlDZhpOIpxRT/ZO9QM2AjFAK+0Nfb2BMiCE9hE5DcgInINYV7yOlrYWJkedqjWgmBA5gUW5iyg5VEL4gHDTcc7aF7lf4KpcmTFkhukowqAYvxgZieuhBbsXEB8Qz9BA2aJO9L6eLGx4HIgF3gJ8gE9o3840HOgP3A1UA99oraXVuwNYuWclbi5uTIicYDqKzfrNlN/Q3NbMT774ieko5+SL3C+YHDUZvz6ygMWZxfrFysKGHjjceJgVe1bICLYwpidF3BVAJXC/1vooxzUB1lo3aK3/BcwEblRK3WfZmMKEFUUrGBc+jn4e/UxHsVlxAXE8dv5jLM1fSmV9pek4Z6XmaA07KnZwUcxFpqMIw2L8YjhQf4AjTUdMR7ELGeUZNLc1c2GM7JcqzOhJERcNpGutGzu+1gBKKdfOE7TW6cA3wJ2WCijMONx4mC2lW7gg+gLTUWzelKgpQHuvKHvU2ahUbswWnW1G9tTsMZzEPhTVFgGyo40wpydFXCtw6LivO5tjBZ50XikQdy6hhHnZldm06lbSwtNMR7F5o8NGA7C5ZLPhJGens/gcHTracBJhWmdTb1nc0D2dRVykT6TZIMJp9aSIKwUijvu6qOO/J//kTwQaEXYtuzIbgKSgJMNJbN8AzwEMDRhKelm66ShnZUvZFqJ8ogjwDjAdRRjW2StOFjd0T1FtEWH9w/B08zQdRTipnhRxW4GE46ZPv6Z9ReqflFKJSqn+SqnHgRQgy8I5RS/LrszGy82Lwb6yRqU70sLT7HckrnRL12iicG7+ffzx9fJl90Hp694dRbVFRPtGm44hnFhPirglgD8wA0BrnQl8AQwDdgC1wB9ov1fut5aNKXpb9sFsEgITcHVxPfPJgvMHnU/ZkTImvTWJ9cXrTcfpttpjtRTUFMhUqugyNXoqC/MW0qbbTEexeVLECdN6UsS9T/t06urjjt0E/BOoAFpoL+au01qvsVhCYcTOip0yldoDPxn1E56/6HmKaouY+OZEVuxZYTpSt3QuapAiTnS6Pvl6Sg+X8s2+b0xHsWktbS3sq9snsxXCqJ7sndqitS7RWh857li91voBrXWo1tpTa52itZ5nnaiitxxpOsLeur0kBUoR113uru48NuExsu/Lpq9HX+Zl28c/gy2lHYsaZDpVdLg8/nL6uPXhwx0fmo5i00oOldCqW2UkThjV7SJOKfVXpdTT1gwjbMOmkk2ALGo4G/09+zMpchIriuxjJG5L2RYifSIJ9D55kblwVv08+jF9yHQW5S1Ca33mJzipzpWpUsQJk3oynfoA7YsWhIN7Yf0LBHoHcknsJaaj2KVpg6eRczCH0sOlpqOc0ZayLTKVKr7nosEXsbdur6xSPY3OFfxx/tJRS5jTkyKunPb73oQDyyjLYEn+En4x/hf09ehrOo5dmjZ4GtC+bZktqztWR351vhRx4ns6dyD4es/XhpPYri1lWwjoEyA94oRRPSnilgMTlFJu1gojzHt327t4uHpwb9q9pqPYrZSBKfTz6MeG/RtMRzmtrAPtnYBGhY4ynETYmqEBQwnrH8b/tv/P5r+PTUkvTWdM2BiUUqajCCfWkyLu10Af4DWllAzROCCtNfNz5nNRzEX4evmajmO3XF1cGTFwRFeRZKs6p4OGBQ8znETYGqUUl8ddzuq9q5n81mSONh81HcmmHG0+ys7KnbJVnTCuJ6NqP6a9V9ztwJVKqeXAXuCH/nVrrfXvzj2e6E1ZB7Ioqi3iV5N+ZTqK3UsdmMq7299Fa22z79SzK7Pp59GPQQMGmY4ibNA/Lv0HiUGJPPzlwxTWFJIcnGw6ks3YdmAbLW0tciuCMK4nRdxvaG/kq2jfL/WGHzin83ENSBFnZ5bmLwXgyqFXGk5i/1JCUngl/RWKaosY7GdbfaS01tQ315NdmU1SUJLNFpnCLHdXdyZGTgQgtypXirjjdPVXlNY8wrCeFHG/pb04Ew5qd9VuwvqHEdQ3yHQUu5cakgpAZnmmzRVx/9z8T55a8RQuyoXZCbNNxxE2rHPlZV51nuEktmV31W76efQjYkDEmU8Wwoq6XcRprX9jxRzCBuRX5zPEf4jpGA5hWPAwXJQLWQeyuCrxKtNxTvBmxpscajwEIA2dxWn5ePkQ5B1EXpUUccfLr84n1i9WRrGFcT1Z2CAcXEF1AbF+saZjOARvd2/i/ONsbnFDXlUeGeUZeLl5AcgUmTijuIA4cqpyWJK3hKbWJtNxbEJBTYG84RU2QYo4AUB9Uz1lR8rkB5MFpYakklmeaTrGCT7a+REA7139HiMGjmBs+FjDiYSti/OP45t933Dp/y7ljs/vcPpdHFrbWimsKZQ3vMImdHs6tYdbbsnqVDvT2ZldijjLSRmYwoc7P6T2WK3NtGxZu28tIwaO4OrEq7k68WrTcYQdCPJuv0fWz8uP97a/x+yE2VybdK3hVObsP7SfptYm+VkpbMLZrk492fFvzWR1qh3Kr84HkHeXFtS5uGHbgW1MjppsOE37qtT00nRZzCB65Jqka1icv5jPb/ichH8kkFme6dRFXEFNASBveIVt6EkR98wpjrsAUcBUIBJ4Eyg+t1iit3X+YIr1lyLOUlJC2rcazirPsokibl/dPqqOVklvK9Ej4weNZ+d9OwGI8o3q+lnhrLre8MrPSmEDerI69VRFHABKKS/gNWAGIPv42JncqlwCvQNtZtrPEYT2CyXQO9BmFjekl6YDSJd5cdZi/WIpqHbuIi67MhsPVw/C+4ebjiKE5RY2aK2PAfcArsCzlnpd0TsyyzMZMXCE6RgORSllM4sbDjYc5MuCL3F3cZe/Z3HWYv1inXok7kjTEd7Z9g7TY6fj6uJqOo4Qll2d2lHIpQOXWvJ1hXU1tzaz7cA2RoXIAKqlpQxMYUfFDlraWozmmPTWJP619V+khqTi6eZpNIuwX7H+sVQfrab2WK3pKEa8lv4a1UereWrSU6ajCAFYp8WIG+3bcgk7sevgLhpbGxkVKkWcpaWGpNLY2sjug7uNZSisKSTnYA4PjH2AT677xFgOYf86Fz4565Tqgt0LSAtLY9ygcaajCAFYuIhTSsUDk4ASS76usK7OfQCliLO8lIEdixsM3hf3deHXANyXdh+RPpHGcgj713kzv7NOqeZX5zMseJjpGEJ06UmfuFtP83A/IAG4BegDfHCOuUQv2lq2lX4e/YgLiDMdxeEkBCbg4epBVnkWNw2/yUiG5XuWE94/nKEBQ41cXziOGL8YoP3mfmfT2RBd2jAJW9KTFiNzObEf3Mk6+8ct5NTtSIQNSi9NJzUkFRclG3hYmrurO8lByWQe6P3FDTVHaxj9xmiKaou4JeUW2edRnLN+Hv2YGj2Vlze9zM/G/oxAb+e5c0Yaogtb1JMi7m1OXcQ10T6F+rXWet05pxK9pqm1ia1lW/nZ2J+ZjuKwUkNS+SL3C7TWvVpILcxdyJ7aPdw16i5+cd4veu26wrG9PPNlRr4+kt+v+T1/m/E303F6jfTSFLaoJ33ifmzFHMKQrPIsGlsbGRcuN+pay/hB43kr861e3zT7892fE9Y/jFcvf1VGWYXFDAsexkUxFzyw9XwAACAASURBVPH1nq9NR+lVsquNsEXyk93JbSzZCCCrrazo/IjzAVhfvL7Xrnms5RhL85dyZfyVUsAJixsbNpadlTupb6o3HaXXFFQX4N/HH78+fqajCNGlRz/dlVIuSqkYpVSaUmq0Umqwkhtt7NqG/RsI7RdKxIAI01EcVlJQEgM8B/Bt8be9ds31xeupb67niqFX9No1hfNIC0+jTbd1rWx3Br09ki5Ed3SriFNKTVZKLQBqgTxgA7AJyAdqlFLzlVLnWS+msJb00nTGho+Vm96tyEW5MH7QeNbv772RuIyyDADSwtJ67ZrCeXR+X20q2WQ4Se8oritmffF6hgVJexFhW85YxCml/gysBC6jvZWIOuljADAb+EYp9fueBlBKvamUqlBK7Tj+mkqpHKXUNqXUp0op3+Mee1Ipla+U2q2Umt7T64nvtLS1UFBTQGJgoukoDm9S5CS2H9hOUW1Rr1wv80AmYf3DCOob1CvXE85lYL+BRPpEsqnUOYq4B5c+SJtu41eTf2U6ihAnOG0Rp5R6CHik48t5tBdrgwAvwBuIBK4C5nec84RSqqfLHOcCM0469hUwTGs9AsgFnuzIkwTcACR3POcVpZRsYHeWiuuKaWlrkdVWveC2lNtwdXHlxQ0v9sr1ssqzuhoNC2ENU6KmsKxgGUebj5qOYlXFdcV8mvMpcybMYbDfYNNxhDjBKYs4pZQP8HugGZittb5Oa71Aa12qtW7SWh/TWu/XWn+utb6W9mKuFfijUmpAdwNordcA1ScdW6a17txscgPthSPALOADrXWj1noP7dO5Y7t7LXGiriXzstrK6iJ8Irg++Xr+tfVfHGo8ZNVrNbY0suvgLlJDUq16HeHcbk+9ndpjtczbNc90FKv6IvcLAG4YdoPhJEJ83+lG4m6iffeFP2itvzjTC2mtF9Be9HnTPlpmKXcASzo+DweKj3tsf8cxcRY6m1fKSFzvuD31duqb662+SjW7MpuWthYZiRNWNTV6KkP8h/Dvrf82HcWqFuxeQJx/nOx4ImzS6Yq4qbSPwr3Ug9d7ifbRuGnnkKmLUuopoAV47yyee5dSKl0plV5ZWWmJOA6noLoAD1cPwvtLHdwbxoaPxUW5WHWV6tL8pUx8ayIAo8P+f3t3Hl9Vfed//PUhLGEJhH3fjajsiwoIVhFbFRXHOtb+tC5ja7XWzrRatbadLtoZ27E6Vmtbq22tdqrVolbrjuCKyCZbAAlL2EkgEPZAwuf3xznANWS7yc099ybv5+NxHzc559xz3smRRz5+z3cZXW/XETEzvjLsK7yb/y6fbv+U+2fdz6GyQ1HHSqi9B/cyY+0MLh50sQZ/SUqqqogbBixx9x01PVl47OLws3ViZtcCFwJXuvuRlSI2ArFzYfQKt1WU5VF3H+PuYzp3VufuiqzasYp+2f3IaKJuhcmQ1SKLIV2G8NHGj+rtGr+f/3vatWjHW195S9MhSL276MSLcJwL/+9Cbn3jVl5Y/kLUkRJq0dZFHCw7yJl9z4w6ikiFqiriOgP5tTjnWqBLrdKEzOw84HbgYnffF7PrH8AVZtbCzPoDOQRTnUgtrN6xWv3hkmxcr3HM3jCbw3444ed2d97Nf5fPD/w85ww4J+HnFylvRLcR9MjqwcqilQA8sfCJiBMl1uKCxQAM61rndgmRelFVEdcWKK7FOXcDWTU92Mz+CswCBpnZBjO7Hng4PMebZvaJmf0WwN2XAn8DcoHXgJvdvawWGRs9d2fVjlUq4pJsbK+xFJcUs3zb8oSfe9m2ZWzbt02tBpI0ZsaFORcCcEbvM3gt7zX+54P/Ydu+bREnS4zFWxeT1TyLvu36Rh1FpEJVrZ3alMoXvK+KV3Pezx7s/uUKNj9exfE/IxhAIXVQsLeAXSW79Mgtycb1CubEnrV+Fqd0PiWh535n7TtAMPWDSLLcNv42BrQfwKUnX8roR0dz+1u3s33/du6dfG/U0epsccFihnQZov5wkrK0qGIjtWL7CgAGddKIq2Q6seOJtM9sz0cbEt8v7s3Vb9IzqycD2g9I+LlFKpPTMYc7JtxBTscciu8sZlL/Sby44kV++PYP+c2c30Qdr9bcnUVbFzG0y9Coo4hUqroWs8vM7Kw4z9mpllkkiVZsC4s4DZtPKjNjbK+xCR/csKtkF6+sfIUbRt+gVgOJjJlxyaBL+NZr3+Ke9+6heUZzLsi5gL7Z6fc4ctPuTew4sIOhXVXESeqqriWuDdAvzlebRAaU+rFi+woym2bSp12fqKM0OuN6jWNpwVKKD9Smy+nxFm1dxP2z7qekrIQvD6mod4JI8lw86GIAurfpjmH8+J0fRxuolj7Z8gmgQQ2S2qpqiTs7aSkk6VZsX0FOhxxNLxKBsb3G4jhd7+vKdSOu45Epj9S69czdOefP57Bt3zb6tuvL2F5jE5xWJD59s/vy48/9mAl9JjBt2TQeX/A4D573IG1b1Hghn5Qwe+NsMiyD0d0136KkrkqLOHd/J5lBJLlWbFvB8G6a0T8K43qPY3jX4WQ2zeS3837LwA4DuW38bbU618qilWzbt42vDPsKXx/9dT1KlZTwo7N+BEDr5q15ZO4jPL/sea4ZcU3EqWqm9HApOw/s5KMNHzGkyxBaN28ddSSRSmlgQyN0sOwgq3esVn+4iLRp3oZPbvyEWdfP4twB5/LARw9Qdrh2M+XM3jAbgNvPuJ0z+pyRyJgidXZ6z9Ppn92fvyyOe9GdyDww6wH6/m9fPlz/oVq2JeWpiGuE8nfmU+ZlnNjxxKijNGpmxvUjr2fT7k28t+69Wp3jow0fkdU8i5M7nZzgdCJ1Z2ZcdsplzFg7gwOlB6KOUyNvr32bfYf2sffQXk7veXrUcUSqpCKuEVq7cy0A/bL7RZpD4KJBF9G6WWv+sqh2LRWzN87m1J6nqm+jpKxTe5xK6eFSlhYsjTpKtdydjzd+fLT/nlq3JdWpiGuE8ouD1dQ0MjV6rZq14qJBF/HSpy9xbIngminYW8DCrQsZ21OPfCR1jeg2Ajg22jOV5RXlUbS/iF9M/gVLv7FUTysk5amIa4TWFa+jiTWhZ1bPqKMIMLn/ZLbu3crSwpq3VOwu2c0vP/wlZYfL0qbDuDROAzsMJKt5Fgu2LIg6SrVmbwz6mI7rPS7hK6qI1IcaL48lDUd+cT49s3rSLKNZ1FEEji5WP331dIZ0GVLt8bM3zGbs40Hr2xVDrlBrgaS0JtaE4d2Gp0URN2v9LFo3a83gzoOjjiJSI2qJa4Tyd+an5QzqDVW/7H4MbD+Qh+c8zNf+8bWjI1U37trIYT8MwHff+C6X/e0yAGaunQnAlUOv5GeTtIywpL6R3UaycMvCWo/CTpYZa2cwoc8E9TGVtKEirhHKL86nbzsVcalkSs4U8oryeGzBYyzbtownPnmCPv/bhyunXcn64vU8OPtBpi2bxvZ925m3eR79s/vz1KVPaZ1USQsjuo1g76G9rNqxKuooldq4ayPLti1j8oDJUUcRqbFaFXFmNtjMvmpm3zOzi2O2NzGz5omLJ4lWdriMDbs2qIhLMfdOvpe3vvIWAE8ufJLrXryOftn9eHrJ04x9fCyHDh/Ccd5a/RbzNs9jdA/NIi/pY2S3kQAs2Jy6j1Snr5kOoCJO0kpcRZyZ9TGzt4FFwO+Ae4BLYg75KrDfzM5JXERJpE27N1F6uFSPU1NMy2YtObv/2bRp3oaHPn4Ix3n/uve579z7yGqexU1jbqJ9ZnueWfoMq3esZlS3UVFHFqmxwV0G06xJs5TuF/fm6jfp3Kqz1kqVtFLjIs7MOgHvAmcBS4DfAOXX+HkWOAxMTVA+SbA1O9cAqCUuBTWxJozqPor9pfsZ0W0E3bO6c+v4W1n+zeU8MuURJg+YzPPLnwdQS5ykleYZzRncZXDKFnEFewt4Lvc5pg6aShNTLyNJH/H81/o9oA/wc2CEu3+z/AHuvoOglW5CYuJJor2/7n0ARnVXS04qOrLY9vknnH/cvh+e+UNGdx9N2xZtObXHqcmOJlInI7qNYMHmBeQW5sY9J2J9e/CjBykpLan1GsYiUYmniLsIWAPc5VX/C1wN9KhTKqk309dMZ1jXYXRu3TnqKFKBI2s1TsmZcty+oV2HMudrc9h++3bat2yf7GgidTKy20gK9xUy+JHBPJv7bNRxjnJ3HlvwGFNPmsqgTlpPWtJLPEVcb2B+NQUcQCmgvzAp6EDpAT5Y9wHn9FeXxVT1xZO/yPvXvV/pcj9mRtMmmt5R0s+UnCmc1vM0WjdrzZur3ow6zlG5hbkU7C3g4hMvrv5gkRQTTxG3H8iuwXH9gJ21SiP16sP1H1JSVsKk/pOijiKVyGiSofUapUEa2GEgs786m0n9J/HuunejjnPUkXkXz+p3VqQ5RGojniJuCTDazNpVdoCZ9QSGA/PrGkwSb9b6WQBM7DMx4iQi0lhN7DORT7d/ypY9W6KOAsDM/Jn0adeHftn9oo4iErd4irj/I2iJ+11Fc8GZWRPgV0AL4KnExJNEmrd5HjkdcmiXWWkdLiJSr87seyYAd7x1B6t3rI4sx+6S3XzhqS/w8qcvc1a/szArP9mCSOqLp4h7DPgAuBxYZma/CrcPMbOfA8uAfwHeISj4JMXM2zxPo1JFJFKjuo9iVPdRPLXoKaY+PTWypbhe+vQl3lj1BhP7TOTmU2+OJINIXdW4iHP3UuAC4G9Af+DIFCNjgO8COcALwNQaDH6QJNu2bxvritcdncJCRCQKzTKaMe+GeTxz2TMsKVjCHxb8IZIc05ZNo3ub7rx21Wuc1vO0SDKI1FVcsxq6+253vwIYDNwGPEKwcsMPgNHufqm77058TKkLd+eDdR8Amh9ORFLDF0/+IqO6j+KxBY8l/dr7D+3n1bxXueSkSzS5r6S1Ws1V4O7LCB6fShr4j9f+g199HDz9VhEnIqnAzJjUbxIPffwQh8oO0SyjWdKu/Wzus+w7tI9LT740adcUqQ/6X5BGYMbaGZzc6WR+d+HvNEmsiKSM0T1GU1JWwtLCpUm7ZunhUu5+925GdBuhOTMl7VXaEmdmfepyYndfV5fPS2IcKD1AbmEud064kxtG3xB1HBGRo8b0GAPA3E1zGdFtRFKu+cLyF8gryuOFL72gEamS9qp6nLoWqO0ABa/m3JIkSwqWUOZljOw2MuooIiKfMbD9QNq1aMe8TfP46qivJuWan2z5hAzL4IKcC5JyPZH6VFWhtY6Ki7i+MV8Xh++xE4/l1zWUJM6CzQsAkvZ/uSIiNWVmjOo+irmb5ybtmnlFefTL7pfUPngi9aXSPnHu3s/d+x95AQOBeUAh8C2gvbu3d/f2BGul3gJsBeaGx0oKWLBlAW1btKV/+/5RRxEROc6IbiNYWrCUw344KdfLK8rjhA4nJOVaIvUtnoENtwJTgLPc/WF3P9IKh7sXu/uvgUnARQTzxkkKmLd5HiO6jdAwehFJSad0PoX9pftZu3NtvV/L3ckrymNge7UzSMMQz1/2a4GZ4fQiFQr3zQCuqWMuSYBdJbuYt2me1koVkZQ1uPNgAJYW1P8I1aL9RRSXFKslThqMeIq4/sCOGhy3E+hXqzSSUO/lv0eZlzGp/6Soo4iIVOjkzicDkFuYW+/XyivKA1ARJw1GPEXcLmC8mVU1LUlTYFx4rERsxtoZNM9ozrhe46KOIiJSoezMbHpm9eSpxU8x6YlJFOwtqLdrqYiThiaeIu4NoDfwezPLKr/TzNoQLMHVG3g9MfGkLmasncH43uNp2axl1FFERCo1uMtglhQsYcbaGdz9zt31dp1VO1ZhmAZ6SYMRTxH3A6AIuBrIN7M/m9lPwtcTBFOLXBse858JTypxKSktYeGWhYzvNT7qKCIiVRrSeQgAZ/Q+g9/O+y35O+tnpqq8ojx6te1FZtPMejm/SLLVeEJed19nZp8DngRGAldxbB65I9NefwJ8xd01V1zEcgtzKfMyzQ8nIinv1vG3Mqn/JHpk9WDUo6OYs2kOfbP7Vv/BOGl6EWlo4lpVwd1zgdFmNgH4HNAr3LUReMfd30twPqmlRVsXATCs67CIk4iIVK1HVg96ZPVgV0nQnXr1jtX1cp28ojwuOemSejm3SBRqtTSWu78PvJ/gLJJAC7cupGXTlvq/ThFJG21btKVTq05xFXHLty1n4ZaFbN+/na17ttIjqwc3jL7huHVRd5XsonBfoeaIkwZF65s2UAu3LmRIlyFkNMmIOoqISI31z+5/XBH34foPWVa4jOtHXX/c8Zc+cynLtn12+tKTOp3E5/p97jPbVhWtAjQyVRqWuKfxN7NOZvY9M3vdzJaEr9fN7E4z61wfISU+7s7CLQsZ3nV41FFEROIyoP2A44q4H7z9A2559Zbjlubaf2g/y7ct55bTbmHjdzay9669dGrViV98+Aumr57OobJDR4/V9CLSEMVVxJnZ+cCnwD3AucAp4etc4GfA8vAYidCK7SvYvn87Y3qMiTqKiEhcBrQfQH5xPqWHSwHYXbKb99e9z/7S/awvXv+ZY5dvW47jnNn3THpk9aBVs1bcOPpGXln5CpOfnMy/PvuvzFo/izdXvck7+e8AMLCDHqdKw1Hjx6lmdhLwdyAT+Aj4I3Dkf5cGANcBY4HnzGy0uy9PcFapoZdWvATABTkXRJxERCQ+A9oPoPRwKRt2baBfdj+mr5nOocNBi9qK7Ss+M2p1ScES4NjSXQC3jb+NzKaZHCg9wD3v3cOLK148uq9r6660ad4mST+JSP2Lp0/cnQQF3Hfd/Zfl9k0nmAT4O8B9wB0ERZ1E4KVPX2JEtxH0btc76igiInEZ0H4AAGt2rKFfdj9eXfkqLTJaUFJWwvJty/n8wM8fPXZp4VKaZzT/zCPSdpnt+P6Z3wdg6klT2b5vO62atWLWhll0a9MtuT+MSD2Lp4ibBCypoIA7yt3vN7NrgXNqelIz+wNwIVDg7kPCbR2AZwjWYF0LXO7uOywYbvQgcAGwD7jW3efH8TM0eEX7i/hg/Qd8f+L3o44iIhK3QR0HAfDo/EeZ2Hci//j0H1x44oW8tfotVmxb8ZljlxQsYVDHQTTLaFbhuWK7lEzsO7H+QotEJJ4+cV2BRTU4bjHQJY7z/gk4r9y2O4Hp7p5D0Mp3Z7j9fCAnfN0A/CaO6zQKuYW5HPbDjO+tlRpEJP30bNuTe86+h6eXPM2XnvsSW/Zs4bJTLuOkTiexfPuxXjqH/TCLti5iSJchEaYViVY8RdwuoGcNjusB7K7pSd39XYKlumJNBZ4Iv34CuCRm+5898BGQbWbda3qtxmBd8ToA+rZL/GznIiLJcNfEu/iXk/6Facumkdk0kyk5UxjUaRCfbPmE/37vvzlYdpBff/xr1u9az/knaCydNF7xFHFzgQlmdkZlB5jZeGAiMKeOubq6++bw6y0ErYAQFJGxw5M2ULPCstE4suZgn3Z9Ik4iIlI7ZsYjUx6hfWZ7puRMIatFFqf2OJWi/UXc9fZdXDXtKm5/63YuyLmAq4ZdFXVckcjEU8Q9DGQAr5rZT81soJk1NbOM8OufAK8SrKP6cKICurtzbI3WGjOzG8xsrpnNLSwsTFSclLeueB2dWnWidfPWUUcREam1bm26sfDGhTx28WMAfOPUb7DxOxu5Zvg1PJv7LH3a9eGPU/943MoMIo1JjQc2uPs/zeznBCNPvx++jsy8eKQYNOBed3+ljrm2mll3d98cPi4tCLdvBGKHXPYKt1WU91HgUYAxY8bEXQSmq/zifLXCiUiDEDvCvok1oUdWDx4870F6t+3N18d8nS6t4+l+LdLwxDXZr7t/j2Ak6UzgIEHLXEb49QzgQne/KwG5/gFcE359DfBizParLTAWKI557CoELXHqDyciDVW7zHbcPeluerXtFXUUkcjFvXZq2Mr2ipllAB3Dzdvdvaw2Aczsr8BZQCcz2wD8CLgX+JuZXQ/kA5eHh79CML1IHsEUI5qLLoa7k1+cz+QBk6OOIiIiIvUs7iLuiLBoK6j2wOrP8+VKdh0311zYP+7mul6zodp5YCd7Du5RS5yIiEgjUOsiLpaZTQaGE7SaPV/bVjmpm/ziYGRq7LI0IiIi0jDVuE+cmX3NzHLNbEK57b8HXgd+QbDKwltmVvH02VKv1u5cC2h6ERERkcYgnoENlwLdgNlHNpjZOOB6YA/wF2ANcCbw/xKYUWoorygP4DPrCIqIiEjDFE8RdwrB2qmHYrZdQTCH25fd/WrgdDTgIDJ5RXl0atWJ7MzsqKOIiIhIPYuniOvE8XOynQnsODIvnLtvB94DBiYmnsRjZdFKtcKJiIg0EvEUcU2AFke+MbNWwBDgg3LHbSco+CTJ8oryVMSJiIg0EvEUcRuAETHfn0sw0W/5Ii4b2FHHXBKnA6UHWF+8npwOOVFHERERkSSIp4h7HehrZr82s4uBnxP0h3u53HEjgHUJyic1tHrHahxXS5yIiEgjEU8R9zOCyX1vAp4HTgT+z91zjxxgZiOBnsCHiQwpVXN35mycA2hkqoiISGNR48l+w8XoRwJfA7oCHwNPljtsCME6p39PWEKp1v2z7ue2N28js2kmgzoOijqOiIiIJEFcKza4+xbg7ir2P8nxhZ3Us5n5MxnYfiAzr51Ju8x2UccRERGRJIjncaqkqKUFSxnTYwy92vaKOoqIiIgkiYq4NLfn4B7W7FzD4M6Do44iIiIiSVTp41QzKyMYfXqKu38afl9T7u5xPaqV2llWuAyAwV1UxImIiDQmVRVaFr5iv6+peI6VOlhauBRALXEiIiKNTKVFnLs3qep7SQ1LC5bSPKM5AztopTMREZHGRIVZGivYW8DTS59mRLcRNG2ip9ciIiKNif7ypyl35+rnr2bbvm28eMWLUccRERGRJKtVEWdm44CzgCNzWmwEZrq7VmpIkpc/fZnXV73Og+c9yKjuo6KOIyIiIkkWVxFnZjkEk/meemRT+O7h/rnA1e6+ImEJpUJ3vX0XgzoO4qYxN0UdRURERCJQ4yLOzHoD7xIsubULeAlYG+7uB1xIUNy9Y2anufu6hCaVo/Ye3MuSgiXcffbdNMtoFnUcERERiUA8LXF3ExRwTwLfcvfi2J1m1hb4FXA18FPg2gRllHLW7lwLwID2A6INIiIiIpGJZ3TqecA64PryBRyAu+8CvgqsD4+VerJm5xoA+mf3jziJiIiIRCWeIq4d8KG7l1Z2QLjvQ6BtXYNJ5dbsCIu49iriREREGqt4irg1QPsaHNcOyK9dHKmJNTvX0LJpS7q27hp1FBEREYlIPEXcn4GzzGxQZQeY2UnAJIJ+c1JP1uxcQ7/sfphpdTMREZHGKp4i7n+AfwIzzeymcCADAGaWZWY3Am8DLwP3JjamxFq7c60epYqIiDRy8YxOXRm+dwUeBh42s53htuyY40YDeeVaidzdtbhngqzZsYYzep8RdQwRERGJUDxFXL+Yr49UaBX1ketbwTaP4zpShR37d1BcUqyRqSIiIo1cPEWcqoYUcHR6ET1OFRERadRqXMS5u0acpoCj04uoJU5ERKRRi2dgg6QAtcSJiIgIVFHEmdmZZnZivCc0s8lm9q26xZLKrNmxhuzMbLIzs6s/WERERBqsqlriZgJ3VLTDzIrM7KFKPncl8EAdc0kl1uxco0epIiIiUu3j1Mpmk80GWic4i9TAmp1r9ChVRERE1Ccunbh7MNGvWuJEREQaPRVxaWTLni0cKD2gIk5ERERUxKWTvKI8AAZ20OIXIiIijZ2KuDSyuGAxAEO6DIk4iYiIiERNRVwaWbx1MdmZ2fTM6hl1FBEREYlYdSs2dDOzM+Pc162OmaQSiwoWMazrMMwqGzQsIiIijUV1RdwXwld5XsU+qQfuzuKti7l6+NVRRxEREZEUUFURt46gWJMUkF+cz+6DuxnWdVjUUURERCQFVFrEuXu/JOaQanyy5RMAhnYZGnESERERSQUa2JAm3lj1Bq2btWZU91FRRxEREZEUoCIuDbg7/1z5TyYPmEyLpi2ijiMiIiIpIKWLODP7tpktNbMlZvZXM8s0s/5mNtvM8szsGTNrHnXO+pZbmMu64nVMyZkSdRQRERFJESlbxJlZT+BbwBh3HwJkAFcAPwcecPcTgB3A9dGlTI43V78JwPk550ecRERERFJFyhZxoaZASzNrCrQCNgOTgOfC/U8Al0SULWlyC3Pp1KoTvdr2ijqKiIiIpIiULeLcfSNwH8FUJ5uBYmAesNPdS8PDNgAVLl9gZjeY2Vwzm1tYWJiMyPVmZdFKcjrkRB1DREREUkjKFnFm1h6YCvQHegCtgfNq+nl3f9Tdx7j7mM6dO9dTyuRYuX0lOR1VxImIiMgxKVvEAZOBNe5e6O6HgGnAGUB2+HgVoBewMaqAybDv0D427t6oljgRERH5jFQu4tYBY82slQWLhZ4D5AIzgMvCY64BXowoX1LkFeUBqIgTERGRz0jZIs7dZxMMYJgPLCbI+ihwB/AdM8sDOgKPRxYyCT7d/imAHqeKiIjIZ1S1dmrk3P1HwI/KbV4NnBZBnEis3L4SUEuciIiIfFbKtsRJ4NOiT+nWphtZLbKijiIiIiIpREVcisstzOWUzqdEHUNERERSjIq4FObu5BbmMrjz4KijiIiISIpREZfC1u9az56De9QSJyIiIsdREZfClhYsBVBLnIiIiBxHRVwKyy3MBVBLnIiIiBxHRVwKW1q4lK6tu9KxVceoo4iIiEiKURGXwhZtXcSQLkOijiEiIiIpSEVciiopLWHR1kWM6TEm6igiIiKSglTEpaglBUs4dPgQo7uPjjqKiIiIpCAVcSlq7qa5AGqJExERkQqpiEtRczfNpUPLDvTL7hd1FBEREUlBKuJS1NzNcxndfTRmFnUUERERSUEq4lLQ9n3bWbhlIRP6TIg6ioiIiKQoFXEpZs/BPUxfMx3HOXfAuVHHERERkRTVngaI7QAAEkZJREFUNOoAcszybcsZ9btRtGnehnYt2nFqz1OjjiQiIiIpSi1xKeTe9+9lf+l+CvcVcnb/s2naRDW2iIiIVExVQopYu3MtTy16ipvG3ETp4VK+POTLUUcSERGRFKYiLkXc9+F9NLEm3DXxLnq17RV1HBEREUlxepyaArbs2cJj8x/jmuHXqIATERGRGlERlwK+/fq3KfMybj/j9qijiIiISJrQ49SIvbD8BZ5e8jT3nH0POR1zoo4jIiIiaUItcRGbtmwaXVp34Y4Jd0QdRURERNKIiriIzdk0h9N7nq7pRERERCQuKuIiVHygmOXblnNaz9OijiIiIiJpRkVchOZumgugIk5ERETipiIuQnM2zQFgTI8xEScRERGRdKMiLkIfb/yYEzqcQIeWHaKOIiIiImlGRVyE5myao0epIiIiUisq4iKyafcmNuzawKk9To06ioiIiKQhFXERmbMx6A+nljgRERGpDRVxEZmzaQ4ZlsGIbiOijiIiIiJpSDPMJtn+Q/tZV7yOZ3OfZWjXobRq1irqSCIiIpKGVMQl0YHSA/T9374U7iukTfM2/P3yv0cdSURERNKUirgkmr95PoX7CrnltFu45bRbtOC9iIiI1JqKuCSatX4WAN+f+H26tukacRoRERFJZxrYkESzNsyif3Z/FXAiIiJSZyriksTdmbVhFuN6j4s6ioiIiDQAKuKSoKS0hK+//HU27d7E+F7jo44jIiIiDYCKuCSYtmwav5//e/5txL9x3cjroo4jIiIiDYAGNiTB/M3zaZHRgt9e+FuaZTSLOo6IiIg0AGqJS4L5W+YztOtQFXAiIiKSMCri6pm7s2DzAkZ1GxV1FBEREWlAVMTVs/zifHYc2MHI7iOjjiIiIiINiIq4ejZ/83wARnVXS5yIiIgkTkoXcWaWbWbPmdlyM1tmZuPMrIOZvWlmK8P39lHnrMpj8x+jU6tODOs6LOooIiIi0oCkdBEHPAi85u4nAcOBZcCdwHR3zwGmh9+npPmb5/Nq3qt8e+y3yWyaGXUcERERaUBStogzs3bAmcDjAO5+0N13AlOBJ8LDngAuiSZh9R76+CGymmdx86k3Rx1FREREGpiULeKA/kAh8EczW2Bmj5lZa6Cru28Oj9kCpORCpAdKDzBt2TS+eMoXaZfZLuo4IiIi0sCkchHXFBgF/MbdRwJ7Kffo1N0d8Io+bGY3mNlcM5tbWFhY72HLey3vNXaV7OKKwVck/doiIiLS8KVyEbcB2ODus8PvnyMo6raaWXeA8L2gog+7+6PuPsbdx3Tu3DkpgWM9l/scnVp14pwB5yT92iIiItLwpWwR5+5bgPVmNijcdA6QC/wDuCbcdg3wYgTxquTuzFw7k3P6n0PTJlrZTERERBIv1SuMW4C/mFlzYDVwHUHh+Tczux7IBy6PMF+F1hWvY+PujUzoMyHqKCIiItJApXQR5+6fAGMq2JXSzyg/WP8BAGf0PiPiJCIiItJQpezj1HT2/rr3yWqexdCuQ6OOIiIiIg2UirgEc3feWPUG43uPV384ERERqTcq4hJs5tqZrNqxiquGXRV1FBEREWnAVMQl2KPzHyU7M5svnvzFqKOIiIhIA6YiLoF2l+zm+WXPc9XQq2jZrGXUcURERKQBUxGXQK/mvUpJWQmXD065WU9ERESkgVERl0DTlk2jS+sujO89PuooIiIi0sCpiEuQktIS/rnyn1wy6BIymmREHUdEREQaOBVxCTJn0xz2HNzD+TnnRx1FREREGgEVcQnybv67AEzsMzHiJCIiItIYqIhLkHfy32Fol6F0bNUx6igiIiLSCKiIS4DSw6V8sO4Dzux7ZtRRREREpJFQEZcA8zfPZ++hvSriREREJGm0uGcCDO0ylOlXT2dkt5FRRxEREZFGQkVcArRs1pJJ/SdFHUNEREQaET1OFREREUlDKuJERERE0pCKOBEREZE0pCJOREREJA2piBMRERFJQyriRERERNKQijgRERGRNKQiTkRERCQNqYgTERERSUMq4kRERETSkIo4ERERkTSkIk5EREQkDamIExEREUlDKuJERERE0pCKOBEREZE0ZO4edYZ6Z2aFQH4SLtUJ2JaE60j90T1Mf7qH6U33L/3pHtZdX3fvXN1BjaKISxYzm+vuY6LOIbWne5j+dA/Tm+5f+tM9TB49ThURERFJQyriRERERNKQirjEejTqAFJnuofpT/cwven+pT/dwyRRnzgRERGRNKSWOBEREZE0pCIuAczsPDNbYWZ5ZnZn1HmkYmb2BzMrMLMlMds6mNmbZrYyfG8fbjcz+1V4TxeZ2ajokssRZtbbzGaYWa6ZLTWzfw+36z6mCTPLNLOPzWxheA9/Em7vb2azw3v1jJk1D7e3CL/PC/f3izK/HGNmGWa2wMxeDr/XPUwyFXF1ZGYZwK+B84FTgC+b2SnRppJK/Ak4r9y2O4Hp7p4DTA+/h+B+5oSvG4DfJCmjVK0UuNXdTwHGAjeH/950H9NHCTDJ3YcDI4DzzGws8HPgAXc/AdgBXB8efz2wI9z+QHicpIZ/B5bFfK97mGQq4uruNCDP3Ve7+0HgaWBqxJmkAu7+LlBUbvNU4Inw6yeAS2K2/9kDHwHZZtY9OUmlMu6+2d3nh1/vJvgD0hPdx7QR3os94bfNwpcDk4Dnwu3l7+GRe/sccI6ZWZLiSiXMrBcwBXgs/N7QPUw6FXF11xNYH/P9hnCbpIeu7r45/HoL0DX8Wvc1xYWPZEYCs9F9TCvhY7hPgALgTWAVsNPdS8NDYu/T0XsY7i8GOiY3sVTgf4HbgcPh9x3RPUw6FXEiIQ+Gamu4dhowszbA34H/cPddsft0H1Ofu5e5+wigF8HTjJMijiRxMLMLgQJ3nxd1lsZORVzdbQR6x3zfK9wm6WHrkcdr4XtBuF33NUWZWTOCAu4v7j4t3Kz7mIbcfScwAxhH8Ki7abgr9j4dvYfh/nbA9iRHlc86A7jYzNYSdCGaBDyI7mHSqYiruzlATjgqpzlwBfCPiDNJzf0DuCb8+hrgxZjtV4ejG8cCxTGP6yQiYT+ax4Fl7n5/zC7dxzRhZp3NLDv8uiVwLkHfxhnAZeFh5e/hkXt7GfC2a4LTSLn799y9l7v3I/ib97a7X4nuYdJpst8EMLMLCPoHZAB/cPefRRxJKmBmfwXOAjoBW4EfAS8AfwP6APnA5e5eFBYLDxOMZt0HXOfuc6PILceY2QTgPWAxx/ri3EXQL073MQ2Y2TCCTu4ZBA0Jf3P3n5rZAIJWnQ7AAuAqdy8xs0zgSYL+j0XAFe6+Opr0Up6ZnQXc5u4X6h4mn4o4ERERkTSkx6kiIiIiaUhFnIiIiEgaUhEnIiIikoZUxImIiIikIRVxIiIiImlIRZxIA2ZmXovXn5KQ67nwWpdVf3SNzvfN8HwPJ+J89cHMhtTw97+n+rOlDjObG+YeE3UWkcamafWHiEgae6KCbd2ALwB7ObZYdaz36zWRlAJ/qWL/gWQFEZH0pnniRBqZcHLOGUB+OON6FBl6AG2Bje6+OwHnyyYoTne4+9a6nq8+mNkQgkmK97p7m6jzJIqZzQVGA6dqImWR5FJLnIgknbtvAjYl8Hw7gZ2JOp+ISDpQnzgRqVBsPzMz62pmvzGzfDM7aGZPhceYmX3JzJ4ws2VmVmxm+81shZk9eGRR+grOXWGfODO7L9x+m5n1NLM/mNlmMysxszwz+2m4RnGlWcttvzDc/rKZZZrZT8xsZXi+LWb2p8oyhp+/0sxmm9leMysys3+a2emx563db7fmyt2H7mb2mJltCn+GT83sh+GyRpV9/lIzezPMXxLew8fN7IQqPtPCzG42s3fDzx0ws7Vm9mJV/RjNbLyZvRJ+Zr+ZzTezKys5tlN4v5eHx+43s/VmNt3Mvh3fb0mkcVJLnIhUpwcwH2hOsG7pYaAw3NeCYK3E3UAuwePC1gRrJH4LuNzMTnf3dXFe8wSCtRcPhNdsD0wAfgjkAF+O83yZwHRgCPAOsBQYT7Ao9xlmNtLdPzOgwMz+C/gewc/7PkHL4bAwzyNxXj8RugIfE/zO3yH4mc4GfgpMMrMvuPvB2A+Y2UPAN4EygtxbCO7NvwFfMrOp7j693Ge6AK8Co4D9wAfANqAnwdrDA6m4L+WlwO0E/w28DvQHTgeeMrM27v67mGu0Az4Kz7UJeCO8Vg9gBDAceCDeX5BIo+PueumlVyN6EfwhdmBtNcd9MzzOgeeBVhUc0xS4DMgst705cH/42Wcr+Nxz4b7Lym2/L+aaDwJNY/aNICjqHBheSdaHy22/MOZ87wMdYvZ1JCjmHPj3cp+bGG7fB3yu3L7vxZzz5Th+70PCz+yJ837F3oc3gayYfT2BFeG+/yz3ucvD7TuB02K2G/DjcF8hkF3uc2+F+94GupTb1wo4r9y2ueHxZcCXyu27MdxXADSL2f6NcPvfgCblPtMMODvqfyd66ZUOLz1OFZHq7Aducvd95Xe4e6m7P+fuB8ptPwjcRlBAXFTRI9BqrARuc/fSmHN+QvBHH+CcOM9XClzr7kUx59sO/LKS890Svj/q7u+U23cvsCTO68dqXc0UI09V8rky4EaPGQji7hsJfs8At5hZRszxt4bvP3f3j2M+48BPCFrMOhG0RgJgZhMIfhfbgUvdvSA2gLvvc/fXKsn3pLs/U27b74B1QGdgaMz2ruH7G+5+uNw1Drn7jEquISIx9DhVRKrzobtvqeoAMzsF+DzB47HWHOtve5jg8V9fgsKspt5w90MVbF8evveI41wAK9w9L47zfS58/7/yH3B3N7OngXvizHBEdVOMfFjJ9o/cfVUFeV4ys50EBdkQYKGZtQaOzNv2pwo+c2Q+wF8StMw+GO46L3x/zoPBIvE4rn9geJ0VQB+OPZaH4LEwwH9aMC/eK+6+K87riTR6KuJEpDr5le0IW9geB66q5hxt47xmZX3ojvyhr7Qjf13PZ2ZNgS7ht5X97JX+TmqgxN2vrcXn1lSxLx/IBnoBCwmmW2lC8Pi5sgJ8dfjeM2Zb3/B9OfGr8e/Y3f9pZr8meKz6V+CwmS0j6Lf3rLu/XYvrizQ6epwqItXZX8W+7xEUcPkEfeN6Ay3c3dzdCB7ZQdAPKx6Hqz8kKeerbCLNROerLx4+Pq3x8XW4Vly/E3f/JjCI4HHwiwSF843AdDN73sz090mkGvpHIiJ18a/h+7Xu/nd33xD2h8PMjODxaloJ++EdGX3bt5LD+iUnTY2veSTnxvB9C0FR1bKKKVQGlPsMHGtNG1SbgPFy95Xu/kt3v5Sgn9w5BIMgLgGuSEYGkXSmIk5E6qJD+L6+gn2XEIxmTEfvhu/HTWUSFqdfSm4cAMaZ2YDyG81sCsGj1O2ELZ/uvpdg1CjA1RV8xjg2oGFmzK7Xw/d/DacBSRoPvM2xfojDk3l9kXSkIk5E6uJI36lvhIUBAGZ2MvCraCIlxEPh+9fNbGK5fd8lmC8u2TKA34SDFoCjy5fdF377a3cvizn+/vD9DjMbHfMZA35A8DNsI2Z9XXd/j2BJto7Ac2bWOTaAmbUysy/U9Qcxs8vNbFzsfzPh9iyCgRZQt36HIo2CBjaISF3cA5wJfAc4z8yOTFtxJsF8Y9sI5ndLK+7+jpn9gmDy2plm9h7HJvsdRFDk3QIcrPwslWoRjgytyu3lp/cgmFtvHLDGzN4hGPU7iWA08HvAf5X7GZ4Jpwz5JjA7/MxWgsl+TwL2AldUMAr1/xG0yE0G1prZ+wStfD0J7uV6jrXY1dbngeuBrWa2IDx/NsGEzu0IBmc8UfnHRQRUxIlIHbj722Y2DribYIb/iwhGPf4nwfQVsyKMVyfufoeZLSFYeeI0oASYDdzAsZa4bbU4dVNi5marxD0EfcNibQ1z/BfwBYJH2euApwjmgiup4Ge4xcxmAjcRLFLfmqC/3B+B/3b346Z9cfctZjaWYJDBlwgKx+bh594G/lyjn7JqvwN2EBRtwwla/ooIVv34C/DHiuYlFJHPsvgGLomIiJk9Q7Aiwo0es5xUPV3rmwQtf78OR3SKiADqEyciUiEzOynsoxW7rYmZ3UxQwO2l4jVERUSSQo9TRUQqdiNwo5nNBzYQPIocTDCdRxnw9XDpLhGRSKiIExGp2IsES0WdRtAHrjlBv7SngfvdfU6E2URE1CdOREREJB2pT5yIiIhIGlIRJyIiIpKGVMSJiIiIpCEVcSIiIiJpSEWciIiISBpSESciIiKShv4/mCvcZEGxCnEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAJpCAYAAAAkKDrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/1klEQVR4nOzdd3hb5dk/8O+RLMt723Gc2M7ekEUIIZCEEAhhhoQyXgqhIaVQdvqjLZTSFtpSXsoqDasvq7TsDWEHMggZZJI9nGHHe8pb1ji/P8RzLHlqn3Ok7+e6fBFLR9JtPHTuc9/P/UiyLMsgIiIiIiKisDCoHQAREREREVE0YRJGREREREQURkzCiIiIiIiIwohJGBERERERURgxCSMiIiIiIgojJmFERERERERhxCSMiIiIiIgojJiEERERERERhVGM2gHondPpRFlZGZKTkyFJktrhEBERERGRSmRZRlNTE/Ly8mAw9F7vYhIWoLKyMuTn56sdBhERERERaURJSQkGDx7c6/1MwgKUnJwMwPU/OiUlReVoiIiIiIhILY2NjcjPz1dyhN4wCQuQaEFMSUlhEkZERERERP0uU+JgDiIiIiIiojBiEkZERERERBRGTMKIiIiIiIjCiEkYERERERFRGDEJIyIiIiIiCiMmYURERERERGHEJIyIiIiIiCiMmIQRERERERGFEZMwIiIiIiKiMGISRkREREREFEZMwoiIiIiIiMKISRgREREREVEYMQkjIiIiIiIKIyZhREREREREYcQkjIiIiIiIKIyYhBEREREREYURkzAiIiIiIqIwYhJGREREREQURkzCiIiIiIiIwohJGBERERERURgxCSMiIiKiqFfbWosLXr0Ab+55U+1QKArEqB0AEREREZHaPj38KT459AlqW2tx+fjL1Q6HIhwrYUREREQU9apaqjz+SxRKTMKIiIiIKOqJ5Ku6tVrlSCgaMAkjIiIioqhX3eJKvpo7mtFqa1U5Gop0TMKIiIiIKOpVtXa2IYqEjChUmIQRERERUdRzT7y4LoxCjUkYEREREUU998SLSRiFGpMwIiIiIop6TMIonJiEEREREVFUa7W1osXWonzOJIxCjUkYEREREUW1roM4mIRRqDEJIyIiIqKo1nVvMPdJiUShEKN2AERERERE4eKUndhTtQdWhxUjMkYgLS6tW+WLlTAKNSZhRERERBQ1/rj6j3hg7QMAgIFJA3Hk9iNKO2KMIQZ2p51JGIUc2xGJiIiIKCrYHDY8s+UZAIAECeXN5dhQskFJukZmjATAShiFHpMwIiIiIooKKw+tRHVrNXKTcvGT8T8BAKw6ukpJuibkTADgSsJkWVYtTop8TMKIiIiIKCq8uONFAMA1J1+D+cPnAwC+Pvq1MphjfPZ4AIDdaUdDe0OPz7GtfBs+2P9B6IOliMY1YUREREQU8Wpaa7Dy4EoAwM8m/QwJpgQAwObSzTAajACA/NR8pJhT0GhtRHVrNdLj07s9z+I3F+NYwzEcu/0YCtMKw/cFUERhJYyIiIiIIt6Oih1wyA6MzBiJsdljUZhWiOHpw+GQHfi2+FsAQE5iDnIScwD0vC7M4XSg2FIMAChrKgtf8BRxmIQRERERUcQrqisCAIzOGq3cdvbQsz2OyU7I7jMJa2hvgFN2AgAsVkuoQqUowHZEIiIiIop4h+sOAwBGpI9Qbrtp2k347sR3aLQ2YmzWWEweOLnPJKy2rVb5d29rxoi8wSSMiIiIiCLe4fofk7CMziRsUu4k7Lppl8dxOQm9J2E1rTXKvy3trISR/9iOSEREREQRT6mEuSVhPemrEuaRhLEdkQLAShgRERH16dvib7G5dLPy+bjscThvxHkqRkTkG6fsVNaEDc8Y3uex3iZhbEekQDAJIyIiol612lpx7ivnos3eptwmQcKR249gSNoQ9QIj8kF5Uzna7G0wSkYUpvY9Vr7PNWGtnWvC2I5IgWA7IhEREfWqrq0ObfY2GCQDfnryT5EZnwkZMvbX7Fc7NCKviVbEIWlDYDKa+jyW7YgUDkzCiIiIqFdN1iYAQKo5Fa9c+gpOG3waACh7JRHpgbfrwQC2I1J4MAkjIiKiXjV1uJKwZHMyACitXMcbjqsWE5Gv/EnCattqYXfaPe6raWMljIKDSRgRERH1SlTCkmNdSVhBagEA4LiFSRjpR1G9ayiHN0lYRnwGDJLrFNm98tX1c64Jo0AwCSMiIqJedauEpf1YCWMSRjoi2mf7G8oBAEaDEZnxmQC6tyR6DOZgJYwCwCSMiIiIetW1EsZ2RNKj6tZqAMCApAFeHd/bujCuCaNgYRJGREREvWruaAYAJMUmAeishJU2lXZbL0OkVSKZyk7I9ur4npIwh9OBurY65fMmaxOcsjOIUVI0YRJGREREverajpiblItYYyycshOljaVqhkbklXZ7u3IxITvRtySsuqVaua2+vR4yZOVzGbJSKSbyFZMwIiIi6lXXdkSDZEB+Sj4ArgsjfRCJlMlgQqo51avH9FQJE62IaXFpMBvNANiSSP5jEkZERES9UiphPyZhgNuERK4LIx1QWhETsyFJkleP6SkJE0M5shKykBrnSuY4nIP8xSSMiIiIeqVUwsydSRgnJJKeiKEc3q4HA9ySsNbulbDM+EykxaUB4Jh68l+M2gEQERGRdvVUCRMTEsXYbyItE+2IIrHyhjj2aP1RbC7dDADYUrYFgKsSJgZysB2R/MUkjIiIiHrVdTAHwCSM9MW9HdFbIgnbVbUL0/9vusd9WQlZsDqsANiOSP5jEkZERES9ElPl3CthuUm5AIDKlkpVYiLyhT/tiFMHTsX84fOxv2a/x+0JpgRcO/FaPL3laQBsRyT/MQkjIiKiXok1YWKfMKD3jWyJtMifdkRzjBmf/fSzXu9/dderAFgJI/9xMAcRERH1qqd2xAFJAwC4kjBZlnt8HJFWiOEavlTC+iNG3XNNGPmLSRgREREpXtz+Iua8NEcZx911nzCg82TW7rT7dRK6o2IHbv/0dtS11QUeMFE/RCXMlzVh/VFG1LMdkfzEJIyIiIgUz2x9BmuOr8Gnhz8F0HMlzBxjVioB/rQk/nntn/GPzf/Ac1ufC0LERH0Ta8J8aUfsjzKinu2I5CcmYURERKQQV/ZLLCWwO+1ot7cD8KyEAYGtCyuqLwIAbDyxMZBQibyiTEcMYjuiSMLKm8uD9pwUXZiEERERkUJUvootxUorIuBZCQMCS8KONRwDAGwq3cQ1ZRRS7fZ2ZcJnMNsRTxt8GgBg3fF1OFR7KGjPS9GDSRgREREpGq2NAICSxhLl5DXWGItYY6zHcSIJ83VMfUN7g7KOrKK5gnuNUUiJ9WAmg0lpoQ2GUZmjcMHICyBDxhObngja81L04Ih6IiIiAgA4ZaeSeBVbipWqmPt4esHfStjxhuMen28q3YTCtEJ/wiXqkyzLSutrdmI2JEkK6vMvn7EcKw+txAvbXwj4YkJcTBz+MPsPGJ8zPkjRkdYxCSMiIiIAnRszA65KWE+TEQV/kzDRiihsPLERl4+/3MdIifr3P+/+D17f/TqA4K4HE84achamDJyCbeXb8NHBjwJ+vjZ7Gz66KvDnIX1gEkZEREQAOlsRAVfbYFlTGYDu68GAwJOwWGMsOhwd+PTwpxiePtzPiAOTmZCJn4z7CYwGoyqvT6H12WHXZssGyYDFYxcH/fklScKHV36Iz4s+h1N2+v08TdYmLP9iOT499CkqmiuQm5QbxChJq5iEEREREQB4DOIAgL3VewGEphJ2/sjz8f7+97G/Zj9u+fQWP6INnisnXKnq61PwdTg6Otce/qoiqEM53A1KGYSlk5cG/Dxv7n0TG09sxCs7X8FdM+8KQmSkdUzCiIiICIBnJQwA9tb8mIQFsRJ23OJaE3b20LMxM38mNpdu9ifUgO2v2Y9dVbvwzdFvmIRFoJrWGgCAUTIiMyFT5Wj6t3TSUmw8sRFPbn5SqUC7y0zIxJ2n3YnE2EQVoqNQYBJGREREAHpIwkJYCRuSNgQXjrrQjyiD471972HRm4uw4cQG1WKg0BFTETMTMmGQtD8M/IoJV+COz+9ASWMJHt/0eI/H5CXnBaXqRtrAJIyIiIgAdO4RJuyp2gOg70pYfXs9Ohwd3UbY98Y9CVPTjPwZAIDdVbvRaG1EijlF1XgouMTFAfFzqnUp5hR8dNVH+LLoy273fV70ObZXbMeJxhMqREahwiSMiIiIAHSvhNmcNgBAkqn7iPqM+AwYJSMcsgM1rTXIS87r9/mrWqpQ314PAChMVXcsfW5SLoakDcGxhmPYXLoZ84bNUzUeCq7qVlclLBRTEUNl7tC5mDt0bo/3ba/YjtrW2jBHRKGk/fosERERhYVIwrq2b/VUCTNIBmXYgTctib/58jcY8PcBAFwJXE/PGW4zBruqYRtK2JIYaUQ7ol4qYX0Ra9pq25iERRImYURERASgczpi15HxvbXq+bIu7JPDnyj/vmzsZf6GGFQiCfvgwAd4bddraLe3qxwRBYv4mdRTJaw3mfGuJEwMG6HIwCSMiIiIAHRWws4Zdg7mD5+PIWlDMDl3Mi4ZfUmPx2fEZwAA6tvq+31ukeCtuW4Nnr3o2SBFHJjT808HAGwt34r/efd/8MfVf1Q3IAoapR0xRKPpw4mVsMjEJIyIiIgAdCZh2YnZ+Oynn+Ho7Uex7RfbMDZ7bI/Hp5pTAUDZj6kvzR3NAICshKzgBBsEUwZOwe/O/J2yDueZLc8oyWJ1SzV2VuxUMzwKgEjCIqEdUfzOcE1YZGESRkRERAA6pyN6OykwLS4NgG9JWE/j7tUiSRL+PPfP+PKaLzE6czQsVgte2P4CtpRtwcgnR2Lys5NxqPaQ2mGSHyKxHZGVsMjCJIyIiIgAdFbCvE2URBJmsVr6PM7msMHqsAIAkmK7T1pUm0Ey4M7T7gQA3L3qbpzxwhmwWC2QIWNL2RaVoyN/ROJgjkZrI2wOm8rRULAwCSMiIiIAnUmYt5Uwb9sRRRUMABJjE/0LLsSunXgtBqcMRpu9TUkYAeBA7QEVoyJ/KZWwCFgTlh6XDgkSAFbDIgn3CSMiIiIAoWtHFElYrDHW602dwy3eFI8fbvwBh+oOwWw04/Oiz/Gbr37DJEyHOhwdSnU2EtoRjQYj0uPTUddWh9rWWuQm5aodEgUBkzAiIiIC4HslzNt2RJHcaWk9WE/S49Nx6qBTAQDHLccBAAdqmITpjRjlbpRcyUskyIzPdCVhrIRFDN22I65duxYXXXQR8vLyIEkS3n//fY/7Kysrcd111yEvLw8JCQk477zzcOiQ5+La9vZ23HzzzcjMzERSUhIWL16MysrKMH4VRERE2qGsCfNyI+XUON/aEbW4Hqw3ozNHAwAO1h6ELMsqR0O+EK2IWQlZ3TYe1ytlTD0nJEYM3f5ktrS0YOLEiVixYkW3+2RZxsKFC3HkyBF88MEH2L59OwoLCzFv3jy0tLQox91555346KOP8NZbb2HNmjUoKyvDokWLwvllEIWEw+nA8s+X471976kdChHpiBjPHqp2RD0lYcPSh8EoGdFia0FpU6na4ZAPxFCOSFgPJnDD5sij23bEBQsWYMGCBT3ed+jQIWzcuBG7d+/G+PHjAQBPP/00cnNz8dprr2HZsmWwWCx4/vnn8eqrr2LuXNf+IC+++CLGjh2LjRs34rTTTgvb10IUbOtL1uOxjY9h5aGVuHTspWqHQ0Q6YHPY0GZvAxD8JEwkd3pKwkxGE4alD8OhukM4UHMAg1MGqx0SeaG6pRrritcBiIzJiAI3bI48uq2E9cVqdU01iouLU24zGAwwm8349ttvAQBbt26FzWbDvHnzlGPGjBmDgoICbNiwoc/nbmxs9Pgg0ppiSzEAoL6tXuVIiEgvxLotwI8R9e19rwlT9gjzss1RK0ZndbYkkvY5nA5MenYSHlj7AIDISsKy4rlhc6SJyCRMJFN333036uvr0dHRgYceeggnTpxAeXk5AKCiogKxsbFIS0vzeOyAAQNQUVHR63M/+OCDSE1NVT7y8/ND+aUQ+aW00dU6435SRUTUF1GtiouJg8lo8uoxYkR9i62lz/2L9NiOCHSuC+OERH2oaK5AWVMZJEiYMnAKbphyg9ohBQ0rYZEnIpMwk8mEd999FwcPHkRGRgYSEhLwzTffYMGCBTAYAvuS7777blgsFuWjpKQkSFETBY9Yv9Bub+fGjkTkFV8nIwKdgzmAvick6j0J216xncM5dKCsqQwAMChlELbesBVnDT1L5YiCR6wJYxIWOSIyCQOAqVOnYseOHWhoaEB5eTk+++wz1NbWYtiwYQCA3NxcdHR0oKGhweNxlZWVyM3tff8Fs9mMlJQUjw8irXFfRM5qGBF5Q5mM6MMY+RhDjJJY9dWSqJcR9V2dUXAGDJIBa4+vxYs7XlQ7HOqHeO8blDxI5UiCT1TCOJgjckRsEiakpqYiOzsbhw4dwpYtW3DJJZcAcCVpJpMJq1atUo49cOAAiouLMWPGDLXCJQoK0Y4IdLYYERH1xdeNmgXRktjXcA69VsLGZo/Fn8/6MwDg5k9uRlFdkcoRUV9EJSwvOU/lSIIvK4FrwiKNbqcjNjc34/Dhw8rnR48exY4dO5CRkYGCggK89dZbyM7ORkFBAXbt2oXbb78dCxcuxLnnngvAlZxdf/31WL58OTIyMpCSkoJbb70VM2bM4GRE0j33Spi4uk1E1BeRRPmahKXFpaG0qTQikzAA+M0Zv8F7+9/D92XfY/Wx1RieMVztkKgX4gJkRFbCfmxHPG45jp+89ZN+j/3bvL8pg3NIm3SbhG3ZsgVnndXZ67t8+XIAwJIlS/DSSy+hvLwcy5cvR2VlJQYOHIhrr70Wv//97z2e47HHHoPBYMDixYthtVoxf/58PPXUU2H9OoiCzeF0oLypXPmc7YhE5A1/91ZSJiT2sSZM/B3SYxJmkAwYnTUa35d9j/p2TpzVMnEBMhIrYYNTBiPWGIt2ezve3vt2v8ePzx6PW6ffGobIyF+6TcLmzJnT5yLZ2267DbfddlufzxEXF4cVK1b0uOEzkV5VtVTBITuUz9mOSETeqGypBAAMSBzg0+PEcA5vKmF6WxMmZMRlAOC2H1rnPpgj0qTHp+Pra7/GjoodfR73xZEv8OGBD7Gzcmd4AiO/6TYJI6KeubciAmxHJCLvVDb7l4R5s2GzntsRAdcJMADUtdWpHAn1JZIHcwDAzIKZmFkws89jchJz8OGBD7GraleYoiJ/RfxgDqJo4z6UA2A7IhF5R6mEJfmYhJnTAPQzHdGq33ZEAMiI/7ESxnZETYvkwRzeOmnASQCAPVV74JSdKkdDfWESRhRhulbC2I5IRN4IRzuiXpOw9DhWwrSu1daq/AxGYjuit0ZkjIDZaEaLrQVH64+qHQ71gUkYUYRhJYyI/CHaEXMSc3x6nNKOaG3o9RhlTZhZp2vCWAnTPPHelxSb5POEz0gSY4jB+JzxAIAfKn9QORrqC5MwoggjKmESJABcE0ZE/ZNl2f92RDEd0YvNmnVbCeOaMM1jK2Knk3JcLYlcF6ZtHMxBEWlz6Wbc+fmdaLW1etw+PH04Xl38KmKNsSpFFhxO2YmbPr4Jm8s2d7vvSP0RAMCQtCE42nCU7YhE1K+mjia029sB+NGO2M9mzbIs674dUamEcTqiZkX6UA5fMAnTByZhFJGe3Pwkviv5rtvtOyp2YEPJBsweMluFqIJnzbE1eG7bc30eM6twlisJYzsiEfWjqqUKAJBoSkRibKJPjxWVsL3Ve/GHb/6AX53+K492sA5HB+xOOwD9jqgXa8Ia2hvglJ0wSGwk0pIma5PSesdKWOdwjs8Of4bTnz8dADB90HQ8Ov9RSJKkZmjkhkkYRaTt5dsBAH+d+1dMGTgFAHDXl3dhV9Uu5WRDz17c8SIAYNHYRbhhyg3d7h+cMhjflXyHl3e+zHZEIuqXMp7ex1ZEoHMIQnVrNe5fez+SYpNw18y7lPvdLwT5muBphWhHlCHD0m5RPif1WdotGPrEUGW9HithwNSBUxEfE4/mjmZsOLEBALDhxAYsn7Ec+an5KkdHApMwijhttjbsr9kPALh24rXKCcKzW5/FrqpdqGmtUTO8gDVaG/H23rcBAP9vxv/DjPwZPR63u2o3AA7mIKL++TsZEQAm5EzAS5e8hLf2voWVh1bi25JvcRc6kzDRihgXE4cYgz5PO2KNsUg0JaLF1oK6tjomYRpyoPYA6tvrIUFCQWoBFo1dpHZIqstMyMT2X2xXzoWWfrgUdW11qG2rZRKmIfr8a0jUA6vditKmUtS21sIhO5CVkOXRlpCdkA3AdbVWy0obS/H7b37fawWrqqUKbfY2jM4cjdMGn9br84gpZFwTRkT98XcyorBk0hKMyhyFlYdWYkPJBsiyrLQ96X09mJARn4EWWwsnJGpMbWstAGBi7kRs/8V2laPRjtFZozE6azQAYMCqAahrq+NgGY1hEkYR47df/RaPb3occ4bMAQBMyp3k0fucnfhjEtai7STsmS3PKO2GfVk2ZVmfvd1i7QXbEYmoP4FUwoQpA6cg1hiL6tZqFNUXYUTGCABu4+l1uh5MSI9PR0ljCU9kNUZ8P8TwFOpOVG45WEZbmIRRxHh80+MAgNXHVgMAJudO9rg/KyELAFDTpu12xL01ewEAV064EmcWnNnjMSnmFFwx/oo+n0csjGc7IhH1J5A1YYI5xowpA6dg44mN2FCyQUnCRDU+EiphAE9ktaa2zVUJy4zPVDkS7eI+d9rEJIwiRl5ynrJPCOCqhLlT2hE1Xgk7UHMAAHDtyddiwcgFfj8P2xGJIpMsy1h9bLUykrsvIzJG9Nm2LASjEgYAMwbPcCVhJzbgmonXAIicdkQxIZGVMG1hJax//NnVJiZhFDESTAken/dWCdPymjCH04HDdYcBQOnl9pdo/WmxtcDhdMBoMHY7Znv5dmw8sRG/OOUXHLlMpBMbT2zE3H/P9fr4P87+I+6bfV+f7cv+btTc1en5p+OxjY/ho4MfITk2GU7ZiXf3vwsASI1LDei51cZqgjaJNWGshPVOJGGs4moLkzCKGO5rn1LNqRiVOcrjfrEmTMvTEY9bjsPqsMJsNKMwtTCg53Lfp6e5o7nHE6Apz7nG9+en5uPCURcG9HpEFB6H6g4BcF1YEltw9KTd3o61x9fij2v+iCc3P9nnhRZxhTzQStjp+adDgoQTjSfwv9/9r3L7gMQBuGP6HQE9t9pYTdCmunZWwvrDCwjaxCSMIoZIwv533v/i1EGndqv8uLcjuk/u0hLRijgiY0SPlStfmGPMMBlMsDltaOpo6paEuZ9InGg8EdBrEVH4iCv/5ww7B68ufrXPY/+5+Z+447M7lHUzfUmOTca47HEBxZaXnIfXL3sdm05sUm4rTCvE9ZOv1+0eYQLXhGmTUglLYCWsN2IwBy8gaAuTMIoIHY4OtNvbAbimBva0h4toR7Q5bWi0NmqyNeZArSsJC7QVUUg2J6Oura7HCYkbT2xU/q3XvXuIopEva2BuOfUWXD7+cq82qR+cMhhpcWmBhofLx1+Oy8dfHvDzaI1yItvOE1kt4Zqw/intiKyEaQrPvCgiuA+fEAMpuoo3xSubbda01mgyCTtYexAAMDozOElYijkFdW11PQ7n2FCyQfl3Q3tDUF6PiELP12lwOYk5fu//RZ3EST6rCdrC6Yj9YxVXm7gSnyKCqPQkmBL6rOooe4VpdDiHUgkLUhImhnP0NKZ+w4nOJMzSbgnK6xFR6PHKvzo43ECbxO8D2xF7x3ZEbWISRhFBJGHuwyh6okxI1NiYeku7BR/s/wC7q3YDCG47ItB9w2aH04FNpZ1rNlgJI9IP5co/TzrDipUw7bE77cr7Fy9K9I7tiNrEdkSKCN4mYWI4hxYmJB6sPYg3dr8Bi9WCF3e86PHG3nWyo7/E/4///PAf/FD5g3J7Q3uDsncPAFisrIQR6QUrYeoQ6+V40Uo73L8X/H3onfh/Y2m39LplDYUfkzCKCD5XwjTQjnjTypvw9dGvlc+HpQ/D4JTBOGfYOUF7MxHrQN7b/x7e2/9er8fxpIJIP7gvkjrE+0tfey9SeInfhRRzCgdM9UG0I8qQYbFamLBqBH9iKSL4WgkLZzvi/237P0iQcP2U6z1u31+zHwBw5YQrccHIC3DVhKuC/qZ+75n3IjM+E1a7tdt9JqMJqeZU3L/2flbCiHSElTB1eLP3IoWXsh6MFyT6FGuMRYIpAa22VtS31fNvh0YwCaOI4HUSJjZsbgtPO2JzRzN+8fEvIMsyFo1dpFyN6nB0oLypHADwxHlPhGxy2cjMkXh0/qO93v/54c8BcDAHkV50ODqUQTtcExZe5hgzYo2x6HB0aHabk2gj1kcyqehfRnyGKwnjujDNYBJGEUFUcrxtR9xZsROv7HxFuT3ZnIwFIxbAHGMOalw1rTVwyk4AwOG6w5g2aBoAoMRSAhky4mPileqcGsRJBNsRifRBTOaTICHVzCQg3FLMKahprelx70UKP05G9F56XDpONJ7gYBkNYRJGEUGphMX2nYTlJuUCALZXbMe171/rcd8j5z6C5TOWBzUu0a8OAIfqDilJ2LGGYwCAwrRCSJIU1Nf0hVhoznZEIn0QV/7T49O5JkkFIgnradsPCj/xHstKWP9EJw63WNAOJmEUEbxtR5w3bB6WTV6GksYS5bYTjSewp3oP1pesD3oS5n7F6VDtIeXfxy3HAQCFqYVBfT1fiSvplnYLnLITBom7VhBpGdeDqUvsvchKmDZwTZj3lA2b2Y6oGUzCKCJ4m4TFxcThXxf/y+O2r458hXNeOQc7K3YGPS5x1RoADtcfVv59vEEjSdiP7YgyZDR3NPf7/4+I1MXJiOoSfyOZhGkD14R5T+wVxnZE7eBlb4oI4g3Rn4XSEwdMBAAU1RehyRrcFpPeKmHHLMcAuNoR1RQfEw+TwQSAwzmI9ICVMHUxCdMWVsK8p1TC2I6oGUzCKCJ4WwnrSXZiNvKS8wDAY0PjYOi6JkwQlbAhaUOC+nq+kiSJwzmIdERc+ecgAnUwCdMWsecnL0r0T1TC2I6oHUzCKCIEkoQBwKTcSQCAnZXBbUl0r4TVtdUpn2tlTRjA4RxEeqJUwuJ40qkGJmHa4j7kivomBnOwHVE7mIRRRAg0CRMticFeF+a+Jgxwjam3O+0osbgGg2jhjUMM52AljEj7lDVhrISpgkmYdtgcNqWrZHj6cJWj0T4O5tAeDuYgXSiqK8K+mn093pefkh+0StiOyh29HvPmnjexp2oPUswp+PnUn3v1Wl2vOB2qPYTcpFw4ZAdMBhMGJg30K95gEu2IXBNGpH117VwTpibxdz/Y64fJd8WWYjhkB+Ji4jAwWf33Uq1T2hG5JkwzmISR5lnaLTj5mZPRamvt8X4JEmTIAAKvhG0p24KCxwoAACMzR+Ljqz5GvCkeRXVFuOLtK5TjOxwduPvMu/t9XmX9Rnwmattq8bf1f8Pz258HAOSn5mtinx+2IxLpB6cjqkuphHWwEqa2I/VHAADD0odxexUvsB1Re5iEkeYdtxxHq60VJoMJkwdO9ryv4TgqWyqVz/1NwkZkjMCQtCE41nBM2UOspLEEG05swNyhc3Gw9qDH8VvKt3j1vOKP3dnDzsabe97E7qrdyn0Tcib4FWuwsR2RSD84HVFd3CdMO4rqiwC4kjDqH9sRtYdJGGleTWsNAFeitGnZJo/7nt/2PJZ9tEz5XLxB+spoMOKHG39Qkq3bP7sd60vWK/3mIjGLi4lDu70duyp3efW84qr1b2b+BgtHL1SqTTGGGFw46kK/Yg02pRLGdkQizWMSpi6uCdOOojpXEsb1YN4R7YjNHc2wOWwwGU0qR0RMwkjzRCKTlZDV7b75I+Z7fG6OMfv9OsnmZEzNmwoAGJc9zpWE/TjFsNhSDAA4f+T5eHffuzhcdxittlYkmBJ6fT6n7FSuOA1MGogpA6f4HVsosRJGpB/i91RcPKHwYhKmHUcaXO2ITMK84/43o769HjmJOeoFQwA4HZF0QFTCekrCBqcMDslritHxIgkTlbBpedOQlZAFGTL2Vu/t8zks7RY4ZScAbV+1VgZzcE0YkaY5nA40dbgGQjAJUweTMO0QlTC2I3rHaDAqF105nEMbmISRJnU4OnDzypvx3r73lCSst4XoMwbPCPrri9HxSjvijyPl81PycVLOSQDQb0uiGMqRaEoMqEIXahzMQaQP7if+4uIJhReTMG2QZVlZEzY8g5Uwb4nhHFwXpg1MwkiTvij6Ak9teQp3r7pbSWZ6qoQBwN1nuKYUTs6d3OP9/uhaCRPtiAWpBUoS9kPlD30+h1i7ofX9fNiOSKQP4nc0PiYescZYdYOJUu4j6mVZVjma6FXTWoPmjmZIkDAkbYja4eiGWBfGCYnawDVhpEli0+SSxhJUt1YD6D2ZuWj0RVi9ZDVGZ40O2usXpLrG1JdYSmB32nGi8QQA11j5kwecDADYVdVPJezHtWxabkUEOLaWSC+4Hkx9IgmzOW2wOqyIi4lTOaLo8+iGR/Hk5icBAINSBvF74ANlQiLbETWBSRhpkkhwWm2tyl4gvVXCAGD2kNlBff1BKYNglIywOW3YVbkLVocVEiQMSh6Ekwa4KmGbSzdj2YeuyYzD0ofhNzN/47Hvl1IJ0/h+Pvkp+QBc1T6n7OR+K0QaJVqGmYSpJzE2UdmbstHayARABX//7u8oby4HAJyef7rK0egL2xG1hUkYaZJ7lUmsveorCQu2GEMMBqUMQrGlGN8WfwsAGJg8ECajCeOzxyMuJg5NHU3Kxssivhum3qB8LtootV4JK0gtgEEyoN3ejormCuQl56kdEhH1QFTCuB5MPQbJgKTYJDR1NKHR2sgJc2HmlJ2oaqkCAKz8n5U4e+jZKkekL2xH1BZe8ibNsdqtOFBzQPm8xdYCIPwVJbEu7NsSVxImKkaJsYn47OrP8Ne5f8Vf5/4V1068FgBwz6p7PEr8eqmEmYwm5Ws7Wn9U5WiIqDdsR9QGDudQT21rLRyyAwBwzrBzND30SovYjqgtQa+EdXR0oKGhAe3t7V4dX1BQEOwQSOf21exT/si6C2clDOhcF7bu+DqPzwFX+6NogbQ5bNhStgV7q/ei8PFCZcG8SB61XgkDXO2Uxy3HcaT+CGYWzFQ7HCLqgdhQnUmYulLMKShtKmUSpoKK5goAroub3GzYd6ISxnZEbQhKEnb06FE88cQT+PTTT1FUVOT1xCBJkmC324MRAkWQ3ka/hzsJE5Uw0XsuqkVdmYwm/HPBP3HOK+coe/i4O3XQqaELMkiGpg3FN/gGRxtYCSPSKqUd0cx2RDWxEqaeypZKAEBuUq7KkegTB3FpS8BJ2BtvvIHrr78ebW1tAMCRrRSwnqYOGiRD2NdBiL3ChPzUnpMwADhr6Fk4sfxEtxJ/ijkFg1IGhSS+YBKbXYohKESkPRzMoQ3uY+opvCqbXUnYgKQBKkeiT0o7IithmhBQErZr1y5cc801cDgckGUZcXFxOOWUUzB48GCYzezTJd+caDyBa967BtvLtwMApgycgm3l2wC4Wg/CPbVv+qDpHp/3V9HKTcrV7dW5oelDAYCVMCINYyVMG1gJU4+ohA1IZBLmD6UdkWvCNCGgJOzhhx+G3W6HJElYtmwZHn74YaSm8s2B/POfH/6D1cdWAwAkSLhy/JWdSZgKGx5PzJ2IotuKUN5UjgFJAzAiY0TYYwgXVsKItI+DObRBJGGiMknho1TCmIT5RVTC2I6oDQElYWvWrIEkSZgzZw6ee+65YMVEUWpHxQ4AwI1Tb8Ttp92ONlubcl+414MJw9KHKQlKJBua5qqElTaWwmq3cuIUkQaxHVEbxMRbMSqdwkephLEd0S/cJ0xbAurvqqpy/QG64oorghIMRbftFa42xIVjFmJM1hiPtVRqJWHRIicxBwmmBMiQcdxyXO1wiKgH3CdMG8T64JLGEpUjiT5sRwyMaEdst7d7XOgmdQSUhInWw4wM7Y/gJm1r7mjGodpDAIBJuZMAuBIvk8E1glbre23pnSRJSjXs4fUPY+OJjSpHRERdsR1RG8R2JcWWYpUjiT4czBGYFHMKjJIRAKthWhBQEjZu3DgAQEkJrwZRYH6o/AEyZAxMGqj8cTVIBuQl5wFgJSwcRmWOAgD83/b/w4WvXqhyNETUFfcJ0waxXUmJhec+4cZKWGAkSVL+fnA4h/oCSsKuvfZayLKMd999N1jxUJQS68EmD5zscbtoSWQSFnp/nvtnLJu8DABQ21aLDkeHyhERkSDLMqcjaoSohFU0V/DvZBg5ZScrYUHAvcK0I6AkbMmSJZg1axa+++47PPnkk8GKiaKQGEs/acAkj9un5E4BAEzImRDukKLOuOxxeOqCp5TPmzuaVYyGiNy12FrgkB0AWAlTW1ZCFuJi4iBDRmljqdrhRI26tjrldyAnMUflaPSLe4VpR0BJmCRJePfddzFr1izccccdWLp0KXbt6r7RLlF/dlTuANC9EvbI/Eew7+Z9mD98vgpRRR+T0QSz0TUZkRuREmmHaEWMMcQgwZSgcjTRTZIkDE4ZDIDDOcJJVMEy4jMQa4xVORr94l5h2hHQiPphw1yju+12O2RZxssvv4yXX34ZiYmJyMjIgMHQd44nSRKKiooCCYEiQLu9HbsqXcn75FzPJCzWGIsxWWPUCCtqJcUmwdpmZSWMSEPcWxElSVI3GEJBagEO1x3mcI4w4nqw4GA7onYElIQdO3ZMeTOQJAmyLAMAmpub0dzc/wkc30i0rcPRgY0nNsJqt+LkASf71YMtyzJ+qPyh1/1UThpwEg7WHoTVYcWAxAFRsSeX1iXFJqG2rZZJGJGGcDKitnA4R/hxPVhwZMSxHVErAkrCCgoKmEhFsHtW3YNHNjwCAMhLzkPJnSUwSL51sH599GvMe2Ver/fnJedh6aSlAIDZQ2bz50kDks3JAICmDrYjEmkFN2rWFo6pD7+K5goArIQFStmwme2Iqgu4EkaR6+ODHyv/LmsqQ0N7g7Kg01t7qvcAcJ04FKYWetx3uO4wyprK8PimxwEAswpmBRYwBUVSbBIADuYg0hJu1KwtSiWMa8LC5mjDUQDAkLQh6gaic2JNWF072xHVFlASRpGruqUaB2oPeNxW11bncxImThyuGH8FnrnwGY/7frfqd/jrt39VTvZnD5ntf8AUNMmxrkoYkzAi9cmyjAtfuxCfHPoEACthWsFKWPiJJGxo2lCVI9E3ZToiK2GqC2g6IkWub4u/BeAaDS/ebGpba31+HvFL3tOJw3WTrlP+nRmfiXHZ43wPlIJOVMI4HZFIfQ3tDUoCBgBnDTlLxWhIyE9lJSzcjtQfAQCuHQ+Q0o7INWGqYxJGPVpXvA4AcEb+GciMzwTg3ySdBmsDgJ6TsJGZI3FGwRkAgDMLz/R5vRmFBtsRibSjrKkMgOtvaN2v63DLqbeoHBEBne2IDe0NvGAVBrIs42j9j5WwdFbCAqG0I3I6ouqC2o5YU1ODlStXYuPGjSgvL0dTUxOSk5ORl5eH6dOn44ILLkBWVlYwX5JCRFTCziw8E4fqDgEAatv8r4SJX/qu7p9zP37x8S9wyzSeWGgF2xGJtEMkYYOSBylXsEl9yeZkJJgS0GprRXVrtTLQiEKjsqUSbfY2GCSD0p1D/mE7onYEJQlrbW3Fr3/9a7zwwguwWq09HvPss8/CbDZj2bJleOihhxAfHx+Ml6YgW3t8LZ7b+hy2lW8DAJxZcCY+OPABAD8rYf2MVT5r6Fk4eOtBv2Kl0FDaETkdkUh1IgnLS85TORLqKishC8WWYlS3VLNFLsREFWxwymBu1Bwg93ZEWZY5lVpFAfd/1dTUYNq0aXj66afR3t4OWZZ7/Whvb8eKFSswbdo01Nb6XlWh0Ltn1T34767/wiE7MDJjJPJT85U9JfxaE/ZjzzGv4OoH2xGJtKO8uRwAkzAtyk7IBgBUt1arHEnk43qw4BGdSXanne/zKgu4ErZ48WLs27cPABAfH4+rrroK8+fPx6hRo5CUlITm5mYcPHgQn3/+OV5//XW0trZi7969WLx4MVavXh3oy1OQiR3p7zztTtww9QYAQGZCAGvCuMGo7oi2Gv5xJlIfK2HalZ3oSsJqWmtUjiTyKUlYGpOwQCWYEhBrjEWHowP17fVspVVRQEnYe++9h3Xr1kGSJEyaNAnvvvsuCgsLux03ceJE/OQnP8Hvf/97XHbZZdi6dSvWrVuHDz74AJdcckkgIVCQiR7h6ydfjzFZYwB09g/7syZMJGG9rQkj7WE7IpF2MAnTrqwE1xr36hZWwkJNGU/PoRwBkyQJ6XHpqGypRH1bPdfYqSigdsTXX38dAJCdnY0vv/yyxwTMXWFhIT777DPk5OQAAF599dVAXp6CzCk7lfZB9/3A/J2O6HA60GhtBMBKmJ5wMAeRdjAJ0y62I4YP2xGDS5zjcUKiugJKwjZt2gRJkrB06VJkZHi3iW9mZiauv/56yLKMTZs2BfLyFGRN1iY4ZScAzzVc/lbCLFaL8m8mYfrBfcKItEMkYQOTBqocCXUlkjC2I4ZWiaUEB2tdA7y4UXNwcK8wbQgoCauqqgIAnHzyyT497qSTTvJ4PGmD+GWMi4lDXEyccnt/a8KcshPt9nbYnXbP5/uxtTHRlAiT0RSKkCkEOJiDSBtkWWYlTMOUdkRWwkLm5R0vo+DxAmVAzfCM4SpHFBnEEhGOqVdXQGvCYmNjYbVa0dHR4dPjxPEmE0/MtaS3Pb2USlgP0xFrWmsw6ZlJKG0qRawxFksnLcW1E69FijkFbfY2AKyC6Q0HcxBpQ21bLWxOGwAgNylX5WioKzGYg2vCQueLI18AAMZkjcFtp96GnMQclSOKDGxH1IaAKmF5ea4rc+vWrfPpcWvXrgUADBo0KJCXpyDrbZy8WBNmsVq6Vbu+OfoNSptKAQAdjg48s/UZnP7C6Zjw9AT8ac2fenw+0jYO5iDSBlEFy0rIgjnGrHI01BXbEUOvxFICAPjD7D/gpmk3qRxN5FAqYWxHVFVASdicOXMgyzJeeeUV7Ny506vH7NixA//5z38gSRLmzJkTyMtTkIlKmPtQDsAziepauv6h8gcAwJKJS/DNkm9w9tCzlcd/fvhzAKyE6Y37YA5ZllWOhih6lTdxjzAtYzti6J1oPAEAyE/JVzmSyKKsCWM7oqoCSsKWLVsGSZJgs9kwb948vPvuu30e/+677+Kcc85BR0cHJEnCz3/+80BenoJMlKW7tiPGGGKQak71OEb4ocqVhE0dOBVzhszBV9d+hf8u+i8AKG00HE+vL6ISJtb6EZE6uB5M20Q7YqO1EVa7VeVoIo9TdipJ2OCUwSpHE1mUdsR2tiOqKaA1YVOmTMGNN96Ip59+GnV1dfjJT36CYcOG4ZxzzsGoUaOQmJiIlpYWHDp0CF9++SWKioogyzIkScKNN96IyZMnB+vroCDorR0RcA3nsFgt3SYk7qxwVUAn5k5UbhudOdrjGFbC9CUxNlH5d1NHE+JN8SpGQxS9lCQsiUmYFqXFpcEoGeGQHahtq2WyHGTVLdWwOW2QIPH/bZCJi+NFdUX4ouiLPo8dkjYEozJHhSOsqBNQEgYATz75JBobG/Hf/7qqH0eOHMGzzz7b47Gitenqq6/GP/7xj0BfmoKst8EcgOuqyZH6Ix6VMEu7BcctxwEAJ+WcpNxekFoAs9EMq8N1ZZBJmL4YJAMSTYlosbWguaOZC6GJVFLRXAGAQzm0yiAZkJmQiaqWKlS3VDNRCLKSRtd6sNykXE5YDjIx9Xpr+VbM/8/8Po81SAYU3VaEIWlDwhBZdAk4CTMYDHjllVdw8cUX46GHHsK2bdt6PXbq1Kn47W9/i8WLFwf6shQCSiWshyRMDOdwn5C4q2oXAFevtnv1zGgwYmTmSOyu2t3r85G2JcUmKUkYEalD7LXIC1nalZ2Q7UrCuC4s6JT1YKlcDxZsswtn4+LRF6PYUtzncQdqDqDN3oZDtYeYhIVAwEmY8JOf/AQ/+clPUFxcjE2bNqG8vBxNTU1ITk7GwIEDMX36dBQUFATr5SgERBLWdTCH+23ulTAxlOPkAd33iRudOVpJwngCoT9JsUmobKnkhs1EKmq0NgIAUswpKkdCvRHDOTghMfjEZESuBwu+xNhEfHDlB/0eN/ul2Vh7fC0a2htCH1QUCloSJhQUFDDZ0illMEdPa8JEJaytFrIs4+ujX+Ojgx8B6D0JEziiXn+4VxiR+sQ2EeL3kbSHe4WFDicjqk8MZWMSFhpBT8JIv/paEyau9lU0V+DTw5/iglcvUO6bOGBit+NHZ3UmYayE6Q/3CiNSn6hEi20jSHvEXmFsRww+sSaMlTD1iPM3JmGhwSSMFH1NRxRJ1d7qvRiQOACAawDH7MLZuGj0Rd2Pd6+EcU2Y7rjvFUZE6mAlTPvYjhg6rISpj0lYaDEJI0VflbAJORMAALurdivrw359+q9x86k39/hc7uNMWQnTH1EJYxJGpB5RCeOaMO1iJSx0WAlTH5Ow0PIqCTMajQAASZJgt9u73e6vrs9H6nHKTuWXrKdK2KjMUTAZTGjqaMLqY6sBACcNOKnbcUJ6fDpOyjkJRxuOcqKODintiBzMQaQaMZiD7YjaxTVhoeGUnShtLAXA6YhqUpIwa4OqcUQqgzcHybKsfPR2u78fpA2WdgtkuL4fPVXCYo2xSktii60FgOfeYD357vrvUHRbEVLjUoMcLYWaOOnjmjBt2l+zH1vLtqodBoWQLMtKJZrtiNrFdsTge2LjEzD/2Qyb0waDZMDApIFqhxS1WAkLLa8qYbNmzYIkSV7fTvoj1oMlmBJgjjH3eMyEnAnK2PlByYP6nXqYFJukVFRIX8T31n1LAtKOuS/PRV1bHU4sP6GcBFJkabG1KBfGWAnTLrYjBt/b+96G3enqkjp3+LncqFlFTMJCy6skbPXq1T7dTvrT13owYUL2BOXffbUikv7lJecBAMqaylSOhLpqt7ejvLkcALCjYgfmDZunckQUCqIV2CAZkGBKUDka6o1oR6xtrYVTdsIgedVgRH2obK4EAHx45Ye4cNSFKkcT3UQSZmm3qBtIhOJfC0JdWx1WHV0FoO89vcRwDgA4Oaf73mAUOUT7B5Mw7XG/Irmnao96gVBIua8HY8eJdok9NB2yg9WCIKlqqQIAjMwcyZ99lbESFlqcjkg455VzsK18GwAokw974p6EsRIW2UQlTFRcSDtE1RoA9lQzCYtUHE+vD+YYM1LMKWi0NqK6pbrP91DqX7u9HRarq+oitsMh9TAJC62AKmFLly7F0qVLsWPHDp8et3v3bixduhTXX399IC9PQSKupk/OnYw7T7uz1+OGpg9VRiVPyp0UjtBIJQOTXZWwiuYKOJwOlaMhdx6VMCZhEYsbNeuHWBfG4RyBE1Uwk8HE7W00QHwPWmwtsDls6gYTgQKqhL300kuQJAkLFy7EpEmTvH5caWmp8tjnn38+kBAoQG22NlgdVgDA6utW97kfjUEy4LXFr6HYUuxRFaPIk5OYA4NkgFN2orq1GrlJuWqHRD/q2o4oyzJbdiIQK2H6kZWQhaL6Ig7nCAKRhOUk5vDvmga4nxNarBYOggoyrgmLEk7ZiYrmim5XMsT0O6Nk9OqK6/kjz8eNp9wYkhhJO2IMMchJzAHAdWFa456EWawWlDaVqhcMhQw3atYP7hUWPGIox4AktiJqQYwhRjk3ZEti8KmShDkcrvammBj/C3Fr167FRRddhLy8PEiShPfff9/j/ubmZtxyyy0YPHgw4uPjMW7cODzzzDMex7S3t+Pmm29GZmYmkpKSsHjxYlRWVvodk1Y9sfEJJP41EQMfGYhZL83yaC8To+nT49N51Yk8KOvCmrguTEu6vhFyOEdk4kbN+sF2xOBxr4SRNnBdWOiokoQdPXoUAJCS4v8VvpaWFkycOBErVqzo8f7ly5fjs88+w3/+8x/s27cPd9xxB2655RZ8+OGHyjF33nknPvroI7z11ltYs2YNysrKsGjRIr9j0qpXfngF7fZ2AMDGExvxr23/Uu7zZjQ9RSeOqdcmceFE4LqwyMR2RP0QLVpsRwxcZcuPlTAO5dAMJmGhE5TpiN5WUFpbW7Ft2zY88cQTkCQJY8eO9fs1FyxYgAULFvR6/3fffYclS5Zgzpw5AIAbbrgBzz77LDZv3oyLL74YFosFzz//PF599VXMnTsXAPDiiy9i7Nix2LhxI0477TS/Y9Oa2rZaAMBVE67Ca7tfw+++/h2arE04Pf90pR2RE52oK46p1ybxRihBggyZlbAIxcEc+sENm4OHlTDt6S8J47pk/3ldCfvTn/4Eo9Ho8QG4/ucvXLiw2309fSQnJ2P27NkoKioCAFx66aWh+aoAnH766fjwww9RWloKWZbxzTff4ODBgzj33HMBAFu3boXNZsO8eZ0bnY4ZMwYFBQXYsGFDr89rtVrR2Njo8aF1ItG6d9a9GJ89HnVtdfj1V7/G/P/MR0VzBYC+9wej6MQx9dok3giHpg8FwO9PpBKVMK4J0z6xJoztiIFjJUx7ekvCnLITZ754JqY+N5VTlP3kUzuiLMseH73d7s3H7NmzccsttwT9CxKefPJJjBs3DoMHD0ZsbCzOO+88rFixArNmzQIAVFRUIDY2FmlpaR6PGzBgACoqKnp93gcffBCpqanKR35+fsi+hmCwOWzK2oIBiQPw+mWvY9nkZYgxxKDF1oK91XsBsB2RumMlTJvEG2FhaiEAKHvqUGThmjD9UNoROZgjYBzMoT29JWG7q3bj2+Jvsb1iu1LBJN943Y44ZMgQzJ492+O2NWvWQJIkjBs3DllZfY+tNBgMSEpKwtChQzFv3jycf/75MBhCtyTtySefxMaNG/Hhhx+isLAQa9euxc0334y8vDyP6pev7r77bixfvlz5vLGxUdOJmKiCSZCQFpeGzIRM/Ovif+HLI1/iuOU49ta4kjC2I1JXrIRpk3gjHJI2xONziixcE6YfbEcMHrYjak9vSdiqI6uUf7faWsMYUeTwOglbsmQJlixZ4nGbSKL+8pe/4OKLLw5uZAFoa2vDPffcg/feew8XXHABAODkk0/Gjh078Pe//x3z5s1Dbm4uOjo60NDQ4FENq6ysRG5u73simc1mmM3mUH8JQSPWg6XFpcFoMCq35ybl4rjlOPZV7wPAShh1JzZsZiVMW8RgDpGEWdpZCYtEXBOmH2xHDB62I2qPSMK6vtesOtqZhDV3NIczpIgRUClq1qxZmDVrVr9VsHCz2Wyw2WzdKm1GoxFOpxMAMHXqVJhMJqxa1flDdODAARQXF2PGjBlhjTeUaltdSVhmQqbH7eIEW+wxxDVh1JWohFU0V7DfW0O6tiOyEhaZWAnTD9GO2GprZUUgAA6nQ0lkWQnTDqUSZm1QbrM5bFhzfI3yeYutJcxRRYaApiOuXr06SGH4rrm5GYcPH1Y+P3r0KHbs2IGMjAwUFBRg9uzZuOuuuxAfH4/CwkKsWbMG//73v/Hoo48CAFJTU3H99ddj+fLlyMjIQEpKCm699VbMmDEjIicjZsZ7JmG5iZ7VPrYjUlc5iTkwSAY4ZSeqW6uRm9R7hZjCp2s7YoutBXanHTGGoAy7JY3gZs36kRybjFhjLDocHahuqUZhWqHaIelSbVstnLLrQrmoLpL6Us2pAFyV3pYOV7K1uXSzR/WLlTD/6PZde8uWLTjrrLOUz8U6rSVLluCll17C66+/jrvvvhtXX3016urqUFhYiL/85S+48cYblcc89thjMBgMWLx4MaxWK+bPn4+nnnoq7F9LKIk1Yb1VwgS2I1JXMYYYpJpTUd9ej/q2eiZhGiDLspKEFaQWKLdb2i3dfsdJ3ziYQz8kSUJOYg5ONJ5AaVMpkzA/iaEcmfGZvKikIaIS9tnhz5D0YFKPx4jkjHyj25/yOXPmeExo7Co3Nxcvvvhin88RFxeHFStW9LrhcyRQ2hG7VsK6nFCzHZF6kmJOQX17vXJCSOpqtbXC7rQDcF0pTjAloNXWCouVSVikYTuivkzKnYQTjSew6cQmnJ5/utrh6JIYysHJiNoyffB0ZCVkdVvzKKq/ANsR/RXUJGzDhg3YuHEjTpw4gcbGRjgcfa8jkSQJzz//fDBDoC56a0cU48cFtiNST1LjUgELx6BrhRjKEWOIQaIpEWlxaa4kjMM5Ig4Hc+jLzPyZ+Pjgx1hfsh53zrhT7XB0Sfx963q+QuoanDIY5b8qh9Vu9bjdZDThirevwPv732c7op+CkoR98sknWL58OQ4dOuTzY5mEhVZvgzm6VcLYjkg9EL3gPMnXBtGKmBaXBkmSkGpORVlTGYdzRBir3Qqb0waAa8L0Ymb+TADA+pL1kGUZkiSpHJH+uP99I22JMcQgJrZ7ypAU62pPZDuifwLeqOuFF17AxRdfjEOHDvW7QTOAHjd7ptDptRLWdU0Y2xGpB+IEkO2I2tD1JEUZHcxKZUQRrYhA50kOadspeafAZDChorkCxxqOqR2OLjEJ059EUyIADubwV0BJ2IkTJ/DLX/4STqcT2dnZeP7557Fvn2vfKUmS8Nxzz2H37t346KOP8Mtf/hIJCQmQJAk/+9nPcOTIERw5ciQoXwT1TiRhXdsN3ffgMBvNiI+JD2tcpA+pcT9WwniSrwldT1LE94eVsMgiLnokmBI89nck7Yo3xWNq3lQArmoY+Y5JmP4olTCuCfNLQEnYU089hY6ODphMJnzxxRf42c9+htGjRyv35+TkYNy4cbjgggvwz3/+Ezt37sSYMWPw0ksv4YknnkBhIScIhVpv0xFNRpOyt0l6fDpbJ6hHKbGshGlJtySM7aIRSfzdZpu4vpw+2DWQY30xkzB/iL9v4u8aaR8rYYEJKAn7+uuvIUkSFi5ciJNPPrnf44cNG4ZPP/0UCQkJ+Mc//oG1a9cG8vLkhd6mIwKdwzn4Rk+9USphPMnXhN7aEVkJiyzVLdUAuFeS3szInwEA2FK+ReVI9ImVMP1JjHUlYayE+SegJKyoqAgAMGvWrB7vt9ls3W4rKCjAT3/6U8iyjBdeeCGQl6d+yLLcuSash/HVYjgHJyNSb5RKC9sRNaG+zTU9TFw44fcnMlW3/piEJTAJ05PRma5OoKK6IpUj0ScmYfrDwRyBCSgJs1hcb/y5uZ6T9sxmMwCgpaXnb8qMGa6rRevXs2QfSi22FmUPhx4rYT8O5+BQDuoNB3Noi0i2RPLFSlhkYiVMn4alDwMAZYN78g2TMP1hO2JgAkrC4uLiAAB2u93j9pQU14nbiRMnenyc0ehaaFxRURHIy1M/RCui2WhGgimh2/25ia7kme2I1BsO5tAW8UYnNvDl9ycysRKmT4mxiUqHSVE9q2G+YhKmPxzMEZiAkrD8/HwAQE2N5y7aI0eOBABs3ry5x8eJCYoUWu6tiD0N3rhkzCUYkjYEl465NNyhkU6wEqYtIgkTb3wczBGZlEoYkzDdEdWwI/Wc/uwrJmH6I9aEsRLmn4CSMDGMY+/evR63z5gxA7Is47PPPus2hr6urg7PPfccJEnCiBEjAnl56sPHBz/GPavuAdD7mq/T80/H0duP4tKxTMKoZzzJ15auSRjbESOTqITlJOaoHAn5anj6cABcF+YPUdFnEqYfXBMWmICSsFmzZkGWZaxevdrj9p/+9KeQJAk2mw1z5szBU089hS+++AJPPfUUTjnlFKVytmjRokBenvqw9IOl+LzocwDAkLQh6gZDuiUqYWx304ZulTC2I0YkpR2Ra8J0R0nC2I7oE7vTrvx9YxKmH2JNGNsR/RNQEnbxxRcDAPbv349du3Ypt0+cOBHLli2DLMsoLS3FrbfeigULFuDWW2/F8ePHAQBDhw7FHXfcEcjLUy9qWmuUN/FHzn0EK85foXJEpFfiJJ/tiNrASlh0YDuifrEd0T/u3RbifYe0j+2IgYkJ5MGDBg3CN998g/b2dqSlpXnc99RTTyEmJgbPPvssnE6nx33Tp0/H66+/juTk5EBennpxoOYAAKAgtQDLZyxXORrSM9GO2Gprhc1hg8loUjmi6NbXmjBZlrnpeoRgJUy/hmewEuYPcSEpKTYJMYaATk0pjNzbEfke5LuAf9Jnz57d4+1GoxErVqzA3Xffja+++goVFRVITEzEtGnTcNpppwX6stSHA7WuJEzsWULkL9GOCABNHU3cU05lvbUj2pw2tNnbepyCSvpitVuVyjMrYfoj2hFLLCXocHQg1hirckT6wKEc+iTaER2yA1aHFXExcV49rr6tHjWtNRiZOTKU4WleyC83DB48GNddd12oX4bciEoYkzAKlMloQnxMPNrsbbC0W5iEqaxrEpYUmwSDZIBTdsLSbmESFgFqWl1rpmMMMTwh1aGcxBwkmhLRYmvBsYZjGJU5Su2QdEEkYaK6T/og2hEBVzXM2yRswX8XYEvZFhTfWYy85LxQhad5Aa0Ju//++3H//ffjP//5T7DioSA4WHcQAPjHn4KCwzm0o2sSZpAMyveH68IiQ1VLFQAgKyGLrT06JEmSsi6MExK9x0qYPsUYYmA2mgH4Npxjf81+OGRH1K+dDCgJ++Mf/4g//elPKC4uDlY8FARKJSyLlTAKHIdzaIPNYYPVYQXQmYQBnSctTJIjAzdq1r+C1AIAQGlTqcqR6AeTMP0S70feDudwyk7lfCLat78JKAlLTXWdnHG/L+2wO+04XHcYANsRKTi4V5g2uF9ldE/CxMl6ZXNl2GOi4FMmI3Ioh24NSBwAoLOqSf1jEqZfoiXR273CmqxNkCED4MXdgJKwQYMGAQBaWrg/gFYcazgGm9OG+Jh45Kfmqx0ORQDR7vbyzpdx26e3we60qxxRdBJXGU0Gk8dif3HVvdjSc0fC4xsfx71f3xv6ACkouFGz/onvHS+MeI8bNeuXGM7hbSXMvWuDSVgA5s+fD1mW8e233wYrHgqQaEUcmTkSBimgby8RgM52xHf2vYMnNz+JL4u+VDmi6NR1PZjQVxLmlJ34f1/8P/xl3V9Q3lQe+iApYNwjTP8GJLkqYZUt/SdhLR0t+KHyh1CHpHmshOmXMqbeyzVh7l010d5GH9BZ+k033YS4uDj897//xZ49e4IVEwXgUN0hABzKQcHjPqYe6PwZo/DqLQnLT3FVvIsbuydhzR3NcMgOABzcoRdcE6Z/ohLmTTvizz/6OSY+MxHflXwX6rA0jUmYfvm6YbP7exErYQEYMWIE/vWvf8HpdGLevHn46KOPghUX+UlcRc1Lit6RnxRcXUcGizWHFF7+VMLc3xSbOpq63S/LcjBDpCCoaK4AwDVheibWhHlTCdtfsx8AsLl0c0hj0jomYfrlvmGzN9iO2CmgfcLuv/9+AMBZZ52FL7/8EgsXLkRhYSFmzpyJwYMHIz4+vt/nuO+++wIJgbqob68HAKTHp6scCUWK5Nhkj8+ZhKnDnySsydqZeHV9s3tsw2N4aP1D+GbJNxibPTbY4ZIfaltr8eURV7vvxAETVY6G/OVLJUwkH9E+qptJmH6JNWFsR/RdQEnYH//4R2UfE0mSIMsyjh8/juPHj3v9HEzCgkskYfxDRsFSVO+51w2TMHX0l4SVN5XD5rDBZDR1ewzgmZABwPsH3kdlSyW+Pvo1kzCN+Ne2f6Hd3o7JuZNx2uDT1A6H/CTWhNW21sLutCPG0Puplkg+uv6djTZMwvTL1xH1bEfsFPDkBlmWlY+un/f3QcFX3/ZjJSyOlTAKjusmXQcAGJc9DgBwtOEoJySqoLckLDsxG2ajGTLkbvsSubcgdm1HrGmtAdDZ/kbqsjlsWPH9CgDA7dNv50bNOpYZnwmDZIAMWVki0BNZlpVKQDRv7Gxz2JS1xmKNK+mHUgnzox0x2re+CagS9s033wQrDgoScYWB7YgULOcMOwfbf7EdozNHI/2hdFgdVhRbijEsfZjaoUWV3pIwg2RAfmo+DtcdRrGlGEPShij39dWOWNtaC4BJmFa8v/99nGg8gZzEHFw54Uq1w6EAGA1GZCVkoaqlClUtVRiYPLDH45o7muGUnQBcF7ecsjMqpxpvr9iOdns7MuMzOVRMh9wHc9gcNvzmq9/golEX4ayhZ/V4vHviFe2VsICSsNmzZwcrDgoStiNSsEmShEm5kwAAwzOGY2/1XhyuO8wkLMx6S8IAV0uiSMJ6egzgmZDJsozath+TsBYmYVrwxKYnAAA3Tr0R5hizytFQoAYkDkBVS1Wfwznc27I6HB0obSyNyv091xevBwCcnn86K8A65D6i/uWdL+OxjY/hsY2PwXmfs8fvJ9sRO0XfJZcIx3ZECqURGSMAcF2YGvpLwoDuwzncWxDd3+warY1KSykrYerbWrYV60vWw2Qw4aZpN6kdDgWBN8M5ug4liNZ1YetLOpMw0h8xQbmhvcEjwRKTP7vyaEeM8sEcTMIiiCzLbEekkBqRziRMLX0mYSmuJKzEUtLjYwDPhEysBwOYhGmBqIJdMeEK5CblqhwNBYOyYXOzd5UwIDonJMqyrCRhM/NnqhwN+cP9gkOrrVW5feWhlT0ezxH1nZiERZBWWytsThsAVsIoNFgJU49XlbAuGzb3tiZMtCICrpNEsS6Fwk+WZXx88GMAwE2nsAoWKXISXCem3rYjAtE5nONow1FUNFfAZDDhlLxT1A6H/CCSsMqWSo9BNJ8c+qTH493XhLXb29Hh6AhtgBoW0JqwtWvXBhzArFmzAn4OchHrwWIMMUgwJagcDUWi4RnDAURv24yavEnCjjd4bg/S23REMZQDAGxOG+rb6pGZkBnUeMk7RxuOor69HrHGWJ6ERhBRCeurHbFbEhaFf1c3lGwAAEzNm4p4U/97y5L2uFfCqlo7f97XFa+Dpd2C1LhUj+O7/tw3WhuRlZAV8ji1KKAkbM6cOQEtopQkCXY7R10Hi/t6MC5upVAYnDIYAFDWVKZyJNGnryRMTEQ82nAUsiwrv//u7YjulTD3dkTA1ZLIJEwdW8u2AgBOHnAyYo2xKkdDwTIg8cd2xD4qYaIiYDaaYXVYo7Id8bjFdeFobBb3KtQrccGhob0BpY2d26TYnXZ8c+wbLByz0OP4ruvAojkJC+o+Yf58UPBwPRiF2qDkQQBcP2vuvd8Uev1VwiRIaLW1orq1sx3EoxLm1pro3o4IcF2YmraWu5KwqQOnqhwJBZOoDhypP4KtZVt7PN8R79knDzgZgOsiSrQR7WvZCdkqR0L+SotLUzYk31u9F0DnBdsfKn/odnzXvcGiea+wgCphf/jDH/o9xuFwoKamBhs2bMDOnTshSRIuueQSTJw4MZCXph6IdkSuB6NQSTGnIMGUgFZbK0obSzEyc6TaIUWNvpIwc4wZecl5KG0qxdH6o8oJoC+VMFLHlrItAJiERRoxYOVg7UGc8q9T8PLCl3HtxGs9jhFJ2IScCfi+7HvUtNbAardG1RYF4qJRdiKTML0ySAZkJ2SjvLlcOQ89a8hZeOWHV7Cneo/HsTaHDS0216bO2QnZqG6tjurhHCFPwtytWrUKS5YswVdffYVf/vKXmDdvXiAvT12IdkTuEUahIkkSBiUPwqG6QyhrKmMSFkZ9JWEAMDR9qCsJaziK6YOnA/CsfvW2Jgzou2WKQkeWZWwr3wbAtSaGIsfE3Im4YvwV+ObYN6hqqcLWsq3dkjDRljU0bSjiYuLQbm9HWVMZhqYPVSNkVYgLQtHajhYpchJzUN5crnw+Z8gcVxJW5ZmEuSdc+an5UZ+EhXU64tlnn43PP/8cHR0d+J//+R+Ul5f3/yDymlIJYzsihdCgFFdLYmlTaT9HUjD1m4SluU7cjtZ3tjT1tk9YTZvrxMdsdF1xL7YU48uiL5W9wyg83IdyTMiZoHY4FEQxhhi8ftnruG/WfQCAksaSbseISlhaXJrS6n2i8UTYYtQCpRLGdkRdE+vChNmFswEAB2oPeEw/FBceEkwJyIzP9LgtGoV9RP348eNx1VVXoaamBk8++WS4Xz6iKWvC2I5IIZSXnAcAHgtwKfREC0e/SZjbuhL3dsTmjmZlFL2ohI3Ndi2Gf2LTEzj3P+fi0Q2PBj9w6pUYynFSzkkcyhGhxNqY/pIwcVy0XdwSlTC2I+qbaIEHXD/Pw9KHITk2GXanHYdqDyn3uf/Mp5hTAET3XmGq7BMmxtJ/8MEHarx8xGI7IoWDuGLLCYnh45SdaOnoJwlL756EubcjAlCeQwzm6Fp9eWvvW8EJmLwipuGNyx6nciQUKvmp+QB6rnCJCkBaXJrSYRB1lbAfB3OwHVHfxL54gKuqKUkSxueMBwCPdWFiCEeqOZVJGFRKwpKTkwEAxcXF/RxJvuBgDgoHkYRF2xVbNbXZ2iDDNV3Nl3ZE90oY0PlmJ64+j88e73H/lrItqGzm+rBwEd8H96vIFFlEhauyubLbprQ9tSNGU4dBS0cL2uxtANiOqHfu7YiiqineX9zXhYkLD6lxqUg1u/YPi+bpiKokYQcOHAAA7mUVZFwTRuEg2hFZCQsfkUxJkBAf0/OGpqISVmwphsPpgCzLHmvCANcaMVmWlXZE90qY2Nfo08OfBj1+6plYD8MqQOTKTshGrDEWMuRufzNFEpYalxqV7YjiIoTZaO714hLpg/uFJPFvkYTtqtoFm8MGm8OGurY6AGxHFAKajuiPmpoaPPPMM5AkCSNGjAj3y0c0rgmjcOBgjvATv9sp5pReL14NSh4Ek8EEm9OG0qZSZCVkKWvAMuIzUNdWh0ZrI1psLbA6rABci6eXTV6GgtQC2Jw2PLD2AXxy6BNcN+m6cHxZUU9ZD8MqQMSSJAmDUwbjSP0RlFhKlI3Vgc4KQLQO5nC/CMGL8vrmnoSJv2eiHfG9/e8h9s+ea17d2xE5mCPE7HY7jh8/jueffx6nnnoqSktdJ2+LFi0Kx8tHDa4Jo3BwXxPGDdfDw5sqt9FgREFqAQBXS6J7K6LYs6jJ2qRUwcTV539d/C/8fvbvccHICwAAnxd9DpvDFpKvgzxxPHd0yE/pvi6s3d6uXAxxXxMWTRe3lI2aOZRD90QnBdCZhJ02+DSlwuvOIBkwb9g8pMa52hGPW45jT9Ue7K/ZH3XvPQFVwoxGo9+PHTFiBO68885AXp66YDsihcPA5IEAgA5HB2rbankCGQbiAkt/Ve6h6UNRVF+EI/VHlDe/pNgkpff+UN0h7KzcCQDITMj0uPo8bdA0JJoS0WhtxJH6IxidNToUXwq54Ua10aGnCYmiui1BQlJsknJMWVMZnLITBkmV1SJhxUpw5OipHTHFnIKjtx/tNiDKZDQhKTYJ7+x9BwDwbfG3mPC0qzV+Zv5MfLv02zBFrb6AfstlWfbrY+7cuVi1ahUSExOD9XUQvD9RIwpErDFWedOMpkXkavL2Asu4LNeUvV1Vuzz2FRNtHzetvAm/+uJXALqf+Bgkg7L59qG6Q9hWvg3/+eE/wfsiqBtWwqJDT5UwZUpcXCoMkgG5SbkwSAbYnXZUtVSpEme4cU1k5HC/kOT+7xhDDNLj0z0+xPq/c4efi5+e/FOMyx6HjPgMSJCwvmS9x0j7SBdQJWzWrFle9fGazWakp6dj/PjxWLBgAaZOnRrIy1IPrHarMmWIlTAKtbzkPFS3VqOsqQwTcyeqHU7EExdYMuIz+jxuUu4kAMCOih1YNNbV7p0cm4xkc7JyjFEyYlbhLNxy6i3dHj8yYyR2VOzAwdqDuPPzO3G47jAm5ExQnpeCx2q3KgvSWQmIbH1VwsTygRhDDAYkDkB5czlKG0uVFuJIprQj8udf9+Ji4pBqToXFavH6+5lsTsYrl76ifD7/P/PxRdEXeG//e/j1zF+HKlRNCSgJW716dZDCoEC129txZsGZaGhvUK56E4VKXnIedlbu5ITEMBETpfqrcouEeGflTqUFJCk2CSmxnX8TZhbMxNdLvu7x8SMzXJWwTaWbcLjuMABgX/U+JmEhIPZqM0pGZW0ERaae9gortri26BGtwoArWStvLsdxy3FMGTgl4odVcKPmyDJt0DSsO76u2/6T3lo4emHUJWGR33QcJVLjUrH2Z2vxw00/REUvOalLXL2N5tGy4eTtHoDjsschxhCDurY67KvZB8B1tdG9EiYGcPRkVOYoAMDHBz9WbnPf/JmCR1QBMhMy+Tc7wimVMEsJGq2N+OXKX+LKd64E0LnGFuicPLv4zcU46+WzIn7wEdsRI8vHV32MkjtLPH6mfXHJmEsAABtPbIyaC7z8y09EPkuOdZ3Ud92HikLD2zVhcTFxGJM1BgCwvmQ9ANf3KsbQ2fRw/sjze328WBPWamtVbnPf/JmCh0MJoodYE1bZUom8R/Lw9Jan4ZSduHj0xVhx/grluPNHnK8k5GuOr1GSlEilDKbh70BEMMeYA6pq5iXn4bTBpwEAVh5cGaywNI1JGBH5TFRWuk49otDwZejOxAGulsRvi10TppJik3Cs4Zhyv9hAsyeiHdEdK2GhwSpA9MhKyMIV46+ABAktthYMSx+Gr6/9Gh9c+QGGpQ9Tjvv51J+j8beNyrjvSB98xHZE6uqUgacA6GzXjXQBb9a8ceNGrF69Gt9//z2qq6tRW1sLSZKQmZmJ7OxsTJ8+HbNnz8app54ajHiJSANYCQsvUQnrbzAH4BrO8d9d/1UmrCXHJuPqk6/G+/vfx+/O/F2f60yyErKQFpemDA0AmISFCk9Ao4ckSXj9stfx9AVP40DtAZw84GQkmBJ6PDYxNhGDUgahsqUSpU2lmDxwcpijDR/RkssLESSIpQ7u70GRzO8k7J133sGf/vQn7Nmzp8/j3nvvPQDAxIkT8Yc//AGXXHKJvy9JRBqhVMKYhIWFMpjDi8mnohImJMUmYc6QOWj4bYMyGrg3kiRhZMZIfF/2vXJbsaUYDqcDRoP/+0JSd8p4+niegEaL9Ph0pd2qL4OSB2Fb+baIXhdjc9iUi0tsRyRBJGHiZyPS+dyO6HQ6ccstt+Dyyy/Hnj17vN4bbMeOHVi0aBHuuOOOEHwZRBROSiWM7Yhh4Us74rRB0zwmromJif0lYIJYF5aVkAWTwQS70+4x1Y2CQxnPzUoYdTEo2TWgI5LbEcWFJQmSVxV+ig6shPXj9ttvx1NPPQVJkiDLMuLi4nDuuedixowZKCwsRHp6OmRZRn19PY4dO4YNGzbgyy+/hNVqhSzLePLJJyFJEh577LFQfD1EFAashIWXt4M5ANebWNFtRTjWcAzJ5mRl4qG3RmW4jp8ycAqO1B/B4brDONpwFIVphb4HTr2qaeNGzdSzvOQ8AIjoSphYE5kRn8EqOynEexyTsB588803HgnYHXfcgXvuuQdZWX2/iVRXV+Mvf/kL/vGPfyiJ2KWXXopZs2YFFDwRqYOVsPDpcHQo0wq9qYQBrrHnmQmZfr3elROuxFdHv8Jtp96GJzY94UrC6o9izpA5fj0f9YzrYag3YlR9aVPkVsJYCaaeRFslzKd2xAceeEDZt+Lf//43Hn300X4TMADIzs7G448/jpdffhkAIMsy7r//fj/CJSItEK1trISFnmhFlCCFZVPf0Vmjse5n63DBqAswNG0oAHhMV6Tg4Ih66o3SjhjBSRh//qknTMJ6ceTIEaxZswaSJOGGG27AT3/6U59f7JprrsENN9wAWZaxevVqHD3KqVtEesQR9eEjWhHT4tLCvqnv0HRXEvbdie+w8cTGiN88Npw4op56E03tiPz5J3dMwnrxySefQJZlGI1G3HPPPX6/4O9+9zsYjUbIsoxPPvnE7+chIvVwRH34+DIZMdjEHkZfHfkKM56fga+OfBX2GCKR3WnniHrqlWhHrGmtgdVuVTma0FDaEVkJIzciCWuxtcDmsKkbTBh4nYRt374dADBjxgzk5+f7/YL5+fk4/fTTAQBbt271+3mISD2iEtbS0QKn7FQ5msjmy2TEYFswYgEuHXMpcpNyAQCrj60OewyRaGfFTtiddqTFpSlVDyIhPS4dZqMZQORWw3gRgnriPtk3GqphXidhO3fuhCRJmD59esAvetppp0GWZfzwww8BPxcRhZ+ohMmQlaERFBq+TEYMtmRzMt694l3cN+s+AMC2im1hjyESrS9ZDwCYMXhG2FtMSfskSVKqYZGahLEdkXpiNBiRYk4BwCTMQ02N66rFsGHDAn5R8RzV1dUBPxcRhV+CKUE5eeS6sNASlTA199KZMnAKAGBr2VauCwsCkYTNzJ+pciSkVZE+nEMkYWxHpK6iaV2Y10mYxWIBAKSlpQX8oqmprnJjY2NjwM9FROEnSRInJIaJUglToR1ROHnAyTBKRlS3VkfslflwkWUZ64tdSdjp+aerHA1pVaQP52A7IvWGSVgPmppcJ1oJCQkBv2h8fDwAoLm5OeDnIiJ1cK+w8FAGc6iYhMWb4jE2eywAYFs5WxIDUWwpRmlTKYySEacOOlXtcEijRCXsnlX3YPZLs9Hh6FA5ouDiPnnUGyZhPXA6g7/4PhTPSUThoYypZyUspNRcE+Zucu5kAMD2iu2qxqF3ohVx8sDJSIxNVDka0qqZBa5W1TZ7G9YeX4udFTtVjih4ZFnmPmHUK5GEife+SMYVwUTkF1bCQs/hdGBDyQYAUH2KnlgX9s2xb7C7ajfXhvlpa5lrKvCMwTNUjoS0bNHYRSi5swTjsscB6FxDFQkarY2wOV3jx1kJo65E10c0VMJifH3A7t27A14Xtnv37oAeT0TqYyUs9N7d9y4O1R1CRnwGFo5ZqGosIglbfWw1Tnr6JPx74b9xzcRrVI1JjypbKgEABakFKkdCWjc4ZTDyU/Kxt3ovqlqq1A4naERCmWhKRLwpXuVoSGuiqR3R5yTs97//fSjiICKdYSUstGRZxl+//SsA4LZTb1MGoahlxuAZWDhmIdYcW4P69nrsrNyJa8AkzFeiDYsVAPKGGFwh1lBFAmWjZg7loB5EUxLmczuiLMtB+SAifWMlLLS2lG3BjoodSDQl4tbpt6odDkxGE9674j38euavAQC1bbUqR6RP4v9bZnymypGQHog1U5HUjsgLEdSXaErCvK6EzZo1C5IkhTIWItIRVsJC62DtQQDAqYNOVXWPsK5E8iBOpMg3PAElX+Qk5gBARLYjcigH9YRJWA9Wr14dwjCISG+UJIyVsJAothQD0N7aIZE81LayEuYP8f8tM4GVMOpfJFbC2I5IfeF0RCKifiibNbMSFhJaTcJE8sBKmO86HB3KRQtWwsgbEbkm7MeEMiuevwPUXTRNR2QSRkR+4Zqw0Cpu1GgS9mM7IteE+U5UwQySQbnaS9SXSGxHLG0qBQAMShmkciSkRdHUjsgkjIj8wnbE0NJqJUxUcOrb6uFwOlSORl9E4poRnwGDxLdf6l8ktiOKv235KfkqR0JaxCSMiKgfSiWM7YghUWIpAaC9JEwMCZEhR0XPfjCJFk5ORiRviXbEVlsrWjpaVI4mOLT6t420QSRh7fZ2tNna1A0mxJiEEZFfWAkLHUu7BRarBYD2rhabjCakmlMBcDiHrziUg3yVHJsMs9EMIDKqYXanHWVNZQCA/FRt/W0jbUgxpyAuJg4AUN5crnI0ocUkjIj8wkpY6JQ0uq4UZ8RnIDE2UeVouuNwDv9wPD35SpKkiBrOUd5UDofsgMlgQm5SrtrhkAZJkoRBya71gqWNpSpHE1pMwojIL6yEhY5W14MJyph6DufwCTdqJn+IdWGRMJxDXGAalDKI6yKpV2JoixjiEqn4G0BEfmElLHS0noRxw2b/iHZEVsLIF2JCYiS0I2r9bxtpAythRER9EItn2+xt6HB0qBtMhFFOVFK0eaIi2hG5Jsw3NW0czEG+i6R2RDGUQ2trXUlblCSMlTAiou7EcAbANa6cgkfrV4vFJqushPmGlTDyRyS1I3I8PXmD7YhERH0wGoxKIsZR5cGlnKhodHqYUgnjmjCfKCPqOR2RfCDaEYsbi9Fqa1U5msCINWFavcBE2sB2RCKifqTHpwNgJSyYZFnG/pr9AIBh6cNUjqZnopLDSphvRNLKShj5QlTC3tzzJrIfzsah2kMqR+Q/kYRp9QITaQMrYURE/RAb97ISFjxlTWWobq2GQTLgpJyT1A6nR2JNEythvuFmzeSPuUPnKpWBVlsrNp7YqHJE/tN6qzVpg/h5L2sqgyzLKkcTOkFLwpxOJ9566y0sW7YMp59+OsaMGYPhw4d3O2737t347rvvsGfPnmC9NBGpJD3OVQmra6tTOZLIsaNiBwBgTNYYxJvi1Q2mF6yE+c7utKOhvQEAK2Hkm6HpQ3Fi+QlcNeEqAPqdkthma1P+ZnBNGPVlYPJAAECHoyOi32digvEk69evx7XXXotjx44pt8myDEmSuh37zjvv4P7770dKSgrKy8sRFxcXjBCISAVsRwy+7RXbAQCTcyerHEnvOB3RN58c+gT3r7lf+Vz83hD5QrQl6nVKYnlzOQAgPiZema5L1JNYYyxyEnNQ1VKF0qZSZUJopAm4EvbFF19g7ty5OHbsGGRZhtFoRGpqaq/H33DDDQCAxsZGfPLJJ4G+PBGpSFTC2I4YPKISpukkzK0d0Sk7VY5G+/689s/YVLoJADA6czRiDEG5/klRRgzo0OuUREu7BYDrIkRPF+mJ3EXDcI6AkrCGhgZcddVVsNlsSEpKwnPPPYeGhga8+OKLvT5m4MCBOO200wAAq1atCuTliUhlShLGSljQiErYpNxJ6gbSh6yELEiQ4JSdqGiuUDscTXM4HdhZuRMA8PzFz2Ptz9aqHBHplbJfmE7bERutjQCAFHOKypGQHuQl5wFwrQuLVAFdjluxYgXq6+sRExODzz77DDNmzPDqcaeffjo2bNiAbdu2BfLyRKQypR2RlbCgsLRbcKT+CABtJ2HmGDMm5EzArqpd2HhiIxaNXaR2SJp1sPYgWm2tSDQlYsnEJTAajGqHRDqltCPqNAlr6mgCwCSMvCMqYW/ufbNb9VeSJFww8gJMzJ2oRmhBE1AS9sknn0CSJCxevNjrBAwARo8eDQA4cuRIIC9PRCpjO2JwiYpJfkq+5veSmpk/E7uqdmF98XomYX3YVu662DgxdyITMAqIaEfU65owVsLIF0PThwIAvjryFb468lW3+1/e+TIO3HIg3GEFVUBJ2MGDBwEAZ599tk+PS0tLAwBYLJZAXp6IVMbBHMEl9gc7aYA2R9O7m1kwE89sfQbrS9arHYqmiSRsSu4UlSMhvRPtiHpdE8YkjHyxbMoy1LbWwmL1zBU6HB14eefLOFx3GB2ODsQaY1WKMHABJWGNja5fqIyMDJ8eZ7PZXC8ew8XJRHrGSlhwiWmDAxIHqBxJ/2bmzwTgSjLabG2aHaevtm0VPyZhA5mEUWBEO2JTRxOsdivMMWaVI/KNSMKSY5NVjoT0ICshCw+f+3C322VZxpt73kSbvQ0llhIMz+i+HZZeBDSYQyRftbW+jSkWo+yzsrhXCpGesRIWXCKZFcmtlg1JG4LcpFzYnDZ8X/a92uFoklN2dlbCmIRRgNLi0pTJmnpcF8ZKGAWDJEkYkjYEAHCs4ZiqsQQqoCRsxIgRAIANGzb49LjPPvsMkiRh4kT/F9StXbsWF110EfLy8iBJEt5//32P+yVJ6vHj4Yc7s+q6ujpcffXVSElJQVpaGq6//no0Nzf7HRNRtGElLLjEptcZ8b51F6hBkiSlGvZdyXcqR6M97+x9B+e+ci4arY2INcZiXPY4tUMinZMkSamG6bElkUkYBYtIwo42HFU3kAAFlISde+65kGUZb7/9NioqvBtTvGrVKqxbtw4AMH/+fL9fu6WlBRMnTsSKFSt6vL+8vNzj44UXXlCGiAhXX3019uzZgy+//BIff/wx1q5dq+xjRkT9E5WwVlsrOhwdKkejf3pKwgDg1EGnAgB+qPxB5Ui0595v7sWqo65tWGYMngGT0aRyRBQJlDH1OhzOwSSMgiVSKmEBLcq64YYb8NBDD6GlpQWXXXYZVq5c2edGzRs2bMBVV10FAEhPT8eSJUv8fu0FCxZgwYIFvd6fm5vr8fkHH3yAs846C8OGDQMA7Nu3D5999hm+//57nHLKKQCAJ598Eueffz7+/ve/Iy8vz+/YiKJFqrnz972+rR4DkrS/lknLlHbEeO23IwLAwKSBAPTZGhVqokX3oXkPYclE/9/riNwpExJ1+DvHJIyCZWiaa3KiqIQ1WhvRaG3E4JTBaobls4AqYQMGDMBf//pXyLKMDRs2YPTo0bj33nuxceNG5ZhPPvkEzzzzDC655BKceeaZqKmpgSRJePzxx5GYmBjwF+CNyspKrFy5Etdff71y24YNG5CWlqYkYAAwb948GAwGbNq0KSxxEemd0WBUEjG2JAZOb5UwcVW+prVG5Ui0R5xwXj7+cl6coKDRczsi9wmjYOlaCXtrz1vIfywf171/nWox+SPg8YS33XYbqqqq8OCDDyr/BVy9ywBw0UUXKcfKsgwA+NOf/oSf/vSngb60115++WUkJydj0aLOvWwqKiqQk5PjcVxMTAwyMjL6bK20Wq2wWq3K52JCJFG0So9Ph8Vq4XCOIBD/D/UwmANwTa8CmIR1ZXfa0WZvA8BJcBRcyobNbEekKNY1CXtv/3sAgOHp+pqUGFAlTPjzn/+MlStXYvLkyZBludePCRMm4OOPP8a9994bjJf12gsvvICrr74acXFxAT/Xgw8+iNTUVOUjPz8/CBES6ReHcwSP7iphbieE4iIbAU3WJuXfyWYmYRQ8kdCOyAsTFCixkXNZUxlqWmuUzZwvHXupmmH5LGgbdZ133nk477zzsHv3bqxduxbHjh1DQ0MDkpKSMHjwYMyePRtTp04N1st5bd26dThw4ADeeOMNj9tzc3NRVeVZzrfb7airq+u2nszd3XffjeXLlyufNzY2MhGjqMYx9cHR4ehAi60FgH6SMFEJszqsaLG1ICk2SeWItEG0XZmNZl1vJErao+cNm1kJo2DJjM9EoikRLbYWPLvlWVgdVozIGIHx2ePVDs0nQd8tecKECZgwYUKwn9Zvzz//PKZOndptHP6MGTPQ0NCArVu3Ksnh119/DafTienTp/f6fGazGWazvjZIJAolVsKCQySxEiSkxvU+4EhLEkwJiIuJQ7u9HdUt1UzCfqRc8WcVjIJMqT7ruBLGJIwCJUkShqYPxe6q3Xhi0xMAgEvHXKoshdKLoLQjqqG5uRk7duzAjh07AABHjx7Fjh07UFxcrBzT2NiIt956C8uWLev2+LFjx+K8887Dz3/+c2zevBnr16/HLbfcgiuvvJKTEYl8oCRhrIQFRLQipsWlwSDp40+z+75FXBfWSbQj8mSTgk20IxZbinXVAuxwOtDc4dqHlb8XFAxiXZi4IHHpGH21IgI6TsK2bNmCyZMnY/LkyQCA5cuXY/LkybjvvvuUY15//XXIsqyMxe/qv//9L8aMGYOzzz4b559/Ps444ww899xzYYmfKFKIkbAHag+oHIm+6W09mMDhHN1x7QuFysTciUiKTUJZUxnWFa9TOxyviQQMYBJGwXHZ2MuUdu8zC87E9MG9d7FpVdDbEcNlzpw5/V4FuuGGG/rcfDkjIwOvvvpqsEMjiiozC2YCANYcXwNZlnXXDqAVetsjTFA2j9Vhe1SocBQ3hUpSbBKuGH8Fnt/+PJ7f/jxmFc5SOySviN+JWGMszDFc0kGBWzJpCa6ZeA1kWYZBMujy3MOrSpjRaAzJR0yMbnNAIvrRjMEzEGOIwYnGE7rfvV5NrIRFDq4Jo1BaNsW1xOKtPW/B0m5RORrvcD0YhYJBMsBoMOoyAQO8TML6Gjsf6AcR6VtibCKm5U0D4KqGkX/0moTped+iUOGaMAql6YOmY3z2eLTZ2/Da7tfUDscrbNEl6s6rUtSsWbP6zDItFosyIAMAkpOTMXz4cCQmJqKlpQVHjhxRNjWWJAmTJk1CSgrfnIgixazCWdhwYgPWHl+L6yZdp3Y4uqS3jZoFVsK64wknhZIkSbh+8vVY/sVy/N+2/8ONp9yodkj9YiWMqDuvkrDVq1f3et+uXbuwcOFCAMBll12Gu+66C9OmTet23Pfff4+///3veOutt2CxWPDyyy9rapQ9EflvduFsPLT+IVbCAqDXSphIwrgmrBPXhFGoXTPxGvzmq99ga/lW7KjYgUm5k9QOqU9Mwoi6C2g6Yl1dHS688EIcO3YMjz32GN58880eEzAAmDZtGt544w088cQTOHLkCC666CLU13OkNVEkmFkwExIkHKk/ostNRLWgrl2fSRhH1HfHShiFWlZCFi4d6xrJ/eiGR7G5dLPysa18GxxOh8oRemISRtRdQEnYihUrUFJSgrlz5+L222/36jG33nor5s6di+LiYqxYsSKQlycijUgxpyij6o/UH1E5Gn1iO2LkYCWMwuH6ydcDAF754RVM/7/pysfU56bi1k9vVTk6T0zCiLoLKAl79913IUkSFi1a5NPjLrvsMsiyjHfeeSeQlyciDREbJ3JCon/02o7IEfXdicEcnI5IoTRv2DxcMf4KFKYWKh9iM+et5VtVjs4TkzCi7gKaEX/s2DEAQFZWlk+Py8zM9Hg8EenfkLQhWFe8Dscbjqsdii7pNQkTlbD6tnrYnXbEGLj1CE84KRwMkgGvX/a6x20bSjbg9BdO11xbOCeGEnUXUCXMbrcDAI4ePerT48Tx4vFEpH+shAVGr5s1Z8RnQIIEGbKSSEY70Y7INWEUbkplWmNbRnCdJFF3ASVhQ4cOhSzLeOmll7xOqOx2O1566SXl8UQUGZQkzHJM1Tj0qMPRgdrWWgCdgy70IsYQoySOWjvxUwsrYaQW0Y7YYmtBq61V5Wg6NXbwd4Koq4CSsEsuuQQAcODAAVx77bWwWq19Ht/R0YHrrrsO+/fvhyRJymh7ItK/wtRCAKyE+aPEUgIZMuJj4pWTKD0RCfi+mn3qBqIRXBNGakmOTUasMRaAti6KWNotAJiEEbkLKAn71a9+hZwc1wnDG2+8gTFjxuDhhx/G1q1bYbFYYLPZYLFYsHXrVjz88MMYM2YMXnvNtbt7Tk4OfvWrXwX+FRCRJri3I8qyrG4wOiMS18K0QkiSpG4wfpg6cCoAYGuZtoYBqIWVMFKLJEnKhRwtrQsT7dZ6W/NKFEoBraBOS0vDRx99hPnz56OhoQHFxcX47W9/2+djZFlWHpeamhrIyxORhuSn5kOChHZ7O6paqjAgaYDaIemGSMJEIqs3UwdOxb/wL81NZFOD3WlHm70NANe/kDpyEnNwovGEpiaWivWielvzShRKAVXCANcmzNu2bcM555wDWZb7/Tj33HOxbds2nHLKKcGIn4g0ItYYi0EpgwCwJdFXShKWOkTVOPw1Ne/HSlj5VjRaG6O6IiZaEQG2I5I6xLpSTVXC2lgJI+oqKLOEhwwZgs8//xy7du3Cu+++i82bN6OsrAzNzc1ISkrCoEGDcOqpp+LSSy/FSSedFIyXJCINGpI2BCcaT+BYwzFMHzxd7XB047jFNdZfr5Wwk3JOgslgQl1bHWa+MBO7q3bjvSvew8IxC9UOLezEZESz0ayszSEKJ621I8py5+RUvW1GTxRKQd3Q5aSTTmKSRRTFClML8S2+ZSXMR3pvRzTHmHHSgJOwrXwbdlftBgD87du/4ZLRl+hyjVsglFHcrIKRSkQlTCuDOZo7muGQHQBYCSNyF3A7IhGRwL3C/KP3JAzoHM4hbCrdhA0nNqgUjXq4KS2pTamEtWqjEiaqYGajGfGmeJWjIdIOJmFEFDTD0ocBAA7XH1Y5Ev3ocHSgtKkUQGQkYXExcbh49MUAgEc3PKpmSKrgprSkNpGEaaUSxsmIRD0LajuiWBO2ceNGlJeXo6mpCcnJycjLy8P06dOxePFiTJgwIZgvSUQaMiZrDABgXzX3i/LWicYTcMpOxMXE6XKPMOGycZfhjT1v4MoJV2Jy7mR8eOBDfH30a7XDCjuxJoyVMFJLdqK2BnNwMiJRz4KShFVUVGDZsmX49NNPe7x/165d+Pzzz3H//ffjggsuwHPPPYfc3NxgvDQRacjYrLEAgNKmUljaLUiN4zYU/VH2CEvV5x5hQmZCJr5e4kq6alprALiugNscNpiMJjVDC5ufffAzvLH7DQBcE0bqUSphGhlRz8mIRD0LuB3xyJEjmDJlCj799FOvRtSvXLkSU6dOxbFjx4IQPhFpSXp8OnKTXBdY9tfsVzkafYiE9WBdZcRnwCC53l5EQhbpWjpa8NKOl5Q9wqYP4nRQUof7iHpZllWOBpyMSNSLgJIwp9OJSy65BBUVFZBlGbm5ubj//vuxadMm1NfXw2azob6+Hps2bcKf/vQnDBw4ELIso7y8HBdffDGcTmewvg4i0ghRDdtXw5ZEbxypPwLAVQmLFAbJgMz4TADauRofasWWYgCutWDHbj+G+2bfp3JEFK1EJazd3o7mjmaVo+GaMKLeBJSEvfLKK9izZw8kScKCBQuwf/9+3HvvvZg2bRpSU1NhNBqRmpqKadOm4fe//z3279+P888/HwCwZ88e/Pe//w3KF0FE2jEuexwArgvz1ncl3wEAJg+crHIkwSXWpWhlOECoue/1VpgWOQk16U9ibCLiY1xTCLVwEYSVMKKeBbQm7J133gEAFBYW4u2330Z8fN+jR5OTk/HWW29h/PjxOH78ON566y1cc801gYRARBojKmF7a/aqHIn2We1WZYz77MLZKkcTXMpeRRo4CQwHUQljAkZakJOYg+OW47jry7uU38WuJuVOwo2n3BjyWLgmjKhnASVh27dvhyRJ+NnPftZvAibEx8dj6dKluO+++7B9+/ZAXp6INGhs9o/tiKyE9WtL2Ra029uRnZCtTJaMFJFeCZNlGY3WRmX4zPEGVyWsIKVAzbCIAABD04fiuOU43t33bp/HLRixIOQXDuraOR2RqCcBJWE1Na4F16NHj/bpcaNGjfJ4PBFFDtGOeLThKNpsbdycsw9rjq8BAMwqnKXryYg9yUnQ1oS2YPvj6j/iz+v+jDXXrcEZBWco7YishJEWPHvhs3h779twOB093v/EpidQ21aLsqaykP/MshJG1LOAkrD4+Hh0dHSgqanJp8eJ472tnhGRfgxIHIC0uDQ0tDfgYO1BTMydqHZImiWSsEhrRQQivxK2qXQTnLITa4+v9UzCImjACunXqMxRuOfMe3q9/6ODH6G2rTYs00u5JoyoZwEN5igocLVdfPnllz497osvvvB4PBFFDkmSMCHHtSn7D5U/qByNdtmddqwvXg8AmD0kApMwMSa7VRsbxgabmDonthgQ7YishJEeZCVkAQjPFhKcjkjUs4CSsLPPPhuyLOPtt9/2OhH74osv8Pbbb0OSJMybNy+QlycijZqc65r0t72C6z57U9ZUhhZbC0wGk5K0RpJIqYTtqtyFf27+J57+/mllOwEAaOpwdXQcazgGu9OO0qZSAKyEkT6EMwlTKmFcE0bkIaAk7KabbkJMTAxkWcbChQvx6KOPoq2trcdj29vb8eijj+LSSy+FLMuIiYnBjTeGfioPEYXfpNxJAIAdFTtUjUPLRCUlxZyibGwcSSJlOuJ5/z0Pt356K375yS8x+p+jcdunt8HmsHlUwkobS+GUnYg1xmJA0gCVIybqn0jCattqQ/o6dqcdjdZGAKyEEXUV0JqwESNG4L777sN9992H9vZ23HXXXfjTn/6EmTNnYtSoUUhMTERLSwsOHTqEb7/9Fs3NzZBlGZIk4b777sOIESOC9XUQkYa4V8LE7zx5arK6KinJ5mSVIwmNSKiE2Z12lDWVAQBOG3waNp7YiCc3P4nFYxcr37/jluNKS2J+Sn5EJtQUecJVCWtob1D+nRaXFtLXItKbgJIwALj33nthtVrx4IMPwul0oqmpCZ9//jk+//xzj+NkWQYAGAwG3HPPPfjd734X6EsTkUaNzxkPk8GEhvYGFFuKuU6mB6KdLTk2QpOwHythdW11cDgdMBqMKkfkO5FoAcCa69Zg9kuzsfHERtS21SqVsA5HBzaVbgLA9WCkH5nxmQBCn4SJyYgp5hTEGAI+5SSKKEG5ZPfAAw9g/fr1uPTSS2E2myHLcrcPs9mMxYsX47vvvsP9998fjJclIo2KNcYqo+q5Lqxn4gQ/KTZJ5UhCIzPBdZInQw55y1OoiETZbDQj1hirTHerb6tHm72z9V5MueR6MNKLcFXCOBmRqHdBuywxffp0vPPOO+jo6MDOnTtRXl6OpqYmJCcnY+DAgZg0aRJMJlOwXo6ING7ywMnYWbkT28u3Y+GYhWqHozmikhKp7YgxhhhkxGegrq0O1S3VyEnMUTskn4m1LOJ7lGJOAQClRVH46shXABBxG25T5Ap2EvbN0W/wy09+iTZbG6YNmoY3LnsDEiQ8tvExAEBBKqdhE3UV9NpwbGwspk2bFuynJSKdmZw7GS/hJeyo3KF2KJoU6e2IgKslsa6tDlUtVRiP8WqH4zNRrRTJl/ivmIQodDg6AADnjTgvjNER+S+YSZgsy/j1V7/G/pr9AFzrJA/UHMCa42vwxp43EGOIwd/m/S3g1yGKNFxBTEQhMTZrLADgcN1hlSPRpkgfzAG4DefQ6YREpRL2Y6Kcak4F0D0JA4DBKYNxUs5J4QuOKACiXbi+vR4OpyOg5/q2+FtsKduCuJg4DEkbAgAoqi/CIxseAQD8de5fcXr+6QG9BlEkCssqye3bt2PdunWw2+2YNGkS5s6dG46XJSIVKW/yPy7MJk+iEpZkisw1YYDbmHqdTkgU36OulbCu7YgAcP6I8zkFlHRDDOZwyk40tDcof699YWm34POiz/H0lqcBAEsmLkFNaw2ONRzD3uq9yr5610y8JniBE0WQgJKw0tJSPPTQQwCA66+/HhMnTvS4X5ZlLFu2DC+99JLH7TNmzMAHH3yAzEzff+mJSB/EnjD17UzCehLpa8IAIDcpF0DPSYse9LYmrLSxeyXsglEXhC8wogCZjCakmlNhsVpQ01rjVxJ2+2e34+WdLyuf33HaHXhx+4sAgC+KvoBTdiLFnIIBidw7j6gnAbUjvv766/jnP/+JF198EcOHD+92/z/+8Q+8+OKL3SYlbtiwAT/5yU8CeWki0jgxDavd3o42W8+buEczpR0xgteEDUsfBgA40nBE5Uj803VNWGqcqx2xqqUKAJCXnAeDZEB8TDzOHnq2OkES+SmQdWGyLOPLI18CAGYMnoFHzn0EY7LGKL/za4+vBQCMzhzNCjFRLwKqhK1btw4AcNZZZyEpybOlxuFw4G9/cy3ENJlM+OUvf4mhQ4fi3//+N7Zt24Y1a9Zg5cqVuOACXj0kikTJ5mQYJAOcshP17fWIN8WrHZKmKO2IETqiHgCGp7suzhXVFakciX+6rgkTyZgM176XY7LG4J8L/on0+HQkxiaqEySRn7ISslBUX+RXElbSWIKypjIYJSO+vOZL5ed/eIbrd97mtAEARmeNDl7ARBEmoErYkSNHIEkSTj311G73ffPNN6isrIQkSVixYgUee+wx3HbbbVizZg3y8vIAuCppRBSZDJLBY18l8qRMR4zgdkRxVbyoXp9JWNc1YWIwh5AUm4RLx16KOUPmhDs0ooCJFkR/krANJRsAABNzJ3pcgBAXXoRRGaMCiJAosgWUhNXUuH5xhw4d2u2+r7/+GgCQlJSEa6+9Vrk9MTERV111FWRZxpYtWwJ5eSLSuPT4H5MwrgvrRlkTFgXtiHVtdWhob1A3GD/0VgkTIrmKSZFPtCP6s5n6hhOuJGzG4Bket+en5iPG0NlkxUoYUe8CSsLq6lw7ocfFxXW777vvvoMkSZgzZw5iY2M97hszxrWhZWlp98XNRBQ5lOEcrIR1Ew0j6pPNycomzWJSmp6IJKzrdEQhkhNoinxZ8f6vCestCYsxxKAwtVD5fHQmkzCi3gS0JiwmJgY2mw21tZ5XUWw2G77//nsAwBlnnNHtcWlpaQCA9vb2QF6eiDROtCPWtdWpHIn2RMOaMMBVDatqqUJRXRGmDJyidjg+6doyKgZzCJH+vaPIJiph28q34Z2973j9OKfsxPby7QDQ4/5fwzOGKy3IIzNHBiFSosgUUBI2cOBAHDlyBHv27PG4ffXq1Whra4MkSZgxY0a3xzU2uq4uJiZyITNRJGM7Yu+ioR0RcK0R2XhiY0RWwpiEkZ6JKvWqo6uw6ugqnx8/IHGAsjmzO7EurCC1AAmmhIBiJIpkASVh06ZNQ1FREd544w088MADSElxvUH985//BOBKsqZPn97tcQcOHAAADB48OJCXJyKNy4hjO2JvoqEdEXCbkKjD4RxdtxGIj4mHUTLCITs8bifSo0vGXIJPD3+qbLngC4NkwLIpy3ocPy9+50dlcigHUV8CSsKuvvpqvP7666iursYpp5yCRYsWYdu2bfjqq68gSRIuv/xymEymbo8T68XGjx8fyMsTkcaJShjbET3ZnXa02V17p0X6ibyeJyR2rYRJkoTUuFTl55mVMNKzrIQsvH3520F/3isnXIk1x9fg1lNvDfpzE0WSgJKwCy64ABdeeCE+/vhjFBUV4eGHH1buS01NxR/+8Iduj6moqMB3330HAD22KhJR5FBG1LMd0YNoRQQi/0Re7Bukx3bEnrYRSDGnMAkj6sOglEH48KoP1Q6DSPMCmo4IAG+++SbuuOMOpKSkQJZlyLKM0047DatWrUJ+fn6345977jk4nU4AwDnnnBPoyxORhinTEZmEeRBJmMlggjnGrHI0oSVak4otxbA5bCpH45uulTDAc6+wSG8lJSKi0AmoEga4xtM/+uij+Pvf/47q6mokJCQgObn3N6aLL74Ys2fPhiRJGDduXKAvT0QaxnbEnkXLejAAGJA0ACaDCTanDRXNFchP7X5xTotsDhva7a4Jvu4to+4JGSthRETkr4CTMMFgMGDAgAH9Hjdp0qRgvSQRaZzSjsjBHB6iZTw94FrAPzB5IIotxShrKtNNEia+R0D3dkTl9ghfz0dERKETcDsiEVFv2I7Ys65T9yJdXnIeAKCsqUzlSLwnvkdmoxmxxljldve9wqIhiSYiotBgEkZEIePejijLssrRaIeyR1gUtCMC+kzCxHqwrt+jlFi2IxIRUeC8akdcu3at8u9Zs2b1eLu/3J+PiCKLaEe0O+1osbXwpPVHytS9KKmEDUwaCEBfSZj4HnXdoNmjHTFKkmgiIgo+r5KwOXPmQJIkSJIEu93e7XZ/dX0+IoosCaYExBpj0eHoQH1bPZOwH4lWt2j5/6FUwpr1k4QplbAuibJ7O2KiKTGsMRERUeTwuh1RjJ/v7XZ/P4gockmSpFTDOCGxU0/7T0UyPbYjikS5t0qY2WiGyWgKe1xERBQZvKqE9bTpcl+3ExEJGfEZqGyp5HAON8qasChpR9RjEtbbmjCxT1i0JNBERBQaTMKIKKTEcA6Oqe/E6Yja19+asGhpJSUiotAI2j5hREQ9ESfg3xZ/i4VjFuK45TgKUwsDWk+qd9G0TxjQ+TNQ11aHdns74mLiVI6oZzsrduKJTU+gw9GB3VW7AXRPlAvTCgEABakFYY+PiIgiB5MwIgqppZOW4u29b+PZrc/imOUY3t33Ll665CUsmbRE7dBUE21rwtLj0mE2mmF1WFHRXIEhaUPUDqlH935zLz4++LHHbfkpnptLT8qdhM+u/gxjs8eGMzQiIoowTMKIKKTOG3EeJuVOwo6KHXh337sAgPUl66M6CYu2NWGSJCEvOQ9HG46irKlMs0nYtvJtAIDlpy3HoJRBSIpNwpUTrux23PwR88MdGhERRZigJmEff/wx3n77bWzevBllZWVobm5GUlIS8vLyMH36dFx22WW44IILgvmSRKRxkiThtzN/iyvf6TyZNUpGFSNSX7SNqAfgkYRpUU1rjRLbH+f8MWqqlEREpI6gJGFbt27Fddddh7179yq3ifHzjY2NaGpqwoEDB/Dvf/8bEyZMwIsvvogpU6YE46WJSAcuG3cZfl3+a7y2+zWUNJag2dasdkiqirZ2RAAYmKztDZt3VuwEAIzIGBFV3xciIlKH1/uE9eaLL77ArFmzsHfvXo/9v9LS0jBo0CCkpaV53L5r1y6cccYZ+Oqrr4IRPxHpgNFgxEPnPIR7Z90LoLMdL1pFWzsiAOQluYZzPL3lafz+699rbp/IHRU7AAATB0xUNxAiIooKASVhlZWVuPLKK9HW1gZZlnHKKafgtddeQ3V1Nerq6lBSUoK6ujrU1NTgtddew6mnngoAaG9vx+WXX47KysqgfBFEpA+i/S7akzBlRH0UVVzGZI0BAOyv2Y8/r/uzMn1QK3ZWuiphTMKIiCgcAkrCHnnkETQ0NECSJNx6663YtGkTrrjiCmRmZnocl5GRgSuuuAIbNmzAbbfdBgCwWCx49NFHA3l5ItIZJmEu0TaiHgCWTl6KVxe9qoyrr2mtUTkiT6ISNil3kqpxEBFRdAgoCVu5ciUkScKkSZPw+OOP97vvjyRJeOyxxzB58mTIsoyPPvookJcnIp1hEgY4nA602loBRFc7ojnGjKtOugqFqa59thraG9QNyI3VbsW+mn0AgIm5rIQREVHoBTSY4/jx4wCAq6++2uuNVyVJwtVXX43t27ejuLg4kJcnIp1hEga02FqUf0dTO6KQFpcGwLckzNJuQX17vVfHxhhiMCh5kE+bge+r2Qe70460uLRu+4IRERGFQkBJmNlsRltbGwoKCnx6XH5+vvJ4IooeTMI614PFGGJgNkbf30CRhFmsFq+O/6HyB0z71zR0ODq8fo07pt+Bx857zOvjD9UeAgCMzRrrU/JGRETkr4DaEYcMGQIAPg/YqKqqAgAMHTo0kJcnIp1hEua5HiwaT/hTzakAvK+EbSnbgg5HBwySAfEx8X1+iKT2P7v+A6fs9Dqmow1HAQBD0/meRERE4RFQJWzRokXYvn073nnnHdx8881eP+7tt9+GJElYtGhRIC9PRDojkrB2ezvsTjtiDEHdL14XlMmIUbQezJ2v7YiN1kYAwBXjr8Cri1/t81ibw4bM/81ETWsNtpVvwyl5p3j1Gkfrf0zC0piEERFReARUCbv55ptRUFCANWvW4JFHHvHqMY8//jjWrFmDIUOG4JZbbgnk5YlIZ9ynAbZ0tPRxZORS9giLwvVggO/tiJZ213Ep5pR+jzUZTZg3bB4A4LPDn3kdk1IJYxJGRERhElASlpaWhpUrV2Lo0KH49a9/jcsvvxzff/99j8d+//33uOKKK/CrX/0Kw4cPx0cffYSUlP7fVIkocsQaY2EymABEb0tiNI6nd5ca51s7oqiEiTbG/pw34jwAfiZhbEckIqIwCagXaO7cuQCAlJQUyLKMd955B++88w5SUlIwfPhwJCYmoqWlBUVFRWhsbFQel5KS0mcVTJIkrFq1KpDQiEijkmKTUN9eH71JGNsRAXRWuPojKmbeVMIAYP7w+QCADSc2oL6tHunx6X0e75SdONZwDAArYUREFD4BJWGrV69WFpaL/8qyDIvFgu3btyvHybLsccyOHTt6fU5ZlqNysTpRtIj6JOzHSli0tyP6XAmL864SVphWiFGZo3Cw9iA2l27G/BHz+zy+vKlcGfwxOGWwV69BREQUqIDaEQFX0uT+0dPtvR3b0wcRRbZon5CorAmL0kqYr9MRRRLmbSUMAAYlDwIAr/YWE1Ww/JR8mIwmr1+DiIgoEAFVwpxO70cAExEBQGJsIoDoTcJEO2K0rgnzeTCHj+2IQGeVUSRwfeF6MCIiUkPAlTAiIl9EeyVMaUeM1kqY22AOb7offB3MAXQmbCLh7QvH0xMRkRqYhBFRWEV7EsYR9WkAXAMxvPkZ8GVEvZAS6zrWp0oYkzAiIgojJmFEFFbRnoRFeyUsPiZe2abAm5ZEXwdzAGxHJCIi7fM6CWtsbERjYyMcDkfAL1pZWYkPP/wQH374YcDPRUT6kmSK8iQsyteESZLk9V5hTtmpJK0+VcJEO2JH/+2IJxpPAAAKUgu8fn4iIqJAeZ2EpaWlISMjAytXruz1mKVLl2Lp0qV9jqAHgI0bN2LhwoVYtGiR14ESUWRgJSy6R9QD3o+pd1/T5U8S5k0lrLypHAAwMGmg189PREQUKJ/aEftbRP3SSy/h5ZdfRnFxcVCej4giT7QnYdE+oh7wfsNmkUTFGmMRFxPn9fOL/7f9JWHNHc1osbUAAHKTcr1+fiIiokBxTRgRhZWShNmiMwmL9nZEwPu9wvwZT+9+fH/tiBXNFQCABFNCVH8/iIgo/JiEEVFYRXsljO2I3rcj+jOeHvC+HVEkYQOTBkKSJJ9eg4iIKBBMwogorKI+CbNG93REwPsNm0US5WslzNvpiGI9GFsRiYgo3JiEEVFYRXMS5pSdyhqkaK6Eed2O6MceYe7H97dZs6iEMQkjIqJwYxJGRGEVzUlYS0eL8u9oXoPk62AOX/YIAzzbEfsaAOXejkhERBROMWoHQETRJZqSsL+s/Qs+L/ocZxScgZun3aysOzJIBsTHxKscnXqUNWHWhj6P83cwh2j1dMgOtNnbkGBK6PE4VsKIiEgtTMKIKKyiKglb9xe02duwrngdDtcdxgNnPQDAlSRE8yAIbzdrVtaExfqWhCXGJkKCBBkymqxNvSZh5c1cE0ZEROpgOyIRhVW0JGEdjg602duUz4/UH1G+5mhuRQSA9Lh0AEB9W32fx4l2RV/bEQ2SwavhHKyEERGRWnxOwry5ehvNV3iJqG8iAWnpaIFTdqocTeh0PfmvaK5Afbsr6RDteNEqIz4DAFDbVtvncY0d/k1HBLzbsFlZE5bMNWFERBRePrcjLly4sM/7ZVnu9xgiil4iCZMho83WhsTYRJUjCo2uQycqWypxovEEACAvOU+NkDQjMyETAFDXVtfncf7uEwa4ErfSptJeN2x2OB2oaqkCwEoYERGFn1/tiLIs9/ghSZJSBevtmL4mVfli7dq1uOiii5CXlwdJkvD+++93O2bfvn24+OKLkZqaisTEREybNg3FxcXK/e3t7bj55puRmZmJpKQkLF68GJWVlUGJj4h6lmBKgATX34n+9nHSMzFUIishCwBgd9rxQ+UPAIBBKYNUi0sLRCWsob0Bdqe91+P8HVHv/pjefsZqWmvgkB2QICEnMcfn5yciIgqET0lYf0mUt4lWMBKxlpYWTJw4EStWrOjx/qKiIpxxxhkYM2YMVq9ejR9++AG///3vERcXpxxz55134qOPPsJbb72FNWvWoKysDIsWLQo4NiLqnSRJXg9m0DNx8p+VkIXMeFflZ1v5NgBAXlJ0V8JEEgb0/TPg72bNQP8bNotWxOzEbMQYOKOKiIjCy+t3HqdTW2s3FixYgAULFvR6/+9+9zucf/75+N///V/ltuHDhyv/tlgseP755/Hqq69i7ty5AIAXX3wRY8eOxcaNG3HaaaeFLniiKJcel46G9oaITsKUoRLmVBglI2rbapUkLNorYTGGGKSYU9BobURta61SLexKVBN9HcwB9L9hM4dyEBGRmiJyOqLT6cTKlSsxatQozJ8/Hzk5OZg+fbpHy+LWrVths9kwb9485bYxY8agoKAAGzZs6PW5rVYrGhsbPT6IyDfKPlERnIS5V3HEib5YnzQoObqTMABKdbCvdWGhbEesbHG1ng9IHODzcxMREQUqIpOwqqoqNDc3429/+xvOO+88fPHFF7j00kuxaNEirFmzBgBQUVGB2NhYpKWleTx2wIABqKio6PW5H3zwQaSmpiof+fn5ofxSiCJSNCRh7lWcrtWWaB/MAfQ/IdHhdKCmtQYAkJ2Q7fPz9zcdUfzspcen+/zcREREgYrIJEy0Tl5yySW48847MWnSJPz2t7/FhRdeiGeeeSag57777rthsViUj5KSkmCETBRVoiEJc99ouGsSFu3tiED/ExIrWyrhkB0wSAYMSPK9WqW0I/YyHVG0Kfq6ETQREVEwRORq5KysLMTExGDcuHEet48dOxbffvstACA3NxcdHR1oaGjwqIZVVlYiN7f3NQJmsxlmszkkcRNFC5GEiX2zIpH7RsPuSZhBMrAFDm6VsNaeK2GljaUAXGu2/Bmc0V87YiBDP4iIiAIVkZWw2NhYTJs2DQcOHPC4/eDBgygsLAQATJ06FSaTCatWrVLuP3DgAIqLizFjxoywxksUbdLjXC1g3lTCNp3YhHXH14U4ouBT2hHNnklYblIujAajWmFpRn9rwkqbXEmYv+vn+mtHZBJGRERq0m0lrLm5GYcPH1Y+P3r0KHbs2IGMjAwUFBTgrrvuwhVXXIFZs2bhrLPOwmeffYaPPvoIq1evBgCkpqbi+uuvx/Lly5GRkYGUlBTceuutmDFjBicjEoWYt+2Idqcd57xyDmxOG2ruqtHVxs49DeYAOJRD6G9NmKiE+du62V87YmOH6/sjRtkTERGFk26TsC1btuCss85SPl++fDkAYMmSJXjppZdw6aWX4plnnsGDDz6I2267DaNHj8Y777yDM844Q3nMY489BoPBgMWLF8NqtWL+/Pl46qmnwv61EEUbb5Ow2tZa5SS6rq1OV0lYb4M5uB7Mpb9KWFlTGQD/k1aRhFU2V2JP1R4AwPCM4YiLce0VqawJYyWMiIhUoNskbM6cOf1u+rx06VIsXbq01/vj4uKwYsWKXjd8JqLQ8DYJE9PxAKC5ozmEEQVfb5WwaN+oWei3EhZgO6JIrnZV7cKEpycAAMZlj8Pum3ZDkiS2IxIRkaoick0YEWmbt4M53JOw3trKtMp9s+aM+AxluAQrYS79TUdUkjA//3+dkncKZgyegeyEbGUz6L3Ve2F1WAFwTRgREalLt5UwItIvsTeTL5Uw0T6mF+7tiGIiYmlTKdeE/Ui0I/Y3HdHf/1+JsYn47vrvALj2HIt5wPV212RtQlxMHJMwIiJSFSthRBR20daOCACjs0YDAMZmj1UtJi0R7YihqoS5MxqMiI+JB9D5cyS+P2KKIhERUTixEkZEYeeehMmyDEmSejxOr+2IsiwrJ/mp5lQAwL8X/ht7qvfg1EGnqhmaZoh2xKaOJnQ4OhBrjFXua+5oVv7/BatymGxORpu9Tfk5Ev9lJYyIiNTAShgRhZ1IwuxOO1ptrb0eV91arfxbT5WwFlsLnLITQOdJ/qCUQTh3+LlqhqUpqeZUSHAl3/VtnmsDRSticmxy0EbIi4pXk9WV9LXb2wEwCSMiInUwCSOisEs0JcIouTYs7ms4h17XhImhHEbJiARTgsrRaJPRYFTWBnadkBjMVkRBJHNNHU0eP0vcJ4yIiNTAdkQiCjtJkpAen46a1ho0tDdgcMrgHo/Tazui+1CO3lotybUurK6tDh8d+AiHag8pt68rXgcguBtbu1fCRKtjgilBmVpJREQUTnz3ISJVpMWlKUlYb/Q6mIOT97yTnZCNw3WH8dtVv+3x/t6Sc394VMJ+TOg5lIOIiNTCJIyIVOHNhES9tyOKoRzUs9/M/A0e2fAI7E57t/viTfG4edrNQXutniphTJKJiEgtTMKISBW+JmHNNlbCIs0lYy7BJWMuCctrKUlYB5MwIiJSHwdzEJEqRBL27r538cTGJ5RpgkKbrQ0tthblc11VwtzWhJE2JMUmAfAcf88kjIiI1MJKGBGpIj3ONRnvvf3v4b397yEtLg1LJi1R7u86MU9Pgzm67hFG6lPWhFk7pyMyCSMiIrWwEkZEqhCVMOGBtQ94rA1yb0UE9DWYQ7RY8iRfO3pqR+R4eiIiUguTMCJShc1hU/6dak5FUX0RXtn5inJb1yRMT+2Ilc2VAIABiQNUjoQE9+mISjtiLJNkIiJSB5MwIlLFBaMuAADcPO1m3DvrXgCuaphIzkQSJipmeqqElTWXAQAGJg9UORISOB2RiIi0hEkYEali3rB5qL6rGk8ueBK/nPZLDEgcgKMNR/HyzpcBdCZhQ9KGANDXmrDypnIAQF5ynsqRkNDTPmFMwoiISC1MwohINVkJWZAkCQmmBPz2DNeGvQ+sfQAvbn8Rq46uAgAMTRsKwFUJ6zpBUavKmlyVMCZh2sFKGBERaQmTMCLShF9M/QUGJg1EsaUYSz9civf3vw8AGJExQjmm1daqUnTeczgdqGxxrQkbmMR2RK3oaUQ9B3MQEZFaOKKeiDQh3hSPlxe+jH9+/084nA4ArkrFzdP+f3v3HV1Vma9x/DnpPSGEEEJNAEE6QzOjXEBaAAvijCsOgyAuvaNgL0u9IzhVVIZ7gavAyAiOjjIXEPTCWJASrtJDQhMB6UhCgJBCICHJee8f8WwT0oGcknw/a2WtQ/Z79v6d+KJ5fN/921P0l81/kd3YlVeYZ/0y7a4y8zNlN3Z52bwUHRzt6nLwo0obc7ASBgBwEUIYALcxvP1wDW8/vML3Q/xClFuY6xHNORxbEZsHN5e3l7eLq4ED2xEBAO6E7YgA3F7ZZzy5u/SLNOVwR46VsBJTosz8TEmEMACA6xDCALg9xxZET3hWmGMljPb07qXsNtazl85K+incAwDgbIQwAG7PsYrhCdsRrfb0IayEuRMvm5eCfYOtP9tkU+vw1i6sCADQmBHCALg9ayXMA7Yj0p7efZXthhjXJE5BvkEurAYA0JgRwgC4vbJNFdzd6YtsR3RXZbckdm3W1YWVAAAaO0IYALfnkdsRWQlzO2XvASOEAQBciRAGwO2F+HredkQe1Ox+ym5H7BbdzYWVAAAaO0IYALfnKSthJfYSnck/I4mVMHdUbiUsmpUwAIDrEMIAuD3HL8//OvQvzdw0U8YYF1dUufOXz8tu7JKk6OBoF1eDq+UX5VuvO0d1dmElAIDGjhAGwO05mlzsO7tPz695XuuPrXdxRZVzNA4J8QuRt5e3i6vB1U7knLBeB/gEuLASAEBjRwgD4PZ+3ePXmjtqrn7e+ueSpFUHV7m4oso5tkuW7cIH95FxMcPVJQAAIIkQBsADBPkGaWr/qXr6lqclSasPrXZxRZVzNA4hhLmnv931N0nS3FFzXVwJAKCx83F1AQBQW8Pjh8vHy0cHzx/U91nfq0NkB1eXVI5jJaxsAwi4j6RuSRrVYZTCA8JdXQoAoJFjJQyAxwgPCNfANgMlSX/b+Tcdzz7u4orKK3tPGNwTAQwA4A4IYQA8ypiOYyRJM76ZoXaz22n7D9tdXNFPrJUwf1bCAABA1QhhADzKhJ4TdEurWxToEyhJ2n1mt4sr+gmNOQAAQG0QwgB4lOjgaG1+aLPG3TxOkpRdkO3agsqwGnP4EsIAAEDVCGEAPFJEQIQk9wphbEcEAAC1QQgD4JHcOYSxHREAAFSHEAbAIzlCWE5hjmsLKYPnhAEAgNoghAHwSOH+pa3G3XEljOeEAQCA6hDCAHgkd9yOyHPCAABAbRDCAHgkdwxh3BMGAABqgxAGwCO54z1hdEcEAAC1QQgD4JHCA9zvnjAacwAAgNoghAHwSI6VsNzCXJXYS1xbzI/YjggAAGqDEAbAIzm6I0qlQcwd0B0RAADUBiEMgEfy9/FXoE+gJPe4L6zEXqJLRZcksRIGAACqRwgD4LHc6b6w/KJ86zWNOQAAQHUIYQA8lju1qXc8I8zb5i1/b38XVwMAANwZIQyAx3KnEFa2KYfNZnNxNQAAwJ0RwgB4LHcMYWxFBAAANSGEAfBY1gObC1zfmINnhAEAgNoihAHwWI429e60EkYIAwAANSGEAfBYbrkdkWeEAQCAGhDCAHgsK4QVZru0Dumn7oishAEAgJoQwgB4LHe6J4ztiAAAoLYIYQA8ljvdE+ZozMF2RAAAUBNCGACP5Y73hLESBgAAakIIA+Cx3CWE5RTk6FTuKUk8JwwAANTMx9UFAMC1igyMlCSdv3zeZTWk56Wr49yOyi/Kl8RKGAAAqBkrYQA8VovQFpKk3MJc5V/Jd0kNqRmpyi/Kl7fNW+2btFdih0SX1AEAADwHIQyAxwr1C1WQb5AkKf1iuktqOJ13WpI0ssNIff/E9+oW3c0ldQAAAM9BCAPgsWw2m2JDYyWVbgt0Bcd1W4S0cMn1AQCA5yGEAfBojvDjWJFyNsd1HWEQAACgJoQwAB7NWglz0XZEx3VZCQMAALVFCAPg0VgJAwAAnoYQBsCjOcKPq0KYtRIWykoYAACoHUIYAI/mCD+u2I5oN3ZlXMyQxEoYAACoPUIYAI/mypWwc5fOqdheLJtsah7c3OnXBwAAnokQBsCjOe4Jc0WLekfwaxbcTL7evk6/PgAA8EyEMAAezbESllOYo0tFl5x6bUfwYysiAACoC0IYAI8W5h+mQJ9ASc5fDXOshNGeHgAA1AUhDIBHs9lsLrsvzNEMhJUwAABQF4QwAB7PVQ9sZiUMAABcC0IYAI/naFN/PPu4U6/LShgAALgWhDAAHq9/bH9J0js731Gxvdhp13XcgxYTEuO0awIAAM9HCAPg8R7p84iigqJ0KOuQ/rH7H0677oWCC5KkpkFNnXZNAADg+QhhADxeqH+oXvj5C5Kkhz59SJGvR2rhzoX1ft2cghxJUrh/eL1fCwAANByEMAANwmP9HlO7iHYqMSW6UHBBU/81Vd+e/bZer5ldkC1JCg8ghAEAgNojhAFoEIL9grV/yn4dfuKwRrYfqcKSQj2w4gGV2Evq5XqFxYUqLCmUJEUERNTLNQAAQMNECAPQYAT4BCi+SbzevftdhfmHKSU9RVtObamXa+UU5livQ/1C6+UaAACgYSKEAWhwYkNjNbDNQElSakbqNZ3j3KVzSk1Ptb4uXrlY7rhjK2KYf5i8vbyvq14AANC4+Li6AACoD71jemv1odVKTa97CDtz8YziZsfpcvFl63vxTeJ16PFD8rKV/r8rmnIAAIBrxUoYgAapV0wvSde2Erb/3H5dLr4sHy8ftQxtKUk6cuGIsi5nWWNoygEAAK4VIQxAg9S7RW9J0r6z+3Sl5Eqd3nvhcunzv/q37K9Tz5yyGm+czT9rjXHcE0ZTDgAAUFeEMAANUlxEnML8w3Sl5Ir2n91fp/c6VryaBDSRJDULaiZJOnvppxBmrYSxHREAANQRIQxAg2Sz2awtiWkZaXV674WC0pWwJoGlISw6OFqSlJmfaY1x3BPGShgAAKgrQhiABqt3TOmWxLreF+bYjmithAX/uBJWyXZEVsIAAEBdEcIANFiOlbA9mXvq9D5rJaw22xFpzAEAAOqIEAagwWoT3kaSdDrvdJ3eV6vtiDTmAAAA14gQBqDBah7cXFLpc7/qwtGYIzIwUhKNOQAAwI3lsSFs48aNuvPOOxUbGyubzaaVK1eWOz5p0iTZbLZyX4mJieXGZGVlafz48QoLC1NERIQeeughXbx40YmfAkB9ah5SGsIuFFyoU5v6Wt0TRmMOAABwjTw2hOXn56tnz5566623qhyTmJio9PR06+ujjz4qd3z8+PHat2+f1qxZo1WrVmnjxo165JFH6rt0AE4SGRgpb5u3pPIBqiZVbUcsuxJmNebgnjAAAFBHPq4u4FqNGjVKo0aNqnaMv7+/YmJiKj22f/9+ff7559q+fbv69u0rSZo7d65Gjx6tmTNnKjY29obXDMC5vGxeig6OVvrFdJ3JP6OWYS1r9b4KK2E/bkcse08Y2xEBAMC18tiVsNrYsGGDoqOj1alTJz366KM6f/68dWzz5s2KiIiwApgkDRs2TF5eXtq6dWuV5ywsLFRubm65LwDuy7Elsbb3hdmNvcJKmGM74vlL52U3dklsRwQAANeuwYawxMRE/f3vf9fatWv1+uuvKzk5WaNGjVJJSYkkKSMjQ9HR0eXe4+Pjo8jISGVkZFR53tdee03h4eHWV+vWrev1cwC4PlZzjvzahbC8wjwraDlWwqKCoiRJJaZEFy5fkDGG7YgAAOCaeex2xJokJSVZr7t3764ePXqoffv22rBhg4YOHXrN533ppZf0zDPPWH/Ozc0liAFurK4rYY5VsACfAAX6BkqS/Lz9FBEQoeyCbGXmZ8rP288KaqyEAQCAumqwK2FXi4+PV1RUlL7//ntJUkxMjDIzM8uNKS4uVlZWVpX3kUml95mFhYWV+wLgvqKDKj7jqzpX3w/mULZNveN+MB8vHwX6BN6gSgEAQGPRaELYqVOndP78ebVo0UKSlJCQoOzsbKWkpFhj1q1bJ7vdrgEDBriqTAA3mLUSVsvtiFffD+ZgdUjMP/vTVkT/cNlsthtVKgAAaCQ8djvixYsXrVUtSTp69KjS0tIUGRmpyMhI/e53v9O9996rmJgYHT58WC+88II6dOigkSNHSpJuvvlmJSYm6uGHH9b8+fNVVFSkqVOnKikpic6IQANS13vCqlwJC/6pQ2JMSOlqOVsRAQDAtfDYELZjxw4NGTLE+rPjPq2JEydq3rx52r17t9577z1lZ2crNjZWI0aM0B/+8Af5+/tb7/nHP/6hqVOnaujQofLy8tK9996rOXPmOP2zAKg/13pPWGRgZLnvO7Yjrj26VocvHJZEUw4AAHBtPDaEDR48WMaYKo9/8cUXNZ4jMjJSH3744Y0sC4CbqetKWNblLEkVtyO2CCndyrx8/3Lre00Dm96IEgEAQCPjsSEMAGrDsRJ27tI5ldhL5O3lXe34qrYjPtj7QR04f8C6H8zXy1fPJjxbDxUDAICGjhAGoEGLCoqSTTbZjV3nLp2zQllVrMYcV4WwdhHttOQXS+qtTgAA0Hg0mu6IABonHy8f62HLtWlTX1V3RAAAgBuFlTAADV50cLTOXjqrsf8cq2Df4GrHHs0+KqniShgAAMCNQggD0OD1iumlfWf36ciFI7V+T9forvVYEQAAaMxsproWg6hRbm6uwsPDlZOTo7CwMFeXA6ASBcUF2nJqi4rtxbUaHxsaqy7NutRzVQAAoKGpbTZgJQxAgxfgE6DB7Qa7ugwAAABJNOYAAAAAAKcihAEAAACAExHCAAAAAMCJCGEAAAAA4ESEMAAAAABwIkIYAAAAADgRIQwAAAAAnIgQBgAAAABORAgDAAAAACcihAEAAACAExHCAAAAAMCJCGEAAAAA4ESEMAAAAABwIkIYAAAAADgRIQwAAAAAnIgQBgAAAABORAgDAAAAACcihAEAAACAExHCAAAAAMCJCGEAAAAA4ESEMAAAAABwIh9XF+DpjDGSpNzcXBdXAgAAAMCVHJnAkRGqQgi7Tnl5eZKk1q1bu7gSAAAAAO4gLy9P4eHhVR63mZpiGqplt9t1+vRphYaGymazubSW3NxctW7dWidPnlRYWJhLa0HjwJyDszHn4GzMOTgbc86zGWOUl5en2NhYeXlVfecXK2HXycvLS61atXJ1GeWEhYXxlxZOxZyDszHn4GzMOTgbc85zVbcC5kBjDgAAAABwIkIYAAAAADgRIawB8ff31/Tp0+Xv7+/qUtBIMOfgbMw5OBtzDs7GnGscaMwBAAAAAE7EShgAAAAAOBEhDAAAAACciBAGAAAAAE5ECAMAAAAAJyKENSBvvfWW2rVrp4CAAA0YMEDbtm1zdUnwQBs3btSdd96p2NhY2Ww2rVy5stxxY4ymTZumFi1aKDAwUMOGDdOhQ4fKjcnKytL48eMVFhamiIgIPfTQQ7p48aITPwU8yWuvvaZ+/fopNDRU0dHRGjt2rA4cOFBuTEFBgaZMmaKmTZsqJCRE9957r86cOVNuzIkTJzRmzBgFBQUpOjpazz//vIqLi535UeAh5s2bpx49elgPw01ISNBnn31mHWe+oT7NmDFDNptNTz31lPU95lzjQwhrIP75z3/qmWee0fTp07Vz50717NlTI0eOVGZmpqtLg4fJz89Xz5499dZbb1V6/I033tCcOXM0f/58bd26VcHBwRo5cqQKCgqsMePHj9e+ffu0Zs0arVq1Shs3btQjjzzirI8AD5OcnKwpU6Zoy5YtWrNmjYqKijRixAjl5+dbY55++mn97//+r5YuXark5GSdPn1a48aNs46XlJRozJgxunLlijZt2qT33ntPixcv1rRp01zxkeDmWrVqpRkzZiglJUU7duzQ7bffrrvvvlv79u2TxHxD/dm+fbsWLFigHj16lPs+c64RMmgQ+vfvb6ZMmWL9uaSkxMTGxprXXnvNhVXB00kyK1assP5st9tNTEyMefPNN63vZWdnG39/f/PRRx8ZY4z59ttvjSSzfft2a8xnn31mbDab+eGHH5xWOzxXZmamkWSSk5ONMaVzzNfX1yxdutQas3//fiPJbN682RhjzL/+9S/j5eVlMjIyrDHz5s0zYWFhprCw0LkfAB6pSZMmZuHChcw31Ju8vDzTsWNHs2bNGjNo0CDz5JNPGmP4d1xjxUpYA3DlyhWlpKRo2LBh1ve8vLw0bNgwbd682YWVoaE5evSoMjIyys218PBwDRgwwJprmzdvVkREhPr27WuNGTZsmLy8vLR161an1wzPk5OTI0mKjIyUJKWkpKioqKjcvOvcubPatGlTbt51795dzZs3t8aMHDlSubm51uoGUJmSkhItWbJE+fn5SkhIYL6h3kyZMkVjxowpN7ck/h3XWPm4ugBcv3PnzqmkpKTcX0xJat68ub777jsXVYWGKCMjQ5IqnWuOYxkZGYqOji533MfHR5GRkdYYoCp2u11PPfWUbr31VnXr1k1S6Zzy8/NTREREubFXz7vK5qXjGHC1PXv2KCEhQQUFBQoJCdGKFSvUpUsXpaWlMd9wwy1ZskQ7d+7U9u3bKxzj33GNEyEMAOA2pkyZor179+rrr792dSlo4Dp16qS0tDTl5ORo2bJlmjhxopKTk11dFhqgkydP6sknn9SaNWsUEBDg6nLgJtiO2ABERUXJ29u7QhedM2fOKCYmxkVVoSFyzKfq5lpMTEyFhjDFxcXKyspiPqJaU6dO1apVq7R+/Xq1atXK+n5MTIyuXLmi7OzscuOvnneVzUvHMeBqfn5+6tChg/r06aPXXntNPXv21OzZs5lvuOFSUlKUmZmpn/3sZ/Lx8ZGPj4+Sk5M1Z84c+fj4qHnz5sy5RogQ1gD4+fmpT58+Wrt2rfU9u92utWvXKiEhwYWVoaGJi4tTTExMubmWm5urrVu3WnMtISFB2dnZSklJscasW7dOdrtdAwYMcHrNcH/GGE2dOlUrVqzQunXrFBcXV+54nz595OvrW27eHThwQCdOnCg37/bs2VPufwCsWbNGYWFh6tKli3M+CDya3W5XYWEh8w033NChQ7Vnzx6lpaVZX3379tX48eOt18y5RsjVnUFwYyxZssT4+/ubxYsXm2+//dY88sgjJiIiolwXHaA28vLyTGpqqklNTTWSzKxZs0xqaqo5fvy4McaYGTNmmIiICPPJJ5+Y3bt3m7vvvtvExcWZy5cvW+dITEw0vXv3Nlu3bjVff/216dixo7n//vtd9ZHg5h599FETHh5uNmzYYNLT062vS5cuWWN+85vfmDZt2ph169aZHTt2mISEBJOQkGAdLy4uNt26dTMjRowwaWlp5vPPPzfNmjUzL730kis+Etzciy++aJKTk83Ro0fN7t27zYsvvmhsNpv58ssvjTHMN9S/st0RjWHONUaEsAZk7ty5pk2bNsbPz8/079/fbNmyxdUlwQOtX7/eSKrwNXHiRGNMaZv6V155xTRv3tz4+/uboUOHmgMHDpQ7x/nz5839999vQkJCTFhYmHnwwQdNXl6eCz4NPEFl802SWbRokTXm8uXL5rHHHjNNmjQxQUFB5p577jHp6enlznPs2DEzatQoExgYaKKiosyzzz5rioqKnPxp4AkmT55s2rZta/z8/EyzZs3M0KFDrQBmDPMN9e/qEMaca3xsxhjjmjU4AAAAAGh8uCcMAAAAAJyIEAYAAAAATkQIAwAAAAAnIoQBAAAAgBMRwgAAAADAiQhhAAAAAOBEhDAAAAAAcCJCGACg1gYPHiybzSabzeaU67Vr1042m03t2rVzyvXgnjZs2GDNu1dffdXV5QDAdSOEAYATHTt2zPpl8nq/Jk2a5OqPgxvAETTr+pWWlubq0gEA14gQBgAAAABO5OPqAgCgMYmOjtaKFSuqPL5371698sorkqSuXbvqj3/8Y5Vj27Rpc8Prq8mGDRucer1jx4459XqutmDBAkVHR9dqbFxcXD1XAwCoL4QwAHCioKAgjR07tsrjERER1uuoqKhqx6LhGTFiBPe/AUAjwHZEAAAAAHAiQhgAeJDKusQdOnRIzz77rLp27aqIiIhKO8idOnVKb7/9tpKSktSlSxeFhobK19dXUVFRGjBggF566SWdPHmyxuvX1B1x8eLF1vHFixdLkg4ePKjHH39cN910k4KCghQREaGEhATNnj1bV65cqfZ6NXVHfPXVV63rObZKpqSk6MEHH1R8fLwCAgLUtGlTDRkyRIsXL5bdbq/xM0rS119/rfvvv1+tWrVSQECAWrZsqdGjR2v58uWSyjdYcacGKVf/vAoKCjR79mwlJCSoWbNmCgwMVIcOHfTYY4/p0KFDtT7vunXrNGnSJHXo0EEhISEKDg5Whw4dNHHiRK1du7ZONX722WeaPHmyOnfurIiICPn6+qpZs2YaOHCgXn755Vo3HDl9+rRefvllde3aVSEhIQoLC1Pv3r31+9//Xnl5eTW+f9euXZo6dap69uyp8PBw6+9D586dNXToUL388svauXNnnT4bANSaAQC4jfXr1xtJRpIZNGhQtcenT59u3n//fRMYGGh9r+yxsu+x2WwVxlz95efnZxYuXFhtfYMGDbLGV2bRokXW8UWLFpm///3vldbn+EpISDA5OTlVXq9t27ZGkmnbtm2lx6dPn26da/369WbGjBnG29u7yuuNHTvWFBUVVfsZn3/++Wp/XklJSebQoUPWnydOnFjt+Wri+IySzNGjR2/Iudq2bWtOnjxpevbsWeXnCAgIMIsXL672fPn5+WbcuHE1zp1x48aZ/Pz8as91/Phxk5CQUOO5JJns7Oxy77163n/xxRcmMjKyyvffdNNN5tSpU1XW8vvf/954eXnVWEfXrl1r/8MHgDrgnjAA8FCbNm3Sn/70J9lsNk2cOFEDBw5UcHCwvv/++3JNOwoKCmSMUadOnTRkyBB16dJFUVFR8vHxUUZGhjZu3KiVK1fqypUrevjhh9W8eXPdcccd113f559/rmXLlikoKEhTpkxRv3795O/vr7S0NM2fP185OTnavHmznnvuOf31r3+97uu98847+vDDD9WsWTNNmjRJPXr0kJeXlzZt2qSFCxeqsLBQK1eu1BtvvKGXX3650nP88Y9/1JtvvilJstlsGjdunBITExUSEqKDBw/q3Xff1ZIlS2q9ouYqRUVF+uUvf6ldu3apV69eGj9+vNq0aaMzZ85o2bJl2rhxowoKCjR58mRFRETo7rvvrnCOkpISjR49WsnJyZKkkJAQTZo0Sf369ZOXl5e2bdumRYsW6eLFi/r444+VlZWlr776St7e3hXOdeTIESUkJCgzM1OSFBkZqaSkJPXp00dhYWHKysrSrl27tHr1ah0/flzGmCo/W1pammbOnKmioiJNmjRJt912m0JDQ3XgwAG9/fbbysjI0MGDB/Xggw/qyy+/rPD+Tz/9VNOmTZMkBQQE6K677tJtt92mZs2ayW63Kz09XampqVqzZs01/ewBoFZcnQIBAD+py0qYJBMdHW127dpV7TmPHTtm0tLSqh2TmppqoqOjjSTTsWNHY7fbKx1Xl5Uw/biSUNmKxP79+01ISIiRZHx9fU1GRkal56vLSpjjZ3b1KooxxmzYsMFaIYuKijKFhYUVxhw4cMD4+vpaNX3yyScVxuTn55vhw4eXu6Y7roQ5vqZOnWqKi4srjHv99dfLzaHKViPfeOMNa0y7du3MkSNHKow5cuRIuWu+/vrrFcaUlJSYXr16WWPuuuuuSv8ZOaxevdpcvny53PeunvexsbFm7969Fd6bnp5uWrVqZY1LSUmpMGbMmDFGkvHx8an0uENxcbH5+uuvqzwOANeDe8IAwIMtWLBAPXr0qHZM27Zt1bNnz2rH9OrVS3/+858lld5jtmnTpuuuzcfHRx9//LFatmxZ4Vjnzp01ZcoUSaWrNl999dV1Xy8yMlLLly9XeHh4hWODBg3SL37xC0nSuXPntH379gpj/vu//1tFRUWSpOeee0533XVXhTFBQUH68MMPy3WxvJHi4uJq9aDmwYMH13iuvn37avbs2ZWuTL3wwgu65557JEmZmZnW/XsORUVFmjVrlqTSFcElS5ZU2hI/Li5OS5Ysse4RnDVrVoX7/JYuXWrd59W7d28tXbq00n9GDqNHj1ZAQEC1n+2DDz5Q165dK3w/JiZG//Ef/2H9+bPPPqsw5vvvv7dq+dnPflblNby9vXXrrbdWWwcAXCtCGAB4qLZt21a6jexa3XbbbdbrLVu2XPf57rjjDt10001VHh8+fLj1eu/evdd9vQceeEBNmza95uutXLlSkuTl5aUnnniiyvNERUVpwoQJ116okzz33HPy8qr6P/MvvPCC9XrZsmXljm3atEkZGRmSSpuxDBgwoMrz3HLLLRoyZIgk6cyZM/rmm2/KHX///fet17/73e/k5+dX+w9RiV69elnXq0xN/5yDg4MlSYcPH1Z2dvZ11QIA14p7wgDAQ916661VdimsTFpamj744ANt3rxZhw4dUm5urgoLCysde+rUqeuuLyEhodrjrVq1sl5fuHDBpdc7c+aM1R3y5ptvVkxMTLXnGjJkiObOnXuNlVattg9rjoqKqnHMsGHDqj0+YMAAhYaGKi8vTykpKbLb7VZo27p1qzVuxIgRNV5r5MiRWrdunaTSAF82JP3f//2fpNL7r0aOHFnjuWpyvfNqxIgR2rlzp7KysvRv//ZveuGFF3THHXfU2+omAFSGEAYAHqrsL5vVKS4u1pQpU/TOO+9U2/CgrNzc3OspTVLNQcHf3996XVBQ4NLrnT592nrdvn37Gq8VHx9fx+pq50Y9rLlJkybVrgpKpdsM27dvr7S0NF26dEnZ2dmKjIyUJKWnp1vjqlvNrGxM2ffm5eVZc6l9+/bXvQomXf+8evHFF7V69Wrt2bNHe/bs0YQJE+Tl5aUePXooISFBgwYN0qhRoxQWFnbdtQJAVQhhAOChAgMDazXuySeftLoP+vr6KjExUf3791erVq0UHBwsX19fSaX3Bv37v/+7pNLOeNeruq1w9eF6rpefn2+9DgoKqnG8Y0ubu6ptfWXH5eXlWSGs7HO2anOukJCQcudxKBvmy465Htc7r8LDw7V582a9+eabeuedd3T69GnZ7XalpaUpLS1N8+bNU0BAgB566CH96U9/qvb+NQC4VoQwAGjATp48qfnz50uSWrZsqfXr16tjx46Vjt23b58zS3MrZYPGpUuXahxfNrS5o9rWV3ZcaGhopa9rc66LFy9W+t6yq0llx7hacHCwXn31VU2fPl179uzRN998o02bNmnt2rVKT09XQUGB3nrrLSUnJ2vLli1uH7oBeB4acwBAA/bVV19Zz7R68cUXqwxgknT06FFnleV2YmNjrdeHDx+ucfyRI0fqs5zrduHCBWVlZVU7xhhjfY6goKBy90S1aNHCen3o0KEar3fw4EHrddmfZWhoqLWSdPjw4QqdE13NZrOpR48eevTRR/X+++/rhx9+0JdffqnWrVtLKm3s4fifGABwIxHCAKABc3S4k6QOHTpUO7aydt6NRfPmza1fvPfv31/u51aZ9evXO6Os61LTw4a3bdtmbRfs27dvuW1+ZbshVvbA46t98cUXlb5XkgYOHCip9P6ssuPckc1m0/DhwzVnzhzre47GIgBwIxHCAKABK7uNyvF8pMocOXJE7733njNKcluOdv92u73cL+FXO3fuXLm26+5q1qxZ1TZimTlzpvXa8Qw1h5///OfWatj69eu1bdu2Ks+zbds2K5TGxMRUeLbWAw88YL2eNm2a262GVabsM9GKi4tdWAmAhooQBgANWL9+/azXM2fO1Pnz5yuMOXHihO688063v8+pvk2dOtVqUjJz5kx9+umnFcZcunRJv/rVrzzi+VLbtm3T008/bW1HLWvWrFnWs8Gio6M1ceLEcsd9fX31zDPPSCrdtpiUlKRjx45VOM+xY8eUlJRkhb1nnnmmQgfEe++913ooclpamn75y18qJyenyrq/+OKLG9ItsyoPP/ywdu/eXe2YefPmWa979epVb7UAaLxozAEADVhCQoIGDBigrVu36vjx4+rcubMeeeQR3XzzzSopKdGWLVv0/vvvKz8/X5MmTdLixYtdXbLLdOrUSdOmTdMrr7yioqIijR07VuPGjVNiYqJCQ0N14MABLVq0SMeOHdN9992n//mf/5F0Y7tAfvnll7V6Tpgkde/evcp2+rGxsWrTpo1mz56tjRs3avz48WrdurUyMzO1bNkyJScnSyrdfvfXv/610nbsTz/9tFatWqXk5GQdPXpU3bt314MPPqj+/fvLZrNp27ZtWrRokdUNcfDgwVZwK8vLy0tLly7VLbfcorNnz+rTTz9VfHy8kpKS1KdPH4WFhenChQvau3evVq9ercOHD+vChQsKCAio7Y+tThYuXKiFCxeqc+fOuv3229WtWzc1bdpUBQUFOnHihJYuXWqFtCZNmujRRx+tlzoANG6EMABo4JYsWaLbb79dR48e1blz5/TnP/+5wpjHH39cTz/9dKMOYZL029/+Vjk5OfrLX/4iY4yWL1+u5cuXlxuTlJSk6dOnWyGsbDfA6+V4REBt/Od//qeeeuqpSo/5+vpq2bJlGjNmjFJTU5WamlphjL+/v+bPn29tw7yat7e3Vq9erQkTJmjFihW6ePFilQ+ovueee/TBBx/I29u70uPx8fHaunWr7rvvPu3YsUNZWVl6++23q/xsdXkI+bX67rvv9N1331V5vE2bNlq+fLlatmxZ77UAaHzYjggADVy7du2UmpqqV199VT169FBQUJCCgoIUHx+vX//611q/fr3mzJnjlF98PcGbb76p5ORk3XfffYqNjZWfn59atGihxMRELVu2TB999FG57XSOZ2u5m5YtW2rLli36r//6L91yyy1q2rSp/P39FR8fr9/85jfas2ePJk2aVO05goOD9fHHH2vt2rV64IEHFB8fb82fuLg4TZgwQV999ZU+/vjjGp+vFhcXp23btmnFihX61a9+pbi4OAUFBcnX11fR0dEaOHCgfvvb3+rbb7+t12dz/fDDD3r33Xc1efJk9e3bV02bNpWPj4/8/f3VqlUrjR49WgsWLNB3332nvn371lsdABo3m6nurl0AAFDB3Llz9cQTT0iSVqxYobFjx7q2oB+1a9dOx48fV9u2bSu9hwsA4B5YCQMAoA6Kioq0YMECSaXb/q7uBggAQE0IYQAA/CgzM1PffvttlccLCgo0efJk7du3T1Jpa/dmzZo5qzwAQANBYw4AAH504sQJ9evXT3379tXQoUPVqVMnhYWFKS8vT7t379aSJUuUnp4uSWratGm5Z20BAFBbhDAAAK6yY8cO7dixo8rjcXFx+uSTTxQbG+vEqgAADQUhDACAH3Xv3l0fffSRPv/8c+3atUtnz561HnAdFRWl3r17684779TEiRMrPJQYAIDaojsiAAAAADgRjTkAAAAAwIkIYQAAAADgRIQwAAAAAHAiQhgAAAAAOBEhDAAAAACciBAGAAAAAE5ECAMAAAAAJyKEAQAAAIATEcIAAAAAwIn+HzKeZu6WDs+KAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -262,21 +259,26 @@ }, { "cell_type": "code", - "execution_count": 454, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "score = []\n", "games = 100\n", "done = False\n", - "state1 = env.reset()\n", + "state1 = env.reset()[0]\n", "for i in range(games):\n", " t=0\n", " while not done: #F\n", + " if type(state1) is tuple:\n", + " state1 = state1[0]\n", " pred = model(torch.from_numpy(state1).float()) #G\n", " action = np.random.choice(np.array([0,1]), p=pred.data.numpy()) #H\n", - " state2, reward, done, info = env.step(action) #I\n", - " state1 = state2 \n", + " state2, reward, done, _, info = env.step(action) #I\n", + " state1 = state2\n", + " if(type(state1) == 'tuple'):\n", + " state1 = state2[0]\n", + " \n", " t += 1\n", " if t > MAX_DUR: #L\n", " break;\n", @@ -288,29 +290,27 @@ }, { "cell_type": "code", - "execution_count": 455, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 455, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFndJREFUeJzt3X+QXWV9x/H3p5sVrz8XmpUhm6RJbVgHjBK8xbRoG9BxQ2RMiq0N0w6gTlM1WnWctUQ7UqftQI0/ikOljRIjHSaIGmNqqSmKbVpHoDdECSCrUdTsBsg6cWOnbDGEb/84Z+Fms5v7c+/dfe7nNbOTc59z7t3veU7uJyfPee49igjMzCxdv9LuAszMbGY56M3MEuegNzNLnIPezCxxDnozs8Q56M3MEuegNzNLnIPezCxxDnozs8TNa3cBAPPnz48lS5a0uwwzszll7969P4uI3krbzYqgX7JkCaVSqd1lmJnNKZJ+Us12HroxM0ucg97MLHEOejOzxDnozcwS56A3M0tcxVk3khYBNwNnAgFsiYjrJZ0BfB5YAvwYeFNE/FySgOuBNcDjwFURcW+zC9+5b4TNu4c4NDbOgp4CF72kl28+NMqhsXFeWOhGgrHHj52wvKCnwOBAP+tW9J3w/Om2n4nlamttdU0T/TK5bxt5rZnu41b3Za37NhuP9Wypdbq+rKaPZ/v7vZ6+nPwebDZVusOUpLOAsyLiXknPB/YC64CrgCMRcZ2kq4HTI+LPJa0B3kUW9K8Ero+IV57qdxSLxahleuXOfSNs2rGf8WPHq37OhEJ3F298RR9f2jtS1/NTVeju4trLlgPU3bflr5VqH6e8b602XV82s4/n0vGaeA/WEvaS9kZEseJ2td5KUNJXgBvyn1UR8Uj+j8G/R0S/pH/Ml7fn2w9NbDfda9Ya9BdedycjY+M11V2uS+K4b6F4kr6eAkBDfTsh5T5Oed9abbq+bGYfz6Xj1ddT4FtXX1z19tUGfU0fmJK0BFgB3A2cWRbej5IN7QD0AQfLnjact50Q9JI2ABsAFi9eXEsZHGowiObKQW+1Rvu1XMp9nPK+tdp0fdnMPp5Lx6uZ78FyVV+MlfQ84EvAeyLiF+XrIvtvQU29GRFbIqIYEcXe3oqf4D3BgvzMs15dUkPPT9WCnkLDfTsh5T5Oed9abbq+bGYfz6Xj1az332RVBb2kbrKQvyUiduTNj+VDNhPj+Ifz9hFgUdnTF+ZtTTM40E+hu6uu5xa6u7j8lYvqfn6qCt1dDA70N9S35a+Vah+nvG+tNl1fNrOP59LxmngPzoSKQZ/PorkJ+F5EfLxs1S7gynz5SuArZe1XKLMSOHqq8fl6rFvRx7WXLaevp4DIxrX+eOXipx/3FLo5/TndJy339RS49rLl/PW65Sc8f7rtZ2K52lpbXdPERaDJfVvva7Wij1vdl7Xu22w81rOl1un6spo+nu3v93r6svw9OBOqmXXzKuA/gf3AU3nzB8jG6W8DFgM/IZteeST/h+EGYDXZ9Mo3R8Qpr7TWejHWzMyaeDE2Iv4LmG6Q6zVTbB/AxooVmplZS/iTsWZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeKquZXgVkmHJd1f1vZySd+WtF/SP0t6Qdm6TZIOSBqSNDBThZuZWXWqOaPfRnZbwHKfAa6OiOXAl4FBAEnnAOuBc/PnfErS7L8rr5lZwioGfUTsAY5Maj4b2JMv3wG8MV9eC9waEU9ExMPAAeCCJtVqZmZ1qHeM/gGyUAf4A2BRvtwHHCzbbjhvO4mkDZJKkkqjo6N1lmFmZpXUG/RvAd4haS/wfOCXtb5ARGyJiGJEFHt7e+ssw8zMKplXz5Mi4iHgdQCSzgZen68a4Zmze4CFeZuZmbVJXWf0kl6U//krwF8A/5Cv2gWsl3SapKXAMuCeZhRqZmb1qXhGL2k7sAqYL2kYuAZ4nqSN+SY7gM8CRMQDkm4DHgSeBDZGxPGZKNzMzKqjiGh3DRSLxSiVSu0uw8xsTpG0NyKKlbbzJ2PNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJX15eazVU7942wefcQh8bGWdBTYHCgn3UrpvwWZTOzZHRM0O/cN8KmHfsZP5Z99c7I2DibduwHcNibWdI6Zuhm8+6hp0N+wvix42zePdSmiszMWqNjgv7Q2HhN7WZmqeiYoF/QU6ip3cwsFR0T9IMD/RS6u05oK3R3MTjQ36aKzMxao2Muxk5ccPWsGzPrNNXcYWorcClwOCJemredR3b7wGeT3UnqHRFxjyQB1wNrgMeBqyLi3pkqvlbrVvQ52M2s41QzdLMNWD2p7SPAhyPiPOBD+WOAS8juE7sM2ADc2JwyzcysXhWDPiL2AEcmNwMvyJdfCBzKl9cCN0fmLqBH0lnNKtbMzGpX7xj9e4Ddkj5K9o/Fb+ftfcDBsu2G87ZHJr+ApA1kZ/0sXry4zjLMzKySemfdvB14b0QsAt4L3FTrC0TElogoRkSxt7e3zjLMzKySeoP+SmBHvvwF4IJ8eQRYVLbdwrzNzMzapN6gPwT8br58MfCDfHkXcIUyK4GjEXHSsI2ZmbVONdMrtwOrgPmShoFrgD8Brpc0D/g/8rF24HayqZUHyKZXvnkGajYzsxpUDPqIuHyaVa+YYtsANjZalJmZNU/HfAWCmVmnctCbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4ioGvaStkg5Lur+s7fOSvpP//FjSd8rWbZJ0QNKQpIGZKtzMzKpT8Q5TwDbgBuDmiYaI+MOJZUkfA47my+cA64FzgQXA1yWdHRHHm1izmZnVoOIZfUTsAY5MtU6SgDcB2/OmtcCtEfFERDxMdu/YC5pUq5mZ1aHRMfpXA49FxA/yx33AwbL1w3nbSSRtkFSSVBodHW2wDDMzm06jQX85z5zN1yQitkREMSKKvb29DZZhZmbTqWaMfkqS5gGXAa8oax4BFpU9Xpi3mZlZmzRyRv9a4KGIGC5r2wWsl3SapKXAMuCeRgo0M7PGVDO9cjvwbaBf0rCkt+ar1jNp2CYiHgBuAx4EvgZs9IwbM7P2UkS0uwaKxWKUSqV2l2FmNqdI2hsRxUrb+ZOxZmaJc9CbmSXOQW9mljgHvZlZ4uqeR29mVq+d+0bYvHuIQ2PjLOgpMDjQz7oVU36I3prAQW9mLbVz3wibduxn/Fg283pkbJxNO/YDOOxniIduzKylNu8eejrkJ4wfO87m3UNtqih9Dnoza6lDY+M1tVvjHPRm1lILego1tVvjHPRm1lKDA/0UurtOaCt0dzE40N+mitLni7Fm1lITF1w966Z1HPRm1nLrVvQ52FvIQzdmZolz0JuZJc5DN2aWJH/69hkOejNLjj99e6Jq7jC1VdJhSfdPan+XpIckPSDpI2XtmyQdkDQkaWAmijYzOxV/+vZE1ZzRbwNuAG6eaJB0EbAWeHlEPCHpRXn7OWS3GDwXWAB8XdLZvp2gmbWSP317oopn9BGxBzgyqfntwHUR8US+zeG8fS1wa0Q8EREPAweAC5pYr5lZRf707YnqnXVzNvBqSXdL+g9Jv5m39wEHy7YbzttOImmDpJKk0ujoaJ1lmJmdzJ++PVG9QT8POANYCQwCt0lSLS8QEVsiohgRxd7e3jrLMDM72boVfVx72XL6egoI6OspcO1lyzvyQizUP+tmGNgREQHcI+kpYD4wAiwq225h3mZm1lL+9O0z6j2j3wlcBCDpbOBZwM+AXcB6SadJWgosA+5pRqFmZlafimf0krYDq4D5koaBa4CtwNZ8yuUvgSvzs/sHJN0GPAg8CWz0jBszs/ZSls/tVSwWo1QqtbsMM7M5RdLeiChW2s7fdWNmljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSWuYtBL2irpcH43qYm2v5Q0Iuk7+c+asnWbJB2QNCRpYKYKNzOz6lRzRr8NWD1F+yci4rz853YASecA64Fz8+d8SlJXs4o1M7PaVQz6iNgDHKny9dYCt0bEExHxMHAAuKCB+szMrEGNjNG/U9J9+dDO6XlbH3CwbJvhvO0kkjZIKkkqjY6ONlCGmZmdSr1BfyPwYuA84BHgY7W+QERsiYhiRBR7e3vrLMPMzCqpK+gj4rGIOB4RTwGf5pnhmRFgUdmmC/M2MzNrk7qCXtJZZQ9/D5iYkbMLWC/pNElLgWXAPY2VaGZmjZhXaQNJ24FVwHxJw8A1wCpJ5wEB/Bj4U4CIeEDSbcCDwJPAxog4PjOlm5lZNRQR7a6BYrEYpVKp3WWYmc0pkvZGRLHSdv5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4hz0ZmaJc9CbmSXOQW9mlriKQS9pq6TDku6fYt37JIWk+fljSfqkpAOS7pN0/kwUbWZm1avmjH4bsHpyo6RFwOuAn5Y1X0J2n9hlwAbgxsZLNDOzRlQM+ojYAxyZYtUngPeT3Td2wlrg5sjcBfRMupG4mZm1WF1j9JLWAiMR8d1Jq/qAg2WPh/O2qV5jg6SSpNLo6Gg9ZZiZWRVqDnpJzwE+AHyokV8cEVsiohgRxd7e3kZeyszMTmFeHc95MbAU+K4kgIXAvZIuAEaARWXbLszbzMysTWo+o4+I/RHxoohYEhFLyIZnzo+IR4FdwBX57JuVwNGIeKS5JZuZWS2qmV65Hfg20C9pWNJbT7H57cCPgAPAp4F3NKVKMzOrW8Whm4i4vML6JWXLAWxsvCwzM2sWfzLWzCxxDnozs8Q56M3MEuegNzNLXD3z6C0xO/eNsHn3EIfGxlnQU2BwoJ91K6b8QHNHcz/ZXOWg73A7942wacd+xo8dB2BkbJxNO/YDOMTKuJ9sLvPQTYfbvHvo6fCaMH7sOJt3D7WpotnJ/WRzmYO+wx0aG6+pvVO5n2wuc9B3uAU9hZraO5X7yeYyB32HGxzop9DddUJbobuLwYH+ul5v574RLrzuTpZe/S9ceN2d7NyXxnfaNbufzFrJF2M73MSFxGbMJkn5gmUz+8ms1ZR9PU17FYvFKJVK7S7DGnThdXcyMsWYdV9PgW9dfXEbKjJLm6S9EVGstJ2HbqxpfMHSbHZy0FvT+IKl2ezkoLem8QVLs9nJF2OtaXzB0mx2qhj0krYClwKHI+KledtfAWuBp4DDwFURcUjZTWSvB9YAj+ft985U8Tb7rFvR52A3m2WqGbrZBqye1LY5Il4WEecBXwU+lLdfAizLfzYANzapTjMzq1PFoI+IPcCRSW2/KHv4XGBijuZa4ObI3AX0SDqrWcWamVnt6h6jl/Q3wBXAUeCivLkPOFi22XDe9sgUz99AdtbP4sWL6y3DzMwqqHvWTUR8MCIWAbcA76zj+VsiohgRxd7e3nrLMDOzCpoxvfIW4I358giwqGzdwrzNzMzapK6gl7Ss7OFa4KF8eRdwhTIrgaMRcdKwjZmZtU410yu3A6uA+ZKGgWuANZL6yaZX/gR4W7757WRTKw+QTa988wzUbGZmNagY9BFx+RTNN02zbQAbGy3KzMyax1+BYGaWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVni6r5nrJlZs+3cN8Lm3UMcGhtnQU+BwYF+1q3oa3dZc56D3sxmhZ37Rti0Yz/jx44DMDI2zqYd+wEc9g2qOHQjaaukw5LuL2vbLOkhSfdJ+rKknrJ1myQdkDQkaWCmCjeztGzePfR0yE8YP3aczbuH2lRROqoZo98GrJ7Udgfw0oh4GfB9YBOApHOA9cC5+XM+JamradWaWbIOjY3X1G7Vqxj0EbEHODKp7d8i4sn84V3Awnx5LXBrRDwREQ+T3Tv2gibWa2aJWtBTqKndqteMWTdvAf41X+4DDpatG87bTiJpg6SSpNLo6GgTyjCzuWxwoJ9C94kDAIXuLgYH+ttUUToaCnpJHwSeBG6p9bkRsSUiihFR7O3tbaQMM0vAuhV9XHvZcvp6Cgjo6ylw7WXLfSG2CeqedSPpKuBS4DUREXnzCLCobLOFeZuZWUXrVvQ52GdAXWf0klYD7wfeEBGPl63aBayXdJqkpcAy4J7GyzQzs3pVPKOXtB1YBcyXNAxcQzbL5jTgDkkAd0XE2yLiAUm3AQ+SDelsjIjjU7+ymZm1gp4ZdWmfYrEYpVKp3WWYmc0pkvZGRLHSdv6uGzOzxDnozcwSNyuGbiSNAj+p8+nzgZ81sZy5ohP3uxP3GTpzvztxn6H2/f61iKg4P31WBH0jJJWqGaNKTSfudyfuM3TmfnfiPsPM7beHbszMEuegNzNLXApBv6XdBbRJJ+53J+4zdOZ+d+I+wwzt95wfozczs1NL4YzezMxOYU4HvaTV+Z2sDki6ut31zARJiyR9U9KDkh6Q9O68/QxJd0j6Qf7n6e2udSZI6pK0T9JX88dLJd2dH/PPS3pWu2tsJkk9kr6Y38Hte5J+qxOOtaT35n+/75e0XdKzUzzW09yxb8rjq8wn8/2/T9L59f7eORv0+Z2r/h64BDgHuDy/w1VqngTeFxHnACuBjfl+Xg18IyKWAd/IH6fo3cD3yh7/LfCJiPgN4OfAW9tS1cy5HvhaRLwEeDnZvid9rCX1AX8GFCPipUAX2Z3qUjzW2zj5jn3THd9LyL4YchmwAbix3l86Z4Oe7M5VByLiRxHxS+BWsjtcJSUiHomIe/Pl/yF74/eR7evn8s0+B6xrT4UzR9JC4PXAZ/LHAi4GvphvktR+S3oh8DvATQAR8cuIGKMDjjXZFywWJM0DngM8QoLHeqo79jH98V0L3ByZu4AeSWfV83vnctBXfTerVEhaAqwA7gbOjIhH8lWPAme2qayZ9HdkX4f9VP74V4GxsttYpnbMlwKjwGfz4arPSHouiR/riBgBPgr8lCzgjwJ7SftYl5vu+DYt4+Zy0HcUSc8DvgS8JyJ+Ub4uv/FLUtOnJF0KHI6Ive2upYXmAecDN0bECuB/mTRMk+ixPp3s7HUpsAB4LicPb3SEmTq+cznoO+ZuVpK6yUL+lojYkTc/NvHfuPzPw+2qb4ZcCLxB0o/JhuUuJhu/7sn/ew/pHfNhYDgi7s4ff5Es+FM/1q8FHo6I0Yg4BuwgO/4pH+ty0x3fpmXcXA76/waW5Vfmn0V28WZXm2tqunxc+ibgexHx8bJVu4Ar8+Urga+0uraZFBGbImJhRCwhO7Z3RsQfAd8Efj/fLKn9johHgYOSJu6G/Rqym/gkfazJhmxWSnpO/vd9Yr+TPdaTTHd8dwFX5LNvVgJHy4Z4ahMRc/YHWAN8H/gh8MF21zND+/gqsv/K3Qd8J/9ZQzZe/Q3gB8DXgTPaXesM9sEq4Kv58q+T3Z7yAPAF4LR219fkfT0PKOXHeydweicca+DDwEPA/cA/kd3BLrljDWwnuw5xjOx/cG+d7vgCIptZ+ENgP9mspLp+rz8Za2aWuLk8dGNmZlVw0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVni/h+qXUv1uKKLUAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAz90lEQVR4nO3df3SU1YH/8c8kmAQkmZhoMpMaIFJXTKMIIjHKWhGQgBt1ZbtHCi6urtYIKNBaSluN0bVB3XVbW4vHHgVPAdl6Dj82bM0u8rPUQJCYujFKhUZBmIGz5MsMgSZA5vn+kc2UIQnJTObH88y8X+fMOcw8d2buc2dO5sO997nXZhiGIQAAABNJinUFAAAALkRAAQAApkNAAQAApkNAAQAApkNAAQAApkNAAQAApkNAAQAApkNAAQAApjMo1hUIhc/n05EjR5Seni6bzRbr6gAAgH4wDEMnT55UXl6ekpIu3kdiyYBy5MgR5efnx7oaAAAgBIcOHdKVV1550TKWDCjp6emSOk8wIyMjxrUBAAD94fV6lZ+f7/8dvxhLBpSuYZ2MjAwCCgAAFtOf6RlMkgUAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZjyYXaYqnDZ6iuuUXHTrYpJz1NNw6/THu//H/+++MLsiSpzzLJSeHZQ+jC+vT3/UMp09tjF55LKG0U6uv01I49tUlf7R3JduxPHcP1HYn19yGcrx2u71Wk6hjqZ9af72e0P8dQ3r+/zwvH5xjO8wjlMzJjW/dV54F8H0N5/0ggoAShptGlyuomuTxt/seSbJLP+EuZzCGXSJJOnD7baxmnPU0VZYUqLXKGvT79ef9Qy/T02IXnEmobhfI6PbVjT8/rq70j2Y79rWM4viNm+D6E67XD9b2KZB1D+cz68/2M9ucY6vv353nh+hzDdR6hfkZma+v+1DnUcw3l/SPFZhiG0Xcxc/F6vbLb7fJ4PFFb6r6m0aXylfUKR2N15dBls8eG/IGHsz4Dcf65SAq5TqG8zoXt2FubXKy9I92O/a1jX8/ri1m+D+ESru9VNPX1mfXn+ylF/1xDff/+PC+a5xZsfYL5jKJZx76e19+/YeE813D8ZnUJ5vc7qIBSVVWltWvX6rPPPtPgwYN1yy236MUXX9Q111zjL9PW1qbvfve7WrNmjdrb2zV16lT98pe/VG5urr/MwYMHVV5erq1bt2ro0KGaM2eOqqqqNGhQ/zp0oh1QOnyGJry4JSBlDpRNksOepp2L7wi66ywS9RkIm6TcjFRJNrm9odcplNfpasftT03UN1/e2mub9NTe0WrH/taxt+f19R0x2/chXML1vYqm3j6zvj6jWJ9rqO/fn+dF89z6W59QPqNo1rG35wX7Nyyc5zqQ36zzBfP7HdQk2e3bt2vu3LnatWuXNm3apLNnz+rOO+/UqVOn/GUWLlyo6upqvfvuu9q+fbuOHDmi++67z3+8o6NDd911l86cOaMPPvhAb7/9tlasWKFnnnkmyNOMnrrmlrB/aQ1JLk+b6ppbTFGfgTAkub3tA/7jE8rrdLXjr2u/uGib9NTe0WrH/taxt+f19R0x2/chXML1vYqm3j6zvj6jWJ9rqO/fn+dF89z6W59QPqNwGUhbB/s3LJznOpDfrFAFNQelpqYm4P6KFSuUk5OjvXv36rbbbpPH49Gbb76p1atX64477pAkLV++XNdee6127dqlm2++Wf/93/+tpqYmvf/++8rNzdUNN9yg559/XosXL9azzz6rlJSU8J1dmBw7GbkvbSivHcn6WNWXLaf7Ve78tot2O/a3jhfqq558H8znws+Ez8h8rPoZhfI3LJznGs12GtBlxh6PR5KUldU563fv3r06e/asJk+e7C8zatQoDRs2TLW1tZKk2tpaXXfddQFDPlOnTpXX69Unn3zS4/u0t7fL6/UG3KIpJz3NVK8dyfpY1fCsIf0qd37bRbsd+1vHC/VVT74P5nPhZ8JnZD5W/YxC+RsWznONZjuFHFB8Pp8WLFigW2+9VUVFRZIkt9utlJQUZWZmBpTNzc2V2+32lzk/nHQd7zrWk6qqKtntdv8tPz8/1GqHZHxBlpz2NIU+6tadTZ0zo7su6Yp1fQbCJsmRkSpHxsDqFMrrdLXjAyUjLtomPbV3tNqxv3Xs7Xl9fUfM9n0Il3B9r6Kpt8+sr88o1uca6vv353nRPLf+1ieUzyiadeztecH+DQvnuQ7kNytUIQeUuXPnqrGxUWvWrAlnfXq0ZMkSeTwe/+3QoUMRf8/zJSfZVFFWKElh+fJ2vUZFWWFIk43CXZ+B6Hr/Z+/+hp69O/Q6hfI657djyqCkXtukt/aORjv2t44Xe15f3xEzfR/CJVzfq2i62Gd2sc8o1uca6vv353nRPLdg6hPsZxTNOl7secH8DQvnuQ70NytUIQWUefPmaePGjdq6dauuvPJK/+MOh0NnzpzRiRMnAsofPXpUDofDX+bo0aPdjncd60lqaqoyMjICbtFWWuTUstlj5bAHdm9d+FllDrnEfx15b2Uc9rQBX67VW3368/6hlunpsfPPZSBtFMrrXNiOvT3vYu0d6Xbsbx0H+h0xy/chXK8dru9VJOsY7GfWn+9nLD7HUN+/P88L1+cYrvMI9TMyU1v3t86hnmuw7x9JQV1mbBiG5s+fr3Xr1mnbtm26+uqrA457PB5dccUVeueddzRjxgxJ0r59+zRq1CjV1tbq5ptv1nvvvae/+Zu/kcvlUk5OjiTpjTfe0FNPPaVjx44pNTW1z3rEYh2ULqwky0qyrCRrjtVNY11HVpJlJVlWkg1exNZBefzxx7V69Wpt2LAhYO0Tu92uwYMHS5LKy8v129/+VitWrFBGRobmz58vSfrggw8kdV5mfMMNNygvL08vvfSS3G63HnjgAf3TP/2TfvKTn4T9BAEAgDlELKDYbD0nqOXLl+vBBx+U9JeF2t55552AhdrOH7758ssvVV5erm3btunSSy/VnDlztHTpUtMu1AYAAAYuYgHFLAgoAABYTzC/32wWaCKhjiECABBvCCgmEepulAAAxKMBrSSL8OjaVfLCvRHcnjaVr6xXTaMrRjUDACA2CCgx1uEzVFnd1OOW112PVVY3qcNnualCAACEjIASY6HuRgkAQDwjoMRYqLtRAgAQzwgoMRbqbpQAAMQzAkqMhbobJQAA8YyAEmOh7kYJAEA8I6CYQKi7UQIAEK9YqM0kSoucmlLoYCVZAABEQDGV5CSbSkZmx7oaAADEHEM8AADAdAgoAADAdAgoAADAdAgoAADAdAgoAADAdAgoAADAdLjMGHGvw2ewvgwAWAwBBXGtptGlyuomuTx/2Q3aaU9TRVkhK/QCgIkxxIO4VdPoUvnK+oBwIkluT5vKV9arptEVo5oBAPpCQEFc6vAZqqxuktHDsa7HKqub1OHrqQQAINYIKIhLdc0t3XpOzmdIcnnaVNfcEr1KAQD6jYCCuHTsZO/hJJRyAIDoYpIsTCHcV9rkpKeFtRwAILoIKIi5SFxpM74gS057mtyeth7nodgkOeydQQgAYD4M8SCmInWlTXKSTRVlhZI6w8j5uu5XlBWyHgoAmBQBBTET6SttSoucWjZ7rBz2wGEchz1Ny2aPZR0UADAxhngQM8FcaVMyMjuk9ygtcmpKoYOVZAHAYggoiJloXWmTnGQLOeAAAGKDIR7EDFfaAAB6Q0BBzHRdadPbYItNnVfzcKUNACQeAgpihittAAC9IaAgprjSBgDQEybJIua40gYAcCECCkyBK20AAOdjiAcAAJgOAQUAAJgOQzwATCfcu1sDsJ6ge1B27NihsrIy5eXlyWazaf369QHHbTZbj7eXX37ZX2bEiBHdji9dunTAJwPA+moaXZrw4hbN/NUuPbmmQTN/tUsTXtwS8saRAKwp6IBy6tQpjR49Wq+99lqPx10uV8Dtrbfeks1m04wZMwLKPffccwHl5s+fH9oZAIgbkdrdGoD1BD3EM23aNE2bNq3X4w6HI+D+hg0bNHHiRF111VUBj6enp3crCyBx9bW7tU2du1tPKXQw3AMkgIhOkj169Kj+8z//Uw8//HC3Y0uXLlV2drbGjBmjl19+WefOnev1ddrb2+X1egNuAOJLMLtbA4h/EZ0k+/bbbys9PV333XdfwONPPPGExo4dq6ysLH3wwQdasmSJXC6XXnnllR5fp6qqSpWVlZGsKoAYi9bu1gCsIaIB5a233tKsWbOUlha4jPmiRYv8/77++uuVkpKi73znO6qqqlJqamq311myZEnAc7xer/Lz8yNXcQBRx+7WAM4XsYDyu9/9Tvv27dO///u/91m2uLhY586d0xdffKFrrrmm2/HU1NQegwuA+NG1u7Xb09bjPBSbOvdoYndrIDFEbA7Km2++qRtvvFGjR4/us2xDQ4OSkpKUk5MTqeoAMDl2twZwvqB7UFpbW7V//37//ebmZjU0NCgrK0vDhg2T1DkE8+677+pf//Vfuz2/trZWu3fv1sSJE5Wenq7a2lotXLhQs2fP1mWXXTaAUwFgdV27W1dWNwVMmHXY01RRVsju1kACsRmG0VNvaq+2bdumiRMndnt8zpw5WrFihSTpjTfe0IIFC+RyuWS32wPK1dfX6/HHH9dnn32m9vZ2FRQU6IEHHtCiRYv6PYzj9Xplt9vl8XiUkZERTPUBWAAryQLxKZjf76ADihkQUAAAsJ5gfr/ZLBAAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJgOAQUAAJjOoFhXAL3r8Bmqa27RsZNtyklP0/iCLCUn2WJdLQAAIo6AYlI1jS5VVjfJ5WnzP+a0p6mirFClRc4Y1gwAgMhjiMeEahpdKl9ZHxBOJMntaVP5ynrVNLpiVDMAAKKDgGIyHT5DldVNMno41vVYZXWTOnw9lQAAID4QUEymrrmlW8/J+QxJLk+b6ppbolcpAACijIBiMsdO9h5OQikHAIAVEVBMJic9LazlAACwIgKKyYwvyJLTnqbeLia2qfNqnvEFWdGsFgAAUUVAMZnkJJsqygolqVtI6bpfUVbIeigAgLhGQDGh0iKnls0eK4c9cBjHYU/TstljWQcFABD3WKjNpEqLnJpS6GAlWQBAQiKgmFhykk0lI7NjXQ0AAKKOgAJEGHsqAUDwCChABLGnEgCEhkmyQISwpxIAhI6AAkQAeyoBwMAQUIAIYE8lABgYAgoQAeypBAADQ0ABIoA9lQBgYAgoQASwpxIADAwBBYgA9lQCgIEhoAARwp5KABA6FmoDIog9lQAgNAQUIMLYUwkAgkdAwYCwzwwAIBKCnoOyY8cOlZWVKS8vTzabTevXrw84/uCDD8pmswXcSktLA8q0tLRo1qxZysjIUGZmph5++GG1trYO6EQQfTWNLk14cYtm/mqXnlzToJm/2qUJL25hCXcAwIAFHVBOnTql0aNH67XXXuu1TGlpqVwul//2zjvvBByfNWuWPvnkE23atEkbN27Ujh079OijjwZfe8QM+8wAACIp6CGeadOmadq0aRctk5qaKofD0eOxTz/9VDU1NdqzZ4/GjRsnSfr5z3+u6dOn61/+5V+Ul5cXbJUQZX3tM2NT5z4zUwodDPcAAEISkcuMt23bppycHF1zzTUqLy/X8ePH/cdqa2uVmZnpDyeSNHnyZCUlJWn37t09vl57e7u8Xm/ADbHDPjMAED0dPkO1B45rQ8Nh1R44njCbjIZ9kmxpaanuu+8+FRQU6MCBA/rhD3+oadOmqba2VsnJyXK73crJyQmsxKBBysrKktvt7vE1q6qqVFlZGe6qIkTsMwMA0VHT6FJldVPAfwqd9jRVlBXG/VpKYe9Buf/++3X33Xfruuuu07333quNGzdqz5492rZtW8ivuWTJEnk8Hv/t0KFD4aswgsY+MwAQeYk+1y/iK8leddVVuvzyy7V//35JksPh0LFjxwLKnDt3Ti0tLb3OW0lNTVVGRkbADbHDPjMAEFl9zfWTOuf6xfNwT8QDyldffaXjx4/L6ezsiiopKdGJEye0d+9ef5ktW7bI5/OpuLg40tVBGLDPDABEFnP9Qggora2tamhoUENDgySpublZDQ0NOnjwoFpbW/XUU09p165d+uKLL7R582bdc889+vrXv66pU6dKkq699lqVlpbqkUceUV1dnX7/+99r3rx5uv/++7mCx0LYZwYAIoe5fiFMkv3www81ceJE//1FixZJkubMmaNly5bp448/1ttvv60TJ04oLy9Pd955p55//nmlpqb6n7Nq1SrNmzdPkyZNUlJSkmbMmKFXX301DKeDaGKfGQCIDOb6STbDMCw3gOX1emW32+XxeJiPAgCIOx0+QxNe3CK3p63HeSg2dfZY71x8h6X+UxjM73fE56AAAIDgMNePgAIAgCkl+lw/djMGAMCkEnmuHwEFAAATS06yqWRkdqyrEXUM8QAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMZFOsKAAAQLR0+Q3XNLTp2sk056WkaX5Cl5CRbrKuFHhBQAAAJoabRpcrqJrk8bf7HnPY0VZQVqrTIGcOaoScM8QAA4l5No0vlK+sDwokkuT1tKl9Zr5pGV1Tq0eEzVHvguDY0HFbtgePq8BlReV8rogcFABDXOnyGKqub1FMUMCTZJFVWN2lKoSOiwz304ASHHhSLIX0DQHDqmlu69Zycz5Dk8rSprrklYnUwSw+OldCDYiGkbwAI3rGTvYeTUMoFyyw9OFZDD4pFkL4BIDQ56WlhLRcsM/TgWBEBxQL6St9SZ/pmuAcAuhtfkCWnPU299U3Y1NkbPb4gKyLvH+seHKsioFgA6RsAQpecZFNFWaEkdQspXfcrygojNrwS6x4cqyKgWADpGwAGprTIqWWzx8phDwwBDnuals0eG9F5fLHuwbEqJslaAOkbAAautMipKYWOqK8k29WDU76yXjYpYLg+Gj04VkUPigWQvgEgPJKTbCoZma17bviaSkZmRy0UxLIHx6roQbEA0jcAWF+senCsymYYhuUu/fB6vbLb7fJ4PMrIyIh1daKGdVAAAFYWzO83PSgWQvoGACSKoOeg7NixQ2VlZcrLy5PNZtP69ev9x86ePavFixfruuuu06WXXqq8vDz9wz/8g44cORLwGiNGjJDNZgu4LV26dMAnkwhiNX4KAEA0BR1QTp06pdGjR+u1117rduz06dOqr6/X008/rfr6eq1du1b79u3T3Xff3a3sc889J5fL5b/Nnz8/tDMAAABxJ+ghnmnTpmnatGk9HrPb7dq0aVPAY7/4xS80fvx4HTx4UMOGDfM/np6eLofDEezbAwCABBDxy4w9Ho9sNpsyMzMDHl+6dKmys7M1ZswYvfzyyzp37lyvr9He3i6v1xtwAwAA8Suik2Tb2tq0ePFizZw5M2C27hNPPKGxY8cqKytLH3zwgZYsWSKXy6VXXnmlx9epqqpSZWVlJKsKAABMZECXGdtsNq1bt0733ntvt2Nnz57VjBkz9NVXX2nbtm0XvZzorbfe0ne+8x21trYqNTW12/H29na1t7f773u9XuXn5yfcZcYAAFhZzC8zPnv2rP7+7/9eX375pbZs2dJnJYqLi3Xu3Dl98cUXuuaaa7odT01N7TG4AACA+BT2gNIVTj7//HNt3bpV2dnZfT6noaFBSUlJysnJCXd1AACABQUdUFpbW7V//37//ebmZjU0NCgrK0tOp1N/93d/p/r6em3cuFEdHR1yu92SpKysLKWkpKi2tla7d+/WxIkTlZ6ertraWi1cuFCzZ8/WZZddFr4zAwAAlhX0HJRt27Zp4sSJ3R6fM2eOnn32WRUUFPT4vK1bt+r2229XfX29Hn/8cX322Wdqb29XQUGBHnjgAS1atKjfwziJutQ9AHPr8Bms9AxcRDC/3+zFAwBhwF5ZQN+C+f2O+DooABDvahpdKl9ZHxBOJMntaVP5ynrVNLpiVDPAuggoADAAHT5DldVN6qkruuuxyuomdfgs11kNxBQB5TwdPkO1B45rQ8Nh1R44zh8UAH2qa27p1nNyPkOSy9OmuuaW6FUKiAMRXUnWShg/BhCKYyd7DyehlAPQiR4UMX4MIHQ56WlhLQegU8IHFMaPAQzE+IIsOe1p6u1iYps6e2PHF2RFs1qA5SV8QGH8ODEx3wjhkpxkU0VZoSR1Cyld9yvKClkPBQhSws9BYfw48TDfCOFWWuTUstlju32vHHyvgJAlfEBh/DixdM03urC/pGu+0bLZY/kxQUhKi5yaUuhgJVkgTBI+oHSNH7s9bT3OQ7Gp839BjB9bX1/zjWzqnG80pdDBjwpCkpxkU8nIvjdIBdC3hJ+Dwvhx4mC+ERA+zONCpCV8D4rE+HGiYL4REB7M40I0EFD+D+PH8Y/5RsDABTOPi92dMRAElPMwfhzfmG8EDEww87g2NbnpZcGAJPwcFCQO5hsBA9PfeVy/2LKf1bkxYAQUJJSu+UYOe+AwjsOexiXGQB/6Oz9r+e+bWZ0bA8YQDxIO842A0PR3ftaJP5/t9dj5V8sxpI6LIaAgITHfCAhef+Zx2QdfctGA0oWr5dAXhngAAP3Sn3lc/3jriH69FlfLoS8EFABAv/U1j2veHVezuzPCgiEeAEBQ+prHVVFWqPKV9bJJAUNBXC2HYNgMw7DcVGqv1yu73S6Px6OMjIxYVwcAcAFWm0VPgvn9pgcFABB2XC2HgSKgAAAigqvlMBBMkgUAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKYTdEDZsWOHysrKlJeXJ5vNpvXr1wccNwxDzzzzjJxOpwYPHqzJkyfr888/DyjT0tKiWbNmKSMjQ5mZmXr44YfV2to6oBMBAADxI+iAcurUKY0ePVqvvfZaj8dfeuklvfrqq3r99de1e/duXXrppZo6dara2tr8ZWbNmqVPPvlEmzZt0saNG7Vjxw49+uijoZ8FAACIKzbDMIyQn2yzad26dbr33nsldfae5OXl6bvf/a6+973vSZI8Ho9yc3O1YsUK3X///fr0009VWFioPXv2aNy4cZKkmpoaTZ8+XV999ZXy8vL6fF+v1yu73S6Px6OMjIxQqw8AAKIomN/vsM5BaW5ultvt1uTJk/2P2e12FRcXq7a2VpJUW1urzMxMfziRpMmTJyspKUm7d+/u8XXb29vl9XoDbgAAIH6FNaC43W5JUm5ubsDjubm5/mNut1s5OTkBxwcNGqSsrCx/mQtVVVXJbrf7b/n5+eGsNgAAMBlLXMWzZMkSeTwe/+3QoUOxrhIQcR0+Q7UHjmtDw2HVHjiuDl/Io7EAYDmDwvliDodDknT06FE5nU7/40ePHtUNN9zgL3Ps2LGA5507d04tLS3+518oNTVVqamp4awqYGo1jS5VVjfJ5fnL5HKnPU0VZYUqLXJe5JkAEB/C2oNSUFAgh8OhzZs3+x/zer3avXu3SkpKJEklJSU6ceKE9u7d6y+zZcsW+Xw+FRcXh7M6SADx2MtQ0+hS+cr6gHAiSW5Pm8pX1qum0RWjmgFA9ATdg9La2qr9+/f77zc3N6uhoUFZWVkaNmyYFixYoH/+53/W1VdfrYKCAj399NPKy8vzX+lz7bXXqrS0VI888ohef/11nT17VvPmzdP999/fryt4gC7x2MvQ4TNUWd2knmKWIckmqbK6SVMKHUpOskW5dgAQPUH3oHz44YcaM2aMxowZI0latGiRxowZo2eeeUaS9P3vf1/z58/Xo48+qptuukmtra2qqalRWlqa/zVWrVqlUaNGadKkSZo+fbomTJigN954I0ynhEQQr70Mdc0t3c7pfIYkl6dNdc0t0asUQhaPPXxAtAxoHZRYYR2UxNbhMzThxS29/pDbJDnsadq5+A7L9TJsaDisJ9c09FnuZ/ffoHtu+FrkK4SQxWMPHzBQMVsHBYiGeO5lyElP67tQEOUQG/HawwdEEwEFlnPsZO/hJJRyZjK+IEtOe5p66/exqfN/4eMLsqJZLQShr3lEUuc8IoZ7gIsjoMBy4rmXITnJpoqyQknqFlK67leUFVpu6CqRxHMPHxBNBBRYTrz3MpQWObVs9lg57IEBy2FP07LZY5m/YHLx3MMHRFNYF2oDoqGrl6F8Zb1sUkBXerz0MpQWOTWl0KG65hYdO9mmnPTOwGXlc0oU8dzDB0QTPSiwpEToZUhOsqlkZLbuueFrKhmZTTixiHjv4QOihR4UWBa9DDCjROjhA6KBdVAAIAJYBwXoLpjfb3pQACAC6OEDBoaAAgAR0jWPCEDwmCQLAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh4ACAABMh80CAYvo8BnsjAsgYRBQAAuoaXSpsrpJLk+b/zGnPU0VZYUqLXLGsGYAEBkM8QAmV9PoUvnK+oBwIkluT5vKV9arptEVo5oBQOQQUAAT6/AZqqxuktHDsa7HKqub1OHrqQQAWBcBBTCxuuaWbj0n5zMkuTxtqmtuiV6lACAKCCiAiR072Xs4CaUcAFgFAQUwsZz0tLCWAwCrIKAAJja+IEtOe5p6u5jYps6recYXZEWzWgAQcQQUwMSSk2yqKCuUpG4hpet+RVkh66FYXIfPUO2B49rQcFi1B44z6RkQ66AAplda5NSy2WO7rYPiYB2UuMAaN0DPbIZhWC6qe71e2e12eTweZWRkxLo6QFSwkmz86Vrj5sI/wl2f6rLZYwkpiCvB/H7TgwJYRHKSTSUjs2NdDYRJX2vc2NS5xs2UQgdBFAmJOSgAEAOscYNos9pcJ3pQACAGWOMG0WTFuU70oABADLDGDaLFqvt5EVAAIAZY4wbRYOX9vAgoABADrHGDaLDyXKewB5QRI0bIZrN1u82dO1eSdPvtt3c79thjj4W7GgBgel1r3DjsgcM4DnsalxgjLKw81ynsk2T37Nmjjo4O//3GxkZNmTJF3/rWt/yPPfLII3ruuef894cMGRLuagCAJZQWOTWl0MEaN4gIK891CntAueKKKwLuL126VCNHjtQ3v/lN/2NDhgyRw+EI91sDgCWxxg0ipWuuk9vT1uM8FJs6e+zMONcponNQzpw5o5UrV+qhhx6SzfaX/w2sWrVKl19+uYqKirRkyRKdPn36oq/T3t4ur9cbcAMAABdn5blOEQ0o69ev14kTJ/Tggw/6H/v2t7+tlStXauvWrVqyZIl+/etfa/bs2Rd9naqqKtntdv8tPz8/ktUGACBuWHWuU0T34pk6dapSUlJUXV3da5ktW7Zo0qRJ2r9/v0aOHNljmfb2drW3t/vve71e5efnsxcPAAD9ZIb9vEyxF8+XX36p999/X2vXrr1oueLiYkm6aEBJTU1Vampq2OsIAECisNpcp4gN8Sxfvlw5OTm66667LlquoaFBkuR0mrOLCQAARF9EelB8Pp+WL1+uOXPmaNCgv7zFgQMHtHr1ak2fPl3Z2dn6+OOPtXDhQt122226/vrrI1EVAABgQREJKO+//74OHjyohx56KODxlJQUvf/++/rpT3+qU6dOKT8/XzNmzNCPf/zjSFTD1MwwFggAgFlFdJJspAQzycaMrLirJAAAAxXM7zd78USZVXeVBAAgmggoUWTlXSUBAIgmAkoUWXlXSQAAoomAEkVW3lUSAIBoIqBEkZV3lQQAIJoIKFHUtatkbxcT29R5NY8Zd5UEACCaCChRZOVdJQEAiCYCSpRZdVdJAACiKWKbBaJ3pUVOTSl0sJIsAAC9IKDEiNV2lQQAIJoY4gEAAKZDQAEAAKZDQAEAAKZDQAEAAKbDJFnAwjp8BleDAYhLBBTAomoaXaqsbgrYgNJpT1NFWSHr6QCwPIZ4AAuqaXSpfGV9t92x3Z42la+sV02jK0Y1A4DwIKAAFtPhM1RZ3SSjh2Ndj1VWN6nD11MJALAGAgpgMXXNLd16Ts5nSHJ52lTX3BK9SgEW1eEzVHvguDY0HFbtgeMEexNhDgpgMcdO9h5OQikHJCrmcZkbPSiAxeSkp/VdKIhyQCJiHpf5EVAAixlfkCWnPU29XUxsU+f/AscXZEWzWoBlMI/LGggogMUkJ9lUUVYoSd1CStf9irJC1kMBesE8LmsgoAAWVFrk1LLZY+WwBw7jOOxpWjZ7LOPnwEUwj8samCQLWFRpkVNTCh2sJAsEiXlc1kBAASwsOcmmkpHZsa4GYCld87jcnrYe56HY1NkbyTyu2GKIBwCQUJjHZQ0EFABAwmEel/kxxAMASEhWnseVCDuZE1AAAAnLivO4EmUFXIZ4AACwiERaAZeAAgCABSTaCrgEFAAALCDRVsAloAAAYAGJtgIuAQUAAAtItBVwCSgAAFhAou1kTkABAMACEm0FXAIKAAAWkUgr4LJQGwAAFmLlFXCDEfYelGeffVY2my3gNmrUKP/xtrY2zZ07V9nZ2Ro6dKhmzJiho0ePhrsaAADEra4VcO+54WsqGZkdd+FEitAQzze+8Q25XC7/befOnf5jCxcuVHV1td59911t375dR44c0X333ReJagAAAIuKyBDPoEGD5HA4uj3u8Xj05ptvavXq1brjjjskScuXL9e1116rXbt26eabb45EdQAAgMVEpAfl888/V15enq666irNmjVLBw8elCTt3btXZ8+e1eTJk/1lR40apWHDhqm2trbX12tvb5fX6w24AQCA+BX2gFJcXKwVK1aopqZGy5YtU3Nzs/76r/9aJ0+elNvtVkpKijIzMwOek5ubK7fb3etrVlVVyW63+2/5+fnhrjYAADCRsA/xTJs2zf/v66+/XsXFxRo+fLh+85vfaPDgwSG95pIlS7Ro0SL/fa/XS0gBACCORXwdlMzMTP3VX/2V9u/fL4fDoTNnzujEiRMBZY4ePdrjnJUuqampysjICLgBAID4FfGA0traqgMHDsjpdOrGG2/UJZdcos2bN/uP79u3TwcPHlRJSUmkqxK0Dp+h2gPHtaHhsGoPHI+bLawBADC7sA/xfO9731NZWZmGDx+uI0eOqKKiQsnJyZo5c6bsdrsefvhhLVq0SFlZWcrIyND8+fNVUlJiuit4ahpdqqxuCtja2mlPU0VZYVyt1AcAgBmFPaB89dVXmjlzpo4fP64rrrhCEyZM0K5du3TFFVdIkv7t3/5NSUlJmjFjhtrb2zV16lT98pe/DHc1BqSm0aXylfW6sL/E7WlT+cr6uFtOGAAAs7EZhmG5cQuv1yu73S6PxxP2+SgdPkMTXtwS0HNyPps69zzYufiOuFy5DwCASAnm95vNAi9Q19zSaziRJEOSy9OmuuaW6FUKAIAEQ0C5wLGTvYeTUMoBAIDgEVAukJOe1nehIMoBAIDgEVAuML4gS057mnqbXWJT59U84wuyolktAAASCgHlAslJNlWUFUpSt5DSdb+irJAJsgDiAus9wawispux1ZUWObVs9thu66A4WAcFQBxhvSeYGZcZX0SHz1Bdc4uOnWxTTnrnsA49JwDiQW/rPXX9hWO9J0RCML/f9KBcRHKSTSUjs2NdDQAIqw6focrqpm7hROpcSsEmqbK6SVMKHfynDDHDHBQASDCs95QYrD6/iB4UAEgwrPcU/+JhfhE9KACQYFjvKb51zS+6sJesaz+5mkZXjGoWHAIKACQY1nuKX33NL5I65xdZYbiHgAIACYb1nuJXPM0vIqAAQALqWu/JYQ8cxnHY07jE2MLiaX4Rk2QBIEGVFjk1pdDBek9xJJ7mFxFQACCBsd5TfOmaX+T2tPU4D8Wmzl4yK8wvYogHAIA4EU/ziwgoAADEkXiZX8QQDwAAcSYe5hcRUAAAiENWn1/EEA8AADAdAgoAADAdhngAAHGhw2dYes4FAhFQAACWFw+79yIQQzwAAEuLl917EYiAAgCwrHjavReBCCgAAMuKp917EYiAAgCwrHjavReBCCgAAMuKp917EYiAAgCwrK7de3u7mNimzqt5rLB7LwIRUAAAlhVPu/ciEAEFAGBp8bJ7LwKxUBsAwPLiYfdeBCKgAADigtV370UghngAAIDpEFAAAIDpEFAAAIDpEFAAAIDpEFAAAIDphD2gVFVV6aabblJ6erpycnJ07733at++fQFlbr/9dtlstoDbY489Fu6qAAAAiwp7QNm+fbvmzp2rXbt2adOmTTp79qzuvPNOnTp1KqDcI488IpfL5b+99NJL4a4KAACwqLCvg1JTUxNwf8WKFcrJydHevXt12223+R8fMmSIHA5HuN8eAADEgYjPQfF4PJKkrKzAjZpWrVqlyy+/XEVFRVqyZIlOnz7d62u0t7fL6/UG3AAAQPyK6EqyPp9PCxYs0K233qqioiL/49/+9rc1fPhw5eXl6eOPP9bixYu1b98+rV27tsfXqaqqUmVlZbfHCSoAAFhH1++2YRh9lrUZ/SkVovLycr333nvauXOnrrzyyl7LbdmyRZMmTdL+/fs1cuTIbsfb29vV3t7uv3/48GEVFhZGpM4AACCyDh06dNFcIEWwB2XevHnauHGjduzY0WcliouLJanXgJKamqrU1FT//aFDh+rQoUNKT0+XzRbejaC8Xq/y8/N16NAhZWRkhPW1EYi2jh7aOnpo6+ihraMnXG1tGIZOnjypvLy8PsuGPaAYhqH58+dr3bp12rZtmwoKCvp8TkNDgyTJ6ezflthJSUl9hp6BysjI4AsfJbR19NDW0UNbRw9tHT3haGu73d6vcmEPKHPnztXq1au1YcMGpaeny+12+ys0ePBgHThwQKtXr9b06dOVnZ2tjz/+WAsXLtRtt92m66+/PtzVAQAAFhT2gLJs2TJJnYuxnW/58uV68MEHlZKSovfff18//elPderUKeXn52vGjBn68Y9/HO6qAAAAi4rIEM/F5Ofna/v27eF+27BJTU1VRUVFwJwXRAZtHT20dfTQ1tFDW0dPLNo6olfxAAAAhILNAgEAgOkQUAAAgOkQUAAAgOkQUAAAgOkQUM7z2muvacSIEUpLS1NxcbHq6upiXSXLq6qq0k033aT09HTl5OTo3nvv1b59+wLKtLW1ae7cucrOztbQoUM1Y8YMHT16NEY1jh9Lly6VzWbTggUL/I/R1uFz+PBhzZ49W9nZ2Ro8eLCuu+46ffjhh/7jhmHomWeekdPp1ODBgzV58mR9/vnnMayxNXV0dOjpp59WQUGBBg8erJEjR+r5558PuGKUtg7Njh07VFZWpry8PNlsNq1fvz7geH/ataWlRbNmzVJGRoYyMzP18MMPq7W1NTwVNGAYhmGsWbPGSElJMd566y3jk08+MR555BEjMzPTOHr0aKyrZmlTp041li9fbjQ2NhoNDQ3G9OnTjWHDhhmtra3+Mo899piRn59vbN682fjwww+Nm2++2bjllltiWGvrq6urM0aMGGFcf/31xpNPPul/nLYOj5aWFmP48OHGgw8+aOzevdv405/+ZPzXf/2XsX//fn+ZpUuXGna73Vi/fr3xhz/8wbj77ruNgoIC489//nMMa249L7zwgpGdnW1s3LjRaG5uNt59911j6NChxs9+9jN/Gdo6NL/97W+NH/3oR8batWsNSca6desCjvenXUtLS43Ro0cbu3btMn73u98ZX//6142ZM2eGpX4ElP8zfvx4Y+7cuf77HR0dRl5enlFVVRXDWsWfY8eOGZKM7du3G4ZhGCdOnDAuueQS49133/WX+fTTTw1JRm1tbayqaWknT540rr76amPTpk3GN7/5TX9Aoa3DZ/HixcaECRN6Pe7z+QyHw2G8/PLL/sdOnDhhpKamGu+88040qhg37rrrLuOhhx4KeOy+++4zZs2aZRgGbR0uFwaU/rRrU1OTIcnYs2ePv8x7771n2Gw24/DhwwOuE0M8ks6cOaO9e/dq8uTJ/seSkpI0efJk1dbWxrBm8cfj8UiSsrKyJEl79+7V2bNnA9p+1KhRGjZsGG0forlz5+quu+4KaFOJtg6n//iP/9C4ceP0rW99Szk5ORozZox+9atf+Y83NzfL7XYHtLXdbldxcTFtHaRbbrlFmzdv1h//+EdJ0h/+8Aft3LlT06ZNk0RbR0p/2rW2tlaZmZkaN26cv8zkyZOVlJSk3bt3D7gOEdvN2Er+93//Vx0dHcrNzQ14PDc3V5999lmMahV/fD6fFixYoFtvvVVFRUWSJLfbrZSUFGVmZgaUzc3N9e/jhP5bs2aN6uvrtWfPnm7HaOvw+dOf/qRly5Zp0aJF+uEPf6g9e/boiSeeUEpKiubMmeNvz57+ptDWwfnBD34gr9erUaNGKTk5WR0dHXrhhRc0a9YsSaKtI6Q/7ep2u5WTkxNwfNCgQcrKygpL2xNQEDVz585VY2Ojdu7cGeuqxKVDhw7pySef1KZNm5SWlhbr6sQ1n8+ncePG6Sc/+YkkacyYMWpsbNTrr7+uOXPmxLh28eU3v/mNVq1apdWrV+sb3/iGGhoatGDBAuXl5dHWcY4hHkmXX365kpOTu13NcPToUTkcjhjVKr7MmzdPGzdu1NatW3XllVf6H3c4HDpz5oxOnDgRUJ62D97evXt17NgxjR07VoMGDdKgQYO0fft2vfrqqxo0aJByc3Np6zBxOp0qLCwMeOzaa6/VwYMHJcnfnvxNGbinnnpKP/jBD3T//ffruuuu0wMPPKCFCxeqqqpKEm0dKf1pV4fDoWPHjgUcP3funFpaWsLS9gQUSSkpKbrxxhu1efNm/2M+n0+bN29WSUlJDGtmfYZhaN68eVq3bp22bNmigoKCgOM33nijLrnkkoC237dvnw4ePEjbB2nSpEn6n//5HzU0NPhv48aN06xZs/z/pq3D49Zbb+12ufwf//hHDR8+XJJUUFAgh8MR0NZer1e7d++mrYN0+vRpJSUF/lQlJyfL5/NJoq0jpT/tWlJSohMnTmjv3r3+Mlu2bJHP51NxcfHAKzHgabZxYs2aNUZqaqqxYsUKo6mpyXj00UeNzMxMw+12x7pqllZeXm7Y7XZj27Zthsvl8t9Onz7tL/PYY48Zw4YNM7Zs2WJ8+OGHRklJiVFSUhLDWseP86/iMQzaOlzq6uqMQYMGGS+88ILx+eefG6tWrTKGDBlirFy50l9m6dKlRmZmprFhwwbj448/Nu655x4ufQ3BnDlzjK997Wv+y4zXrl1rXH755cb3v/99fxnaOjQnT540PvroI+Ojjz4yJBmvvPKK8dFHHxlffvmlYRj9a9fS0lJjzJgxxu7du42dO3caV199NZcZR8LPf/5zY9iwYUZKSooxfvx4Y9euXbGukuVJ6vG2fPlyf5k///nPxuOPP25cdtllxpAhQ4y//du/NVwuV+wqHUcuDCi0dfhUV1cbRUVFRmpqqjFq1CjjjTfeCDju8/mMp59+2sjNzTVSU1ONSZMmGfv27YtRba3L6/UaTz75pDFs2DAjLS3NuOqqq4wf/ehHRnt7u78MbR2arVu39vj3ec6cOYZh9K9djx8/bsycOdMYOnSokZGRYfzjP/6jcfLkybDUz2YY5y3HBwAAYALMQQEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKbz/wGjYfd9rTKx5gAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -335,9 +335,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -349,9 +349,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 5/Ch5_book.ipynb b/Chapter 5/Ch5_book.ipynb index 1b2046b..6fb6ffb 100644 --- a/Chapter 5/Ch5_book.ipynb +++ b/Chapter 5/Ch5_book.ipynb @@ -17,9 +17,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n", + " 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47\n", + " 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63]\n", + "8\n", + "[array([ 0, 1, 4, 9, 16, 25, 36, 49]), array([ 64, 81, 100, 121, 144, 169, 196, 225]), array([256, 289, 324, 361, 400, 441, 484, 529]), array([576, 625, 676, 729, 784, 841, 900, 961]), array([1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521]), array([1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209]), array([2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025]), array([3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969])]\n" + ] + } + ], "source": [ "import multiprocessing as mp\n", "import numpy as np\n", @@ -42,9 +54,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In process 0\n", + "In process 1\n", + "In process 2\n", + "In process 3\n", + "In process 4\n", + "In process 5\n", + "In process 6\n", + "In process 7\n", + "[array([ 0, 1, 4, 9, 16, 25, 36, 49]), array([ 64, 81, 100, 121, 144, 169, 196, 225]), array([256, 289, 324, 361, 400, 441, 484, 529]), array([576, 625, 676, 729, 784, 841, 900, 961]), array([1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521]), array([1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209]), array([2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025]), array([3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969])]\n" + ] + } + ], "source": [ "def square(i, x, queue):\n", " print(\"In process {}\".format(i,))\n", @@ -79,9 +107,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/registration.py:307: DeprecationWarning: The package name gym_minigrid has been deprecated in favor of minigrid. Please uninstall gym_minigrid and install minigrid with `pip install minigrid`. Future releases will be maintained under the new package name minigrid.\n", + " fn()\n" + ] + } + ], "source": [ "import torch\n", "from torch import nn\n", @@ -118,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -161,7 +198,7 @@ " action = action_dist.sample() #E\n", " logprob_ = policy.view(-1)[action]\n", " logprobs.append(logprob_)\n", - " state_, _, done, info = worker_env.step(action.detach().numpy())\n", + " state_, _, done, _, info = worker_env.step(action.detach().numpy())\n", " state = torch.from_numpy(state_).float()\n", " if done: #F\n", " reward = -10\n", @@ -181,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -215,7 +252,28 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n" + ] + } + ], "source": [ "MasterNode = ActorCritic() #A\n", "MasterNode.share_memory() #B\n", @@ -246,9 +304,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/classic_control/cartpole.py:211: UserWarning: \u001b[33mWARN: You are calling render method without specifying any render mode. You can specify the render_mode at initialization, e.g. gym(\"CartPole-v1\", render_mode=\"rgb_array\")\u001b[0m\n", + " gym.logger.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lost\n", + "Lost\n", + "Lost\n", + "Lost\n" + ] + } + ], "source": [ "env = gym.make(\"CartPole-v1\")\n", "env.reset()\n", @@ -259,7 +336,7 @@ " logits,value = MasterNode(state)\n", " action_dist = torch.distributions.Categorical(logits=logits)\n", " action = action_dist.sample()\n", - " state2, reward, done, info = env.step(action.detach().numpy())\n", + " state2, reward, done, info, _ = env.step(action.detach().numpy())\n", " if done:\n", " print(\"Lost\")\n", " env.reset()\n", @@ -277,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -318,9 +395,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No bootstrapping\n", + "0.010000000000000009 1.99\n", + "With bootstrapping\n", + "0.9901 2.9701\n" + ] + } + ], "source": [ "#Simulated rewards for 3 steps\n", "r1 = [1,1,-1]\n", @@ -342,13 +430,20 @@ "print(\"With bootstrapping\")\n", "print(R1,R2)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -360,9 +455,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 6/Ch6_book.ipynb b/Chapter 6/Ch6_book.ipynb index d3b7d36..bbb691d 100644 --- a/Chapter 6/Ch6_book.ipynb +++ b/Chapter 6/Ch6_book.ipynb @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -103,7 +103,7 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -140,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -171,16 +171,16 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'QHelolo Tor!'" + "'Hllo World!D'" ] }, - "execution_count": 204, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -192,19 +192,27 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAG3CAYAAACDh1JQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8nFeB7vHnzIx6r5ZkSZaLYsc9tlzjhPQ4QAqEEIeQQkhCy8Ll7t0Au8Cy7LJw4cLC7mZZAgkJqaQQ8JJAGiSuOJZL3ItsySq2rN6l0ZRz/xjFyI6dyLI070jz+34++kjvzPHokWJbj0/Oe46x1goAAADA6HI5HQAAAACIBhRvAAAAIAwo3gAAAEAYULwBAACAMKB4AwAAAGFA8QYAAADCgOINAAAAhAHFGwAAAAgDijcAAAAQBh6nA4yW7OxsW1JS4nQMAAAAjHNbtmxpstbmvN+4cVu8S0pKVF5e7nQMAAAAjHPGmCNDGcdSEwAAACAMKN4AAABAGFC8AQAAgDCgeAMAAABhQPEGAAAAwoDiDQAAAIQBxRsAAAAIA4o3AAAAEAYUbwAAACAMKN4AAABAGFC8AQAAgDCgeAMAAABhQPEGAAAAwoDiDQAAAIQBxRsAAAARpaGzT3VtvfIHgk5HGVEepwMAAAAg+gSCVk1dXh1t69Wx9j7tr+/Urrp27axrV0OnV5LkcRnlpcWrMCNB6QmxClirQDD0FuN2KTs5VlnJscpOjlNWcpw+NCdfbpdx+Cs7M4o3AABAlLLW6lBjt/bVd+hYW5+Otveqvr1PzV398geDClgpOFB0g9bKH7QKBq0kKTneo9T4GKUmeJQSF3ofuo5RcpxHPb6AOnp9auvpV3uvT209PrX3+k583NTllX/gtSTJZaSpOcm6cFq2Zk9MU0KMW3VtPapt7VVta68ON3XJZYzcrtBbvz+ot2vb1NLdr0DQyuMyunZuvlPfyiGheAMAAESJPl9AO2rbVX6kRVuPtGrLkVa19vhOPJ8Y61Z+Wryyk+OUGOuRy2XkNjpRdt0uI5cJzSh3e/3q6PPreEefOvp86uj1q9cXeNfnTIhxKy0hRumJoVJenJmoORNjlJsap/y0BOWnxSs/LUGTshKVFHf21TQYtGrv9am1p1/GRO5st0TxBgAAGHEdfT7Vt/fpaFuvmrr65fUH5PMH1R8IKhCUEmJcSorzKDnOo6Q4j5Li3KH3saFra60C1ioYlILWKj0xRomxJ9e2QNDqaFuvqpq75Q9YJca6T7ymPxhUS3eojLb19KuioUvlR1q1q65dvkBolnlKdpKuOH+CykoyNGdiuiamJyg1wXNO5bXfH1Rnn0+dfX4lxoUKd5zHfU7fy/fjchllJMUqIyl2VD/PSKB4AwAAnIUur1/H2np1tL1P9e29OtrWFyrZA8s0jrX3qcvrH/HPmxznUW5qnHKS49TW41Nlc7f6/UO7+TDW49LciWm6a8VklU3K1ILidGUlx414xliPS1kD663xbhRvAACAUwSDVgcaOrWholkHjneeKNnH2vrUeUqpNkbKSY5Tflr8iTXKBenxJ5ZR5KTEKT7GrRi3S7Eel1xG6u0PqNsbUHe/X91ev7q8fvX0B0LvvX4ZYwaWeRi5jNTa41NDZ58aOrxq7PSqKDNRl0zP0eTsJJVkJyk+xn3idbq9frldRhmJscpMilV6YoxyUuJGfeYZ74/iDQAAIkqfL6AtR1q15mCjDjd2a2pOsmYWpGpmfqoKMxJ0qLFLe452aO+xTh1u6lKM26XkOI8SY91KjHXLF7Dq8wXU5wvI6w8qPTFGE1LjlZcarwlpofd5qfFKT4yRMUbWWjV2enWwoUsHj3eq/EirNh5qVnN3vyQpOzlWBekJKslK0vKp2cpLi1d+WrwK0hNCr5kar1jP2e3QnBjrUVbyaHz3EMko3gAAYNTUtfVqQ0WTNhxq1oZDTfL6g7pwarYuKs3WReflKC81XlXN3TpQ36l99Z3aXtOmTZXN6vMFFeM2KspM1Bv7G06sSx4sPsalKdnJClo7MHMcUE+/XzFulxJi3IqPcSvW41JbT7+auvrf9evjPC7lpoaWbXT2/XUWOzclThefl6PlU7O0fFq2JqYnjOr3CNGD4g0AAEZMc5dXGw83h4p2RZOqmnskhWaNl03NVpzHpXUHm/TizmOSpFi3S/0Dh6S4jDQlJ1mrFhXr4vOytWRylpLiPOr3B1XR0KW9xzpU29qrKTlJmlmQqpKspCHv2dzvD6qhs0/HO/pU3+5VfUfo4+MdfUqJ96g0N0XTcpM1LTdZuSlxEb87BsYmijcAAFHKHwjK4z55iYS1Vg2dXlU0dKmyqVsuY5QU51ZynEcJsW71eANq6elXS/e735q7vapp6ZUUuhFw6ZRM3basRBdOy9L0CSknyqy1VhUNXXrzQKMaO70qnZCiGXmh4hsf8+51yLEeV2ipSUHqsL/WWI9LhRmJKsxIHPZrAOeK4g0AQIQ73Nill3Ye0/7jXero9Q3smeyTtVJOSpwmpMZrQmqc8tISVJyZeOIt1uPSkeZu7TnWoT1HO1TR0KXGLq+au/rV3OVVd39AsR7XiUNQ4j1u1bT2nLTs4r3EelzKSgrdwJeZFKtJWYm6uaxIy6dla+7EtHeV+ncYY1Q6IUWlE1JG8tsERDyKNwAAESZ0mmCXXt59XL/fcUx7j3VIkkqyEpWWGKvUeI8K0hMkKzV09unt2jYd7+hTn+/kreViPa4T2815XEaTs5M0ITVexcWJykqKU1pCjHp8fnX0+tXZ51NPf0ALJ2VoWm6ySnOTNTknSUbmxE4Z3f1+JcV6ThTtxFg3SzKAs0DxBgAgArT3+LTmYKPWHWzS2oONOtreJ0laOClD3/zwTF0zJ0/5aWe+yc9aq7Yen4609Ki6pUfVzd1q7/XpvAkpOj8/VaUTktlODnAYxRsAAAftq+/QL9dV6bfb6+T1B5Ua79GF07L1hcuydcn03CHvqGHMX0/vm1+UPsqpAQwHxRsAgDALBK3+tK9Bv1xfqQ2HmhUf49KNCwt144JCzSs889poAGMbxRsAgDDp7PPpmfJaPbqhStUtPcpPi9dXVs7QLYuLlJ4Y63Q8AKOM4g0AwAjr8wW0r75Txzv61DSwi0hta49e3HFM3QM3MH5l5QxdPWsCs9tAFKF4AwBwDrq8fh1p7tbhxm5tq27T1upW7T7a/q6TFtMSYnTlzAm6a8VkzS1kDTYQjSjeAICo4Q8EtaOuXRsPNau2tUdxHrfiPK7QW8ygjz1uZSbFavm0LCXGnvyjsrPPp+e31Or3O46psqlbzd1/PYo8zuPS3MI03XXhZF1QnK7CjERlJ8cpMylWsR5mtoFoR/EGAIxrvf0B/c/bR/XKnnptOtyiTm/ocJjs5Fj1+4PyDrydTpzHpQ+cl6Nr5uRpWk6Knimv0W+21qq7P6DZE1N11awJKs5M0qSsRE3KSlRpbgoFG8AZUbwBAONSdXOPHt90RL/eXKP2Xp+KMxP14XkFunBalpZNyVJWctyJsdZa9QdCBfydMn6kuVsv76rXH3fX65U9xyWFDqS5dm6Bbl82SfPYsg/AWTLW2vcfNdohjFkp6SeS3JJ+Ya393inP/5ukSwcuEyXlWmvf82+8srIyW15ePhpxAQBn4eDxTm2tbtXF5+W85wEwQ9XnC+jVPce191hH6LCY5tCBMb5AUAkxbsUPLBmpbO6WyxitnJ2n25dO0uLJmcM6ZTEYtNpe26aDxzt1xfkTTirsACBJxpgt1tqy9xvn+Iy3McYt6QFJV0qqlbTZGLPaWrvnnTHW2i8PGv83ki4Ie1AAwJBZa7W+olk/X3tYbx5olCQZIy2bkqUbLpioS6fnqq6tV3uPdWjP0Q5VNXcrNT5Gualxyk2J14TUOBVlJmpSZqJyUuJkjNH++k499Va1frO1Vh19fnlcRoUZCSrOStK8ojTFe9zq9QXU5wuqzxfQh+cV6BOLi5WXFn9OX4vLZbSgOEMLijNG4lsDIIo5XrwlLZZUYa09LEnGmKclXS9pzxnG3yLpH8OUDQBwFqqbe/TKnno9t6VW++o7lZ0cp7+98jxdOiNXr+09rhe21en+53ac9GuS4zyakpOkutZevXnAq66BNdjvSIhxKzslVjUtvYp1u7Rydp5WLS7S4pJMtuIDMKZEQvGeKKlm0HWtpCWnG2iMmSRpsqQ/hSEXAIw7XV6/fr25Rocau9Q8sL90c3e/EmLcyk+LV356vPLTEnRBUbqWTMmS23Xy0ow+X0Av765XRUOX4geWdSTEuHWsvVev7jmuffWdkqSZ+an6/sfm6vr5BYrzuCVJsyem6UuXl2pbTZs2V7ZoUlaSZuanqjAjQa5Bn6fb69fxjj5Vt4SWkBxp7tHRtl7dsaxEH11QqMwkDpoBMDZFQvE+G6skPWetDZzuSWPMvZLulaTi4uJw5gKAUVfV1K1nt9To7Zp2XTe/QDfMnzjkHTS8/oCe3FSt//xThZq7+5WVFKvs5DhlJcdqVkGqevsDOtrepy3VrWrr8UmS8lLjdf38At1wwUT5A1bPlNfod9vr1NHnf9fru4xUVpKpr3/ofF01M0/FWYmnzWHM+y/bSIrzaEpOsqbkJA/pawOAscLxmyuNMcskfctae/XA9dckyVr73dOM3SbpC9baDe/3utxcCWA86PMF9OKOY3qmvEabKlvkMlJBeoJqW3uVnxavey6aolWLi9TU2a+t1a3aWt2qPUc7lJoQE5rBTotXfIxbj2yoUm1rr5ZNydJXrpmh+e+xI0eX16839jfot9vq9Mb+RvmDoZ8TcR6Xrpmdp4+XFWnplKzQLiC+oHp9ASXEupWWEBOubwsARJSh3lwZCcXbI+mApMsl1UnaLOkT1trdp4ybIemPkibbIYSmeAMYC/Yc7dCuunYtm5qlosy/zhJ39vn0+F+q9dC6SjV1eVWSlaibyop044JCTUiN0xsHGvXTNw7prcoWeVzmRDlOinVrZkGqur0B1Xf0qWXgcJdZBan6ysoZuqg0+6x29mjp7tcfdh2TkdGH5uZTrgHgNMbMribWWr8x5j5JLyu0neDD1trdxphvSyq31q4eGLpK0tNDKd0AECmCQStj9K6ya63Voxuq9J2X9p44WnxqTpIumZ6rGLdLT2w6os4+vy4qzdZnPzBfy6dmnfQal07P1aXTc7XlSIte2lmvydlJWlCcoel5KSety+7zBdTc3a/81PiT1lEPVWZSrG5dMmmYXz0AYDDHZ7xHCzPeAJzS5wto3cEm/WFXvV7be1zxMS6tWlSsWwa2tuvo8+mrz+/QSzvrdfmMXP2vK87TW1UtemN/gzZVtsgXCOqa2Xn63AemaU5hmtNfDgDgfYyZpSajheININx2H23XQ+sq9fKuenX3B5QS79EV509QS3e/1hxslMsYXXF+rvbXd6qmtVf3Xz1d91w05aSZ6J5+v7q8fuWmnNve0wCA8BkzS00AYCyz1uqNA436xdrDWl/RrKRYt66dV6Br5uRr2ZSsE7uOVDf36Im3jujZ8lrFeVx6+t6lWlSS+a7XS4z1KDGWv5oBYDxixhsAhsHrD+h3247qF+sO68DxLuWlxuvOC0t0y+Li97wB0R8Iyu0ywzq6HAAQmZjxBoBR0Nrdryc2HdGjG4+osdOr8/NT9aOPz9OH5xYMaU9tTloEgOhF8QaAITjS3K2H1lXq2fJa9foC+sB5Obr35inv2m0EAIAzoXgDwBlYa7XlSKt+sbZSL++pV4zLpevnF+jui6Zoel6K0/EAAGMMxRsABrHWakdtu17aeUwv7jym2tZepSXE6POXTNUdy0qUm8puIwCA4aF4A4BCe28/U16jX6ytVHVLjzwuoxWl2frS5aX60Nx8dhoBAJwzfpIAiGrdXr+e3FStB9ceVmOnVwsnZei+y6bpqpkTlJ4Y63Q8AMA4QvEGEJXae316bGOVHlpXqdYeny6clqV/X3WBlk7J5GZJAMCooHgDiCot3f16eF2lHt1QpU6vX5fNyNUXLp2mhZMynI4GABjnKN4AxqQ+X0A/X3NY6yqa1OcLqNcXUJ8vqFiPS3MnpmleUbrmFaUrLzVeu4+26+2aNm2vbdfmyhb1+QO6ZnaePn/JNM2emOb0lwIAiBIUbwBjirVWf9xVr395ca/q2no1ryhd6Ymxyo9xKz7GpS6vX2sONuk32+pO+nUuI03PS9WNCyfqjmUlKp3AdoAAgPCieAMYE4JBq63VrfrRqwe04VCzZuSl6Kl7lmrZ1Kx3jbXW6lh7n96uaVN9R59mFaRp9sRUdiYBADiKn0IAIkYwaNXnDygQtAoGJX8wqB217Xplz3G9tve4Gju9Sk+M0T9fP0u3LC4+4/HrxhgVpCeoID0hzF8BAABnRvEG4ChrQzPZL2yr0+93HFNbj+9dY5Ji3bpkeq6umjVBl87IVWp8jANJAQA4NxRvAGFlrVVta6921bVre22b/rCzXtUtPYqPcemqmXk6Pz9VHpeRy2XkNtKk7CQtn5qlOI/b6egAAJwTijeAsNhztEP/9toBba5qOTGr7XEZLZ2SpS9dXqqrZ+cpOY6/kgAA4xc/5QCMqpbufv3wlf166q1qpSXE6OqZeZpdmKY5E9M0Iy9F8THMZAMAogPFG8CICwatqpq79ad9DfqPP1Woy+vX7ctK9OUrzlNaIuuzAQDRieINYERUNHRp9fY6batp09s1bero80uSLpyWpW9+eJam57FvNgAgulG8AQxbny+gP+w6pqc21eitqha5XUbTJ6ToQ3MLNL8oTfOLMnTehGQZY5yOCgCA4yjeAM6atVbPlNfou3/Yp7Yen0qyEvXVa2boxgWFykmJczoeAAARieIN4Ky0dvfrq7/ZoZd3H9fSKZn64uWlWjo5Sy4Xs9oAALwXijeAIVt7sFH/59m31dLdr7//4AzdvWIKhRsAgCGieAM4rV9trNIPXzmgfn9QAWsVDFr5g1bTcpP10B2LNHtimtMRAQAYUyjeAN7lld31+sfVu7W4JFNzC9MGTpE0ykyK1a1LJikhlr23AQA4WxRvACfZVdeuLz29XXMnpumRTy2mZAMAMEJcTgcAEDnq2/v06Uc3KyMxRj+/o4zSDQDACGLGG4Akqdvr192/2qyuPr+e+9xy5abEOx0JAIBxheINRKne/oA2V7WovKpFb1W1aHtNm/r9Qf3ijjKdn5/qdDwAAMYdijcQRQJBqw2HmvTCtjq9vKte3f0BuYw0syBVtywu1tWz8rR0SpbTMQEAGJco3kAU6Pb69eCaw3rqrWo1dHqVEu/RtfMKdM2cfC2clKHkOP4qAABgtPHTFhjHAkGrZ8tr9P9eOaCmLq8un5Grjy0s1KUzchUfw42TAACEE8UbGKc2HGrSt/9nj/bVd2rhpAz9/PaFuqA4w+lYAABELYo3MM74A0H9+LWDeuCNChVlJOq/bl2ga2bnyRiOdgcAwEkUb2Acaejo0xef3qa/HG7RzWVF+tZ1s9iLGwCACEHxBsaJDRVN+uLT29Xl9en/3TRPH1tY6HQkAAAwCMUbGONau/v1vT/s06/LazQ1J0lP3L1E0/NSnI4FAABOQfEGxihrrX6ztU7feWmv2nt9+szFU/SlK0qVGMsfawAAIhE/oYExqMvr1+ce36K1B5u0oDhd//rROZqRx2mTAABEMoo3MMb09Pt11y83a0t1q/75htm6dXGxXC52LAEAINJRvIExpM8X0N2Plqv8SIt+suoCXTuvwOlIAABgiCjewBjh9Qf0mce2aOPhZv3wpnmUbgAAxhiX0wEAvL+mLq8+//hWvXmgUd/9yBx9dAFbBQIAMNYw4w1EsJ5+vx5aW6n/fvOQ+vxB/fP1s7RqcbHTsQAAwDBERPE2xqyU9BNJbkm/sNZ+7zRjPi7pW5KspLettZ8Ia0ggjKy1eqa8Rj985YAaOr26auYE3b9yhqblJjsdDQAADJPjxdsY45b0gKQrJdVK2myMWW2t3TNoTKmkr0m60FrbaozJdSYtMPp8gaD+4YWdeqa8VhcUp+uBWxdoUUmm07EAAMA5crx4S1osqcJae1iSjDFPS7pe0p5BY+6R9IC1tlWSrLUNYU8JhEFPv19feGKr/ry/UV+8vFRfvqJUxrBVIAAA40EkFO+JkmoGXddKWnLKmPMkyRizXqHlKN+y1v4xPPGA8Gju8uquRzZrZ127/vUjc/SJJazlBgBgPImE4j0UHkmlki6RVChpjTFmjrW2bfAgY8y9ku6VpOJiSgvGBmutNhxq1j+8sFPH2vv0s9vKdOXMCU7HAgAAIywSinedpKJB14UDjw1WK2mTtdYnqdIYc0ChIr558CBr7YOSHpSksrIyO2qJgRHyl8PN+tGrB/RWZYvy0+L15D1LtHAS67kBABiPIqF4b5ZUaoyZrFDhXiXp1B1LfivpFkm/NMZkK7T05HBYUwIj6Ehzt/7+hZ1aX9Gs3JQ4/dN1s3TzoiLFx7idjgYAAEaJ48XbWus3xtwn6WWF1m8/bK3dbYz5tqRya+3qgeeuMsbskRSQ9HfW2mbnUgPDV17Vont+Va6glb7+ofP1yaWTKNwAAEQBY+34XJFRVlZmy8vLnY4BnOR32+v0d8/u0MSMBD185yJNzk5yOhIAADhHxpgt1tqy9xvn+Iw3EA2stfrPP1Xoh68e0OLJmfrZJxcqIynW6VgAACCMKN7AKKto6NI//c9urT3YpI9cMFHfu3GO4jwsLQEAINpQvIFR0uX16z9eP6iH1lUqIdatb18/S7ctncSBOAAARCmKNzBC2nr6VdHQpYMNXapo6NLvdxzV8Q6vPl5WqPtXzlB2cpzTEQEAgIMo3sA56ujz6f5nd+iPu+tPPBYf49K8wnT99JMLtaA4w8F0AAAgUlC8gXOwv75Tn3msXLWtvfrCpVNVNilT03KTNTE9QS4XS0oAAMBfUbyBYfrd9jp99fmdSo736Kl7l2pRCSdOAgCAM6N4A8Pwb68e0E9eP6hFJRl64BMLlJsa73QkAAAQ4SjewFla/fZR/eT1g7pxQaG+d+McxbhdTkcCAABjAI0BOAu76tp1/3Nva1FJhr77UUo3AAAYOloDMETNXV595rEtSk+I1X/dulCxHv74AACAoWOpCTAEvkBQ9z25TY1dXj37mWXKSWFPbgAAcHYo3sB7sNZqZ127HvhzhTYebtYPb5qneUXpTscCAABjEMUbOI3OPp9+u/2onn6rWruPdighxq3/c9V5unFhodPRAADAGEXxBk7R0+/Xdf+5XpVN3ZqZn6p/vmG2rp9foNT4GKejAQCAMYziDZzi+3/cr6rmbj18Z5kunZ4rYziBEgAAnDuKNzDIW5UtemRDle5cXqLLZkxwOg4AABhH2A8NGNDbH9D9z72toswE3b9yutNxAADAOMOMNzDgh6/sV1Vzj568Z4kSY/mjAQAARhYz3oCkLUda9dD6St26pFjLp2Y7HQcAAIxDFG9EvW6vX3/33NsqSEvQ1z54vtNxAADAOMX/T0dUs9bqG7/dpcqmbj3x6SVKjuOPBAAAGB3MeCOqPVNeo99sq9OXLi/V8mksMQEAAKOH4o2ota++Q9/83W6tmJatv7ms1Ok4AABgnKN4Iyp1ef36/BNblZoQo3+7eb7cLg7JAQAAo4vijaj09Rd2qqqpW/++6gLlpMQ5HQcAAEQBijeiTnlVi367/ajuu6xUy6ZmOR0HAABECYo3os5PXj+orKRYffYDU5yOAgAAogjFG1Fla3Wr1h5s0j0XT+F0SgAAEFYUb0SVf3/9oDISY3Tb0klORwEAAFGG4o2osb2mTW/sb9TdF01REgflAACAMKN4I2r8x+sHlZ4YozuWlzgdBQAARCGKN6LCrrp2vb6vQZ++cDLHwgMAAEdQvBEVfvL6QaXGe3THhSVORwEAAFGK4o1xb1ddu17dc1x3rZis1PgYp+MAAIAoRfHGuPf9l/crPTFGd62Y7HQUAAAQxSjeGNf+crhZaw406vOXTGW2GwAAOIrijXHLWqsfvLxfE1LjdPuyEqfjAACAKEfxxrj1p30N2nKkVV+8vFTxMW6n4wAAgChH8ca4FAyGZrtLshL18bIip+MAAABQvDE+/c+Oo9pX36kvX3meYtz8NgcAAM6jkWDc8foD+tGrB3R+fqqunVvgdBwAAABJFG+MM91ev+56ZLOONPfoKyuny+UyTkcCAACQJHF2NsaNtp5+3fnLzdpZ164f3jRPl0zPdToSAADACRRvjAvHO/p020ObVNXUo5/eukBXzcpzOhIAAMBJKN4Y84619+rjP9uolq5+PfKpRVo+LdvpSAAAAO8SEWu8jTErjTH7jTEVxpivnub5O40xjcaY7QNvdzuRE5GnzxfQZx/botZun564ZymlGwAARCzHZ7yNMW5JD0i6UlKtpM3GmNXW2j2nDP21tfa+sAdExLLW6hu/3aW3a9v1s9sWan5RutORAAAAzigSZrwXS6qw1h621vZLelrS9Q5nwhjw+KZqPbulVl+8bJquZk03AACIcJFQvCdKqhl0XTvw2KluNMbsMMY8Z4w57VGExph7jTHlxpjyxsbG0ciKCLG5qkX/tHq3Lp2eo/91xXlOxwEAAHhfkVC8h+J/JJVYa+dKelXSo6cbZK190FpbZq0ty8nJCWtAhE9dW68+9/hWFWYk6MerLmCvbgAAMCZEQvGukzR4Brtw4LETrLXN1lrvwOUvJC0MUzZEmAPHO/Wxn26Q1xfQg7eXKS0hxulIAAAAQxIJxXuzpFJjzGRjTKykVZJWDx5gjMkfdHmdpL1hzIcIseVIi276743yB61+/ZllOm9CitORAAAAhszxXU2stX5jzH2SXpbklvSwtXa3MebbksqttaslfdEYc50kv6QWSXc6FhiOeG3PcX3hya0qSE/Qr+5arKLMRKcjAQAAnBVjrXU6w6goKyuz5eXlTsfACHhld70+98RWzSpI1S/vXKSs5DinIwEAAJxgjNlirS17v3FnvdTEGJNpjFlgjMk85fF8Y8wjxphtxpgXjDHzzva1gVM1dPTp/ud3aGZ+qp66ZymlGwAAjFnDWeP9NYXWZZ+4IXJgbfY6SbdJmqfQPtx/NsacbltAYEistbqZuhXVAAAgAElEQVT/+R3q8wX041XzlRTn+MooAACAYRtO8b5UUqW19u1Bj90sabKkNyWtVOgkynRJnDSJYXtiU7Xe2N+ov//g+Zqak+x0HAAAgHMynOJdKKnilMc+LMlKutta+4q19m8kVUq65hzzIUodbuzSd17cq4tKs3Xb0klOxwEAADhnwyneGZKaTnlsmaQD1trDgx7bppP35waGxB8I6svPvK1Yj0s/+Ng8GcMBOQAAYOwbTvHulZT1zsXA8e2FktafMs4riTvhcFZ8gaD+4YVderumTd/5yGzlpcU7HQkAAGBEDOdutX2SVhhjMq21LZI+odAykzWnjCuUdPwc8yGKtHT363OPb9GmyhZ94dKp+vDcAqcjAQAAjJjhFO/HJP2HpLeMMVsV2sGkS9Lv3hlgjImTtEDS2pEIifFv77EO3fOrcjV0evXjm+frhgvYEAcAAIwvwyneP1VoTfcnJE2R1C3pHmtt+6Ax10pKUmiXE+A9rTnQqM8+vkUp8R49+5llmleU7nQkAACAEXfWxdtaG5T0SWPMNyRNkLTHWttxyrDDkm7Su9d9Ayfp8wX01ed3aGJ6gh6/e4kmpLKmGwAAjE/DPpHEWlup0JaBp3tuq6Stw31tRI/HNh7R0fY+PUnpBgAA49yIHgVojJkiaY6kI9ba7SP52hh/2nt9+s8/V+ji83K0fFq203EAAABG1VlvJ2iMucEYs9oYs/iUx78mab+k30jaYox5ZGQiYrz62ZuH1N7r0/1XT3c6CgAAwKgbzj7et0m6XNLudx4wxsyS9C8Dl5skdUi6zRhzwzknxLh0vKNPD6+v1PXzCzR7YprTcQAAAEbdcIr3BZK2W2u7Bz32yYH391prl0taJMkn6Z5zzIdx6sevHVQgaPW3VzLbDQAAosNwine2pLpTHvuAQtsKPiZJ1toKSeskzTyndBiXDjV26ZnyGt26ZJKKsxKdjgMAABAWwynecZLMOxfGmBiFZsE3Wmv9g8bVS8o7t3gYb6y1+u5LexXvcem+y6Y5HQcAACBshlO8j0k6f9D1xQqV8VP37E5SaK03cMLqt4/qtb0N+tIVpcpOjnM6DgAAQNgMp3ivkXS+MeZ/G2NmSvq2JCvp5VPGzda7l6QgijV2evWt1bs1vyhdn14xxek4AAAAYTWc4v0dST2SfiBpp0LHx79hrd30zgBjTKmkqQrtcAJIkv5x9S51ewP6wcfmyu0y7/8LAAAAxpHhHBm/3xizQtLfSsqV9Jak750y7EqFtht88ZwTYlx4aecxvbSzXn939XSVTkhxOg4AAEDYDevkSmvt25Juf4/n/0vSfw03FMaXlu5+feO3uzRnYpo+czFLTAAAQHQa0SPjgdP5lxf3qKPPpyduWiKPezirmwAAAMa+YbcgY8xkY8x3jTFvGGN2G2O+O+i5RcaYu4wxqSMTE2NVTUuPfrutTncuL9GMPH47AACA6DWsGW9jzB2Sfqq/7ultdfKNlCmSfi4pKOmRc4uIsezRDVUyxuhTF052OgoAAICjznrG2xizTNJDkvyS/l7ShRp0oM6ANyS1S7ruHPNhDOvs8+nXm2v0wTn5KkhPcDoOAACAo4Yz4/2VgffXWGvXS5IxJ/dua23QGLNdHBkf1Z4pr1Wn169Pr2C2GwAAYDhrvJdL2vRO6X4PxyTlD+P1MQ4EglaPbKhU2aQMzS9KdzoOAACA44ZTvFMl1QxhXLLYNSVqvbqnXjUtvcx2AwAADBhO8W6SNJQ2dZ6ko8N4fYwDD62rVGFGgq6aled0FAAAgIgwnOK9XtJCY8yCMw0wxlwuabqkN4cbDGPX2zVt2lzVqk9dOJmj4QEAAAYMp3j/WKFdTH5jjLnMnHJnpTFmuaSHJQUk/ce5R8RY89C6SiXHefTxskKnowAAAESMsy7e1tqNCm0jWCzpVUmNCu3jfb0xpk7SWklFkr46cLQ8okhjp1cv7Tymm8oKlRIf43QcAACAiDGskyuttf9XoT26t0vKVGgGPEOhXUz2SfqYtfaHIxUSY8cz5TXyB60+uXSS01EAAAAiyrB3HbHW/l7S740xExS62dItqcZaWz1S4TC2BIJWT71VreVTszQ1J9npOAAAABHlnLf7s9Yel3R8BLJgjFtzoFG1rb362jXnOx0FAAAg4gxrqQlwOk9sOqLs5DhdOXOC01EAAAAizrBnvI0xiyRdLqlAUvwZhllr7WeG+zkwdtS19epP+xr0uUumKtbDv+cAAABOddbF2xgTK+kpSTe889B7DLeSKN5R4NdvVctKWrWo2OkoAAAAEWk4M97/KOkjknokPaHQLiYdIxkKY4svENTTm2t06fRcFWUmOh0HAAAgIg2neK9SqHQvstbuHeE8GINe33tcDZ1e3bqE2W4AAIAzGc5i3ImS1lG68Y4nNlWrIC1el0zPdToKAABAxBpO8W6S1DbSQTA2HWrs0tqDTbplcbHcrvda7g8AABDdhlO8/yBpuTHGPdJhMPY8tvGIYtxGqxazzAQAAOC9DKd4f12hUyr/fWCHE0SpLq9fz2+p1Yfm5CsnJc7pOAAAABFtODdXflrSi5I+K+kaY8xrkqolBU832Fr7r8OPh0j2wrY6dXr9un15idNRAAAAIt5wive/KLQ/t5FUIunugetTmYHH37d4G2NWSvqJQjPpv7DWfu8M426U9JxCO6qUDyM7Roi1Vr/aUKU5E9N0QVG603EAAAAi3nCK97/q9EV7WAbWij8g6UpJtZI2G2NWW2v3nDIuRdKXJG0aqc+N4dt4uFkHG7r0g4/NlTHcVAkAAPB+zrp4W2u/PsIZFkuqsNYeliRjzNOSrpe055Rx/yzp/0r6uxH+/BiGX204oozEGF07r8DpKAAAAGPCcG6uHGkTJdUMuq4deOwEY8wCSUXW2hff64WMMfcaY8qNMeWNjY0jnxSSpLq2Xr2yp143LypWfAyb2wAAAAzFWRdvY0y/MebBIYz7b2OMd3ixTnodl6QfSfrb9xtrrX3QWltmrS3Lyck510+NM3hy0xFZiZMqAQAAzsJwZrw9GtoSFfcQx9VJKhp0XTjw2DtSJM2W9IYxpkrSUkmrjTFlQ0qLEdXvD+rpt2p0+YwJKspMdDoOAADAmDGaS02SJfmGMG6zpFJjzOSBfcFXSVr9zpPW2nZrbba1tsRaWyLpL5KuY1cTZ6yvaFJzd79WLSp6/8EAAAA4YVSKtzFmuqRLFVqv/Z6stX5J90l6WdJeSc9Ya3cbY75tjLluNPJh+F7ceUwpcR5ddF6201EAAADGlCHtamKM6T/loduNMZ88w3CXQnt4S9ITQ3l9a+1Lkl465bFvnmHsJUN5TYy8fn9Qr+yu15WzJijOw02VAAAAZ2Oo2wkOHmcVKtdnmi0PKrRG+wVJ/zD8aIg06yua1NHn14fm5DsdBQAAYMwZavGOGXhvJPVLelShEyvfxVobGIFciEC/33FMKfEerShlmQkAAMDZGlLxHlymjTHfkbSFgh1d+v1BvbKnXlfOZJkJAADAcAzn5MpvjEYQRLZ1FY3q7PPrw3NZZgIAADAckXByJcaAF3fUh5aZTONgIgAAgOF43xlvY8wrCt1QeZe1tm7geqistfbqYadDRPD6A3plT72umpmnWA//VgMAABiOoSw1uUKh4p006Hqo7FknQsRZX9HEMhMAAIBzNJTifeXA++pTrhElfr/jmFLjPbpwGruZAAAADNf7Fm9r7evvdY3xzesP6NU9x3X1LJaZAAAAnIv3bVLGmOuMMfPDEQaR58Udx9TZ59f18wucjgIAADCmDWUK87eSvni6J4wxDxtj7hrZSIgU1lr9cn2VpuUmawXLTAAAAM7Jua4duFPSihHIgQi05Uirdta1687lJTLGOB0HAABgTGPRLs7o4fWVSkuI0UcXTHQ6CgAAwJhH8cZp1bb26I+76rVqcZESY8/6gFMAAACcguKN03ps4xEZY3T7shKnowAAAIwLFG+8S0+/X0+9Va2Vs/I0MT3B6TgAAADjwlDXEOQZYy4exnOy1q45+1hw0vNb69TR59ddK0qcjgIAADBuDLV4Xz3wdir7Hs+98zwLhMeQYNDqkfWVmluYpgXFGU7HAQAAGDeGUoqrFSrQiAJrDjbqUGO3fnzzfLYQBAAAGEFDOTK+JAw5ECF+ub5KuSlx+uCcfKejAAAAjCvcXIkTKhq69OaBRt22dJJiPfzWAAAAGEm0K5zwyIZKxXpc+sSSYqejAAAAjDsUb0iS2nt8en5LnW6YX6Cs5Din4wAAAIw7FG9Ikp7eXK1eX0CfunCy01EAAADGJYo35A8E9auNR7RsSpbOz091Og4AAMC4RPGGXtlzXHVtvfrUhSVORwEAABi3KN7QL9dXqjgzUZefP8HpKAAAAOMWxTvKba5q0eaqVt2xvERuFwfmAAAAjBaKdxRr7e7Xl57apqLMBN28qMjpOAAAAOPaUI6MxzgUDFp9+Zntaurq1/OfW67kOH4rAAAAjCZmvKPUT988pDf2N+ob187UnMI0p+MAAACMexTvKLTxULN++Mp+XTuvQJ/klEoAAICwoHhHmcZOr7749DaVZCfpux+dI2O4oRIAACAcWNgbZf77zUNq7e7X459ewrpuAACAMGLGO4p0ef16ZnONPjQ3X9PzUpyOAwAAEFUo3lHkufIadXr9+tSFk52OAgAAEHUo3lEiGLR6ZEOVLihO1/yidKfjAAAARB2Kd5T48/4GVTX36C5muwEAABxB8Y4Sv1xfpbzUeK2cned0FAAAgKhE8Y4C++s7ta6iSbcvn6QYN//JAQAAnEALiwKPbKhUfIxLtyzisBwAAACnULzHuZbufv1ma50+csFEZSTFOh0HAAAgalG8x7lHN1TJ6w/qzuXcVAkAAOAkivc41tjp1c/XHtY1s/M4MAcAAMBhFO9x7MevHVC/P6j7V85wOgoAAEDUi4jibYxZaYzZb4ypMMZ89TTPf9YYs9MYs90Ys84YM9OJnGNJRUOXnt5co1uXFGtydpLTcQAAAKKe48XbGOOW9ICkayTNlHTLaYr1k9baOdba+ZK+L+lHYY455nz/j/uUEOPWFy8vdToKAAAAFAHFW9JiSRXW2sPW2n5JT0u6fvAAa23HoMskSTaM+caczVUtemXPcX3ukqnKSo5zOg4AAAAkeZwOIGmipJpB17WSlpw6yBjzBUn/W1KspMvCE23ssdbqX1/aqwmpcRwPDwAAEEEiYcZ7SKy1D1hrp0r6iqSvn26MMeZeY0y5Maa8sbExvAEjxB921WtbdZv+9srpSoh1Ox0HAAAAAyKheNdJKhp0XTjw2Jk8LemG0z1hrX3QWltmrS3LyckZwYhjg7VW//76QU3LTdaNCwudjgMAAIBBIqF4b5ZUaoyZbIyJlbRK0urBA4wxg+8Q/JCkg2HMN2b8eX+D9tV36nMfmCq3yzgdBwAAAIM4vsbbWus3xtwn6WVJbkkPW2t3G2O+LancWrta0n3GmCsk+SS1SrrDucSR66dvHNLE9ARdN7/A6SgAAAA4hePFW5KstS9JeumUx7456OMvhT3UGLO5qkWbq1r1rWtnKsYdCf8jAwAAAIPR0MaJ//pzhTKTYnXzomKnowAAAOA0KN7jwN5jHfrz/kZ9ankJO5kAAABEKIr3OPDTNw4pKdat25eVOB0FAAAAZ0DxHuOqm3v0+x1HdevSSUpLjHE6DgAAAM6A4j3GPbj2kDwulz69glMqAQAAIhnFewxr7e7Xc1tqdcMFBZqQGu90HAAAALwHivcY9uRb1erzBXUXs90AAAARj+I9RvX7g3p0Q5UuKs3WjLxUp+MAAADgfVC8x6gXdx5VQ6eX2W4AAIAxguI9Bllr9dC6Sk3NSdIHSnOcjgMAAIAhoHiPQZsqW7SrrkOfXjFFLpdxOg4AAACGgOI9Bj20rlIZiTH66IKJTkcBAADAEFG8x5iqpm69tve4bl0ySfExHA8PAAAwVlC8x5hHNlTJ4zK6fdkkp6MAAADgLFC8x5CmLq+e3lyt6+ZNVC4H5gAAAIwpFO8x5OF1lfL6g/r8pVOdjgIAAICzRPEeI9p7fXps4xF9cHa+puYkOx0HAAAAZ4niPUY8trFKnV6/PncJs90AAABjEcV7DOjp9+uhdZW6dHqOZk9MczoOAAAAhoHiPQY8ualarT0+3XfZNKejAAAAYJgo3hHO6w/o52sPa+mUTC2clOl0HAAAAAwTxTvCPb+lTsc7vPrCpcx2AwAAjGUU7wgWDFr9fO1hzStM04pp2U7HAQAAwDmgeEewtRVNqmzq1l0rJssY43QcAAAAnAOKdwR7bOMRZSfHauXsPKejAAAA4BxRvCNUbWuP/rTvuG5eVKQ4j9vpOAAAADhHFO8I9eSmaknSJ5ZMcjgJAAAARgLFOwJ5/QH9enONLj9/giamJzgdBwAAACOA4h2B/rirXs3d/bptKbPdAAAA4wXFOwL9auMRTc5OYgtBAACAcYTiHWF2H23XliOtunVJsVwuthAEAAAYLyjeEebxv1QrPsalmxYWOR0FAAAAI4jiHUH6fAGt3l6na+cWKC0xxuk4AAAAGEEU7wjyxv5GdfcHdP38iU5HAQAAwAijeEeQl3YeU2ZSrJZOyXQ6CgAAAEYYxTtC9PkCen3vcV09a4I8bv6zAAAAjDc0vAjx5oHQMpMPzsl3OgoAAABGAcU7Qry445gyEmO0bEqW01EAAAAwCijeEeCdZSYrZ+exzAQAAGCcouVFAJaZAAAAjH8U7wjw0k6WmQAAAIx3FG+HhZaZNOjqWSwzAQAAGM9oeg5bc6BRXV4/y0wAAADGOYq3w04sM5nKMhMAAIDxjOLtoH5/UK8NLDOJYZkJAADAuEbbc9C26lZ1ef26bEau01EAAAAwyiKieBtjVhpj9htjKowxXz3N8//bGLPHGLPDGPO6MWaSEzlH2tqDTXK7DMtMAAAAooDjxdsY45b0gKRrJM2UdIsxZuYpw7ZJKrPWzpX0nKTvhzfl6FhzsFELitOVEh/jdBQAAACMMseLt6TFkiqstYettf2SnpZ0/eAB1to/W2t7Bi7/IqkwzBlHXEt3v3bWteui0hynowAAACAMIqF4T5RUM+i6duCxM/m0pD+MaqIwWF/RJGuli0qznY4CAACAMPA4HeBsGGM+KalM0gfO8Py9ku6VpOLi4jAmO3trDzYqLSFGcwvTnY4CAACAMIiEGe86SUWDrgsHHjuJMeYKSf8g6Tprrfd0L2StfdBaW2atLcvJidwlHNZarT3YpBXTsuV2GafjAAAAIAwioXhvllRqjJlsjImVtErS6sEDjDEXSPqZQqW7wYGMI+pQY5eOtfexzAQAACCKOF68rbV+SfdJelnSXknPWGt3G2O+bYy5bmDYDyQlS3rWGLPdGLP6DC83Jqw50CRJWkHxBgAAiBoRscbbWvuSpJdOeeybgz6+IuyhRtGag42akpOkwoxEp6MAAAAgTByf8Y42Xn9AfzncrIvZRhAAACCqULzDbEtVq/p8QdZ3AwAARBmKd5itOdikGLfR0ikcEw8AABBNKN5htvZgoxYUZygpLiKW1wMAACBMKN5h1NTl1e6jHbr4PNZ3AwAARBuKdxitrwhtI8iNlQAAANGH4h1Gaw40KSMxRrMKUp2OAgAAgDCjeIdJ6Jj4Rq0ozZGLY+IBAACiDsU7TPYf71RDp5dtBAEAAKIUxTtM1g4cE0/xBgAAiE4U7zBZc7BRpbnJyk9LcDoKAAAAHEDxDoM+X0BvVbawjSAAAEAUo3iHweaqFnn9HBMPAAAQzSjeYbD2YJNi3S4tmcwx8QAAANGK4h0Gaw40atHkDCXEup2OAgAAAIdQvEdZQ0ef9tV36iJOqwQAAIhqFO9RtvYg2wgCAACA4j3q1h5sVHZyrM7P45h4AACAaEbxHkXBoNW6iiatmJbNMfEAAABRjuI9ig41dqmpq18XTmOZCQAAQLSjeI+iPcc6JElzCtMcTgIAAACnUbxH0b76TsW4jaZkJzsdBQAAAA6jeI+i/fWdmpqTrFgP32YAAIBoRyMcRfuOdWh6XorTMQAAABABKN6jpL3Xp6PtfZrBNoIAAAAQxXvU7K/vlCTNYMYbAAAAoniPmv31oR1NZuRTvAEAAEDxHjX76juVGu9RXmq801EAAAAQASjeo2Rffadm5KfKGE6sBAAAAMV7VFhrtb++k/XdAAAAOIHiPQpqW3vV5fWzlSAAAABOoHiPgr/uaMJWggAAAAiheI+CfQM7mjDjDQAAgHdQvEfBvvpOFWUmKDnO43QUAAAARAiK9yjYV9+p6RNYZgIAAIC/oniPMK8/oMqmbp3PwTkAAAAYhOI9wioauhQIWtZ3AwAA4CQU7xG279g7O5pQvAEAAPBXFO8Rtv94p2I9LpVkJTkdBQAAABGE4j3C9h7rUGlusjxuvrUAAAD4K9rhCAsdFc+OJgAAADgZxXsEtXT3q6HTy/puAAAAvAvFewRxYiUAAADOhKMVR9DcwnQ9cfcSzSlMczoKAAAAIgzFewQlx3l04bRsp2MAAAAgArHUBAAAAAiDiCjexpiVxpj9xpgKY8xXT/P8xcaYrcYYvzHmY05kBAAAAM6F48XbGOOW9ICkayTNlHSLMWbmKcOqJd0p6cnwpgMAAABGRiSs8V4sqcJae1iSjDFPS7pe0p53BlhrqwaeCzoREAAAADhXjs94S5ooqWbQde3AYwAAAMC4EQnFe8QYY+41xpQbY8obGxudjgMAAACcEAnFu05S0aDrwoHHzpq19kFrbZm1tiwnJ2dEwgEAAAAjIRKK92ZJpcaYycaYWEmrJK12OBMAAAAwohwv3tZav6T7JL0saa+kZ6y1u40x3zbGXCdJxphFxphaSTdJ+pkxZrdziQEAAICzFwm7msha+5Kkl0557JuDPt6s0BIUAAAAYExyfMYbAAAAiAYUbwAAACAMKN4AAABAGFC8AQAA8P/bu/toO6ryjuPfH4GENzHEtFCSaIgENFB5EQkhoWQFi4lQYlUExQoWpUhd0DYuaqCUFJerllRAeVVeDAoL1ICYoigsINAiBAgxvBiDFBKSNECiIeFFElKe/rH36R2Oc+49597hnHvJ77PWrDkzs2dmn519c54z55k91gYOvM3MzMzM2kAR0ek6vCkkrQGWd+j0w4G1HTr3W4XbsBpux2q4HfvObVgNt2M13I595zZ8o3dFRI9Pb3zLBt6dJOmhiDiw0/UYyNyG1XA7VsPt2Hduw2q4Havhduw7t2HvONXEzMzMzKwNHHibmZmZmbWBA+83x7c7XYG3ALdhNdyO1XA79p3bsBpux2q4HfvObdgLzvE2MzMzM2sDX/E2MzMzM2sDB94VkjRV0lJJT0r6cqfrM1BIGiXpLkm/kvS4pNPz+mGSbpf0mzzfudN17e8kDZK0SNIteXl3SQtyn/y+pMGdrmN/J2mopLmSfi1piaQJ7outk/T3+e/5MUnXS9rW/bFnkq6W9LykxwrrSvufkm/m9nxE0gGdq3n/0aANZ+e/6Uck/UjS0MK2mbkNl0r6UGdq3f+UtWNh2wxJIWl4XnZfbJID74pIGgRcAkwDxgGflDSus7UaMDYDMyJiHHAw8Le57b4M3BERY4E78rJ173RgSWH534ALImIPYB1wUkdqNbB8A/hZRLwH2JfUnu6LLZA0AjgNODAi9gEGAcfh/tiMOcDUunWN+t80YGyeTgYua1Md+7s5/GEb3g7sExHvA54AZgLkz5rjgL3zPpfmz3Mrb0ckjQKOAJ4prHZfbJID7+ocBDwZEU9FxCbgBmB6h+s0IETE6oh4OL9+kRTojCC13zW52DXARzpTw4FB0kjgSODKvCxgCjA3F3Eb9kDS24E/A64CiIhNEfEC7ou9sTWwnaStge2B1bg/9igi7gF+V7e6Uf+bDnw3kvuBoZL+pD017b/K2jAibouIzXnxfmBkfj0duCEiNkbE08CTpM/zLV6DvghwAXAGULxJ0H2xSQ68qzMCWFFYXpnXWQskjQb2BxYAu0TE6rzpWWCXDlVroLiQ9J/h63n5HcALhQ8b98me7Q6sAb6TU3aulLQD7ostiYhVwL+TroitBtYDC3F/7K1G/c+fO73z18Ct+bXbsAWSpgOrImJx3Sa3Y5MceFu/IWlH4Ebg7yJiQ3FbpOF3PARPA5KOAp6PiIWdrssAtzVwAHBZROwPvExdWon7Ys9yDvJ00heZ3YAdKPnJ2lrn/tc3ks4ipTde1+m6DDSStgfOBP6503UZyBx4V2cVMKqwPDKvsyZI2oYUdF8XETfl1c/VfqrK8+c7Vb8BYCJwtKRlpDSnKaRc5aH5p35wn2zGSmBlRCzIy3NJgbj7Yms+CDwdEWsi4jXgJlIfdX/snUb9z587LZB0InAUcHx0jaXsNmzeu0lfphfnz5qRwMOSdsXt2DQH3tV5EBib79ofTLpZY16H6zQg5Fzkq4AlEXF+YdM84IT8+gTgx+2u20ARETMjYmREjCb1vTsj4njgLuDjuZjbsAcR8SywQtJeedXhwK9wX2zVM8DBkrbPf9+1dnR/7J1G/W8e8Jk8osTBwPpCSooVSJpKSsU7OiJeKWyaBxwnaYik3Uk3Bz7QiTr2dxHxaET8cUSMzp81K4ED8v+b7otN8gN0KiTpw6Q820HA1RHx1Q5XaUCQNAn4T+BRuvKTzyTlef8AeCewHPhERJTd6GEFkiYDX4qIoySNIV0BHwYsAj4dERs7Wb/+TtJ+pBtUBwNPAZ8lXaRwX2yBpH8BjiX9rL8I+Bwp59P9sRuSrgcmA8OB54BzgJsp6X/5S83FpDSeV4DPRsRDnah3f9KgDWcCQ4Df5mL3R8QpufxZpLzvzaRUx1vrj7klKmvHiLiqsH0ZaeSite6LzXPgbWZmZmbWBk41MTMzMzNrAwfeZmZmZmZt4MDbzMzMzKwNHHibmZmZmbWBA28zMzMzszZw4EQ3dewAAAeqSURBVG1mVkLSEZK+I2mppPWSNklaI+leSbMlHdTpOg40kuZIivwgEzOzLY4DbzOzAkm7SLoL+DlwImlc/vnAD4GFwB7Al4AFkr7XoWr2O5Im56B6fqfrYmbWX23dcxEzsy2DpGHAL4AxwL3AFyPil3VlBBwC/CPw3rZXcmCbCXwN8BPtzGyL5MDbzKzLpXQF3VMiYlN9gUhPHbsXONrpJq3Jj5B20G1mWyynmpiZAZLGAsfkxS+UBd31IuKBkuPsIOkMSQ9K2iDp95IelzRL0o4l5WflFI1ZOc3lW5JWStoo6WlJX5O0bTf1Hi/phrxPLQ99nqRJDcqHpMivT5K0INczJA3N68dJOlfSLyT9T+G4P5U0teSY84G78uJhtXPUp550l+Ot5K8kzZe0TtKrkv5b0iWSRjXxXo6VdJ+klyS9KOmObtpgL0nXSFqe39uLkpZJ+pGkjzVqazOzvvIVbzOz5EjSxYjFEfFobw4gaSQpN3wcsAa4D3gV+ABwDvCXkiZHxLqS3UeRcshFSnfZCZhESmkZBxxdcr4ZwOy8+HA+38j8Xo6UdEpEXNGgrhcBp5Ku3t8C7AlE3vwPwEnAEmAxsIH0S8A0YJqkGRFxfuFwP8vv80PAc3m55tdl56+ri4BrgU8Br5Fy6n8HHJTreJykqRHxYIP9zwXOAv4L+AnwPmAKMCm3932Fsn+a3/Pbct3+I7/vEbn+2wE39lRnM7NeiQhPnjx52uIn4HukAOzKXu5fC5gDuAjYrrBtu8Lx59TtNyuvD+AKYHBh23uBF/O2iXX7TcvrVwHj67ZNBNYDm4A967bVzvUCcFCD93IYMLpk/fjCcUfWbZucjzu/mzaak8ucWLf+1Lz+WWDvwvpBwDfztmXAkAbv5bfA+wvrtwK+nbfdXrfP1Xn9zJL67QhM6HRf9OTJ01t3cqqJmVkyPM/XlG3MwwvOKZlG5yJTgQnA/cDpEfH72r759SnA88DxknYuOcUK4LQopLhExBJSwA5weF35WXn+uYhYUNwQEfcCXwG2Af6mwfs9L0pSZfL+d0fEspL1C4CL83GnNzhub8zI87Mj4vHC+f6XNILMM8C7gI832P+ciFhY2O914Oy8eKikbQpld8nzW+sPEhEvReHquJlZ1ZxqYmbWnHHACSXrLyZdjf1wXr4xB35vEBEvS3ool/sAcFtdkTuLwXpBLVVjt9oKScNJaRgbSo5Tc3eeT2iw/aYG62vneBspZWU/YBgwOG8am+d7drd/s3J6zhjgdbq+ZPy/iNgk6TrSiCiTgetKDnNLyX7PSVoH7Ay8g3Q1HeAB0r/B5ZLOBu6JiI0VvBUzsx458DYzS9bm+R+VbYyIC4ELa8uSlpGuwtaMyfPZkmbTvbJzPNOg7IY8L95guXue7wRsTinSLZ0LYHmjHSRNJ6VkDOvmuDt1d9IWjMjz1RHxaoMyT9WVrddd2+3MG9tuNnAo6ReE24CNkn5J+qJybfQyv9/MrBkOvM3MkoeBTwMH9nL/QXl+N+kKeHfKgt4/uErexLnWAzf3UHZt2coGV9drV6CvJ+Wl/2t+vQx4OSJel3Qy8C1STnuVouciDXYs+YWhm7KvAB+UNJ6UHjSR9KvAeOAMSedExLm9rYuZWXcceJuZJT8Bvg7sK2mfiHisxf1X5PkPI+KSaqvW8FyvRcSJFR/7KPLIHhFxZsn2PSo+36o8303SkAZpH2PqyvZZzldfACBpMGlElSuAWZK+HxFLqzqXmVmNb640MwMi4glgbl68PAdjrajdrHdMt6UqEBGrgEeB4ZImV3z4WnrJivoNkoYAjca5rt0U2tIFnYhYSUol2Yr0i0P9ObcBjs+L81s5dgt12BQRc0g3xoo0HKGZWeUceJuZdTmVlFYxEbhD0n5lhfJY0PU5zjeTxuE+TNLlSo+fr99vV0mfr6iutVE7rpV0RMm5BkmaIungFo9bu5nzY5JqI4DUrgpfRNfV53q1q9F7SGr119TamOBfkfSewjkHAecB7ySl58wt2bclkk6VtFfJ+jHA3nmxYf67mVlfONXEzCyLiLWSDgF+QHp4zSJJTwKPk8bT3pE0tnYtcLuTHKTl/OePAD8lDeH3KUmLSVeOtyWNAjKONKRg6UNtWqzrj/MDdM4Dfi7pCWAp8BKwK7A/MBT4AulKbrPmAYvy/r/JT558lfRl5O2kcbVPK6nPckm1/R6RtBDYCCyNiJ5uNr00H/+TwOJ8ztoDdMYA64BjKhp95GTgEklPAY/R1V6TSCO33NBomEUzs77yFW8zs4KIWB0Rh5KGnPtuXn04cCwpOFsHXEB6aM3hEbGmsO9KUrD4RVLwujdp7OkJpOD168BHK6zr+cD7gatIN1z+OfAXpKdX3gN8nvQlopVjbiY9QOc8YDVwBGkUkHvyuRZ1s/tH8/mGkYLok0hDEvZ0ziClk3yGlHc9Ph9rK+AyYN9o8NTKXvgn0s2hG4BDSP8+Y0k3xX6CrrQWM7PKKf1/Z2ZmZmZmbyZf8TYzMzMzawMH3mZmZmZmbeDA28zMzMysDRx4m5mZmZm1gQNvMzMzM7M2cOBtZmZmZtYGDrzNzMzMzNrAgbeZmZmZWRs48DYzMzMzawMH3mZmZmZmbfB/fVvyavRZAVwAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "[]" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/gAAAJpCAYAAAAZlpnFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAbUlEQVR4nOzdeXwU9eHG8Wd3c98hJzkg3MgNCYmgCNJYtFbFE60C4vXTotXSVqFVPFpLPYtVKmq9rUo9sJ54RA5R5Aj3fZMQyEXIbu5jd35/IFsjAQIsmezm83699hUz853ZZx3BPJmZ71gMwzAEAAAAAAC8mtXsAAAAAAAA4NRR8AEAAAAA8AEUfAAAAAAAfAAFHwAAAAAAH0DBBwAAAADAB1DwAQAAAADwARR8AAAAAAB8AAUfAAAAAAAf4Gd2AG/icrm0b98+hYeHy2KxmB0HAAAAAODjDMNQRUWFkpKSZLUe+xw9Bf8E7Nu3T6mpqWbHAAAAAAC0M/n5+UpJSTnmGAr+CQgPD5d06F9sRESEyWkAAAAAAL7O4XAoNTXV3UePhYJ/Ag5flh8REUHBBwAAAAC0mpbcJs4kewAAAAAA+AAKPgAAAAAAPoCCDwAAAACAD6DgAwAAAADgAyj4AAAAAAD4AAo+AAAAAAA+gIIPAAAAAIAPoOADAAAAAOADKPgAAAAAAPgACj4AAAAAAD6Agg8AAAAAgA+g4AMAAAAA4AMo+AAAAAAA+AAKPgAAAAAAPoCCDwAAAACAD6DgAwAAAADgAyj4AAAAAAD4AAo+AAAAAAA+gIIPAAAAAIAPoOADAAAAAOAD/MwOAAAAAACApxiGoUaXobpGl+oanKprdKmyrlEFB2tUUP7D64d/Lq2s04Lfj5LFYjE7tkdQ8AEAAAAAbdbhwt7oNFTvdKnR6VKjy1Cxo047Syu1o6RKu0qrtLOkUnkHqlVV3yiX0fL9H6iqV2xY4On7AK2Igg8AAAAAaBVOl6EDlXUqraxXeXW9yqrrdbC6QeVVh/65vLpBB6vrdbDq0PKD1fWqqG08pfcMsFkVHGBTx8ggpUQHKzkqWMnRwUqOClFydLAigvw99OnMR8EHAAAAAJy0yrpGFdprVX64rFfXy17ToPLqBh2oqldJRa2KHHUqctSqtLLuhM6uH43VInUIDVDX2DB1jQtVl9hQdY0LU5fYEEUE+yvQz6ZAP6sCbFZZrb5x+X1LeHXBnzVrlh577DEVFhZq4MCBevrpp5WZmdns2IaGBs2YMUOvvvqqCgoK1KtXLz3yyCM6//zzWzk1AAAAAJxehmGout4pR22DKmob5ag59NXfZlVceKBiwwIUHRLQpPzWN7pU5KjVfnut9ttrVFZV/6PL4g01ulxqcBoqr67XPnutCu012l9eq4q6EzvDfricR4f88Ar1V3RIgKJCAhQd4q9o97pD/xwR5K8Am1V+Nov8bBb5W9tXaT8RXlvw58yZoylTpmj27NnKysrSzJkzNWbMGG3ZskXx8fFHjL/33nv1xhtv6IUXXlDv3r31+eef69JLL9V3332nwYMHm/AJAAAAAODUuVyGtpdUalXeQa3cU66VeQe1s7RKzuOcKrdZLT8UbX+VVTWotLLupDOEB/kpJjRAkSEBigr2V1SI/w9fA5QQEaSEiEDFhx/6GhMWKBsF/bSwGIbhgQskWl9WVpaGDh2qZ555RpLkcrmUmpqqO+64Q1OnTj1ifFJSkv70pz9p8uTJ7mWXX365goOD9cYbb7ToPR0OhyIjI2W32xUREeGZDwIAAAAALVDf6FL+wWrtOVCl3aWHvu4oqdKa/PKjnkX3s1oUHuSniGB/hQf5qa7BpdLKOh2sbmh2fICfVR0jg5QYEaTYsEAF+FnlZ7XIz2ZVgO3Q14ggf3WMClJSZLASI4OUGBmksECvPXfc5p1ID/XKo1BfX6/c3FxNmzbNvcxqtSo7O1tLlixpdpu6ujoFBQU1WRYcHKzFixcf9X3q6upUV/e/32I5HI5TTA4AAAAAR+d0GdpZUqndB34o8geqtOdAtXYfqFLBwZqj3r8e7G/TwNRIDekUrcGdotU3KUJRIf4K9rc1+wi4BqdLByrrfyj79YoOCVDHyCB1CA3wmUfGtUdeWfBLS0vldDqVkJDQZHlCQoI2b97c7DZjxozRk08+qXPOOUfdunVTTk6O3n//fTmdzqO+z4wZM/Tggw96NDsAAAAA/NTBqnq9tTxPry/Zo/322qOOCwmwqXNMqNJiQtxf+6dEqldCuPxs1ha/n7/N6j77Dt/hlQX/ZDz11FO6+eab1bt3b1ksFnXr1k2TJk3SSy+9dNRtpk2bpilTpri/dzgcSk1NbY24AAAAANqBLYUVeuW7XZq7qkC1DS5Jh0p817hQpcUcenWOCVFa7KGvcWGBnGHHUXllwY+NjZXNZlNRUVGT5UVFRUpMTGx2m7i4OH3wwQeqra3VgQMHlJSUpKlTp6pr165HfZ/AwEAFBgZ6NDsAAACA9i2/rFqLtpXo03X79e32A+7lfTpGaNJZabpoYJKC/G0mJoS38sqCHxAQoPT0dOXk5Gjs2LGSDk2yl5OTo9tvv/2Y2wYFBSk5OVkNDQ167733dNVVV7VCYgAAAADtkWEYqqp3KnfPQS3cUqKFW4u1o6TKvd5qkcb0TdSks7poaFo0Z+dxSryy4EvSlClTNHHiRGVkZCgzM1MzZ85UVVWVJk2aJEmaMGGCkpOTNWPGDEnS0qVLVVBQoEGDBqmgoEAPPPCAXC6X7r77bjM/BgAAAAAv1+h0afnug/pqU5E27Xcc8ez5xp/MjGezWpTeKVrn9IzV2MHJSokOMSk5fI3XFvxx48appKRE06dPV2FhoQYNGqR58+a5J97Ly8uT1fq/SSZqa2t17733aufOnQoLC9MvfvELvf7664qKijLpEwAAAADwVpV1jVq0tURfbSzS11uKVX6Ux84d1jEySKN6xWlkzzgN7x6riCD/VkqK9sRiGMZRHrSAnzqR5w8CAAAA8C1Fjlp9ubFIX24s0pIdB1TvdLnXRYX4a3TveA3vFquY0IAmz54PD/JXaEDzj6sDjudEeqjXnsEHAAAAgNNte3GFPltXqC83FWntXnuTdWkxITqvT4Kyz0hQeufoE3pMHXA6UPABAAAA4Cf222v06LwtmruqwL3MYpEGp0Ypu0+Cft4nQd3iwjgrjzaFgg8AAAAAP6iqa9RzC3fo+W92up9Lf26vOI3pm6jRZ8QrPjzI5ITA0VHwAQAAALQbLpehrcUVMgwpwM+qQD+rAv1sCvCz6vMNhXr88y0qrqiTJA1Ni9Z9v+yjASlR5oYGWoiCDwAAAMDn1Te69MGqAs1etEM7f/Qc+uZ06hCiaRf01vn9ErkEH16Fgg8AAADAZ1XVNeqtZXn61ze7VOiolSSFBNgUEuCn+kan6hpdqms8dCl+ZLC/Jp/bTROHpynQz2ZmbOCkUPABAAAA+Jyyqnq98t1uvfrdbtlrDj2jPiEiUDed3VXXZHVSWOD/qpBhGKp3uuRntcpm5Yw9vBcFHwAAAIDPKCiv0QuLdurt5XnuSfK6xIbq/87pqkuHJDd7Zt5isXDGHj6Bgg8AAADA620rqtDshTv139UFanQZkqR+yRH69ajuGtM3kTPzaBco+AAAAAC81sq8g3p2wQ59ubHIvWx4txjdNqqbzu4eyyR5aFco+AAAAAC8imEYWrStVM8u2K7vd5ZJkiwWaUyfRN06qpsGpUaZGxAwCQUfAAAAgFdwugx9um6/nl2wQxv3OyRJ/jaLLh2crFvO6abu8WEmJwTMRcEHAAAA0ObtKq3SH95ZoxV7Dko69Ki7azI76cazuygpKtjkdEDbQMEHAAAA0Ga5XIZeXbJbj8zbrNoGl0IDbLr5nK6aOCxN0aEBZscD2hQKPgAAAIA2Kb+sWr9/Z42W7jp0n/3wbjF69IoBSokOMTkZ0DZR8AEAAAC0KU6XoTeX5WnGp5tUXe9UsL9Nf/xFb12b1VlWHncHHBUFHwAAAECbYBiG5q0v1BNfbtX24kpJUmaXDnr8ioHqFMNZe+B4KPgAAAAATHX4sXePf75F6wrskqTIYH/dld1DE4elcdYeaCEKPgAAAIBWZRiGDlY3aM+BKu05UK03l+Vp2Q/32YcG2HTjiK66aUQXRQT5m5wU8C4UfAAAAAAe1+h0ab+9Vnll1dpzoFp7yqqUd6BaeWXVyjtQrYq6xibjA/ysmnBmZ902qptiwgJNSg14Nwo+AAAAgFNSUdugDfscWl9g19q9dq3fZ1fegWo1uoxjbpcYEaROHULULzlSN5/TRR0jeZ49cCoo+AAAAABOWFlVvWYv3KGvNhVpV2mVjGa6fICfVanRwerUIUSdY0J/+BqiTh1ClNohREH+ttYPDvgwCj4AAACAFqupd+qlb3dp9oIdTS6zT4oMUv+USPVPjlS/5Ej1TAhXYkQQE+QBrYiCDwAAAOC4Gp0uvbdyr/7+5TYVOmolSX06RuiO0d01tEsHxXLfPGA6Cj4AAACAY1q+u0x/fH+dtv3wbPrkqGD9fkxPXTIwmTP0QBtCwQcAAADQLJfL0D8XbNeTX26Vyzj0bPo7RnfXdWd25v55oA2i4AMAAAA4QklFnab8Z7W+2VYqSbpscLLuv7ivIoN5Nj3QVlHwAQAAADTx3fZS3TlntUoq6hTsb9NDl/TVlRmpZscCcBwUfAAAAKAd2lVapU37HWpwutTgNNTodKnBZWhXSZVe/m6XDEPqmRCmWb8aoh4J4WbHBdACFHwAAACgHVlfYNes+ds1b0Nhs8+uP2xcRqoeuLivggO41x7wFhR8AAAAoB3I3XNQz3y9TfO3lLiXDUyNUmiATX42q/ytFvnbrArws+r8fon6Rf+OJqYFcDIo+AAAAICPqmt0av7mEr22ZLe+23FAkmS1SBcNTNKvR3VXr0QuvQd8CQUfAAAA8CGGYWjFnoOau6pAn6zdL3tNgyTJz2rR5UNSdNuobkqLDTU5JYDTgYIPAAAAeCmXy1BRRa3yDlQrr6xa20sq9em6/covq3GPSYgI1NhByZowPE3JUcEmpgVwulHwAQAAgDbq+50H9ObSPFXXO9XocqnRaajB6VKjy9DBqnrtPVijeqfriO1CA2w6v19HXTo4WcO6xchmtZiQHkBro+ADAAAAbYxhGHptyR499PFGOV3HmOpeks1qUXJUsFI7BCs1OkTDusXovD4JCgngR32gveFPPQAAANCG1De6dP+HG/TWsjxJhybEG94tRn4/zHLvZ7PIz2pVRJCfUjuEqGNkkPxsVpNTA2gLKPgAAABAG1FWVa/b3sjV0l1lslikaRf01s0juspi4RJ7AMdHwQcAAADagM2FDt306grtPVijsEA//eOaQRrdO8HsWAC8CAUfAAAAMInLZej7XQf0waoCfbRmv2oanOocE6J/TchQjwSeUQ/gxFDwAQAAgFa2tahC768s0H9XF2i/vda9/KzuMXrmmiGKDg0wMR0Ab0XBBwAAAE6jyrpGbSiwa90Pr7V77dpVWuVeHx7kpwv7H3qk3dC0DrLySDsAJ4mCDwAAAHjY7tIqzVmRry83FmlHSaWMnzzpzs9q0ahe8bpsSLJG945XkL/NnKAAfAoFHwAAAPCA2ganPt9QqLeX5WvJzgNN1nWMDFL/5MhDr5RIDUqNUlQIl+ED8CwKPgAAAHAK9h6s1ouLd+n9lQWy1zRIkiwWaWTPOF2ZnqrMLh0UFx5ockoA7QEFHwAAADgJ+WXVmjV/u97N3atG16Fr8JOjgnVlRoquzEhVclSwyQkBtDcUfAAAAOAE7C6t0qz52/X+qgI5fyj2Z3WP0c0jumpEjzjZmCQPgEko+AAAAEAL1De69OBHG/TWsjz90Ot1Ts84/WZ0d2WkdTA3HACIgg8AAAAcV1Vdo259I1ffbCuVJJ3bK06/+VkPDe4UbXIyAPgfCj4AAABwDGVV9Zr08jKt2WtXSIBNs64donN7xZsdCwCOQMEHAAAAjqKgvEbjX1yqnSVVig7x18uTMjUoNcrsWADQLKvZAU7FrFmzlJaWpqCgIGVlZWnZsmXHHD9z5kz16tVLwcHBSk1N1W9/+1vV1ta2UloAAAB4k+3FFbri2e+0s6RKSZFBeufWYZR7AG2a157BnzNnjqZMmaLZs2crKytLM2fO1JgxY7RlyxbFxx95ydSbb76pqVOn6qWXXtLw4cO1detWXX/99bJYLHryySdN+AQAAABoC2rqnSquqFVpZZ1KKupUUlmvkoo6vbZkt8qrG9Q9Pkyv3ZCpJB57B6CNsxiGYZgd4mRkZWVp6NCheuaZZyRJLpdLqampuuOOOzR16tQjxt9+++3atGmTcnJy3Mt+97vfaenSpVq8eHGL3tPhcCgyMlJ2u10RERGe+SAAAABoVS6XoXUFdi3cWqKFW0u0Ku+ge1b8nxqUGqWXrx+q6NCA1g0JAD84kR7qlWfw6+vrlZubq2nTprmXWa1WZWdna8mSJc1uM3z4cL3xxhtatmyZMjMztXPnTn366acaP378Ud+nrq5OdXV17u8dDofnPgQAAABa1aKtJXpv5V59s61UZVX1TdYF+9sUGx6g2LBA96trbKiuPbOTQgK88kdmAO2QV/5tVVpaKqfTqYSEhCbLExIStHnz5ma3+dWvfqXS0lKdffbZMgxDjY2NuvXWW/XHP/7xqO8zY8YMPfjggx7NDgAAgNb31rI8TXt/nfv7sEA/ndU9RqN6xeucnnFK5vJ7AD7AKwv+yViwYIH++te/6p///KeysrK0fft23Xnnnfrzn/+s++67r9ltpk2bpilTpri/dzgcSk1Nba3IAAAA8ID/LM93l/vLBidr3NBUDekcLX+bV883DQBH8MqCHxsbK5vNpqKioibLi4qKlJiY2Ow29913n8aPH6+bbrpJktS/f39VVVXplltu0Z/+9CdZrUf+BR8YGKjAwEDPfwAAAAC0ivdy9+qe99dKkq4fnqb7L+oji8VicioAOD288teWAQEBSk9PbzJhnsvlUk5OjoYNG9bsNtXV1UeUeJvNJkny0nkGAQAAcAwfrCrQ799dI8OQxp/ZmXIPwOd55Rl8SZoyZYomTpyojIwMZWZmaubMmaqqqtKkSZMkSRMmTFBycrJmzJghSbrooov05JNPavDgwe5L9O+77z5ddNFF7qIPAAAA3/DRmn2a8p/VMgzpV1md9ODFfSn3AHye1xb8cePGqaSkRNOnT1dhYaEGDRqkefPmuSfey8vLa3LG/t5775XFYtG9996rgoICxcXF6aKLLtLDDz9s1kcAAACAh+0sqdR/V+/TM/O3y2VI4zJS9ZdL+slqpdwD8H0Wg+vTW+xEnj8IAACA1rGjpFKfrt2vT9bt1+bCCvfyK9JT9OjlAyj3ALzaifRQrz2DDwAAgPanvtGlLYUVWldg17qCcuXuOaitRZXu9X5Wi4Z3j9XFA5N06eBkyj2AdoWCDwAAgDbL6TK0fHeZPt9QqBW7D2pLYYXqna4mYw6X+l/276jz+iQoOjTApLQAYC4KPgAAANqU+kaXvttRqs83FOqLDUU6UFXfZH1ksL/6J0eqf0qk+idHani3GEWFUOoBgIIPAACANmPO8jz95ZNNqqhtdC+LDPbXeX0SNKpXnAYkRym1QzAz4gNAMyj4AAAAaBPWF9j1p7nr1egyFBceqDF9E3R+347K6tpB/jbr8XcAAO0cBR8AAACmq21wasp/VqvRZeiCfoma9ashTJAHACeIX4UCAADAdE9+uVVbiyoVGxaohy/tT7kHgJNAwQcAAICplu0q0wvf7JQk/e2y/urALPgAcFIo+AAAADBNZV2jfvfOahmGdFVGirL7JJgdCQC8FgUfAAAApnn4k43KL6tRclSw7vtlH7PjAIBXo+ADAADAFPM3F+utZfmSpMevHKjwIH+TEwGAd2MWfQAAAJx2jU6XiivqtN9eq0J7rfbba/TcokP33d94dhcN6xZjckIA8H4UfAAAAHiM02Uor6xam/Y7tHm/Qxv3V2hzoUP7ymvkMo4c3z0+TH8Y06v1gwKAD6LgAwAA4JQ4XYYWbS3R28vztGhrqWoanM2O87NalBARpI6RQeoYFayU6GBNHJamIH9bKycGAN9EwQcAAMBJ2XuwWv9ZsVfvrMjXfnute3mgn1W9EsN1RmKEencM1xkdI9Q1NlSxYYE83x4ATiMKPgAAAI6rpt6pHSWV2l586LU6v1zf7iiV8cNl91Eh/rpscIouG5KsMzpGyEaRB4BWR8EHAACAW3l1vbvEby+u1PYfSn1BeY27zP/Y8G4xujqzk37eJ4FL7QHAZBR8AACAdqSkok6frN2nkso6lVc3qLymQfbqBpXX1KvQXqfSyrqjbtshNEDd48LULT5MPeLD9LMz4tU5JrQV0wMAjoWCDwAA0A4UlNfo+YU79PbyfNU1uo45NikySN3iw9T9h1eP+HB1jw9Th9CAVkoLADgZFHwAAAAftqOkUrMX7NDcVQVq/OE5dQNTIjW4U7Qig/0VFXL4FaDY0EB1jQtVaCA/IgKAN+JvbwAAAB+0YZ9d/1ywQ5+u2+++d/6s7jGaPKq7hnWLkcXCJHgA4Gso+AAAAD4kd0+Znvl6u+ZvKXEvyz4jQb8+t5uGdIo2MRkA4HSj4AMAALRxhmEor6xaS3eVaeM+h8KD/BQfEaSE8EAlRAQpPiJQ24oqNWv+di3dVSZJslqkiwYm6bZR3dQ7McLkTwAAaA0UfAAAgDbC5TJUUdeo8up6lVXVa/0+h5btKtOyXQdU5Dj67PY/5m+z6Ir0FP3fOd2UFssM9wDQnlDwAQAAPMBe3aD1++xau9eujfsd8rda1DUuVF1iw374Gqogf5uq6hq1rbhSWwsrtKWoQluLKrT3YI3Kq+tlr2mQq5lnzUuHivuAlCgNSo1SXaNTRY46FVfUqdhRq+KKOgXYrLoms5NuPqeLOkYGt+6HBwC0CRR8AACAk+ByGfpk3X7N21Co9QV27TlQfczxFovUISRAB6rqj7vvkACbIoP91SU2VFldYjS0S7QGp0YrOMB21Cwuw5CfzXpSnwUA4Bso+AAAACfo2+2lmvHZJq0vcDRZ3qlDiPonR6pvcoRcLkM7S6u0s6RKO0sq5ahtdJf7uPBA9UoIV4+EMPVKCFeX2FB1CA1QZIi/IoP9FejXfJE/GqvVIquYFR8A2jsKPgAAQAtt3OfQ3+Zt1qKth2aoDwv008ThnTWsa6z6JUcoKiSg2e0Mw1BZVb3222uVFBWsDqHNjwMA4FRQ8AEAAH6iqq5RpZV1Kq2sU0lFvUor67Rid5n+u2afDOPQ/fDXZnXWHaO7KyYs8Lj7s1gsigkLbNFYAABOFgUfAABA0qb9Dr2Xu1cfrtmn4oqjz1j/ywEd9YcxvdQ5hhnqAQBtCwUfAAD4vPLqetmsFgX725pMRFdaWaf/rt6n93L3auP+pvfTB/lbFRsWqNiwQMWFByoxIkhXpKdoYGpUK6cHAKBlKPgAAMDn2GsatGRHqRZtK9XibaXKK/vfDPcBNquC/K0KDrDpQGW9Gn94Ll2AzaqfnRGvy4ek6MxuMQoNsMliYeI6AID3oOADAACvZxiGNu2v0OcbCrVoW4nW5Jcf9Xny9U6X6p0uOWobJUkDUyJ1eXqKLhqQpGgmvwMAeDEKPgAA8Eoul6HVe8v1+fpCzdtQeMRz6LvFhWpEjziN6BGrrK4x8rNaVNvgVHW9UzUNTtXUOxUe5Me99AAAn0HBBwAAXqXYUauXvt2tD1YVqNBR614e6GfVOT3jlH1GvEb0iFNSVPAR2wb52xQV0pppAQBoPRR8AADgFfIOVOu5RTv0Tu5e1Te6JEmhATaNPiNBF/RL1MiecQoN5EcbAED7xf8FAQBAm7a50KFnF+zQR2v2ue+rT+8crZtHdNWoXnEK8reZGxAAgDaCgg8AANqc2ganPt9QqDnL8/XdjgPu5SN7xunXo7ops0sHZrgHAOAnKPgAAKDN2FJYobeW5WnuqgLZaxokSRaL9Iv+HXXbyG7qlxxpckIAANouCj4AADCVYRhatK1UT321VSvzyt3Lk6OCdWVGiq7KSG12wjwAANAUBR8AAJhm+e4yPfb5Fi3bVSZJ8rNadF6fBI0bmqoRPeJks3IZPgAALUXBBwAArW59gV1PfLFF87eUSJIC/KyacGZn3TKyq+LDg0xOBwCAd6LgAwCA08YwDO2z12p7caW2FVVoR0mlthZVKnfPQUmSzWrRVRmp+s3PuqtjJJfhAwBwKij4AADglLhchoor6rT7QJX2HKjS7gPVh76WVmv3gSpV1zuP2MZikS4emKS7snuqS2yoCakBAPA9FHwAANBiWwortGJPmfYcqNbu0irtOVCtPWVVqm1wHXUbP6tFabGh6hEfpu4/vAamRCmNYg8AgEdR8AEAwDHVN7o0b0OhXl+yW8t3H2x2jM1qUWp0sDrHhCotJuTQ19hDXzt1CJG/zdrKqQEAaH8o+AAAoFmF9lq9uXSP3lqer5KKOkmHivzwbjHqHh+mtJhQdY4JUVpMqJKjgynxAACYjIIPAADcDMPQkp0H9PqSPfpiY5GcLkOSFBceqGsyO+lXmZ2UGMks9wAAtEUUfAAAoIraBs1dVaDXl+zRtuJK9/LMLh00YVhnjembyBl6AADaOAo+AADtlGEYWp1frvdW7tXclQWq+mG2+5AAmy4dnKzxwzqrd2KEySkBAEBLUfABAGhn8suqNXdVgT5YVaCdpVXu5d3iQjX+zM66LD1FEUH+JiYEAAAnw+uvtZs1a5bS0tIUFBSkrKwsLVu27KhjR40aJYvFcsTrwgsvbMXEAAC0PsMw9NGafbri2e804tH5evLLrdpZWqUgf6suGZSkN2/K0ldTRur6s7pQ7gEA8FJefQZ/zpw5mjJlimbPnq2srCzNnDlTY8aM0ZYtWxQfH3/E+Pfff1/19fXu7w8cOKCBAwfqyiuvbM3YAAC0qrKqev3x/XWat6FQkmSxSGd1i9Wlg5M1pl+iwgK9+scBAADwA4thGIbZIU5WVlaWhg4dqmeeeUaS5HK5lJqaqjvuuENTp0497vYzZ87U9OnTtX//foWGhh53vMPhUGRkpOx2uyIiuCcRAND2fb25SHe/u06llXXyt1l028hu+lVWZ2bCBwDAS5xID/XaX9nX19crNzdX06ZNcy+zWq3Kzs7WkiVLWrSPF198UVdfffVRy31dXZ3q6urc3zscjlMLDQBAK6mqa9RfPtmkt5blSZJ6xIfp7+MGqV9ypMnJAADA6eK1Bb+0tFROp1MJCQlNlickJGjz5s3H3X7ZsmVav369XnzxxaOOmTFjhh588MFTzgoAQGupbXDqy41FevyLLdpzoFqSdNPZXfT7Mb0U5G8zOR0AADidvLbgn6oXX3xR/fv3V2Zm5lHHTJs2TVOmTHF/73A4lJqa2hrxAABoMcMwtDKvXO/m7tXHa/eporZRkpQUGaTHrxqo4d1iTU4IAABag9cW/NjYWNlsNhUVFTVZXlRUpMTExGNuW1VVpbffflsPPfTQMccFBgYqMDDwlLMCAHA67Cqt0idr9+m9lQXa9aPH3SVHBeuyIcm6aURXRQYzIz4AAO2F1xb8gIAApaenKycnR2PHjpV0aJK9nJwc3X777cfc9p133lFdXZ2uu+66VkgKAIDn7Cyp1Kfr9uuTdYXatP9/c8ME+9t0Qf9EXTEkRWd2jZHVajExJQAAMIPXFnxJmjJliiZOnKiMjAxlZmZq5syZqqqq0qRJkyRJEyZMUHJysmbMmNFkuxdffFFjx45VTEyMGbEBAGiRyrpGbS+u1PbiSm0rqtDCrSXaXFjhXm+zWjS8W4wuHpikC/p35HF3AAC0c179k8C4ceNUUlKi6dOnq7CwUIMGDdK8efPcE+/l5eXJarU22WbLli1avHixvvjiCzMiAwBwVIX2Wn20Zp8WbSvR9uJK7bfXHjHGz2rR8O6xurB/on7eJ1HRoQEmJAUAAG2RxTAMw+wQ3uJEnj8IAEBL2Ksb9On6/frv6gIt3VWmn/5fOS48UD3iw9Q9Pkz9kyOVfUYCpR4AgHbkRHqoV5/BBwDAW+XuKdNzC3dq/pZiNTj/1+oz0zrowgEd1S85Ut3jw5gkDwAAtBgFHwCAVrRsV5meytmqb7cfcC/rnRiuSwYl66KBHZUSHWJiOgAA4M0o+AAAnGaGYWjJzgP6R842fb+zTNKhe+kvH5KiSWenqXcit30BAIBTR8EHAMBD9ttrtHz3QRXZa1XkqFVxRZ2KHLXab69VXlm1JMnfZtGVGam6bWQ3pXbgbD0AAPAcCj4AAKdgd2mV5m0o1GfrC7Umv/yo4wJsVl2dmapbR3ZTUlRw6wUEAADtBgUfAIATVGiv1X9W5OvTdfubPJfeYpEGpESpc4cQJUQEKiEiSHHhh772iA9TTFigiakBAICvo+ADANBCK/MO6uVvd+uzdfvV6Do0873NatHwbjEa0zdRP++boPjwIJNTAgCA9oqCDwDAMdQ3uvTpuv16+bvdTS7Bz+zSQVemp+i8PgmKCuG59AAAwHwUfAAAmlHb4NSc5fl6dsEOFTpqJUkBflZdMjBJ15+Vpr5JkSYnBAAAaIqCDwDAj9TUO/Xmsjw9t3CHiivqJEnx4YEaf2ZnXZPVSbHcRw8AANooCj4AADpU7F//freeX7RTpZX1kqTkqGDdNqqbrsxIUaCfzeSEAAAAx0bBBwC0e/bqBo1/aanW7rVLklI7BGvyqO66bEiKAvysJqcDAABoGQo+AKBdO1hVr+teXKoN+xzqEBqgqRf01qWDk+Vvo9gDAADvQsEHALRbZVX1uvZfS7Vpv0MxoQF68+Yz1Ssx3OxYAAAAJ4WCDwBolw5U1unafy3V5sIKxYYF6q2bs9QjgXIPAAC8FwUfAOCzvttRqr1lNeoUE6K0mFDFhwfKarWopKJO1/7re20tqlR8eKDevPlMdY8PMzsuAADAKaHgAwB8TkVtg6b/d4PmriposjzI36rOHUJVUdugffZaJUQE6q2bz1TXOMo9AADwfhR8AIBPyd1zUHfNWaX8shpZLVJmlw7ab6/V3oM1qm1waUtRhSSpY2SQ3rr5TKXFhpqcGAAAwDMo+AAAn9DodGnW/B36x9fb5HQZSokO1sxxg5SR1kGS1OB0aV95jXYfqNaByjqd0zNOsWGBJqcGAADwHAo+AMDr7Sqt0h/eWaMVew5KksYOStJDY/spIsjfPcbfZlXnmFB1juGMPQAA8E0UfACA18o7UK2nv96m91cVyOkyFBbop7+M7aexg5PNjgYAANDqKPgAgDZpd2mVDlTVK7VDsOLCAmWxWNzr8suq9czX2/Xeyr1qdBmSpJE94/SXsf2U2iHErMgAAACmouADANqUbUUV+vtXW/XpukL3siB/q1KjQ5TaIURB/lZ9saHIXezP6Rmnu7J7aEinaLMiAwAAtAkUfABAm7CzpFJP5WzTh2v2yTAki0VKjAhSkaNWtQ0ubSuu1LbiSvf4ET1idVd2T6V3ptgDAABIFHwAgIkMw9DG/Q698u1u9330knR+30T99rye6pUYrvrGQ7Pf5x+sVn5ZjYorajWiR6zSO3cwOT0AAEDbQsEHALSqukanluw4oJxNxcrZVKR99lr3utG94zXlvJ7qlxzpXhbgZ1VabCjPqwcAADgOCj4AwKOq6xs1e+FO7SipPHJdXaOW7ipTdb3TvSzI36qRPeP0fyO7cR89AADAKaDgAwA8ZlXeQU35zxrtKq065riEiECN7p2g7DPidVb3WAX521opIQAAgO+i4AMATlmD06Wnc7Zp1oIdcroMJUYE6Yaz0xRgszYZZ7NaNCg1Wv2SI5o89g4AAACnjoIPADgl24sr9ds5q7WuwC5Junhgkv58ST9FhvibnAwAAKB9oeADAE7am0vz9OBHG1TX6FJEkJ/+cml/XTwwyexYAAAA7RIFHwBwwuobXXrgow16c2mepEPPpH/sioFKjAwyORkAAED7RcEHAJyQ0so6/fqNlVq2u0wWi/T7n/fSbSO7yWrlnnoAAAAzUfABAC22YZ9dt7yWq4LyGoUH+umpawZpdO8Es2MBAABAFHwAQAt9vHaffv/OGtU2uNQlNlQvTEhX9/hws2MBAADgBxR8AMARKmobtG6vXav3lmtNfrnW5NtV6KiVJJ3TM05PXz2YWfIBAADaGAo+AEA19U4t3XVA32wr1bfbS7WlqEKG0XSMn9WiG0d00d1jesvG/fYAAABtDgUfANqp/LJqfbR2nxZvK9WK3QdV73Q1WZ8SHayBqVEalBKlgalR6pccoZAA/rcBAADQVvGTGgC0M/ll1Xr66216b2WBnK7/naZPjgrWiB6xGtEjTlldOyg2LNDElAAAADhRFHwAaCfyy6o1a/52vZu7V40/FPvh3WI0pm+iRvSIVZfYUFksXHoPAADgrSj4AOCjDMNQoaNWa/faNX9zcZNiP6JHrO7K7qH0zh1MTgkAAABPoeADgJera3Sq2FGn4opaFdrrtKWoQuv2lmtdgUOllXVNxp7d/VCxz0ij2AMAAPgaCj4AeBnDMPT8op2au6pARY5aHaxuOOpYm9WiHvFhGpASqSvSU5XZhWIPAADgqyj4AOBFGp0u/XHuOv1nxd4mywP8rEqICFR8eJC6xIZqQEqk+iVHqk/HCAX520xKCwAAgNZEwQcAL1Fd36jb31ylrzcXy2qR/viLM3ROzzglhAcpItiPCfIAAADaOQo+AHiBA5V1uuHVFVqTX65AP6ue+dUQndcnwexYAAAAaEMo+ADQxuWXVWvCS8u0q7RKUSH+enFiBrPfAwAA4AgUfABowzbtd2jCS8tUUlGn5KhgvXpDprrHh5kdCwAAAG0QBR8A2qj1BXZd9+JSlVc3qHdiuF69IVMJEUFmxwIAAEAbRcEHgDZo7d5yXfevpXLUNmpQapRevSFTkcH+ZscCAABAG2Y1O8CpmDVrltLS0hQUFKSsrCwtW7bsmOPLy8s1efJkdezYUYGBgerZs6c+/fTTVkoLAC2zOr9c1/5Q7tM7R+v1Gyn3AAAAOD6vPYM/Z84cTZkyRbNnz1ZWVpZmzpypMWPGaMuWLYqPjz9ifH19vc477zzFx8fr3XffVXJysvbs2aOoqKjWDw8AR7Ey76AmvrhMFXWNGpoWrZcnZSos0Gv/qgYAAEArshiGYZgd4mRkZWVp6NCheuaZZyRJLpdLqampuuOOOzR16tQjxs+ePVuPPfaYNm/eLH//kzsT5nA4FBkZKbvdroiIiFPKDwA/tWJ3ma5/ebkq6xqV2aWDXr5+qEIp9wAAAO3aifRQr7xEv76+Xrm5ucrOznYvs1qtys7O1pIlS5rd5sMPP9SwYcM0efJkJSQkqF+/fvrrX/8qp9N51Pepq6uTw+Fo8gKA0+HrzUWa8NIyVdY1aljXGL0yiXIPAACAE+OVBb+0tFROp1MJCQlNlickJKiwsLDZbXbu3Kl3331XTqdTn376qe677z498cQT+stf/nLU95kxY4YiIyPdr9TUVI9+DgCQpFe+3aWbXl2h6nqnRvSI1UvXD1VIAOUeAAAAJ8YrC/7JcLlcio+P1/PPP6/09HSNGzdOf/rTnzR79uyjbjNt2jTZ7Xb3Kz8/vxUTA/B1TpehBz7coAc+2iiXIY3LSNVL1w9VcIDN7GgAAADwQl55iig2NlY2m01FRUVNlhcVFSkxMbHZbTp27Ch/f3/ZbP/7wfmMM85QYWGh6uvrFRAQcMQ2gYGBCgwM9Gx4AJBUVdeo37y1SjmbiyVJ95zfW7eO7CqLxWJyMgAAAHgrrzyDHxAQoPT0dOXk5LiXuVwu5eTkaNiwYc1uc9ZZZ2n79u1yuVzuZVu3blXHjh2bLfcAcLrst9foytlLlLO5WIF+Vv3z2iG6bVQ3yj0AAABOiVcWfEmaMmWKXnjhBb366qvatGmTbrvtNlVVVWnSpEmSpAkTJmjatGnu8bfddpvKysp05513auvWrfrkk0/017/+VZMnTzbrIwBoh7YWVeiyf36njfsdig0L0Nu3nKlf9O9odiwAAAD4AFMu0Xc4HGpsbFSHDh1Oeh/jxo1TSUmJpk+frsLCQg0aNEjz5s1zT7yXl5cnq/V/v79ITU3V559/rt/+9rcaMGCAkpOTdeedd+qee+455c8DAC2Ru6dMN7yyQvaaBnWPD9PL1w9VaocQs2MBAADAR1gMwzA8saPGxkatXbtWktS5c2fFxMQcMebrr7/Wb3/7W61fv16SlJKSoj/96U+65ZZbPBHhtDuR5w8CwI99tbFIk99cqbpGl4Z0itJL1w9VVAi3BwEAAODYTqSHeuwM/gcffKCrrrpKFotFGzZsOKLgL1u2TBdccIEaGxt1+HcK+fn57kvnp06d6qkoANCm/GdFvqa9v05Ol6HRveM161dDmCkfAAAAHuexe/DnzZsnSRo4cKB69+59xPrf/e53amhokGEYiouL06BBg2S1WmUYhh544AHt2LHDU1EAoE0wDEOz5m/X3e+uldNl6Ir0FD03Pp1yDwAAgNPCYwV/7dq1slgsOvfcc49Yt3XrVn377beyWCy66qqrVFBQoJUrV2rhwoXy9/dXQ0ODXnzxRU9FAQDTbSms0KRXluuxz7dIkm4b1U2PXTFA/javndsUAAAAbZzHLtEvKSmRdOjZ8j91+Oy+xWLR448/Lj+/Q2971lln6eKLL9Z7772nBQsWeCoKAJim2FGrv3+1VXOW58tlSH5Wi/74izN0w9ldzI4GAAAAH+exgn/gwAFJUnR09BHrvvnmG0nSkCFDlJKS0mTdyJEj9d5772nbtm2eigIAra6qrlEvfLNTzy/aqep6pyTpgn6Juvv83uoSG2pyOgAAALQHHiv4dXV1kqSqqqoj1n333XeyWCwaOXLkEesOP9bO4XB4KgoAtKqdJZW69l9Ltd9eK0kalBqley88QxlpJ/8oUAAAAOBEeazgR0dHq6SkRAUFBU2Wb9myRfv375fFYtGwYcOO2K6+vv5QED+PRQGAVlNor9X4F5dpv71WKdHBmnbBGfpF/0RZLBazowEAAKCd8dhsT3369JFhGJo7d26T5W+99Zb7n0eMGHHEdod/IRAXF+epKADQKsqr6zX+xaUqKK9Rl9hQfTD5LF04oCPlHgAAAKbwWMG/8MILJUm5ubm6++67tXnzZv373//WE088IYvFouHDhzdb4leuXClJ6tmzp6eiAMBpV1XXqOtfXq5txZVKjAjS6zdmKjYs0OxYAAAAaMc8VvBvueUW9/30TzzxhPr27asJEya478mfOnXqEds0NDTo888/l8ViUUZGhqeiAMBpVd/o0q1v5Gp1frkig/312o2ZSokOMTsWAAAA2jmPFfzw8HB9/PHHSkpKkmEY7pfFYtG9997rPsP/Y//9739lt9slSeeee66nogDAaeN0GZryn9X6Zlupgv1tennSUPVMCDc7FgAAAOC5SfYkKT09XVu3btWnn36q7du3KzQ0VNnZ2erdu3ez4/fv36+JEycedYZ9AGgL6hqdWrfXrhV7DmrBlmJ9v7NM/jaLZo9P15BORz4aFAAAADCDxTAMw+wQ3sLhcCgyMlJ2u10RERFmxwFwGhXaa/Xqkt1avqtMa/faVe90uddZLNJTVw/WxQOTTEwIAACA9uBEeijPpgOAn5i3fr/ueW+d7DUN7mWxYQFK7xytjM4dNLJXHJflAwAAoM1p9YLvdDq1YcMGNTY2qlevXgoNDW3tCADQrOr6Rj300Ua9vTxfktQ/OVIThnVWRloHpcWE8Pg7AAAAtGkeK/hVVVX6/PPPJUkZGRnq1KnTEWNee+01/e53v1NZWZkkKSgoSHfeeacefvhhfnAGYKq1e8t119urtbO0ShaLdOvIbvptdk8F+HlsLlIAAADgtPJYwX/33Xc1adIk2Ww27dy584j18+bN0/XXXy+LxaLDt/3X1NTokUceUVVVlZ566ilPRQGAFqttcOrFxbv09y+3qtFlKDEiSE+OG6jh3WLNjgYAAACcEI+dmvrqq68kSZmZmUpNTT1i/T333CNJMgxDAwcO1NixYxUeHi7DMDRr1iytWbPGU1EA4Liq6hr1wqKdGvHofD32+RY1ugz9on+i5t01gnIPAAAAr+SxM/gbN26UxWLROeecc8S61atXa926dbJYLLr99tvdZ+u3bt2q9PR0VVdX66WXXuIsPoDTzl7ToNeX7NaLi3fpYPWhSfSSIoM05ee9dPmQZG4XAgAAgNfyWMEvLS2VJPXq1euIdV988cWhN/Pz0/Tp093Le/bsqSuuuEKvvvqqvv32W09FAYAjFNpr9dqS3Xp9yR5V1DVKkjrHhOjXo7rp0sEp3GsPAAAAr+fxgt/cc/kWL14sSTrzzDMVExPTZF1mZqZeffXVZu/bB4BTtW6vXS8u3qmP1+5Xo+vQ/B894sN0++juurB/R/nZKPYAAADwDR4r+C6XS5Jkt9uPWLdkyRJZLBaNGDHiiHVxcXGSpMrKSk9FAdDOuVyGvtxUpBcX79KyXWXu5ZlpHXTjiC4674wEWa1cig8AAADf4rGCHxMTo/3792vPnj1Nlq9evVoHDhyQxWLRsGHDjtiupqZGkhQQEOCpKADaMXt1g+6cs0oLtpRIkvysFv1yQEfdeHZX9U+JNDkdAAAAcPp47NrUAQMGyDAMvfPOO02Wv/rqq4feyGrV2WeffcR2eXl5kqSOHTt6KgqAdmpLYYUunrVYC7aUKNDPqttGddPie0Zr5tWDKfcAAADweR47g3/JJZdo3rx52rx5s6655hpNnDhRubm5mjVrliwWi7KzsxUZeeQP2MuXL5fU/OR8ANBSH6/dpz+8s1Y1DU6lRAfrufHp6ptEqQcAAED7YTEMw/DEjurr69W/f39t27atyWOmDMOQzWbTwoULNXz48CbbVFdXKz4+XjU1Nbr//vubzLDfFjkcDkVGRsputzc7mSCA1tfodOmxL7bouYWHJuo8u3usnr5msKJDue0HAAAA3u9EeqjHLtEPCAjQ559/rsGDB8swDPcrJCREs2fPPqLcS9Lbb7+t6upqSdLo0aM9FQVAO1FZ16hJryx3l/tbR3bTqzdkUu4BAADQLnnsEn1JSktLU25urnJzc7V9+3aFhobqrLPOUnR0dLPjg4KCdP/998tisTT7CwAAOJqqukZd/9IyrdhzUCEBNj16xQD9ckCS2bEAAAAA03jsEv32gEv0gbahur5R17+8XMt2lSkiyE//vulMJtEDAACATzLlEn0AaA019U7d+MoKLdtVpvBAP71+YxblHgAAAJCHL9H/qYaGBu3atUtlZWWqr6/XOeecczrfDoCPq21w6ubXVmjJzgMKC/TTqzdmamBqlNmxAAAAgDbhtBT8r7/+Wk888YQWLFig2tpaSZLFYlFjY2OTcf/85z+1evVqpaSktPkZ9AGYq7bBqf97PVeLt5cqNMCmV28YqiGdmp/fAwAAAGiPPFrwXS6XJk+erOeff17SoUfkHUtcXJz+9a9/yWq1auLEiercubMn4wDwEYZh6M63V2nh1hIF+9v08qRMpXfuYHYsAAAAoE3x6D34d911l5577jkZhqHw8HBdc801uuyyy446fuzYsYqIiJBhGProo488GQWAD3knd68+31CkAD+rXrp+qDK7UO4BAACAn/JYwc/NzdUzzzwji8Wi0aNHa+fOnfr3v/+t8ePHH3Ubf39/ZWdnyzAMLVy40FNRAPiQQnut/vzxRknS787rqWHdYkxOBAAAALRNHiv4zz33nCQpISFBc+fOVYcOLTvDNmTIEEnSxo0bPRUFgI8wDEN/nLtOFbWNGpgapZtGdDU7EgAAANBmeazgL1q0SBaLRddff73Cw8NbvF1qaqokqaCgwFNRAPiI91cW6OvNxQqwWfX4FQNks1rMjgQAAAC0WR4r+IcL+oABA05ou5CQEElSdXW1p6IA8AHFjlo9+NEGSdJd5/VQj4SW/+IQAAAAaI88VvAPz5hvtZ7YLh0OhySd0Fl/AL7t8KX5jtpGDUiJ1C1cmg8AAAAcl8cKflxcnCRpz549J7TdmjVrJElJSUmeigLAy/139T59talY/jaLHrtioPxsHn3gBwAAAOCTPPZT89ChQ2UYhj755JMWb9PY2Kh3331XFotFw4cP91QUAF6suKJWD/xwaf5vRvdQr0Su7gEAAABawmMFf+zYsZKkb775Rp9++mmLtrnvvvu0b98+SdKVV17pqSgAvFRNvVOT/71S5dUN6psUoVtHdTM7EgAAAOA1PFbwr776avXq1UuGYWjcuHF66623jjq2pKREt912mx599FFZLBZlZWUpOzvbU1EAeKEGp0uT31yp5bsPKjzIT38fN0j+XJoPAAAAtJjFODw7ngesX79eZ511lioqKmSxWJScnKyOHTtq+fLlslgsuuyyy5Sfn6+VK1fK6XTKMAxFR0drxYoV6tKli6dinDYOh0ORkZGy2+2KiIgwOw7gM1wuQ797Z43mripQoJ9Vb9yUpaFpHcyOBQAAAJjuRHqoRwu+JK1atUpXXHGFdu3adegNLEc+t/rwW6alpenDDz9Uv379PBnhtKHgA55nGIYe+nijXv52t2xWi16YkK7RvRPMjgUAAAC0CSfSQz1+/evgwYO1fv16zZw5U0OGDJHFYpFhGE1effv21aOPPqoNGzZ4TbkHcHrMmr9dL3+7W5L0+JUDKPcAAADASfL4GfyfqqioUH5+vsrLyxUWFqbk5GTFxMSczrc8bTiDD3jWv5fu0Z/mrpckTf9lH91wdtu/VQcAAABoTSfSQ/1Od5jw8HD16dPndL8NAC9RUlGnD9fs09xVe7W+wCFJumN0d8o9AAAAcIpOe8EHgJp6p77YWKj3VxZo8fZSOV2HLhzys1p049ldNOW8niYnBAAAALwfBR/AabVgS7GmvrdOhY5a97JBqVG6bEiyfjkgSR1CA0xMBwAAAPiO01LwGxsbtXz5cq1fv14HDx5UbW3t8TeSNH369NMRB4AJKmob9NdPN+mtZfmSpKTIIF2Rkaqxg5LUNS7M5HQAAACA7/HoJHsul0uPPvqo/v73v6u0tPSEt3c6nSe8zaxZs/TYY4+psLBQAwcO1NNPP63MzMxmx77yyiuaNGlSk2WBgYEt/gUEk+wBLfPd9lL94d21KiivkSRdPzxN95zfW8EBNpOTAQAAAN7FlEn2DMPQlVdeqQ8++MD9/YmwWCwn/J5z5szRlClTNHv2bGVlZWnmzJkaM2aMtmzZovj4+Ga3iYiI0JYtW07pfQE0r6beqRmfbdJrS/ZIklI7BOuxKwbqzK7e+eQMAAAAwJt4rOC/9tprmjt3riTJZrPpiiuu0HnnnaeUlBQFBgZ66m2aePLJJ3XzzTe7z8rPnj1bn3zyiV566SVNnTq12W0sFosSExNPSx6gPWtwunTL6yv0zbZDV+9cd2YnTbvgDIUGMtUHAAAA0Bo89pP3q6++KkkKCgrSvHnzdM4553hq182qr69Xbm6upk2b5l5mtVqVnZ2tJUuWHHW7yspKde7cWS6XS0OGDNFf//pX9e3bt9mxdXV1qqurc3/vcDg89wEAH2IYhh78aIO+2VaqkACbnhufrhE94syOBQAAALQrVk/taO3atbJYLLrppptOe7mXpNLSUjmdTiUkJDRZnpCQoMLCwma36dWrl1566SX997//1RtvvCGXy6Xhw4dr7969zY6fMWOGIiMj3a/U1FSPfw7AF7z63W698X2eLBbpqasHU+4BAAAAE3is4FdVVUmShg8f7qldetywYcM0YcIEDRo0SCNHjtT777+vuLg4Pffcc82OnzZtmux2u/uVn5/fyomBtm/+lmI99PFGSdK0C3rrvD4Jx9kCAAAAwOngsUv0k5KStHv3brlcLk/t8phiY2Nls9lUVFTUZHlRUVGL77H39/fX4MGDtX379mbXBwYGnrb5AwBfsKWwQne8uUouQ7oqI0U3j+hqdiQAAACg3fLYGfzDl+WvXbvWU7s8poCAAKWnpysnJ8e9zOVyKScnR8OGDWvRPpxOp9atW6eOHTuerpiAzyqtrNONry5XZV2jsrp00F/G9uepFAAAAICJPFbw77jjDlmtVr3yyiuqqKjw1G6PacqUKXrhhRf06quvatOmTbrttttUVVXlnlV/woQJTSbhe+ihh/TFF19o586dWrlypa677jrt2bNHN910U6vkBXxFXaNT//d6rvYerFFaTIhmX5euAD+P/XUCAAAA4CR47CfyIUOG6C9/+YuKi4s1duxYHTx40FO7Pqpx48bp8ccf1/Tp0zVo0CCtXr1a8+bNc0+8l5eXp/3797vHHzx4UDfffLPOOOMM/eIXv5DD4dB3332nPn36nPasgC/522eblbvnoCKC/PSviUMVHRpgdiQAAACg3bMYhmF4YkeLFi2SJD3//PN68803FRMTowkTJmjYsGGKjY2V1Xr83yW0xuz7p8LhcCgyMlJ2u10RERFmxwFM8dXGIt302gpJ0kvXZ2h0bybVAwAAAE6XE+mhHiv4Vqu1yf23hmGc0P24FotFjY2Nnohy2lDw0d4V2mt1wVOLdLC6QTec1UXTL+LqFwAAAOB0OpEe6rFZ9KVDpf5Y3wPwXk6XoTvfXqWD1Q3qmxShey7oZXYkAAAAAD/isYJ///33e2pXANqgWfO3a+muMoUE2PT0NYMV6GczOxIAAACAH6HgAziu5bvLNPOrrZKkP1/ST13jwkxOBAAAAOCneK4VgGMqr67XnW+tksuQLh2crMvTU8yOBAAAAKAZFHwAR+VyGbr73bXaZ69VWkyI/jy2n9mRAAAAAByFxwq+1WqVn5+fPvzwwxPa7vPPP5fNZpOfn0fn+wPgAf/4epu+2Fgkf5tFT18zRGGB/DkFAAAA2qrTOov+6d4OwOnzydr9mvnVNknSw2P7q39KpMmJAAAAABwLl+gDOML6Art+985qSdJNZ3fRVUNTzQ0EAAAA4LhML/jV1dWSpKCgIJOTAJCkYketbn5thWobXBrZM07TfnGG2ZEAAAAAtIDpBf/777+XJMXHx5ucBEBtg1O3vJ6r/fZadYsL1dO/Giyb1WJ2LAAAAAAtcFL34K9du1arV69udt3XX3+t8vLyY25vGIaqqqq0cuVKvfHGG7JYLBo6dOjJRAHgIYZhaNr767Q6v1yRwf56ceJQRQT5mx0LAAAAQAudVMGfO3euHnrooSOWG4ahp59++oT2ZRiGLBaLbr311pOJAsBDnlu0U3NXFchmtejZa4coLTbU7EgAAAAATsBJX6JvGEaT19GWH++VkJCgF154QaNHj/bIBwJw4hZtLdGj8zZLkh64qI+Gd481OREAAACAE3VSZ/DHjh2rtLS0JssmTZoki8Wi22+/XUOGDDnm9larVWFhYerSpYv69+8vm812MjEAeEDegWrd8dYquQxpXEaqrjuzs9mRAAAAAJwEi+Ghh9BbrVZZLBbNnTtXF198sSd22eY4HA5FRkbKbrcrIiLC7DjAKauub9Rl//xOmwsrNDA1SnNuOVNB/vzCDQAAAGgrTqSHntQZ/Oa8/PLLknTcs/cA2gbDMDT1vXXaXFih2LAAzb5uCOUeAAAA8GIeK/gTJ0701K4AtIIXF+/Sh2v2yc9q0axfDVHHyGCzIwEAAAA4BSc9yR4A7/Xd9lLN+OzQpHp/uvAMZXWNMTkRAAAAgFPlsTP4ANquukanthZWam1BudYX2PXpukI5XYYuG5ys64enmR0PAAAAgAeccMHv2rWrJMlisWjHjh1HLD9ZP90fgFP38re79P7KAm0udKjB2XQ+zf7JkfrrZf1lsVhMSgcAAADAk0644O/evVuSjigFu3fvlsVi0clOyk/JADzrje/36MGPNrq/jwz214CUSPVLjlT/5EiN7h3PpHoAAACADznhgt+pU6dmy/jRlgNofUt3HtADH26QJN06spuuzeqklOhg/owCAAAAPuykz+C3dDmA1rX3YLVu+/dKNboMXTQwSfec34tiDwAAALQDzKIP+JDq+kbd8lquyqrq1S85Qo9ePoByDwAAALQTJ1XwR48erdGjR+u7777zdB4AJ8kwDP3hnbXauN+h2LAAPTc+Q8EB3GMPAAAAtBcnVfAXLFighQsXqrS09KhjhgwZovT0dC1cuPCkwwFouX8u2KFP1u2Xv82iZ69LV3JUsNmRAAAAALSiE74Hv6VWr14ti8Uiu91+ut4CwA/mrd+vx7/YIkl66JJ+GprWweREAAAAAFob9+ADXu79lXs1+c1VMgxp/JmddU1mJ7MjAQAAADDBaTuDD+D0e2nxLj308aFn3V82OFn3X9TH5EQAAAAAzELBB7yQYRj6+5db9Y+vt0uSbjiri+698AxZrcyYDwAAALRXFHzAy7hchh74aINeW7JHkvS783rq9tHdeRweAAAA0M5R8AEv0uB06ffvrNF/V++TxSI9dHFfjR+WZnYsAAAAAG0ABR/wErUNTt3+5kp9talYflaLnrhqoC4ZlGx2LAAAAABtxCkV/JZcEsxlw8Cpq65v1P+9nqtvtpUq0M+q2del69ze8WbHAgAAANCGWAzDME50I6vVetzifni3LS34FotFjY2NJxqlVTkcDkVGRsputysiIsLsOGgnKmobdMMry7V890GFBNj0r4kZGt4t1uxYAAAAAFrBifTQU75E/2i/H/hxsT+J3yEAkFReXa8JLy3T2r12hQf56ZVJmUrvHG12LAAAAABt0EkX/OOVdko9cGpKKuo0/sWl2lxYoQ6hAXrthkz1S440OxYAAACANuqkCr7L5fJ0DgA/Yq9p0DUvfK/txZWKDw/Uv2/KUo+EcLNjAQAAAGjDmEUfaGOcLkN3vb1K24srlRgRpLdvOVNpsaFmxwIAAADQxlnNDgCgqSe+2KL5W0oU6GfVCxMyKPcAAAAAWoSCD7QhH6/dp38u2CFJevSKAeqfwj33AAAAAFqGgg+0ERv3OfSHd9ZKkm45p6suGZRsciIAAAAA3oSCD7QBZVX1uuX1FappcGpEj1jdPaaX2ZEAAAAAeBkKPmCyRqdLt7+5UnsP1qhThxA9fc1g+dn4owkAAADgxDCLPmCi3D1leuKLrfpuxwGFBNj0woQMRYUEmB0LAAAAgBei4AMmWLarTE/lbNW32w9IkvysFv193CD1SuRZ9wAAAABODgUfaEVLdhzQUzlb9f3OMkmHiv0V6Sn69aju6hQTYnI6AAAAAN6Mgg+0gpp6px78aIPeXp4vSfK3WXRVRqpuG9VNKdEUewAAAACnjoIPnGabCx26481V2lZcKYtFujark349qruSooLNjgYAAADAh1DwgdPEMAy9uSxPD320UXWNLsWHB2rmuEEa3j3W7GgAAAAAfJDXP4tr1qxZSktLU1BQkLKysrRs2bIWbff222/LYrFo7Nixpzcg2iV7TYMmv7lSf5q7XnWNLo3qFafP7hxBuQcAAABw2nh1wZ8zZ46mTJmi+++/XytXrtTAgQM1ZswYFRcXH3O73bt36/e//71GjBjRSknRnlTUNujSf36rT9cVyt9m0b0XnqGXJg5VTFig2dEAAAAA+DCvLvhPPvmkbr75Zk2aNEl9+vTR7NmzFRISopdeeumo2zidTl177bV68MEH1bVr11ZMi/biwY82amdJlRIjgvTurcN104iuslotZscCAAAA4OO8tuDX19crNzdX2dnZ7mVWq1XZ2dlasmTJUbd76KGHFB8frxtvvPG471FXVyeHw9HkBRzLvPX79W7uXlkt0tO/GqyBqVFmRwIAAADQTnhtwS8tLZXT6VRCQkKT5QkJCSosLGx2m8WLF+vFF1/UCy+80KL3mDFjhiIjI92v1NTUU84N31XkqNXU99dJkm4d2U1D0zqYnAgAAABAe+K1Bf9EVVRUaPz48XrhhRcUG9uyic6mTZsmu93ufuXn55/mlPBWhmHoD++uVXl1g/olR+iu7J5mRwIAAADQznjtY/JiY2Nls9lUVFTUZHlRUZESExOPGL9jxw7t3r1bF110kXuZy+WSJPn5+WnLli3q1q1bk20CAwMVGMjEaDi+15bs0aKtJQr0s2rmuEEK8Gs3vzsDAAAA0EZ4bQsJCAhQenq6cnJy3MtcLpdycnI0bNiwI8b37t1b69at0+rVq92viy++WOeee65Wr17N5fc4aduLK/TXTzdJkv74izPUPT7c5EQAAAAA2iOvPYMvSVOmTNHEiROVkZGhzMxMzZw5U1VVVZo0aZIkacKECUpOTtaMGTMUFBSkfv36Ndk+KipKko5YDrRUfaNLd769WnWNLp3TM04ThnU2OxIAAACAdsqrC/64ceNUUlKi6dOnq7CwUIMGDdK8efPcE+/l5eXJavXaixTgBZ7K2aoN+xyKCvHXY1cMkMXC4/AAAAAAmMNiGIZhdghv4XA4FBkZKbvdroiICLPjwGSr88t12T+/lcuQ/nntEP2if0ezIwEAAADwMSfSQzm9DZyE2ganfvef1XIZ0iWDkij3AAAAAExHwQdOwt+/3KodJVWKCw/UAxf1NTsOAAAAAFDwgROVu+egXvhmpyTpr5f2V3RogMmJAAAAAICCD5yQ2gan/vDOGrkM6bLByTqvT4LZkQAAAABAEgUfOCGPf75FO0urFB8eqPu5NB8AAABAG0LBB1po+e4yvfjtLknS3y7vr8gQf5MTAQAAAMD/UPCBFqiub9Qf3lkjw5CuTE/R6N5cmg8AAACgbaHgA8dhGIamvrdOuw9Uq2NkkO79ZR+zIwEAAADAESj4wHHMXrhTH67ZJz+rRX8fN0iRwVyaDwAAAKDtoeADxzB/c7Ee/XyzJOn+i/rozK4xJicCAAAAgOZR8IGj2F5cqd+8tUqGIV2T2UnXndnZ7EgAAAAAcFQUfKAZ9poG3fLaClXUNWpoWrQevLivLBaL2bEAAAAA4Kgo+MBPOF2GfvPWKu0srVJSZJCevS5dAX78UQEAAADQttFagJ949PPNWri1REH+Vj0/IUOxYYFmRwIAAACA46LgAz/ywaoCPbdwpyTpsSsGql9ypMmJAAAAAKBlKPjAD9buLdc9762VJP16VDddNDDJ5EQAAAAA0HIUfEBScUWtbnktV3WNLo3uHa/f/byX2ZEAAAAA4IRQ8NHu1TU6devruSp01KpbXKhmXj1INisz5gMAAADwLhR8tGuGYWj6Bxu0Mq9c4UF+emFChiKC/M2OBQAAAAAnjIKPdu3V73Zrzop8WS3SM78aoq5xYWZHAgAAAICTQsFHu/Xd9lL9+ZNNkqSpF/TWyJ5xJicCAAAAgJNHwUe7tN9eo9vfWiWny9Clg5N184iuZkcCAAAAgFNCwUe7U9/o0uR/r1RZVb36dIzQjMv6y2JhUj0AAAAA3o2Cj3bnr59uck+qN/u6dAX528yOBAAAAACnjIKPduWjNfv0yne7JUlPXjVInWJCzA0EAAAAAB5CwUe7sb24QlPfWytJum1UN53XJ8HkRAAAAADgORR8tAtVdY269Y2Vqqp3aljXGP3uvJ5mRwIAAAAAj6Lgw+cZhqFp76/T9uJKxYcH6h/XDJafjf/0AQAAAPgWWg583ouLd+nDNftks1r0zK+GKC480OxIAAAAAOBxFHz4tJxNRXr4002SpD/+4gxldulgciIAAAAAOD0o+PBZm/Y79Ju3VskwpGsyU3XDWWlmRwIAAACA04aCD59UUlGnm15d4Z5U76FL+slisZgdCwAAAABOGwo+fE5tg1O3vL5CBeU16hIbqmevGyJ/JtUDAAAA4ONoPfAphmHo7nfXalVeuSKD/fXixAxFhQSYHQsAAAAATjsKPnzKP3K268M1++RntejZ64aoa1yY2ZEAAAAAoFVQ8OEzFm8r1d+/2ipJ+svYfhreLdbkRAAAAADQeij48AkHq+r1u3dWS5J+ldVJV2d2MjcQAAAAALQyCj68nmEY+uPcdSpy1KlrXKjuu7CP2ZEAAAAAoNVR8OH13s3dq8/WF8rPatFT4wYrOMBmdiQAAAAAaHUUfHi1vAPVeuDDDZKk357XU/1TIk1OBAAAAADmoODDazU6Xfrtf1arqt6pzLQOunVkN7MjAQAAAIBpKPjwWv9csEO5ew4qPNBPT1w1UDarxexIAAAAAGAaCj680ur8cj2Vs02S9NDYvkrtEGJyIgAAAAAwFwUfXsfpMjT1vbVyugxdNDBJYwclmx0JAAAAAExHwYfX+WBVgTYXVigiyE8PXdxXFguX5gMAAAAABR9epbbBqSe/3CpJ+vW53RUdGmByIgAAAABoGyj48CpvfL9HBeU1SowI0vXD08yOAwAAAABtBgUfXsNR26Bn5m+XJP32vB4K8reZnAgAAAAA2g4KPrzGcwt3qLy6Qd3jw3T5kBSz4wAAAABAm0LBh1coctTqxcW7JEl3j+klPxv/6QIAAADAj3l9S5o1a5bS0tIUFBSkrKwsLVu27Khj33//fWVkZCgqKkqhoaEaNGiQXn/99VZMi5M186ttqm1wKb1ztM7rk2B2HAAAAABoc7y64M+ZM0dTpkzR/fffr5UrV2rgwIEaM2aMiouLmx3foUMH/elPf9KSJUu0du1aTZo0SZMmTdLnn3/eyslxIrYXV+o/K/IlSVMv6M1j8QAAAACgGRbDMAyzQ5ysrKwsDR06VM8884wkyeVyKTU1VXfccYemTp3aon0MGTJEF154of785z8fd6zD4VBkZKTsdrsiIiJOKTta7tbXczVvQ6Gyz0jQvyZmmB0HAAAAAFrNifRQrz2DX19fr9zcXGVnZ7uXWa1WZWdna8mSJcfd3jAM5eTkaMuWLTrnnHOaHVNXVyeHw9Hkhda1Mu+g5m0olNUi3X1+L7PjAAAAAECb5bUFv7S0VE6nUwkJTe/HTkhIUGFh4VG3s9vtCgsLU0BAgC688EI9/fTTOu+885odO2PGDEVGRrpfqampHv0MODbDMPS3zzZLkq5IT1HPhHCTEwEAAABA2+W1Bf9khYeHa/Xq1Vq+fLkefvhhTZkyRQsWLGh27LRp02S3292v/Pz81g3bzi3YUqJlu8oU6GfVXdk9zY4DAAAAAG2an9kBTlZsbKxsNpuKioqaLC8qKlJiYuJRt7NarerevbskadCgQdq0aZNmzJihUaNGHTE2MDBQgYGBHs2NlnG6DD0y79DZ++vPSlNSVLDJiQAAAACgbfPaM/gBAQFKT09XTk6Oe5nL5VJOTo6GDRvW4v24XC7V1dWdjog4BR+sKtDmwgpFBPnp1yO7mx0HAAAAANo8rz2DL0lTpkzRxIkTlZGRoczMTM2cOVNVVVWaNGmSJGnChAlKTk7WjBkzJB26pz4jI0PdunVTXV2dPv30U73++ut69tlnzfwY+InaBqee/HKrJGnyud0VGeJvciIAAAAAaPu8uuCPGzdOJSUlmj59ugoLCzVo0CDNmzfPPfFeXl6erNb/XaRQVVWlX//619q7d6+Cg4PVu3dvvfHGGxo3bpxZHwHNeOP7PSoor1HHyCBNHJ5mdhwAAAAA8AoWwzAMs0N4ixN5/iBOjr2mQSMfm6/y6gY9evkAXTWUJxcAAAAAaL9OpId67T348E3PLdyh8uoG9YgP02VDks2OAwAAAABeg4KPNqPQXquXvt0lSbr7/N7ys/GfJwAAAAC0FA0KbcZTOVtV2+BSRudoZZ8Rb3YcAAAAAPAqFHy0CWv3lus/K/ZKkqZe0FsWi8XkRAAAAADgXSj4MF1do1O/f2eNnC5DFw1MUkZaB7MjAQAAAIDXoeDDdP/I2aatRZWKDQvQgxf3NTsOAAAAAHglCj5MtXZvuWYv3ClJ+svYfuoQGmByIgAAAADwThR8mObHl+b/ckBHnd+vo9mRAAAAAMBrUfBhmh9fmv/QJf3MjgMAAAAAXo2CD1NwaT4AAAAAeBYFH63up7Pmc2k+AAAAAJw6Cj5aldNl6KGPNjJrPgAAAAB4mJ/ZAdB+lFXV6zdvrdLi7aWSpL+M7c+l+QAAAADgIRR8tIo1+eX69b9XqqC8RsH+Nj1yxQCd3y/R7FgAAAAA4DMo+Djt3l6Wp+n/3aB6p0tdYkP13Ph09UwINzsWAAAAAPgUCj5Om/pGl6b/d73eXp4vSTqvT4KeuGqgIoL8TU4GAAAAAL6Hgo/TZvbCHXp7eb4sFun3P++l20Z2k9VqMTsWAAAAAPgkCj5Oi4raBv3rm0PPuX/k8gG6KiPV5EQAAAAA4Nt4TB5Oi9eW7JGjtlHd4kJ1+ZAUs+MAAAAAgM+j4MPjquoa3Wfvbx/dXTYuywcAAACA046CD4/799I9OljdoM4xIbpoQJLZcQAAAACgXaDgw6Nq6p16ftEuSdLkc7vLz8Z/YgAAAADQGmhf8Ki3luWptLJOKdHBunRwstlxAAAAAKDdoODDY2obnHpu0Q5J0m2jusmfs/cAAAAA0GpoYPCYd3L3qshRp46RQboinZnzAQAAAKA1UfDhEfWNLj07f7sk6daR3RToZzM5EQAAAAC0LxR8eMT7K/dqn71WceGBGjc01ew4AAAAANDuUPBxyhqcLs1acOjs/f+d01VB/py9BwAAAIDWRsHHKZu7skD5ZTWKCQ3Qr7I6mR0HAAAAANolCj5OSX2jS//4epukQ/fehwT4mZwIAAAAANonCj5OyXsr92rvwRrFhgXqujM7mx0HAAAAANotCj5OWl2jU898feje+1+P6qbgAO69BwAAAACzUPBx0v6zYq8KymuUEBHIvfcAAAAAYDIKPk5KbYNTs9xn77szcz4AAAAAmIyCj5MyZ3m+Ch216hgZxHPvAQAAAKANoODjhNU2ODVr/qGz95PP5ew9AAAAALQFFHycsH8vzVNxRZ2So4J1VQZn7wEAAACgLaDg44TU1Dv17IIdkqQ7RndXgB//CQEAAABAW0A7wwl54/s9Kq2sU2qHYF2enmJ2HAAAAADADyj4aLG6Rqee/2anJOmO0T3kb+M/HwAAAABoK2hoaLEPV+9TSUWdEiOCdOngZLPjAAAAAAB+hIKPFjEMQy8u3iVJuv6sNM7eAwAAAEAbQ0tDiyzeXqrNhRUKDbDpmsxOZscBAAAAAPwEBR8t8sI3h87eXzU0VZHB/ianAQAAAAD8FAUfx7WlsEKLtpbIapFuOKuL2XEAAAAAAM2g4OO4Xlx8aOb88/slKrVDiMlpAAAAAADNoeDjmIoravXBqn2SpBvP7mpyGgAAAADA0VDwcUxvLNmjeqdLQzpFKb1ztNlxAAAAAABHQcHHUdXUO/X693skSTeP4Ow9AAAAALRlFHwc1Xsr9+pgdYNSOwTr530TzY4DAAAAADgGCj6a5XIZemnxoUfj3XBWF9msFpMTAQAAAACOxesL/qxZs5SWlqagoCBlZWVp2bJlRx37wgsvaMSIEYqOjlZ0dLSys7OPOb49m7+lWDtLqxQe5KcrM1LNjgMAAAAAOA6vLvhz5szRlClTdP/992vlypUaOHCgxowZo+Li4mbHL1iwQNdcc43mz5+vJUuWKDU1VT//+c9VUFDQysnbvleXHLr3/prMTgoL9DM5DQAAAADgeCyGYRhmhzhZWVlZGjp0qJ555hlJksvlUmpqqu644w5NnTr1uNs7nU5FR0frmWee0YQJE4473uFwKDIyUna7XREREaecv63aXVqlUY8vkMUiLfz9ueoUE2J2JAAAAABol06kh3rtGfz6+nrl5uYqOzvbvcxqtSo7O1tLlixp0T6qq6vV0NCgDh06NLu+rq5ODoejyas9eHNZniRpZM84yj0AAAAAeAmvLfilpaVyOp1KSEhosjwhIUGFhYUt2sc999yjpKSkJr8k+LEZM2YoMjLS/UpN9f170WsbnPrPinxJ0vgzO5ucBgAAAADQUl5b8E/V3/72N7399tuaO3eugoKCmh0zbdo02e129ys/P7+VU7a+j9fuV3l1g5KjgjWqV7zZcQAAAAAALeS1s6fFxsbKZrOpqKioyfKioiIlJh77me2PP/64/va3v+mrr77SgAEDjjouMDBQgYGBHsnrLd74/tDker/K6sSj8QAAAADAi3jtGfyAgAClp6crJyfHvczlciknJ0fDhg076naPPvqo/vznP2vevHnKyMhojaheY32BXavzy+Vvs2jcUN+/HQEAAAAAfInXnsGXpClTpmjixInKyMhQZmamZs6cqaqqKk2aNEmSNGHCBCUnJ2vGjBmSpEceeUTTp0/Xm2++qbS0NPe9+mFhYQoLCzPtc7QVh8/eX9Cvo2LD2teVCwAAAADg7by64I8bN04lJSWaPn26CgsLNWjQIM2bN8898V5eXp6s1v9dpPDss8+qvr5eV1xxRZP93H///XrggQdaM3qbY69p0AerCyRJ44cxuR4AAAAAeBuLYRiG2SG8xYk8f9DbvLR4lx76eKN6J4brsztHyGLh/nsAAAAAMNuJ9FCvvQcfnmMYht5Yeujy/GvP7Ey5BwAAAAAvRMGHluw4oJ0lVQoNsOnSwclmxwEAAAAAnAQKPtxn7y8bkqKwQK+elgEAAAAA2i0KfjtXXFGrzzcUSZKuO5PJ9QAAAADAW1Hw27lP1u6X02VoUGqUeiWGmx0HAAAAAHCSKPjt3Idr9kmSLhmUZHISAAAAAMCpoOC3Y3kHqrUqr1xWi3ThgI5mxwEAAAAAnAIKfjv20dpDZ++Hd4tVfHiQyWkAAAAAAKeCgt+Ofbj6UMG/eCCX5wMAAACAt6Pgt1ObCx3aUlShAJtVY/olmh0HAAAAAHCKKPjt1OGz96N6xSky2N/kNAAAAACAU0XBb4cMw3Dff38xs+cDAAAAgE+g4LdDq/LLlV9Wo9AAm37WO8HsOAAAAAAAD6Dgt0OHL88/r0+CggNsJqcBAAAAAHgCBb+daXS69PHa/ZKkSwYlm5wGAAAAAOApFPx25vudZSqtrFN0iL/O7hFrdhwAAAAAgIdQ8NuZD9cUSJIu6N9R/jYOPwAAAAD4ChpeO1LX6NRn6wslSRcPZPZ8AAAAAPAlFPx2ZMGWElXUNioxIkiZaR3MjgMAAAAA8CAKfjvy4ZpDs+dfNLCjrFaLyWkAAAAAAJ5EwW8nXC5Di7eVSjp0/z0AAAAAwLdQ8NuJbcWVstc0KNjfpv7JkWbHAQAAAAB4GAW/nVi+u0ySNKRzFLPnAwAAAIAPoum1Eyt+KPgZnZlcDwAAAAB8EQW/nVi++6AkaSiz5wMAAACAT6LgtwMF5TUqKK+RzWrR4E5RZscBAAAAAJwGFPx24PDl+X2TIhQa6GdyGgAAAADA6UDBbweWc/89AAAAAPg8Cn47sOKH++8zu0SbnAQAAAAAcLpQ8H2cvbpBW4oqJEnpnMEHAAAAAJ9FwfdxK/MOyjCkLrGhigsPNDsOAAAAAOA0oeD7uGXu+++5PB8AAAAAfBkF38cdnkF/aBcuzwcAAAAAX0bB92G1DU6tybdLkoamUfABAAAAwJdR8H3YugK76p0uxYYFKC0mxOw4AAAAAIDTiILvw5Yfvjw/rYMsFovJaQAAAAAApxMF34et2H1QkpTB5fkAAAAA4PMo+D7K5TL+N8FeGjPoAwAAAICvo+D7qK3FFXLUNiokwKY+HSPMjgMAAAAAOM0o+D5q+Q+X5w/pFC0/G4cZAAAAAHwdzc9HLd916PL8DC7PBwAAAIB2gYLvow7ff5/JBHsAAAAA0C5Q8H1QQXmN9tlrZbNaNKhTlNlxAAAAAACtgILvgw6fve+XFKGQAD+T0wAAAAAAWgMF3wctc99/z+X5AAAAANBecHrXB91zQW+d1ydBSVHBZkcBAAAAALQSCr4Pigjy16he8WbHAAAAAAC0Ii7RBwAAAADAB1DwAQAAAADwARR8AAAAAAB8AAUfAAAAAAAf4NUFf9asWUpLS1NQUJCysrK0bNmyo47dsGGDLr/8cqWlpclisWjmzJmtFxQAAAAAgNPMawv+nDlzNGXKFN1///1auXKlBg4cqDFjxqi4uLjZ8dXV1eratav+9re/KTExsZXTAgAAAABwenltwX/yySd18803a9KkSerTp49mz56tkJAQvfTSS82OHzp0qB577DFdffXVCgwMbOW0AAAAAACcXl5Z8Ovr65Wbm6vs7Gz3MqvVquzsbC1ZssRj71NXVyeHw9HkBQAAAABAW+SVBb+0tFROp1MJCQlNlickJKiwsNBj7zNjxgxFRka6X6mpqR7bNwAAAAAAnuSVBb+1TJs2TXa73f3Kz883OxIAAAAAAM3yMzvAyYiNjZXNZlNRUVGT5UVFRR6dQC8wMJD79QEAAAAAXsErz+AHBAQoPT1dOTk57mUul0s5OTkaNmyYickAAAAAADCHV57Bl6QpU6Zo4sSJysjIUGZmpmbOnKmqqipNmjRJkjRhwgQlJydrxowZkg5NzLdx40b3PxcUFGj16tUKCwtT9+7dTfscAAAAAAB4gtcW/HHjxqmkpETTp09XYWGhBg0apHnz5rkn3svLy5PV+r8LFPbt26fBgwe7v3/88cf1+OOPa+TIkVqwYEFrxwcAAAAAwKMshmEYZofwFg6HQ5GRkbLb7YqIiDA7DgAAAADAx51ID/XKe/ABAAAAAEBTFHwAAAAAAHwABR8AAAAAAB9AwQcAAAAAwAdQ8AEAAAAA8AEUfAAAAAAAfICf2QG8yeEnCjocDpOTAAAAAADag8P9syVPuKfgn4CKigpJUmpqqslJAAAAAADtSUVFhSIjI485xmK05NcAkCS5XC7t27dP4eHhslgsZsc5JofDodTUVOXn5ysiIsLsODgJHEPfwHH0fhxD78cx9A0cR+/HMfQNHMfWZxiGKioqlJSUJKv12HfZcwb/BFitVqWkpJgd44RERETwB8/LcQx9A8fR+3EMvR/H0DdwHL0fx9A3cBxb1/HO3B/GJHsAAAAAAPgACj4AAAAAAD6Agu+jAgMDdf/99yswMNDsKDhJHEPfwHH0fhxD78cx9A0cR+/HMfQNHMe2jUn2AAAAAADwAZzBBwAAAADAB1DwAQAAAADwARR8AAAAAAB8AAUfAAAAAAAfQMH3QbNmzVJaWpqCgoKUlZWlZcuWmR0JRzFjxgwNHTpU4eHhio+P19ixY7Vly5YmY2prazV58mTFxMQoLCxMl19+uYqKikxKjOP529/+JovForvuusu9jGPoHQoKCnTdddcpJiZGwcHB6t+/v1asWOFebxiGpk+fro4dOyo4OFjZ2dnatm2biYnxU06nU/fdd5+6dOmi4OBgdevWTX/+85/14/mEOY5ty6JFi3TRRRcpKSlJFotFH3zwQZP1LTleZWVluvbaaxUREaGoqCjdeOONqqysbMVPgWMdx4aGBt1zzz3q37+/QkNDlZSUpAkTJmjfvn1N9sFxNNfx/iz+2K233iqLxaKZM2c2Wc4xbBso+D5mzpw5mjJliu6//36tXLlSAwcO1JgxY1RcXGx2NDRj4cKFmjx5sr7//nt9+eWXamho0M9//nNVVVW5x/z2t7/VRx99pHfeeUcLFy7Uvn37dNlll5mYGkezfPlyPffccxowYECT5RzDtu/gwYM666yz5O/vr88++0wbN27UE088oejoaPeYRx99VP/4xz80e/ZsLV26VKGhoRozZoxqa2tNTI4fe+SRR/Tss8/qmWee0aZNm/TII4/o0Ucf1dNPP+0ew3FsW6qqqjRw4EDNmjWr2fUtOV7XXnutNmzYoC+//FIff/yxFi1apFtuuaW1PgJ07ONYXV2tlStX6r777tPKlSv1/vvva8uWLbr44oubjOM4mut4fxYPmzt3rr7//nslJSUdsY5j2EYY8CmZmZnG5MmT3d87nU4jKSnJmDFjhomp0FLFxcWGJGPhwoWGYRhGeXm54e/vb7zzzjvuMZs2bTIkGUuWLDErJppRUVFh9OjRw/jyyy+NkSNHGnfeeadhGBxDb3HPPfcYZ5999lHXu1wuIzEx0Xjsscfcy8rLy43AwEDjrbfeao2IaIELL7zQuOGGG5osu+yyy4xrr73WMAyOY1snyZg7d677+5Ycr40bNxqSjOXLl7vHfPbZZ4bFYjEKCgpaLTv+56fHsTnLli0zJBl79uwxDIPj2NYc7Rju3bvXSE5ONtavX2907tzZ+Pvf/+5exzFsOziD70Pq6+uVm5ur7Oxs9zKr1ars7GwtWbLExGRoKbvdLknq0KGDJCk3N1cNDQ1Njmnv3r3VqVMnjmkbM3nyZF144YVNjpXEMfQWH374oTIyMnTllVcqPj5egwcP1gsvvOBev2vXLhUWFjY5jpGRkcrKyuI4tiHDhw9XTk6Otm7dKklas2aNFi9erAsuuEASx9HbtOR4LVmyRFFRUcrIyHCPyc7OltVq1dKlS1s9M1rGbrfLYrEoKipKEsfRG7hcLo0fP15/+MMf1Ldv3yPWcwzbDj+zA8BzSktL5XQ6lZCQ0GR5QkKCNm/ebFIqtJTL5dJdd92ls846S/369ZMkFRYWKiAgwP0/wMMSEhJUWFhoQko05+2339bKlSu1fPnyI9ZxDL3Dzp079eyzz2rKlCn64x//qOXLl+s3v/mNAgICNHHiRPexau7vV45j2zF16lQ5HA717t1bNptNTqdTDz/8sK699lpJ4jh6mZYcr8LCQsXHxzdZ7+fnpw4dOnBM26ja2lrdc889uuaaaxQRESGJ4+gNHnnkEfn5+ek3v/lNs+s5hm0HBR9oIyZPnqz169dr8eLFZkfBCcjPz9edd96pL7/8UkFBQWbHwUlyuVzKyMjQX//6V0nS4MGDtX79es2ePVsTJ040OR1a6j//+Y/+/e9/680331Tfvn21evVq3XXXXUpKSuI4Am1AQ0ODrrrqKhmGoWeffdbsOGih3NxcPfXUU1q5cqUsFovZcXAcXKLvQ2JjY2Wz2Y6YnbuoqEiJiYkmpUJL3H777fr44481f/58paSkuJcnJiaqvr5e5eXlTcZzTNuO3NxcFRcXa8iQIfLz85Ofn58WLlyof/zjH/Lz81NCQgLH0At07NhRffr0abLsjDPOUF5eniS5jxV/v7Ztf/jDHzR16lRdffXV6t+/v8aPH6/f/va3mjFjhiSOo7dpyfFKTEw8YiLhxsZGlZWVcUzbmMPlfs+ePfryyy/dZ+8ljmNb980336i4uFidOnVy/6yzZ88e/e53v1NaWpokjmFbQsH3IQEBAUpPT1dOTo57mcvlUk5OjoYNG2ZiMhyNYRi6/fbbNXfuXH399dfq0qVLk/Xp6eny9/dvcky3bNmivLw8jmkb8bOf/Uzr1q3T6tWr3a+MjAxde+217n/mGLZ9Z5111hGPqNy6das6d+4sSerSpYsSExObHEeHw6GlS5dyHNuQ6upqWa1Nf7Sx2WxyuVySOI7epiXHa9iwYSovL1dubq57zNdffy2Xy6WsrKxWz4zmHS7327Zt01dffaWYmJgm6zmObdv48eO1du3aJj/rJCUl6Q9/+IM+//xzSRzDNsXsWf7gWW+//bYRGBhovPLKK8bGjRuNW265xYiKijIKCwvNjoZm3HbbbUZkZKSxYMECY//+/e5XdXW1e8ytt95qdOrUyfj666+NFStWGMOGDTOGDRtmYmocz49n0TcMjqE3WLZsmeHn52c8/PDDxrZt24x///vfRkhIiPHGG2+4x/ztb38zoqKijP/+97/G2rVrjUsuucTo0qWLUVNTY2Jy/NjEiRON5ORk4+OPPzZ27dplvP/++0ZsbKxx9913u8dwHNuWiooKY9WqVcaqVasMScaTTz5prFq1yj27ekuO1/nnn28MHjzYWLp0qbF48WKjR48exjXXXGPWR2qXjnUc6+vrjYsvvthISUkxVq9e3eTnnbq6Ovc+OI7mOt6fxZ/66Sz6hsExbCso+D7o6aefNjp16mQEBAQYmZmZxvfff292JByFpGZfL7/8sntMTU2N8etf/9qIjo42QkJCjEsvvdTYv3+/eaFxXD8t+BxD7/DRRx8Z/fr1MwIDA43evXsbzz//fJP1LpfLuO+++4yEhAQjMDDQ+NnPfmZs2bLFpLRojsPhMO68806jU6dORlBQkNG1a1fjT3/6U5MSwXFsW+bPn9/s/wcnTpxoGEbLjteBAweMa665xggLCzMiIiKMSZMmGRUVFSZ8mvbrWMdx165dR/15Z/78+e59cBzNdbw/iz/VXMHnGLYNFsMwjNa4UgAAAAAAAJw+3IMPAAAAAIAPoOADAAAAAOADKPgAAAAAAPgACj4AAAAAAD6Agg8AAAAAgA+g4AMAAAAA4AMo+AAAAAAA+AAKPgAAaDcWLFggi8Uii8WiBx54wOw4AAB4lJ/ZAQAAaItqa2v1wQcf6Ouvv9ayZctUXFysAwcOyM/PT5GRkeratasGDRqk7OxsnX/++QoKCjI7cru0e/duvfLKK5KkUaNGadSoUabmAQDATBR8AAB+xOVyaebMmXr00UdVVFR0xPr6+npVV1dr//79+vbbbzVr1iyFh4frtttu0+9//3vFxcWZkLr92r17tx588EH39xR8AEB7RsEHAOAHZWVluuaaa/TFF1+4l6WlpSk7O1sDBgxQTEyMLBaLSkpKtHnzZs2fP1+bN29WRUWFHn30UTmdTj3++OMmfgIcz6hRo2QYhtkxAAA4LSj4AADo0Jn5iy++WN9++60kKTExUf/4xz90+eWXy2o9+pQ1q1ev1syZM/X666+3VlQAAIBmMckeAACSpk6d6i73Xbt21bJly3TllVces9xL0qBBg/TKK69oyZIl6tu3b2tEBQAAaBYFHwDQ7u3du1ezZs2SJFmtVr399ttKTU09oX1kZmZq0qRJxxyzY8cOTZ06VUOHDlVcXJwCAgKUkJCg0aNH66mnnlJ1dfUxt09LS5PFYlFaWpqkQ/MFvPLKKzr33HOVkJCgoKAgderUSePHj9fatWtbnL2wsFAPPfSQzj77bCUmJiogIECxsbEaPny4/vKXv+jgwYPH3H7UqFHumekP53rttdd0/vnnKyUlRf7+/u51hzU2NurLL7/U3XffrZEjR6pjx44KCAhQaGio0tLSdOWVV+rdd9+Vy+Vq9j0Pz4Z/7rnnupc9+OCD7hw/fu3evfuI7Voyi35NTY2eeeYZnXfeee58MTExGjp0qO69917t27fvmNu/8sor7vc6PBHg1q1bdccdd6hnz54KCQlRVFSUhg0bpqeeekr19fXH3J8kffPNN7rhhht0xhlnKDw8XP7+/oqPj1efPn10/vnn689//rO2bt163P0AAHyUAQBAOzd16lRDkiHJuPjiiz2+f6fTaUybNs3w8/Nzv09zr5SUFGPFihVH3U/nzp0NSUbnzp2N0tJSY+TIkUfdl5+fn/Hmm28eN9tTTz1lhISEHDNXdHS0MW/evKPu48c5ysrKjHPOOafZ/fzYueeee8z3PPwaPny4UVhYeMR7zp8/v0XbSzJ27drV7Hb333//UT/TsmXLjNTU1GPuNyQkxHjxxRePuo+XX37ZPfbll182XnvtNSM4OPio+xs2bJhht9ub3ZfT6TT+7//+r0Wf98ILLzxqJgCAb+MefABAu/fjSfXGjx/v8f1PnDhRb7zxhiSpQ4cOGjdunNLT0xUREaHi4mJ98skn+uyzz7R3716de+65WrFihXr27HnU/TU2Nuryyy/XwoULNWzYMF1++eVKTU1VWVmZ5syZowULFqixsVE33nijMjMz1a1bt2b3c++99+rhhx+WJIWGhuqKK67QsGHDFBMTo7KyMuXk5Oi9997TwYMH9ctf/lJff/21RowYcczPeu2112rRokXq27evrrnmGnXr1k0VFRVauHBhk3HV1dUKDQ3VqFGjlJ6eri5duig8PFxVVVXatGmT3nnnHe3YsUPfffedLr30Ui1atEh+fv/7saVfv36aO3eu1q9fr/vuu0+SNG7cOF199dVHZIqPjz9m5p9au3atzj33XFVVVUmS+vTpo/Hjx6tLly4qKyvTBx98oC+++ELV1dW68cYbZRiGbrzxxmPuc968eXr33XcVEhKiyZMna+jQoQoMDNTq1as1e/Zs2e12LVmyRL///e/1/PPPH7H9M888o+eee06SFB4eriuuuELp6emKi4tTfX299u7dqxUrVuirr746oc8KAPAxZv+GAQAAM1VWVhpWq9V99rOgoMCj+589e7Z73xdddJFx8ODBZse999577jP8Z511VrNjDp/BP/z6+9//3uy4m266yT3mjjvuaHbMZ599ZlgsFkOSceaZZxp79+5tdtzixYuN8PBwQ5KRlpZmNDQ0HDHmp1cSTJ482WhsbGx2f4d9+eWXRlVV1VHXNzQ0GJMnT3bv8/XXX292XEvPyLd0vNPpNPr16+cec9NNNzX7mf/1r3+5//2FhIQ0uUrgsB+fwZdk9O3bt9l/z5s2bTLCwsIMSYa/v3+zVyz07dv3/9u7/5iq6j+O40/0YsSPvBBOLNYV5pxuypIfZTqljR+XzLZMV6wtWavFkjYZlLW5JbNZoqHFX246jFarLDV1LlGTlnARGhjgxByIowaKcEdApAO9/cE432vce6D4Yd/L67GxHe/5nPd5n3MZ833O54fRm+Lq1ater+/PP/90nTt3zvwmiIiIz9IYfBERmdKuXbtmjPMOCAjgoYceGrfYt27dMtZoX7hwId988w1Wq9Vj2+eee45NmzYBUF5eTmVlpWns9evXk52d7XHfzp07CQgIAOC7777z2Gbz5s24XC5mzZrF8ePHefjhhz22W758OQUFBcDgmvMHDx40zSs2NpbCwkKmT59u2i45OZnAwECv+y0WCx999JEx30BxcbFpvPFy/PhxLly4AEBMTAx79uy5q+fAkFdeeYXMzExgsDfCxx9/bBrXYrFw6NAhj/d5wYIFZGVlAdDf3+/xLXxjYyMweN9sNpvX8wQEBPD444+b5iIiIr5LBb6IiExpnZ2dxra34tvd0qVLPU7k5mlCt5MnT9LW1gZAdnY2M2bMMI2dkZFhbJeUlJi2zcnJ8brParUSHx8PDE7sd/Pmzbv219fXU1NTA8Crr75KWFiY6blefPFFo8gdKa+srKwRVx4YLYvFwtKlSwGoqqqalPXrDx06ZGzn5uaaPqh45513jMkD3Y/zZPXq1abDLlJSUoztoQcM7oKCgoDB7240k/GJiMjUpDH4IiIiE+THH380tnt6evj2229N2/f39xvbFy9e9NouKCiImJgY01iRkZEAuFwuurq6iIiI8JjX7du3R8wLIDg4mK6uLtO8gBHH6Lvr6+vjq6++4tixY9TX13P9+nV6e3s9FvLd3d10d3czc+bMUcf/N9x7TqSmppq2tdlsLFiwgIaGBlpaWmhra2POnDke2z7xxBOmsYa+L8DjqgWpqal8+eWXXLp0iaSkJHJycrDb7aa9IEREZOpRgS8iIlPagw8+aGx3dXWN2H7Hjh04nc67Pnvttde4cePGsLbub/PffPPNf5TX38/hLiwsbNiyc3933333Gdt/f4PvnteOHTvGLS+4u1A143A4SE9P59dffx31uSejwB/qcRESEnLXQxFv5s+fT0NDg3GstwI/PDzcNI7Z9wWQn59PWVkZv/32G2VlZZSVleHv709sbCzLli3jySefJDU11RiaISIiU5MKfBERmdIiIiKYNm0ad+7c4ebNm7S2tpqOw1+5cuWwz7yNhR/NAwNvzLphj7UL/ETlBXD//fePGKO5uRm73U5vby8A8+bNIy0tjfnz5xMeHk5AQIDxAKOwsJDS0lJgsLfBROvp6QH+1yV+JMHBwcOO9WSs39kjjzzC+fPn2bZtG59++ilOp5P+/n4qKyuprKxk9+7dPPDAA2zcuJHNmzff9cBARESmDhX4IiIypQUFBbFkyRKqq6sBqKioYO3ateMS2734q6urY/HixeMSd6zc8zp69CjPPPPMpJ7//fffN4r7t99+mw8++MBrj4TPP/98MlMjJCSErq4uY4m8kQxdx9CxEyk8PJzdu3ezc+dOampqcDgcOBwOvv/+e5xOJ93d3bz33nuUl5dz6tSpcZsLQURE/n/oL7+IiEx57mOth9arHw/u3dX/SVf0iXav8zp58iQwuD79tm3bTIcbNDc3T1ZaAEYX+56eHq5fvz5i+8uXLxvb47kCgxmLxcJjjz1GdnY2Bw4coL29na+//toYvnDmzBkOHz48KbmIiMh/iwp8ERGZ8jZs2GDMcH/s2DHjbf5YJSYmGtvelqu7F+51XteuXQMgKirKdJb6trY2amtrTWO5v6Uej1n23ZeYG3oQ4U1LSwuXLl0CBrvQj2bM/kSYPn0669atIy8vz/js7Nmz9yQXERG5t1Tgi4jIlBcZGckbb7wBDI7zfuGFF2htbR1z3KeeeopZs2YBUFRUZKxlfq/FxcWxaNEiYHDd9/Ly8kk9/9D49qamJtOifOvWrQwMDJjGch9uMNpu9Wbch2cUFBSYjvvPz8838h+vYR1jERUVZWyPdN9ERMQ3qcAXEREBtm/fzvLly4HBwjMhIYGDBw+O+Fa4vr6e7u5uj/uCgoKMt6p9fX3Y7XbOnz9vGq+xsZGcnBza29v/+UWMkp+fH9u3bwcG33o/++yznD592vSY1tZW8vLyqKurG/P5ExISAOjo6KCgoMBjm4KCAvbs2TNiLPeitqamZsy5rVq1ypgroba2ltdff91jsfzJJ58Y+QUGBrJx48Yxn9ubtrY2cnNzaWpq8tpmYGCAvXv3Gv9+9NFHJywfERH579IkeyIiIoC/vz9Hjx4lPT2dU6dO0drayrp164iKiiIlJYWYmBjCwsKwWCz8/vvvNDY28sMPP1BVVWU8BAgNDR22LvmGDRuorq6mqKiIK1euEBcXh91uJykpicjISPz8/HA6nTQ0NHD27Fl+/vlnAHJycib0ep9++mm2bt3Ku+++S0dHBykpKaxYsYK0tDTmzp2Lv78/XV1d/PLLLzgcDs6dO4fL5SI5OXnM587Ozja6v7/11luUlpaSlpbG7NmzaWlp4cCBA/z000/MmTOHxYsXm3aVDw0NJTY2lpqaGkpLS8nMzCQ5OfmuCe8SExNHNbs/DHb5/+yzz1i2bBl//PEHe/fupaKigpdeeom5c+fidDo5cuQIJ06cMI4pLCzEZrP9y7sxslu3brFr1y527dpFXFwcK1asYOHChYSGhtLb28uVK1f44osvjAcA0dHRpKenT1g+IiLyH+YSERERw+3bt10ffviha/bs2S5gVD9Wq9WVk5Pj6uzs9Bjzzp07rvz8fFdgYOCo4oWHh7tu3LgxLI7NZnMBLpvNNuJ1ZGRkGPGam5u9tisuLnaFhoaOKq+QkBBXXV3dsBiJiYlGm9HKy8szPZfNZnNVV1eP6jpOnDjhslgsXmO5H1daWmp8vmXLFq/5VVVVuSIjI01zDAwMdO3bt89rjP379xtt9+/fb3o/mpubjbYZGRl37bt69eqofxcXLVrkamxsND2XiIj4Lr3BFxERcTNt2jRyc3PJysri8OHDnDlzhqqqKtrb23E6nVgsFqxWKzabjfj4eBITE1m9erXpuuN+fn5s2rSJl19+maKiIk6fPs3Fixfp7OwEwGq1Mm/ePOLj40lJSSE1NRV/f/9Jud7169ezZs0aiouLKSkpoba2lo6ODgYGBpg5cybR0dHExsaSlJTEqlWrhvVQ+Le2bNnCypUrKSwspKKiAqfTidVqJTo6mjVr1pCZmYnVah1VLLvdTkVFBYWFhTgcDtra2ujr6xtTfgkJCVy+fJl9+/Zx5MgRLly4gNPpJDg4mOjoaOx2O1lZWZMyc77NZqOpqYmSkhIcDgd1dXW0tLTQ09PDjBkziIiIYMmSJaxdu5bnn38ei0X/vRMRmar8XK5xmHJWRERERERERO4pTbInIiIiIiIi4gNU4IuIiIiIiIj4ABX4IiIiIiIiIj5ABb6IiIiIiIiID1CBLyIiIiIiIuIDVOCLiIiIiIiI+AAV+CIiIiIiIiI+QAW+iIiIiIiIiA9QgS8iIiIiIiLiA1Tgi4iIiIiIiPgAFfgiIiIiIiIiPkAFvoiIiIiIiIgPUIEvIiIiIiIi4gNU4IuIiIiIiIj4ABX4IiIiIiIiIj7gL9VN+2JaXAqUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -225,7 +233,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -241,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 872, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -270,7 +278,7 @@ }, { "cell_type": "code", - "execution_count": 873, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -301,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 874, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +336,7 @@ }, { "cell_type": "code", - "execution_count": 875, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -363,7 +371,7 @@ }, { "cell_type": "code", - "execution_count": 876, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -389,29 +397,39 @@ }, { "cell_type": "code", - "execution_count": 877, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/registration.py:307: DeprecationWarning: The package name gym_minigrid has been deprecated in favor of minigrid. Please uninstall gym_minigrid and install minigrid with `pip install minigrid`. Future releases will be maintained under the new package name minigrid.\n", + " fn()\n" + ] + } + ], "source": [ - "import gym\n", - "env = gym.make(\"CartPole-v0\")" + "import gymnasium as gym\n", + "env = gym.make(\"CartPole-v1\")" ] }, { "cell_type": "code", - "execution_count": 878, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "def test_model(agent):\n", " done = False\n", - " state = torch.from_numpy(env.reset()).float()\n", + " s = env.reset()[0]\n", + " state = torch.from_numpy(s).float()\n", " score = 0\n", " while not done: #A\n", " params = unpack_params(agent['params'])\n", " probs = model(state,params) #B\n", " action = torch.distributions.Categorical(probs=probs).sample() #C\n", - " state_, reward, done, info = env.step(action.item())\n", + " state_, reward, done, _, info = env.step(action.item())\n", " state = torch.from_numpy(state_).float()\n", " score += 1 #D\n", " return score\n", @@ -431,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": 879, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -460,7 +478,7 @@ }, { "cell_type": "code", - "execution_count": 883, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -498,7 +516,7 @@ }, { "cell_type": "code", - "execution_count": 912, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -521,29 +539,41 @@ }, { "cell_type": "code", - "execution_count": 913, + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def running_mean(x,n=5):\n", + " conv = np.ones(n)\n", + " y = np.zeros(x.shape[0]-n)\n", + " for i in range(x.shape[0]-n):\n", + " y[i] = (conv @ x[i:i+n]) / n\n", + " return y" + ] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 913, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAG3CAYAAAAaf4vlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8nNWB7//PUXeR5Cb33gHbNGOKY3oPCZCwWdIoITibsJtOINm9v9y9bZPADcnmJtklhODkksIlZAkhFC8dTIlNsQ24d7lIrpJsq5/fHzN2jLHBkqV5ZqTP+/Xya2ae5xn56+cl218fnzknxBiRJEmSlDl5SQeQJEmSuhtLuCRJkpRhlnBJkiQpwyzhkiRJUoZZwiVJkqQMs4RLkiRJGWYJlyRJkjLMEi5JkiRlmCVckiRJyrCCpANkwoABA+Lo0aOTjiFJkqQubsGCBVtjjBXvd123KOGjR49m/vz5SceQJElSFxdCWHsk1zkdRZIkScowS7gkSZKUYZZwSZIkKcMs4ZIkSVKGWcIlSZKkDLOES5IkSRlmCZckSZIyzBIuSZIkZZglXJIkScowS7gkSZKUYZZwSZIkKcMs4ZIkSVKGWcIlSZKkDLOES5IkSRlmCZckSVKXsbexhdfW7SDGmHSU91SQdABJkiSpPWrqm3hrYw2LK3fx5sYa3ty4ixVVdbRGmHfruQzt0yPpiIdlCZckSVLW21bXwJsba1i8cRdvVqYK95pte/afH1RWzJSh5Vw8ZQjHDS2jvEdhgmnfnyVckiRJWSPGyOaaet6sTBXuxenCvWlX/f5rRvTrwZSh5fzN9BEcN7SM44aWU1FanGDqtrOES5IkKRExRtZt35Ma4a7cxeKNNbxZuYttuxsBCAHGVfRmxph+TBlaznHDyjhuSDnlPbN7lPtIWMIlSZLU6VpaI6uq6/ZPJ1m8MTWPu7a+GYCCvMDEQaWcd8xAjhtazpRhZUweXEav4q5ZV7vmr0qSJEmJaWxuZdmWWt48YDrJ25tq2dvUAkBxQR7HDCnj8hOGpgr30HImDu5NcUF+wskzxxIuSZKkdtvb2MLbm1PTSBZX1vDmpl0s3VxLU0tqicDexQUcO7SMj88YyZRhqfnb4yp6UZDfvVfKtoRLkiSJltZIXX0zNfVN1NQ3UVvfTM3e9OMhXtfUN1FV08DK6tSSgAB9exYyZVg5N3xgLFOGlTFlaDkj+/UkLy8k+4vLQpZwSZKkLqC+qSVVjvc2U1vfRE19+nH/68MX65r6Zuoamt/35+hRmE9ZjwJKSwopKylgVP9eXDJ1CFOGljFlWDlDyksIwcJ9JCzhkiRJaTFGWmNqVLilNdISU4+tBzzf96P1wNf7ryP9vJWWVt59Xfraw3890u+NtERobY00t0aaWlr/WqgbDl20G1ta3/PXlhegrEchpSUFlJWkHkf26/muY2U9UgU79bpwf+kuLSmgsJtPIelIlnBJktTl7W1soaq2ni01DVTV1lNV00BVbQNVNfWpx9rU4849TUlHPawehfnvKMl9ehYxsn+v9yjQBe8o2D2L8h2lziKWcEmSlLPqGpqpqvlrua6ubWDLvmJ9QOGuPcRUi6L8PCpKixlYVsyYAb04bWx/+vQsoiAvkJ8XyAuBgrxAXl4gP5A6lhfID6nz+Qdct/91+vm+6/LyoCAvj/w89l+XFwIF+fvOv/M9BQd+vQPeX5AfHIXuYizhkiQpq8QYqalvpvqgkev9zw8Ywd7T2PKu9xcX5DGorISBpcVMGlzKrAkVDCwrZmBpCYPSjwNLi+nTs9CRYSXGEi5JUhdVVVvPmq17ko5xSPVNLX+dBnJg0U4/NjS/e35zz6J8BpWVUFFazJRh5fuL9sCyYgaVljCwrJiK0hLKSgos18p6lnBJkrqIppZWFqzdwTPLqnlmaTVvbapJOtIRKS0u2D9SfdLIvvvLdUXpAaPXZSX07qI7J6p78rtZkqQcVrlzL88sreaZZVW8sGIbdQ3NFOQFTh7Vl29cPIkpQ8vJz8I1mgvz8/ZPDelR1H12SZT2sYRLkpRDGppb+MvqHTy9tIpnllWzvKoOgKHlJXzo+KGcNbGCmeP7U1pSmHBSSe/FEi5JUpZbu203zyyr5uml1by4cht7m1ooys/j1LH9+NtTRnDWxArGD+ztPGgph1jCJUnKMnsbW3hp1bb9o91rtqU+XDm6f08+Nn04Z02q4LSx/elZ5F/jUq5K/HdvCOFu4DKgKsY45aBzXwNuBypijFtD6p/4PwQuBfYA18UYX810ZkmSOlKMkZXVdTy9tJpnllXz8urtNDa3UlKYxxnjBnD9zDGcNbGC0QN6JR1VUgdJvIQD9wD/B/jlgQdDCCOAC4F1Bxy+BJiQ/nEq8NP0oyRJOaW2vol5K7ftX8mkcudeACYM7M01p43irEkVnDK6HyWFfmhR6ooSL+ExxmdDCKMPceoO4BvAgwccuxz4ZYwxAi+FEPqEEIbEGDd1flJJktovxsjbm2rTc7urWLB2B82tkd7FBcwc35+bzhnPmRMHMLxvz6SjSsqAxEv4oYQQLgcqY4xvHPQhk2HA+gNeb0gfs4RLkrLOzj2NPL9ia3oJwWqqahsAOHZIGTeeOZazJlZw0si+FBW4HbnU3WRdCQ8h9AS+RWoqytF8ndnAbICRI0d2QDJJkt5ba2tkUeWu/aPdr6/fSWuE8h6FzJowgLMmVnDWxAoGlpUkHVVSwrKuhAPjgDHAvlHw4cCrIYQZQCUw4oBrh6ePvUuM8U7gToDp06fHzgwsSeo+WlsjO/Y0Ul3XwNbaRrbWNbC1roHFlbt4dvlWtu9uJASYNrwPf3/uBM6aWMEJI/pk5YY5kpKTdSU8xrgIGLjvdQhhDTA9vTrKH4G/DyH8ltQHMnc5H1ySdLRaWyPb96QLdbpYV9emynV1XQNb6xr3v96+u5GW1neP7fTvVcTZEys4a1IFHxg/gP69ixP4lUjKFYmX8BDCb4CzgQEhhA3At2OMPz/M5X8mtTzhClJLFF6fkZCSpJzTkh6x3lesq+vq/1qw95fsxvcs1kX5eVSUFjOgdxFDy0uYNqx8/+sBpcUM6F2cfl1MWUmBm+VIOmKJl/AY48ff5/zoA55H4KbOziRJyk4HjljvG5k+cOR636j11roGttU1cIheTVFBHhW9U0V6WJ8Sjh9ezoD064rSkncUbIu1pM6SeAmXJOlQWlojq7fuZnHlLhalf7y1sYa6huZ3Xbu/WJcW7y/W+0ao9xXsAaWpUevSYou1pORZwiVJiWtpjayqrttfthenC/fuxhYAigvyOGZIGVeeOIxxFb2oKC15x7QQi7WkXGMJlyRlVHNLKyurd+8v2/tGuPc2pQp3SWEexw4p46qThzNlWDlTh5czvqI3BfmupS2p67CES5I6TXNLK8ur6t5RuN/eVEN9UysAPQrzOW5oGX97ygimDitnyrByxlX0snBL6vIs4ZKkDtHU0sqyLbUsrtzF4sqa/YW7oTlVuHsV5XPc0HI+PmMkU4eVM3VYOWMrert+tqRuyRIuSQloaY28sno7f160ia11DfQuLqC0pJDSkgJKSwoo2//8r8d6p48XF+QlPv+5sfmvhXvfKPfbm2tpTBfu3sUFHDe0jE+dNmr/CPeYAb0s3JKUZgmXpAxpbY28tn4HD72xiYcXbaK6toEehfkM79uDuoZmauubD7nyx8EK88M7ynlp8bsL+ztfF6aLfep57+ICehblH3GRb2huYenm2v2j24srd7F0cy2NLanCXVpcwHHDyrj29FGpOdzDyhndvxd5Fm5JOixLuCR1ohgjiyp38dAbG3l44SY27qqnqCCPcycN5LLjh3Du5IH0LPrrH8UtrTFdyJuorW9O/2ja/1iTLuoHn1+3fQ+19c3U1DdR19BMPMT62AfKzwvp0fdDl/TSkgK2725kUeUulm2ppakl9QXLSgqYMqyc62eO3l+4R/braeGWpDayhEtSB4sx8vamWv60cCN/WriJddv3UJgfOHNCBTdfPInzjxlEaUnhId+bnxco71FIeY9Dnz8Sra2R3Y1/HVnfV94PLvQHlvia+mY27qyntqF2//HexQVMHVbODR8Yu38O94h+PRKfCiNJXYElXJI6yIqqWh56YxN/WriRldW7yc8LnDGuP39/znguOm4w5T3bX6zbIi9v33SV9v98MT2UbuGWpM5hCZeko7B2227+tHATD72xkSWbawkBTh3Tj+tnjuGSKYPp37s46YjtYvmWpM5lCZekNqrcuZeH01NNFm7YBcDJo/ry7Q8dy6VThzCorCThhJKkbGcJl6QjUFVTz8OLNvGnhZtYsHYHANOGl/OtSyfzwWlDGdanR8IJJUm5xBIuSYexra6BRxZv5k8LN/Ly6u3ECJMHl3LzRZO4bNoQRvXvlXRESVKOsoRL0gF27WnisTc389DCjcxbuY2W1si4il586bwJXDZtKOMH9k46oiSpC7CES+r2auub+M+3t/CnNzbx7PJqmloiI/v15O/OGstl04YyeXCpH1SUJHUoS7ikbmlPYzNPLqnioTc28tTSahqbWxlaXsL1M8dw2bQhTB1WbvGWJHUaS7ikbqO+qYVnllXz0BsbeeLtKvY2tVBRWswnZozkQ8cP4cQRfd35UZKUEZZwSV3e4spd/PLFNTyyaDO1Dc3061XER04axmXThjJjTD/yLd6SpAyzhEvqkppaWnlk8WbmzFvDgrU76FGYz2XThvCh44dyxrj+FOTnJR1RktSNWcIldSnVtQ38+uV13PvyWqpqGxjVvyf/5bJjuerk4ZT3yMy28ZIkvR9LuKQu4bV1O5gzbw0PL9pEU0vkzIkVfOejozh74kDneUuSso4lXFLOamhu4eGFm5gzbw1vbNhF7+ICPnnqKD59+ijGVbietyQpe1nCJeWczbvquffltfzmlXVsrWtkXEUv/tvlx/GRk4bTu9g/1iRJ2c+/rSTlhBgj89fu4J55a3hs8WZaYuS8yQO59ozRfGD8ANf0liTlFEu4pKxW39TCH1/fyD3z1vDWphrKSgq47ozRXHP6aEb275l0PEmS2sUSLikrVe7cy69eXMvv/rKOHXuamDSolP915VSuOHEoPYv8o0uSlNv8m0xS1ogx8uKqbcyZt4a5b20B4MJjB3PtGaM5bWw/p5xIkroMS7ikxO1pbOYPr1Xyy3lrWbqllr49C/ncWeP41GmjGNanR9LxJEnqcJZwSYlZt20Pv3xxDffNX09NfTPHDinjex+dxodPGEpJYX7S8SRJ6jSWcEkZFWPkueVbmTNvDU8urSI/BC6eMpjrzhjNyaP6OuVEktQtWMIlZURdQzMPvLqBe+atYVX1bgb0LuIfzhnPJ04dxeDykqTjSZKUUZZwSZ1qVXUdv3xxLfcv2EBdQzPHj+jDHX97PJdOHUJxgVNOJEndkyVcUodrbY08vayKe+at5dll1RTmBz44dQjXnjGaE0f2TTqeJEmJs4RL6jAxRn77l/X8+zMrWbNtDwNLi/nqBRO5esYIBpY65USSpH0s4ZI6RH1TC9/6wyIeeLWSE0f24WsXTuLiKYMpzM9LOpokSVnHEi7pqFXV1vO5Xy3gtXU7+fL5E/jiuRPIy3OVE0mSDscSLumoLK7cxY2/nM/OPU389JMnccnUIUlHkiQp61nCJbXbwws38bX/9zr9ehZx/+dP57ih5UlHkiQpJ1jCJbVZa2vkB08s51+fWM5JI/vw75+eTkVpcdKxJEnKGZZwSW2yp7GZr933Bo8s3sxVJw/nf145xfW+JUlqI0u4pCNWuXMvN86Zz5LNNfzjpcfw2Vlj3GZekqR2sIRLOiIL1m7nc79aQENTKz+/7hTOmTQw6UiSJOUsS7ik9/X/5q/nH/+wmKF9Svjt7OmMH1iadCRJknKaJVzSYbW0Rv7lz29z1/OrmTm+Pz/+xEn06VmUdCxJknJe4lvZhRDuDiFUhRAWH3DsthDCkhDCwhDCH0IIfQ44980QwooQwtIQwkXJpJa6vpr6Jj5zz1+46/nVXHv6KO65foYFXJKkDpJ4CQfuAS4+6NhcYEqMcRqwDPgmQAjhWOBq4Lj0e34SQnBZBqmDrd66myt//AIvrNjK/7xyCv98+RS3n5ckqQMl/rdqjPFZYPtBxx6PMTanX74EDE8/vxz4bYyxIca4GlgBzMhYWKkbeH75Vq748Qts393Ir244lU+eOirpSJIkdTmJl/Aj8BngkfTzYcD6A85tSB+TdJRijNzzwmqu/cUrDC4r4cGbPsDp4/onHUuSpC4pqz+YGUL4R6AZuLcd750NzAYYOXJkByeTupbG5la+/cfF/OaV9Zx/zEB+cPWJ9C7O6j8eJEnKaVn7t2wI4TrgMuC8GGNMH64ERhxw2fD0sXeJMd4J3Akwffr0eKhrJMH23Y383f9dwCurt/OFs8fx9QsnkZfnBjySJHWmrCzhIYSLgW8AZ8UY9xxw6o/Ar0MI3weGAhOAVxKIKHUJSzbX8Nk586mqbeAHf3sCV5zo7C5JkjIh8RIeQvgNcDYwIISwAfg2qdVQioG56S2xX4ox/l2M8c0Qwn3AW6SmqdwUY2xJJrmU2+a+tYUv//Y1ehUXcN/nTueEEX3e/02SJKlDhL/O9Oi6pk+fHufPn590DCkrxBj5ydMruf3xpUwdVs6dn57O4PKSpGNJktQlhBAWxBinv991iY+ES8qc+qYWbvn9Qh58fSMfOn4ot101jZJCl9qXJCnTLOFSN7Glpp7Zv5zPGxt2cfNFk/jC2eNIT/eSJEkZZgmXuoE31u9k9q/mU1vfzL9/+mQuOm5w0pEkSerWLOFSF/fg65V84/6FDOhdzO8/fwbHDClLOpIkSd2eJVzqolpbI7c/vpSfPL2SGaP78dNPnUT/3sVJx5IkSVjCpS6prqGZr/zudea+tYWrTxnBf7t8CkUFeUnHkiRJaZZwqYtZv30Pn50zn+VVtXz7Q8dy3Rmj/QCmJElZxhIudSEvr9rG5+99leaWVuZ8ZgazJlQkHUmSJB2CJVzqIn7zyjr+y38sZmS/ntx17XTGVvROOpIkSToMS7iU45pbWvkfD7/NPfPWcObECn708RMp71GYdCxJkvQeLOFSDtu1p4mbfv0qz6/YymdmjuFbl06mIN8PYEqSlO0s4VKOWlFVx42/nM+GHXv43ken8bFTRiQdSZIkHSFLuJSDauubuPrOl4gx8usbT+OU0f2SjiRJktrAEi7loDufXcXWugYevGkmx4/ok3QcSZLURk4elXJMVU09dz23msumDbGAS5KUoyzhUo75wRPLaWpp5eaLJiUdRZIktZMlXMohK6vr+N1f1vPJU0cyqn+vpONIkqR2soRLOeS2R5dSUpDHP5w3IekokiTpKFjCpRyxYO0OHn1zM7PPHMeA3sVJx5EkSUfBEi7lgBgj331kCQN6F/PZWWOSjiNJko6SJVzKAU+8XcUra7bzpfMn0KvYlUUlScp1lnApyzW3tPLdR5cwdkAvrnZXTEmSugRLuJTlHni1kuVVddx80SQK8/0tK0lSV+Df6FIW29vYwvfnLuOEEX24eMrgpONIkqQOYgmXstg989awuaaeWy+ZTAgh6TiSJKmDWMKlLLVjdyM/eXoF504eyGlj+ycdR5IkdSBLuJSlfvL0CnY3NHPLxZOTjiJJkjqYJVzKQht27GHOvLV89KThTBpcmnQcSZLUwSzhUhb6/uPLCAG+csHEpKNIkqROYAmXssxbG2v4w+uVXDdzNEP79Eg6jiRJ6gSWcCnLfPfRJZSVFPKFs8YnHUWSJHUSS7iUReat2Mozy6q56ZxxlPcsTDqOJEnqJJZwKUu0tka+8+gShpaXcM3po5OOI0mSOpElXMoSDy/axMINu/jqhZMoKcxPOo4kSepElnApCzQ2t3L740uZPLiUK08clnQcSZLUySzhUhb4zSvrWLttD7dcPJn8PLenlySpq7OESwmra2jmX59Yzmlj+3H2pIqk40iSpAwoSDqA1N3d+ewqtu1u5OeXHEMIjoJLktQdOBIuJaiqtp67nlvFB6cO4YQRfZKOI0mSMsQSLiXoX59YTmNzK1+/aFLSUSRJUgZZwqWErKqu4zevrOfjM0YyZkCvpONIkqQMsoRLCbn98aUUF+TxxfMmJB1FkiRlmCVcSsBr63bw50WbuXHWWCpKi5OOI0mSMswSLmVYjJF/eWQJA3oXceOZY5OOI0mSEmAJlzLsqaVVvLJ6O186bwK9i10lVJKk7ijxEh5CuDuEUBVCWHzAsX4hhLkhhOXpx77p4yGE8K8hhBUhhIUhhJOSSy61XUtr5LuPLGV0/55cPWNk0nEkSVJCEi/hwD3AxQcduxV4IsY4AXgi/RrgEmBC+sds4KcZyih1iAde3cDSLbXcfNFkCvOz4befJElKQuItIMb4LLD9oMOXA3PSz+cAVxxw/Jcx5SWgTwhhSGaSSkenvqmF789dxvHDy7l06uCk40iSpAQlXsIPY1CMcVP6+WZgUPr5MGD9AddtSB+Tst6ceWvYtKueW92eXpKkbi9bS/h+McYIxLa+L4QwO4QwP4Qwv7q6uhOSSUdu555GfvzUCs6eVMHp4/onHUeSJCUsW0v4ln3TTNKPVenjlcCIA64bnj72LjHGO2OM02OM0ysqKjo1rPR+fvr0Smobmrnl4slJR5EkSVkgW0v4H4Fr08+vBR484Pg16VVSTgN2HTBtRcpKlTv38ot5a/jIicM5ZkhZ0nEkSVIWSHyR4hDCb4CzgQEhhA3At4HvAPeFEG4A1gIfS1/+Z+BSYAWwB7g+44GlNvr+48sA+OqFExNOIkmSskXiJTzG+PHDnDrvENdG4KbOTSR1nCWba3jgtQ3cOGssw/r0SDqOJEnKEtk6HUXqEr77yBJKiwv4wtnjko4iSZKyiCVc6iQvrtzGU0ur+cI54+nTsyjpOJIkKYtYwqVOEGPkO48uYUh5CdedMTrpOJIkKctYwqVO8MjizbyxfidfuWAiJYX5SceRJElZxhIudbCmllZue2wpEwf15qMnDU86jiRJykKWcKmD/faVdazeuptbLp5Mfp7b00uSpHezhEsdaHdDMz98YjkzxvTj3MkDk44jSZKylCVc6kA/e24VW+sa+eYlkwnBUXBJknRolnCpg1TXNvCzZ1dxyZTBnDiyb9JxJElSFrOESx3kR08up765lZsvmpR0FEmSlOWOetv6EEIR0B9oiDFuP/pIUu5ZvXU3v355HVefMoKxFb2TjiNJkrJcu0fCQwjXhBD+AuwGNgC3H3DuyhDCr0MIYzogo5T1bn98KYX5eXzp/AlJR5EkSTmgXSU8hHAP8AvgZGAvcPAn0JYCVwNXHU04KRe8sX4nDy/cxI2zxjCwtCTpOJIkKQe0uYSHEK4FrgHeAKYD5QdfE2N8C1gPXHK0AaVsFmPkXx55m/69iph91rik40iSpBzRnpHwG4Fa4EMxxldjjPEw1y0CRrc3mJQLnl5WzUurtvPF8ybQu/ioP2IhSZK6ifaU8KnASzHGyve5bicwuB1fX8oJLa2R7z6yhFH9e/LxGSOTjiNJknJIe0p4IVB3BNcNBJra8fWlnPAfr1WyZHMtX79wEkUFrvYpSZKOXHuawzpgyntdEELIB44DVrYnlJTt6pta+P7cZUwdVs4Hpw5JOo4kScox7SnhjwHjQwifeo9rPgcMAR5uVyopy/3qxbVU7tzLNy+ZTF6e29NLkqS2ac8nyW4DrgXuDiEcC9yfPl4SQjgG+BvgW8A24EcdklLKIrv2NPF/nlrBWRMrOGP8gKTjSJKkHNTmkfAY4wbgSlLzwm8B/gJE4G+BxcB/BeqBq2KMVR2WVMoSP31mJTX1Tdxy8eSko0iSpBzVrk+TxRifAo4ltUvmm6Q27GkkNQf8R8CUGOMzHRVSyhYbd+7lFy+s5soThnHs0LKk40iSpBzV7oWNY4ybSY2E39JxcaTsdsfcZcQIX7lgYtJRJElSDmvPjpkPhBB+0hlhpGy2dHMtv391A9ecPooR/XomHUeSJOWw9kxH+SDQv6ODSNnue48uoVdxATedMz7pKJIkKce1p4RXktqwR+o2Xl61jSeWVPH5s8fRt1dR0nEkSVKOa08J/xMwK4Tg/8erW4gx8p1HlzC4rITPzByTdBxJktQFtKeE/1egBrg/hDCiY+NI2eexNzfz2rqdfOWCCZQU5icdR5IkdQHtWR1l37KElwHLQwivAmtJLVN4sBhjvOEo8kmJammNfO+xpUwY2JuPnjQ86TiSJKmLaE8Jv47U5jwARcBp6R+HEgFLuHLW3Lc2s6p6Nz/+xEkU5LdrWX1JkqR3aU8Jv77DU0hZ6s5nVzGyX08unjI46SiSJKkLaXMJjzHO6YwgUrZZsHY7r67byT9/+Djy80LScSRJUhfi/69Lh/GzZ1dT3qOQv5nuXHBJktSx2r1tPUAIoQg4GRiWPlQJLIgxNh5tMClJa7bu5rG3NvOFs8fRs+iofptIkiS9S7vaRQihkNRShTcBpQedrgsh/Aj45xhj09HFk5Jx9wurKczL49rTRycdRZIkdUFtLuEhhHxSG/acDwRgE7AqfXosMAT4JnBKCOHSGGNLB2WVMmLH7kbum7+ey08YysCykqTjSJKkLqg9c8JnAxcAy4FLYozDYoyz0j+GAZcAy0iV9Bs7LqqUGfe+vJb6plZuPHNs0lEkSVIX1Z4Sfg2wGzgvxvjYwSfTx84H9gDXHl08KbPqm1q4Z95azppYwcRBB8+0kiRJ6hjtKeHHAk/FGCsPd0H63FPpa6Wc8cfXN7K1roHZjoJLkqRO1J4SXkhqlPv97ElfK+WE1tbInc+t4tghZZwxrn/ScSRJUhfWnhK+FpiVXp7wkNLnZqWvlXLCM8uqWVFVx41njiEEN+eRJEmdpz0l/I+kVkCZE0Loc/DJEEI5cDcwGHjw6OJJmfOz51YxuKyEy6YNTTqKJEnq4tqzTvj3gI8DHwMuCSE8BKwGIqklCj9Eau3wDelrpay3uHIX81Zu45uXTKYw341kJUlS52pzCY8xbgshnAv8GpgOfJJUAYfUuuEAfwE+EWPc3iEppU5213Or6F1cwMdPHZl0FEmS1A20a8ffyHwoAAAgAElEQVTMGOMKYEYI4QPAWbxz2/pnYozPd1A+qdNt3LmXhxZu4rozRlNW4meJJUlS52tXCd8nXbY7rXCHEL4CfJbUSPsi4HpS89F/C/QHFgCfjjE2dlYGdX2/eGE1ANfPHJ1sEEmS1G1k7eTXEMIw4IvA9BjjFCAfuBr4LnBHjHE8sAO4IbmUynU19U385pX1fHDqEIb37Zl0HEmS1E20uYSHEC4JITwZQjjnPa45N33NBUcXjwKgRwihAOgJbALOBe5Pn58DXHGUP4e6sd+9sp66hmZunOXmPJIkKXPaMxJ+PakPZL7yHte8ApwCXNeOrw/s33XzdmAdqfK9i9T0k50xxub0ZRv463x0qU2aWlr5xQurOW1sP6YOL086jiRJ6kbaU8JPBt6IMe4+3AUxxjrgdeDU9gYLIfQFLgfGAEOBXsDFbXj/7BDC/BDC/Orq6vbGUBf250Wb2Lir3lFwSZKUce0p4UOA9Udw3XpSG/a01/nA6hhjdYyxCXgAmAn0SU9PARhOakWWd4kx3hljnB5jnF5RUXEUMdQVxRi589lVjKvoxTmTBiYdR5IkdTPtKeENwJH833050NKOr7/POuC0EELPkNpD/DzgLeAp4Kr0NdfirpxqhxdXbePNjTXcOGsseXluUS9JkjKrPSX8beAD6e3pDymEUAZ8AFjW3mAxxpdJfQDzVVLLE+YBdwK3AF8NIawgtUzhz9v7c6j7+tmzqxjQu4grTvQjBZIkKfPas074A8BpwN0hhE/EGBsOPBlCKALuBnoDvz+acDHGbwPfPujwKmDG0XxddW/Lt9Ty1NJqvnrBREoK85OOI0mSuqH2lPCfkNpA5wrgrRDCvcCS9LlJwKeA0cAK4EcdkFHqUHc9t5qSwjw+ddqopKNIkqRuqs0lPMa4J4RwIfAfwAnAPx50SSC1MspH3msFFSkJVbX1/OG1Sj52ynD69SpKOo4kSeqm2rVtfYxxXQjhZODDpJYNHEVqa/l1wGPAgzHG2GEppQ7yqxfX0tTayg0fcFlCSZKUnHaVcIB0yX4QVydRjtjT2MyvXlrLBccMYsyAXknHkSRJ3Vi7S/iBQggfJTVHvILULpa/izHO7YivLXWU3y/YwM49Tcw+01FwSZKUrPddojCEcH4I4ZUQwq2HOf8L4D7gE8CFwGeAR0MI/6tDk0pHoaU1ctfzqzlhRB9OHtU36TiSJKmbO5J1wi8mtVX98wefCCF8jNSGOQF4DbidVCGPwC0hhDM6LqrUfnPf2szabXuYfeZYUns/SZIkJedIpqOcDmyLMb6rhANfTD8+BnwwxtgKEEK4Efh34AZgXkcElY7Gz55bzYh+PbjouMFJR5EkSTqikfDhpHatfIf0rpinkRr1/ud9BTztbmAj4Ei4Erdg7Q4WrN3BDTPHkO8W9ZIkKQscSQmvAKoPcfyU9Pt3xBhfOvBEjLEFWEiqwEuJuuu5VZT3KORvpo9IOookSRJwZCU8Aof6JNtJ6cd3jZKnbQcK2xNK6ihrt+3m0Tc388lTR9KruEMWA5IkSTpqR1LC1wPTwrs/zXYWqYL+8mHe1w+oOops0lG7+/nVFOQFrjtjdNJRJEmS9juSEv40MAz4+30HQgjHkVqOEODhw7zvBFLzwqVE7NjdyH3zN3DFCcMYWFaSdBxJkqT9jqSE3wE0AT8IITwfQniA1Ion+cD8g+eDA4QQTgEGA690ZFipLe59eS17m1r47Cw355EkSdnlfUt4jHEpqbXA95Ja7eQKoBTYBFxzmLd9Pv34nx2QUWqzhuYW7pm3lrMmVjBpcGnScSRJkt7hiD6pFmP8XQjhaeAyYCCwDngwxlh3mLfMB94AnuiIkFJbPfjaRrbWNXCjo+CSJCkLHfFyETHGLcDPj/Dan7Q7kXSUYoz87LlVHDOkjJnj+ycdR5Ik6V2OZE64lFOeXlbN8qo6Zp85xi3qJUlSVrKEq8v52bOrGFxWwmXThiYdRZIk6ZAs4epSFlfuYt7KbVw/czSF+X57S5Kk7GRLUZdy13Or6FWUz9UzRiYdRZIk6bAs4eoyNu7cy58WbuLqGSMp71GYdBxJkqTDsoSry7hn3hoicP3M0UlHkSRJek+WcHUJtfVN/ObldVw6dQjD+/ZMOo4kSdJ7soSrS/jdX9ZT29DMjbPGJB1FkiTpfVnClfOaWlq5+/nVnDqmH9OG90k6jiRJ0vuyhCvn/XnRJjbuqmf2mW5RL0mScoMlXDlt3xb14yp6cc6kgUnHkSRJOiKWcOW0F1dtY3FlDZ+dNZa8PLeolyRJucESrpx213OrGdC7iCtPHJZ0FEmSpCNmCVfOWlFVy5NLqvj0aaMpKcxPOo4kSdIRs4QrZ9313GqKC/L49Omjko4iSZLUJpZw5aSq2noeeLWSv5k+nH69ipKOI0mS1CaWcOWkX724lqbWVm74gMsSSpKk3GMJV87Z29jCr15aywXHDGLMgF5Jx5EkSWozS7hyzv0L1rNzTxM3ujmPJEnKUZZw5ZSW1sjPn1/NCSP6MH1U36TjSJIktYslXDll7ltbWLNtD7PPHEsIbs4jSZJykyVcOeWu51Yxol8PLjpucNJRJEmS2s0SrpyxYO0O5q/dwQ0zx5DvFvWSJCmHWcKVM+56bhVlJQX8zfQRSUeRJEk6KpZw5YS123bz2Jub+dRpo+hVXJB0HEmSpKNiCVdOuPv51eTnBa47Y3TSUSRJko6aJVxZb+eeRu6bv4HLTxjGwLKSpONIkiQdNUu4st69L69jb1MLN85ycx5JktQ1ZHUJDyH0CSHcH0JYEkJ4O4RwegihXwhhbghhefrRHVu6sIbmFu6Zt4YzJ1YwaXBp0nEkSZI6RFaXcOCHwKMxxsnA8cDbwK3AEzHGCcAT6dfqoh58fSPVtQ3MdhRckiR1IVlbwkMI5cCZwM8BYoyNMcadwOXAnPRlc4ArkkmozhZj5K7nVjF5cCkzx/dPOo4kSVKHydoSDowBqoFfhBBeCyHcFULoBQyKMW5KX7MZGJRYQnWqZ5ZVs2xLnVvUS5KkLiebS3gBcBLw0xjjicBuDpp6EmOMQDzUm0MIs0MI80MI86urqzs9rDrez55bxeCyEi6bNjTpKJIkSR0qm0v4BmBDjPHl9Ov7SZXyLSGEIQDpx6pDvTnGeGeMcXqMcXpFRUVGAqvjvLlxFy+s2MZ1M0dTVJDN36aSJEltl7XtJsa4GVgfQpiUPnQe8BbwR+Da9LFrgQcTiKdOdtdzq+lVlM/HZ4xMOookSVKHy/b9v/8BuDeEUASsAq4n9Q+H+0IINwBrgY8lmE+dYNOuvTz0xkauOX005T0Kk44jSZLU4bK6hMcYXwemH+LUeZnOosy554U1ROD6maOTjiJJktQpsnY6irqn2vomfv3yOi6dOoQR/XomHUeSJKlTWMKVVX73l/XUNjRz46wxSUeRJEnqNJZwZY2mllZ+8cIaTh3Tj2nD+yQdR5IkqdNYwpU1/rxoE5U793KjW9RLkqQuzhKurJDaon41Yyt6ce7kgUnHkSRJ6lSWcGWFJ5dUsahyF7NnjSUvzy3qJUlS12YJV+JaWyO3PbaU0f178tGThycdR5IkqdNZwpW4hxZuZMnmWr5ywUQK8/2WlCRJXZ+NR4lqamnljrnLmDy4lA9NG5p0HEmSpIywhCtR9y/YwJpte7j5oknOBZckSd2GJVyJqW9q4Yf/uZyTRvZxRRRJktStWMKVmP/70lo219Rz80WTCcFRcEmS1H1YwpWI2vomfvzUCmZNGMDp4/onHUeSJCmjLOFKxN3Pr2HHniZuvmhS0lEkSZIyzhKujNu+u5GfPbeKi48bzLThfZKOI0mSlHGWcGXcvz2zkj2NzXztwolJR5EkSUqEJVwZtXlXPXPmreHKE4czYVBp0nEkSZISYQlXRv3oyeW0xsiXz5+QdBRJkqTEWMKVMWu37eZ3f1nPx2eMZES/nknHkSRJSowlXBlzx9xlFOQH/v6c8UlHkSRJSpQlXBmxZHMND76xketnjmFgWUnScSRJkhJlCVdG/O/Hl9G7uIDPnTk26SiSJEmJs4Sr0722bgdz39rC584cS5+eRUnHkSRJSpwlXJ3utseWMqB3EdfPHJN0FEmSpKxgCVenemHFVuat3MZN54ynV3FB0nEkSZKygiVcnSbGyPceW8rQ8hI+cerIpONIkiRlDUu4Os3ct7bwxvqdfPn8iRQX5CcdR5IkKWtYwtUpWlojtz++lLEVvfjIScOSjiNJkpRVLOHqFH98o5JlW+r42gWTKMj320ySJOlAtiN1uMbmVu6Yu5zjhpZxyZTBSceRJEnKOpZwdbj75q9n3fY9fP2iSeTlhaTjSJIkZR1LuDrU3sYW/vWJ5Zwyui9nT6xIOo4kSVJWsoSrQ/3yxTVU1TZw80WTCcFRcEmSpEOxhKvD1NQ38dNnVnL2pApmjOmXdBxJkqSsZQlXh7nrudXs3NPE1y+clHQUSZKkrGYJV4fYVtfAz59bxQenDmHKsPKk40iSJGU1S7g6xE+eXsnepha+csHEpKNIkiRlPUu4jtrGnXv51Utruerk4Ywf2DvpOJIkSVnPEq6j9qMnl0OEL543IekokiRJOcESrqOyqrqO++Zv4BOnjmR4355Jx5EkScoJlnAdlTv+cznFBXncdM74pKNIkiTlDEu42u2tjTU89MZGPjNzDBWlxUnHkSRJyhmWcLXb/358KWUlBdx45tiko0iSJOUUS7jaZf6a7TyxpIq/O3sc5T0Kk44jSZKUUyzharMYI997bCkDehdz3Rmjk44jSZKUc7K+hIcQ8kMIr4UQ/pR+PSaE8HIIYUUI4XchhKKkM3Y3zy3fyiurt/PF88bTs6gg6TiSJEk5J+tLOPAl4O0DXn8XuCPGOB7YAdyQSKpuKsbIbY8tZXjfHlx9ysik40iSJOWkrC7hIYThwAeBu9KvA3AucH/6kjnAFcmk654eXbyZRZW7+PL5EykqyOpvH0mSpKyV7S3qB8A3gNb06/7Azhhjc/r1BmBYEsG6o5bWyO2PL2X8wN5ceaK3XZIkqb2ytoSHEC4DqmKMC9r5/tkhhPkhhPnV1dUdnK57+sNrlays3s3XL5xIfl5IOo4kSVLOytoSDswEPhxCWAP8ltQ0lB8CfUII+z4NOByoPNSbY4x3xhinxxinV1RUZCJvl9bQ3MIdc5cxdVg5Fx03OOk4kiRJOS1rS3iM8ZsxxuExxtHA1cCTMcZPAk8BV6UvuxZ4MKGI3cpvX1lP5c693HzRJFJT8yVJktReWVvC38MtwFdDCCtIzRH/ecJ5urw9jc386MkVnDqmH7MmDEg6jiRJUs7LiUWeY4xPA0+nn68CZiSZp7u5Z94attY18O+fPslRcEmSpA6QiyPhyqBde5v4t6dXct7kgZw8ql/ScSRJkroES7je053PrqSmvpmvXTgp6SiSJEldhiVch1Vd28Ddz6/hQ8cP5dihZUnHkSRJ6jIs4TqsHz+1gsaWVr56wcSko0iSJHUplnAd0oYde/j1y+v42PThjBnQK+k4kiRJXYolXIf0w/9cDgH+4dwJSUeRJEnqcizhepcVVXX8/tUNfPq0UQzt0yPpOJIkSV2OJVzvcsfcZfQozOcLZ49LOookSVKXZAnXOyyu3MXDizZxw6yx9O9dnHQcSZKkLskSrne47bGl9OlZyGdnjUk6iiRJUpdlCdd+L6/axjPLqvn8WeMoKylMOo4kSVKXZQkXADFGbn98KQNLi7nm9NFJx5EkSerSLOEC4Oll1fxlzQ6+eN4EehTlJx1HkiSpS7OEi9bWyG2PLmVkv558bPqIpONIkiR1eZZw8efFm3hrUw1fuWACRQV+S0iSJHU2G1c319zSyvcfX8bEQb358PHDko4jSZLULVjCu7kHXq1k1dbdfP3CSeTnhaTjSJIkdQuW8G6svqmFH/znMo4f0YcLjh2UdBxJkqRuwxLejf365XVs3FXPNy6aRAiOgkuSJGWKJbyb2t3QzI+fWsEZ4/ozc/yApONIkiR1K5bwbuoXL6xm2+5Gbr5oUtJRJEmSuh1LeDe0c08j//7sKi44dhAnjuybdBxJkqRuxxLeDf3bM6uoa2jmaxdOTDqKJElSt1SQdABlTmtr5N6X13L3C6u5/PihTB5clnQkSZKkbskS3k2sqq7j1t8v4pU125k1YQD/dNmxSUeSJEnqtizhXVxzSyt3Pb+aO+Yuo7ggj9uumsZVJw93SUJJkqQEWcK7sLc31fCN+xeyqHIXFx03iP9++RQGlpUkHUuSJKnbs4R3QQ3NLfz4yRX85OmV9OlZyI8/cRKXTh3s6LckSVKWsIR3Ma+t28E37l/I8qo6PnLiMP7LZcfSt1dR0rEkSZJ0AEt4F7G3sYXbH1/K3S+sZnBZCb+47hTOmTww6ViSJEk6BEt4FzBv5VZu/f0i1m3fw6dOG8ktF0+mtKQw6ViSJEk6DEt4Dqupb+Jf/ryE37yyjtH9e/Lb2adx2tj+SceSJEnS+7CE56gnl2zhWw8spqq2ntlnjuUr50+kR1F+0rEkSZJ0BCzhOWb77kb+20Nv8h+vb2TSoFL+7dMnc8KIPknHkiRJUhtYwnNEjJE/LdzEf/3jm9TUN/Gl8yZw0znjKSrISzqaJEmS2sgSngO21NTzT/+xmLlvbeH44eV896pTmTy4LOlYkiRJaidLeBaLMXLf/PX8j4ffprG5lW9dOpnPzBxDQb6j35IkSbnMEp6l1m/fwzcfWMTzK7YyY0w/vvvRaYwZ0CvpWJIkSeoAlvAs09oamfPiGr736FLyAvz3K6bwyRkjyctzy3lJkqSuwhKeRVZU1XHL7xeyYO0OzppYwf/6yFSG9emRdCxJkiR1MEt4FmhqaeXOZ1fxwyeW07Mon+9/7HiuPHEYITj6LUmS1BVZwhO2uHIXt/x+IW9urOHSqYP55w9PoaK0OOlYkiRJ6kSW8ITUN7XwoyeX82/PrKJvzyL+7VMncfGUIUnHkiRJUgZYwhOwYO12vnH/QlZW7+aqk4fzTx88hj49i5KOJUmSpAyxhGfQ7oZmbntsKXNeXMPQ8h7M+cwMzppYkXQsSZIkZVjWlvAQwgjgl8AgIAJ3xhh/GELoB/wOGA2sAT4WY9yRVM4j9fzyrdz6wEI27NjLNaeP4hsXT6Z3cdbefkmSJHWibG6BzcDXYoyvhhBKgQUhhLnAdcATMcbvhBBuBW4Fbkkw53vatbeJ//nwW9w3fwNjBvTivs+dzowx/ZKOJUmSpARlbQmPMW4CNqWf14YQ3gaGAZcDZ6cvmwM8TZaW8Mff3Mw//cdittY18HdnjePL50+gpDA/6ViSJElKWNaW8AOFEEYDJwIvA4PSBR1gM6npKlnn7U01zP7VAiYPLuWua6czbXifpCNJkiQpS2R9CQ8h9AZ+D3w5xlhz4AY2McYYQoiHed9sYDbAyJEjMxH1HY4ZUsbPrpnOWRMrKCrIy/jPL0mSpOyV1e0whFBIqoDfG2N8IH14SwhhSPr8EKDqUO+NMd4ZY5weY5xeUZHMCiQXHDvIAi5JkqR3ydqGGFJD3j8H3o4xfv+AU38Erk0/vxZ4MNPZJEmSpKORzdNRZgKfBhaFEF5PH/sW8B3gvhDCDcBa4GMJ5ZMkSZLaJWtLeIzxeSAc5vR5mcwiSZIkdaSsnY4iSZIkdVWWcEmSJCnDLOGSJElShlnCJUmSpAyzhEuSJEkZZgmXJEmSMswSLkmSJGWYJVySJEnKMEu4JEmSlGGWcEmSJCnDLOGSJElShlnCJUmSpAwLMcakM3S6EEI1sDahn34AsDWhnzsXeb/axvvVNt6vtvF+tY33q228X23j/WqbJO/XqBhjxftd1C1KeJJCCPNjjNOTzpErvF9t4/1qG+9X23i/2sb71Tber7bxfrVNLtwvp6NIkiRJGWYJlyRJkjLMEt757kw6QI7xfrWN96ttvF9t4/1qG+9X23i/2sb71TZZf7+cEy5JkiRlmCPhkiRJUoZZwjtJCOHiEMLSEMKKEMKtSefJZiGEESGEp0IIb4UQ3gwhfCnpTLkghJAfQngthPCnpLNkuxBCnxDC/SGEJSGEt0MIpyedKduFEL6S/v24OITwmxBCSdKZskkI4e4QQlUIYfEBx/qFEOaGEJanH/smmTGbHOZ+3Zb+PbkwhPCHEEKfJDNmk0PdrwPOfS2EEEMIA5LIlo0Od79CCP+Q/h57M4TwvaTyHY4lvBOEEPKBHwOXAMcCHw8hHJtsqqzWDHwtxngscBpwk/friHwJeDvpEDnih8CjMcbJwPF4395TCGEY8EVgeoxxCpAPXJ1sqqxzD3DxQcduBZ6IMU4Anki/Vso9vPt+zQWmxBinAcuAb2Y6VBa7h3ffL0III4ALgXWZDpTl7uGg+xVCOAe4HDg+xngccHsCud6TJbxzzABWxBhXxRgbgd+S+kbQIcQYN8UYX00/ryVVkIYlmyq7hRCGAx8E7ko6S7YLIZQDZwI/B4gxNsYYdyabKicUAD1CCAVAT2BjwnmySozxWWD7QYcvB+akn88BrshoqCx2qPsVY3w8xticfvkSMDzjwbLUYb6/AO4AvgH4gb4DHOZ+fR74ToyxIX1NVcaDvQ9LeOcYBqw/4PUGLJVHJIQwGjgReDnZJFnvB6T+IG5NOkgOGANUA79IT9+5K4TQK+lQ2SzGWElq1GgdsAnYFWN8PNlUOWFQjHFT+vlmYFCSYXLMZ4BHkg6RzUIIlwOVMcY3ks6SIyYCs0IIL4cQngkhnJJ0oINZwpU1Qgi9gd8DX44x1iSdJ1uFEC4DqmKMC5LOkiMKgJOAn8YYTwR24zSB95Sey3w5qX/ADAV6hRA+lWyq3BJTS485WnkEQgj/SGpa4r1JZ8lWIYSewLeA/y/pLDmkAOhHaprrzcB9IYSQbKR3soR3jkpgxAGvh6eP6TBCCIWkCvi9McYHks6T5WYCHw4hrCE11encEML/TTZSVtsAbIgx7vvflftJlXId3vnA6hhjdYyxCXgAOCPhTLlgSwhhCED6Mev++zvbhBCuAy4DPhldM/m9jCP1j+I30n/2DwdeDSEMTjRVdvv/27v3YKvKMo7j358kaKkpWTqKhWcEEistU0RwJElDLS3NLM1whjRlzGaysbFyZHSmHBjNyUuYaZQ4mreU1FJHRSckNC+IZGgZCoYGReIN0Hz6431XbPdZax/2Ybv3Vn+fmTXrrMt7WRs4PPtdz3rXUuD6SO4j3TnuqodZHYS/Oe4HhknaUdJA0gNNszrcp66Vv5leCjwWEed2uj/dLiJOi4ghETGU9HfrzojwKGWFiHgWWCJpRN41HvhzB7v0VvA0sJekd+d/n+Pxw6zrYxYwMf88Ebixg33pepImkNLqDomIlzvdn24WEQsi4gMRMTT/7l8KfCL/frNyNwCfApA0HBgIrOhoj+o4CH8T5AdNTgJuJf3HdXVELOxsr7raGOAY0ojuw3k5qNOdsreVbwJXSHoE2A34YYf709XyXYNrgQeBBaT/K7r+7XPtJOlKYC4wQtJSSZOAs4H9JT1Buptwdif72E0qPq8LgM2B2/Pv/ekd7WQXqfi8rELF53UZ0JOnLbwKmNhtd1v8xkwzMzMzszbzSLiZmZmZWZs5CDczMzMzazMH4WZmZmZmbeYg3MzMzMyszRyEm5mZmZm1mYNwM7M+SDpA0i8kLZL0vKS1kpZLmiNpmqQ9O93HtxpJMyRFflmLmdk7joNwM7MKkraRdBdpzv9jgQHAbOAa4AFgJ+A7wDxJl3eom11H0rgcYM/udF/MzLrVuzrdATOzbiRpMHAv0APMAU6KiIfrzhHpde7fBXZueyff2k4jvcxmWac7YmbWCQ7CzczKXcS6AHy/iFhbf0J++9oc4BCnpDQnIpbhANzM3sGcjmJmVkfSMOCIvHliWQBeLyLuK6nnPZJOlXS/pFWSXpG0UNIUSZuVnD8lp3FMyakwF+dXMK+R9HdJZ0vapEG/R0m6Kpcp8tZnSRpbcX5IivzzJEnzcj9D0pZ5/0hJZ0q6V9I/auq9RdKEkjpnA3flzX2LNurTUxrlhCs5RtJsSSslrZb0N0kXStphPa7lSElzJb0o6QVJdzT4DEZI+qWkp/K1vSBpsaTfSDq86rM2M9tQHgk3M+vtYNIgxfyIWNCfCiQNIeWSjwSWA3OB1cAewBnAFySNi4iVJcV3IOWci5QSswUwlpT2MhI4pKS9U4BpefPB3N6QfC0HSzohIi6p6Ov5wGTSqP5NwHAg8uFvA5OAx4D5wCrSHYIDgQMlnRIR59ZU9/t8nZ8Bnsvbhb+UtV/XFwEzgaOAV0k5+P8G9sx9/LKkCRFxf0X5M4HvA38AbgY+BuwHjM2f99yacz+ar3nz3Lff5uvePvd/U+C6vvpsZtYvEeHFixcvXmoW4HJSMPbzfpYvgucAzgc2rTm2aU39M+rKTcn7A7gEGFhzbGfghXxsTF25A/P+Z4BRdcfGAM8Da4HhdceKtv4D7FlxLfsCQ0v2j6qpd0jdsXG53tkNPqMZ+Zxj6/ZPzvufBXap2T8A+Ek+thgYVHEt/wJ2r9m/EfCzfOz2ujKX5f2nlfRvM2B0p/8uevHi5e27OB3FzKy3rfN6ednBPGXhjJJlaD5lAjAa+CPwrYh4pSibfz4B+CdwtKStSppYApwcNWkwEfEYKXgHGF93/pS8/npEzKs9EBFzgLOAjYFvVFzv1ChJp8nl746IxSX75wEX5HoPrai3P07J69MjYmFNe/8lzUTzNPAh4IsV5c+IiAdqyr0OnJ4395G0cc252+T17+oriYgXo2bU3Mys1ZyOYmbWvJHAxJL9F5BGaQ/K29flIPANIuIlSX/K5+0B3FZ3yp21gXuNIp1ju2KHpK1JqRqrSuop3J3XoyuOX1+xv2hjc1Jay27AYGBgPjQsr4c3Kr++cgpPD/A6675w/F9ErJV0BWlmlXHAFYDVCQ4AAAPiSURBVCXV3FRS7jlJK4GtgPeRRtkB7iP9GUyXdDpwT0SsacGlmJn1yUG4mVlvK/L6/WUHI+I84LxiW9Ji0uhsoSevp0maRmNlbTxdce6qvK59OHPHvN4CeC2lVDfVFsBTVQUkHUpK2xjcoN4tGjXahO3zellErK4458m6c+s1+uy24o2f3TRgH9KdhduANZIeJn1pmRn9fB7AzGx9OAg3M+vtQeCrwCf7WX5AXt9NGhlvpCwA7jV6vh5tPQ/c0Me5K8p2Voy6FyPTV5Ly2H+Uf14MvBQRr0s6HriYlAPfStH3KRUFS+48NDj3ZeDTkkaRUojGkO4WjAJOlXRGRJzZ376YmTXiINzMrLebgXOAXSV9JCIebbL8kry+JiIubG3XKtt6NSKObXHdnyXPEBIR3ys5vlOL23smr7eTNKgiNaSn7twNlvPb5wFIGkiameUSYIqkX0fEola1ZWZW8IOZZmZ1IuJx4Nq8OT0HZs0oHvQ7ouFZLRARzwALgK0ljWtx9UUKypL6A5IGAVXzaBcPlDY10BMRS0npJhuR7kTUt7kxcHTenN1M3U30YW1EzCA9VCvSFIdmZi3nINzMrNxkUurFGOAOSbuVnZTnmq7Pib6BNM/3vpKmS+qVTy1pW0nHtaivxewfMyUdUNLWAEn7SdqryXqLB0EPl1TMJFKMFp/PulHpesUo9U6Smr3jWsw5fpakD9e0OQCYCnyQlMJzbUnZpkiaLGlEyf4eYJe8WZkvb2a2IZyOYmZWIiJWSNobuJr0opyHJP0VWEiar3sz0tzdRRB3Jzlgy/nSnwduIU0LeJSk+aQR5U1Is4mMJE1TWPoCnSb7emN+Wc9U4FZJjwOLgBeBbYGPA1sCJ5JGeNfXLOChXP6J/MbL1aQvJu8lzdt9ckl/npJUlHtE0gPAGmBRRPT1oOpFuf6vAPNzm8XLenqAlcARLZrF5HjgQklPAo+y7vMaS5oB5qqqqRvNzDaUR8LNzCpExLKI2Ic0jd2v8u7xwJGkQG0l8GPSC3LGR8TymrJLSYHjSaRAdhfS3NajSYHsOcBhLezrucDuwKWkhzX3Bz5HemvmPcBxpC8UzdT5GullPVOBZcABpNlE7sltPdSg+GG5vcGkgHoSaZrDvtoMUsrJ10h52qNyXRsBPwV2jYq3ZfbDD0gPlq4C9ib9+QwjPVD7JdalvpiZtZzS7zszMzMzM2sXj4SbmZmZmbWZg3AzMzMzszZzEG5mZmZm1mYOws3MzMzM2sxBuJmZmZlZmzkINzMzMzNrMwfhZmZmZmZt5iDczMzMzKzNHISbmZmZmbWZg3AzMzMzszb7HzBHXrQ/obA2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/wAAAJpCAYAAAAQfTm/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4wUlEQVR4nOzdd3hUZcLG4WfSe0JCKi2hSQm9NxVBioAFbIiIiq6fCypi3xW7YlkbNlx3FXsXFVy69N5DIPRQ0yAhnbSZ8/0RGImGEGCSk0x+93XlMjPnzJlnGIjz5LzveyyGYRgCAAAAAABOxcXsAAAAAAAAwPEo/AAAAAAAOCEKPwAAAAAATojCDwAAAACAE6LwAwAAAADghCj8AAAAAAA4IQo/AAAAAABOiMIPAAAAAIATcjM7QG1ns9mUlJQkf39/WSwWs+MAAAAAAJycYRjKyclRVFSUXFzOfh6fwn+RkpKS1KhRI7NjAAAAAADqmMOHD6thw4Zn3U7hv0j+/v6SSv+gAwICTE4DAAAAAHB22dnZatSokb2Png2F/yKdHsYfEBBA4QcAAAAAVJtzTStn0T4AAAAAAJwQhR8AAAAAACdE4QcAAAAAwAlR+AEAAAAAcEIUfgAAAAAAnBCFHwAAAAAAJ0ThBwAAAADACVH4AQAAAABwQhR+AAAAAACcEIUfAAAAAAAnROEHAAAAAMAJUfgBAAAAAHBCFH4AAAAAAJwQhR8AAAAAACdE4QcAAAAAwAlR+AEAAAAAcEIUfgAAAAAAnBCFHwAAAAAAJ0ThBwAAAADACVH4AQAAAACQZBiGDMMwO4bDuJkdAAAAAAAAsxzOyNfq/elasy9dq/en69Xr26tfi1CzYzkEhR8AAAAAUGckZZ7U6lPlfvW+dB3NPFlm++p96RR+AAAAAABqutTsgtKCvy9daxLTdTA9v8x2NxeL2jcMVK9mIerVtL66NKlnUlLHo/ADAAAAAJzGsZzC0iH6p4bp7z+eV2a7i0Vq1zBIvZqGqFezEHVtUk++ns5ZjZ3zVQEAAAAA6oT03EKtTcywD9Pfm5ZbZrvFIsVGlZ7B79k0WN2ig+Xv5W5S2upF4QcAAAAA1BqZ+UVasz9Da07Nwd+VmlNmu8UitY4IUM9TZ/C7xwQr0LtuFPw/o/ADAAAAAGqsrJPFWpf4R8FPSMnWn6+cd0m4/6kz+KVn8YN8PMwJW8NQ+AEAAAAANUZOQbE2HDhhX0V/e1KWbH8q+M3D/Oxz8HvEBCvEz9OcsDUchR8AAAAAYJq8whJtOHjCPgc//miWrH9q+E3r+6rnGWfww/y9TEpbu1D4AQAAAADV5mSRVRsPntDq/ce1Zn+Gth7OVMmfCn6TEB/1jAmxD9OPCKTgXwgKPwAAAACgyhQUW7X5UGbppfL2pWvL4UwVWW1l9mkQ5K1ezULUq2mIejYLUYMgb5PSOhcKPwAAAADAYQpLrNp6OOvUEP3j2nQoU0UlZQt+ZKCXvdz3ahqiRsE+JqV1bhR+AAAAAMAFK7baFHck0z4Hf+PBEyooLlvwQ/097Yvs9WoaoiYhPrJYLCYlrjso/AAAAACASjMMQ7tSc7R45zGt3p+uDQcylF9kLbNPfT8P9WgaYi/5Tev7UvBNQOEHAAAAAFSoqMSmtYnpWrgjVQsT0nQ082SZ7fV83NXzjDP4zcP8KPg1QK0t/FOnTtVPP/2knTt3ytvbW71799Yrr7yiSy65xL7P5ZdfrqVLl5Z53D333KPp06fbbx86dEj33nuvFi9eLD8/P40bN05Tp06Vm1ut/aMBAAAAgIuWkVekxTvTtGhnqpbtPq7cwhL7Nk83F/VpXl99m9dXr2YhuiTcXy4uFPyapta22qVLl2rChAnq1q2bSkpK9I9//EODBg3Sjh075Ovra9/v7rvv1nPPPWe/7ePzx2IQVqtVw4YNU0REhFatWqXk5GTddtttcnd310svvVStrwcAAAAAzGQYhvYdy9PChFQtSkjVxoMndObV8kL9PTWgVZgGtA5X3+b15e3hal5YVIrFMAzj3LvVfMeOHVNYWJiWLl2qSy+9VFLpGf6OHTvqrbfeKvcxc+bM0fDhw5WUlKTw8HBJ0vTp0/XYY4/p2LFj8vDwOOfzZmdnKzAwUFlZWQoICHDY6wEAAACAqlZstWn9gQwtSkjTooRUHUjPL7O9dWSABrYuLfntGwRyFr+GqGwPrbVn+P8sKytLkhQcHFzm/i+//FJffPGFIiIiNGLECE2ZMsV+ln/16tVq166dvexL0uDBg3Xvvfdq+/bt6tSpU/W9AAAAAACoBlkni7VkV5oWJaRpya40ZRf8MVTfw9VFPZuFaGDrMF3RKkwN63G5vNrMKQq/zWbTpEmT1KdPH8XGxtrvv+WWW9SkSRNFRUUpLi5Ojz32mHbt2qWffvpJkpSSklKm7Euy305JSSn3uQoLC1VYWGi/nZ2d7eiXAwAAAAAOdeD46aH6aVp/IEMlZ4zVD/b1UP9LwjSwdZj6tQyVn6dT1ETISQr/hAkTFB8frxUrVpS5/29/+5v9+3bt2ikyMlIDBgzQvn371KxZswt6rqlTp+rZZ5+9qLwAAAAAUJWsNkObDp2wl/y9ablltrcI89OA1uG6sk2YOjaqJ1eG6julWl/4J06cqNmzZ2vZsmVq2LBhhfv26NFDkrR37141a9ZMERERWrduXZl9UlNTJUkRERHlHuOJJ57Q5MmT7bezs7PVqFGji3kJAAAAAHDRcgtLtGz3MS1MSNWSXceUkVdk3+bmYlH3mGANbB2uAa3D1CTEt4IjwVnU2sJvGIbuu+8+zZw5U0uWLFFMTMw5H7NlyxZJUmRkpCSpV69eevHFF5WWlqawsDBJ0oIFCxQQEKA2bdqUewxPT095eno65kUAAAAAwEU4ciJfixLStDAhVWv2p6vY+sdQ/UBvd/W/JFQDWofr0pahCvR2NzEpzFBrC/+ECRP01Vdf6ZdffpG/v799zn1gYKC8vb21b98+ffXVV7rqqqsUEhKiuLg4Pfjgg7r00kvVvn17SdKgQYPUpk0bjR07Vq+++qpSUlL05JNPasKECZR6AAAAADWOzWZo65FMe8nfmZJTZntMfV/7qvpdm9STm6uLSUlRE9Tay/JZLOXPMfnkk090++236/Dhw7r11lsVHx+vvLw8NWrUSNddd52efPLJMpctOHjwoO69914tWbJEvr6+GjdunF5++WW5uVXudyFclg8AAABAVcovKtGKPce1MCFVv+88puO5fywi7mKRukYH20t+s1A/E5OiulS2h9bawl9TUPgBAAAAOFpKVoEW7UzVwh2pWrkvXUUlNvs2P083XXZJqAa2DtPlLcNUz9fDxKQwQ2V7aK0d0g8AAAAAzsIwDG1PytaCHalatDNV8UfLXv67UbC3BrQK18DW4eoeEywPN4bq49wo/AAAAABggoJiq1btO66FCWn6PSFNKdkF9m0Wi9SpUZAGtC4t+S3D/c46rRk4Gwo/AAAAAFSTYzmF+n1nqhYmpGnFnuM6WWy1b/PxcFW/FvU1oHW4rmgVpvp+LCSOi0PhBwAAAIAqlF1QrC/WHNT87anaeiRTZ66iFhnopQGnFtzr1TREXu6u5gWF06HwAwAAAEAVKLHa9O2Gw3pj/m6l5xXZ72/fMLB0Pn6bMLWJDGCoPqoMhR8AAAAAHGzFnuN64bcd2pmSI0lqGuqr8X1jNLB1uMIDvExOh7qCwg8AAAAADrL/WK5e+l+CFiakSZICvd314MAWGtOzidxdWVkf1YvCDwAAAAAXKSu/WG8v2qPPVh9Qic2Qm4tFt/ZsokkDWyjIx8PseKijKPwAAAAAcIGKrTZ9tfaQ3ly4W5n5xZKkK1qF6R9XtVbzMD+T06Guo/ADAAAAwAVYvCtNL8zeoX3H8iRJLcP99OSwNrq0ZajJyYBSFH4AAAAAOA97UnP0wm8JWrr7mCQp2NdDk69sqZu7NZIb8/RRg1D4AQAAAKASMvKK9NbC3fpy7SFZbYbcXS26vXe0Jl7RQoHe7mbHA/6Cwg8AAAAAFSgqsemz1Qf09qI9yikokSQNahOuf1zVWtH1fU1OB5wdhR8AAAAAymEYhhYmpOml/yUo8XjpPP3WkQGaMry1ejerb3I64Nwo/AAAAADwJwnJ2Xp+9g6t2pcuSarv56lHBrfU9V0aydXFYnI6oHIo/AAAAABwyrGcQr2xYJe+XX9YNkPycHPR+L4x+vvlzeTvxTx91C4UfgAAAAB1XmGJVZ+sPKB3f9+r3MLSefrD2kXq8aGt1CjYx+R0wIWh8AMAAACoswzD0Nz4FL00J0GHM05Kkto1CNSU4W3UPSbY5HTAxaHwAwAAAKiTth3J0vO/7dC6xAxJUniApx4d3ErXdWogF+bpwwlQ+AEAAADUKanZBXpt3i79uOmIDEPydHPRPZc10/9d1lQ+HlQkOA/+NgMAAACoEwqKrfpo2X59sHSf8ouskqRrOkbp0SGt1CDI2+R0gONR+AEAAAA4NcMwNCsuWa/M2amjmaXz9Ds1DtKU4W3UuXE9k9MBVYfCDwAAAMBpbT50Qs/P3qFNhzIlSVGBXnpsaCtd3SFKFgvz9OHcKPwAAAAAnE5S5km9Onenft6SJEnydnfV3y9vprv6NZW3h6vJ6YDqQeEHAAAA4DTyi0o0fel+/XvZPhUU2yRJozo31KNDLlF4gJfJ6YDqReEHAAAAUOvZbIZmbj6qV+ftVGp2oSSpW3Q9TRneRu0bBpkbDjAJhR8AAABArbbhQIaem71DcUeyJEkN63nrH1e11tDYCObpo06j8AMAAAColQ5n5OvluTv1W1yyJMnP000T+jfXHX2i5eXOPH2Awg8AAACgVsktLNH7i/fqPysSVVRik8Ui3dytkSZfeYlC/T3NjgfUGBR+AAAAALWC1Wboh42H9dq83TqeWzpPv1fTEE0Z3kZtogJMTgfUPBR+AAAAADXe6n3pen72Du1IzpYkRYf46B9XtdaVbcKZpw+cBYUfAAAAQI11MD1PL/0vQfO2p0qS/L3c9MCAFrqtV7Q83FxMTgfUbBR+AAAAADVOdkGx3v19rz5ZmahiqyEXizSmRxNNGthCIX7M0wcqg8IPAAAAoMaw2gx9s/6Q3pi/W+l5RZKkfi3qa8rwNmoZ7m9yOqB2ofADAAAAqBG2Hs7Ukz/Ha9vRLElSs1BfPTmsjS6/JJR5+sAFoPADAAAAMFVmfpFenbdLX687JMMonac/+cqWurVnE7m7Mk8fuFAUfgAAAACmsNkM/bDpiF6es1MZp4bvj+zUQE9c1Vqh/szTBy4WhR8AAABAtduRlK0pv8Rr48ETkqQWYX56/tpY9WwaYnIywHlQ+AEAAABUm5yCYr25YI8+XX1AVpshHw9XTRrYQnf0iWH4PuBgFH4AAAAAVc4wDP26NUkv/pagtJxCSdJV7SI0ZXgbRQZ6m5wOcE4UfgAAAABVam9ajp76ZbtW7UuXJEWH+OjZa2J1WctQk5MBzo3CDwAAAKBK5BeV6J3f9+o/y/er2GrI081FE/o3198ubSovd1ez4wFOj8IPAAAAwKEMw9D8Hal6btYOHc08KUm6olWYnhnRVo1DfExOB9QdFH4AAAAADnMoPV9P/xqvxbuOSZIaBHnr6RFtdGWbcFksFpPTAXULhR8AAADARSsoturDpfv13pK9Kiqxyd3Vor9d2lQT+7eQtwfD9wEzUPgBAAAAXJQlu9L09K/bdTA9X5LUp3mInr06Vs3D/ExOBtRtFH4AAAAAFyQp86Sem7VDc7enSJLC/D01ZXgbDW8fyfB9oAag8AMAAAA4L0UlNn28MlHTFu1RfpFVri4W3d47WpMGtpC/l7vZ8QCcQuEHAAAAUGmr96Vryi/x2puWK0nq2qSenr82Vq0jA0xOBuDPKPwAAAAAziktp0Av/Zagn7ckSZJCfD30+NBWGtW5oVxcGL4P1EQUfgAAAABnVWK16Ys1B/X6/N3KKSyRxSKN6dFYjwxqpUAfhu8DNRmFHwAAAEC5Nh06oSdnxmtHcrYkqX3DQD1/Taw6NAoyNxiASqHwAwAAACgjI69Ir8zZqW83HJYkBXi56dEhrTS6e2O5MnwfqDUo/AAAAAAkSTaboW83HNYrc3cqM79YknR9l4Z6fGgr1ffzNDkdgPNF4QcAAACg+KNZevLneG05nClJahXhr+evjVW36GBzgwG4YBR+AAAAoA7LOlms1+fv0hdrDspmSL4ernrwypa6vXe03FxdzI4H4CJQ+AEAAIA6yDAMzdx8VC/9L0HHc4skSSM6ROnJYa0VHuBlcjoAjkDhBwAAAOqYXSk5mvJLvNYlZkiSmob66vlrYtWneX2TkwFwJAo/AAAAUEfkFZbo7UV79PGKRJXYDHm5u+i+K1rorn4x8nRzNTseAAej8AMAAABOzjAM/W9bip6fvUMp2QWSpCvbhOup4W3UKNjH5HQAqgqFHwAAAHBiicfz9NQv8Vq+57gkqVGwt569uq2uaBVucjIAVY3CDwAAADihgmKr3lu8Vx8u3a8iq00eri76v8ua6u/9m8vLneH7QF1A4QcAAACczKKEVD0za7sOZ5yUJF3aMlTPXt1WMfV9TU4GoDpR+AEAAAAncTgjX8/O2qGFCamSpMhALz01vI2GxEbIYrGYnA5AdaPwAwAAALVcYYlV/1meqHd+36OCYpvcXCwa3zdG9w9oIV9PPvIDdRX/+gEAAIBabNXe43ry53jtP54nSeoRE6znr41Vy3B/k5MBMBuFHwAAAKiF8otKNPV/O/X5moOSpPp+nnpyWGtd0zGK4fsAJFH4AQAAgFpn48ETeui7LTqQni9JurVnYz0yuJUCvd1NTgagJqHwAwAAALVEUYlNby3crelL98lmSBEBXnrthvbq1yLU7GgAaiAKPwAAAFALJCRna/J3W5WQnC1Juq5TAz0zoq0CfTirD6B8FH4AAACgBrPaDP172X69uWC3iqw21fNx10vXtdPQdpFmRwNQw1H4AQAAgBrqYHqeHvpuqzYcPCFJGtg6TFNHtleov6fJyQDUBhR+AAAAoIYxDENfrj2kl/6XoPwiq/w83fTUiDa6oUtDVuAHUGkUfgAAAKAGSckq0GM/xmnp7mOSpB4xwfrXDR3UKNjH5GQAahsKPwAAAFBD/Lo1SVN+jlfWyWJ5uLnosSGtdEfvaLm4cFYfwPmj8AMAAAAmO5FXpCd/iddvccmSpHYNAvXGjR3UItzf5GQAajMKPwAAAGCixTvT9OiPcTqWUyhXF4vuu6K5JvRvLndXF7OjAajlKPwAAACACXILS/Tibzv09brDkqRmob5686aOat8wyNxgAJwGhR8AAACoZusSM/TQ91t0OOOkJGl83xg9MvgSebm7mpwMgDOh8AMAAADVpKDYqjcW7NZHy/fLMKQGQd761w0d1KtZiNnRADghCj8AAABQDeKPZmnyd1u0OzVXknRj14aaMryN/L3cTU4GwFlR+AEAAIAqVGK16YMl+/T2oj0qsRmq7+ehl0e218A24WZHA+DkKPwAAABAFdl3LFeTv9uqrYczJUlD2kboxetiFeLnaW4wAHUChR8AAABwMJvN0GerD+jluTtVUGyTv5ebnrumra7t2EAWi8XseADqCAo/AAAA4EBJmSf1yA9btXJvuiSpb/P6evX69ooK8jY5GYC6hsIPAAAAOIBhGPpp01E98+t25RSWyMvdRf+4qrVu7dFELi6c1QdQ/Sj8AAAAwEVKzy3UP2Zu07ztqZKkTo2D9PoNHdQ01M/kZADqMgo/AAAAcBHmb0/REz9tU3pekdxdLZo0sKXuubSp3FxdzI4GoI6j8AMAAAAXILugWM/N2qEfNh6RJF0S7q83buqgtlGBJicDgFIUfgAAAOA8rdp3XI98H6ejmSdlsUj3XNpMD17ZQp5urmZHAwA7Cj8AAABQSQXFVr0yd6c+WXlAktQ42Eev39hB3aKDzQ0GAOWg8AMAAACVsOVwpiZ/t0X7j+VJksb0aKx/XNVavp58pAZQM/HTCQAAAKhAsdWmdxbt0XtL9slqMxTm76lXrm+v/peEmR0NACpE4QcAAADOYndqjiZ/t0XxR7MlSVd3iNJz17RVkI+HyckA4Nxq7bVCpk6dqm7dusnf319hYWG69tprtWvXrjL7FBQUaMKECQoJCZGfn59GjRql1NTUMvscOnRIw4YNk4+Pj8LCwvTII4+opKSkOl8KAAAAahirzdBHy/Zr+DsrFH80W0E+7npndCdNG92Jsg+g1qi1hX/p0qWaMGGC1qxZowULFqi4uFiDBg1SXl6efZ8HH3xQs2bN0vfff6+lS5cqKSlJI0eOtG+3Wq0aNmyYioqKtGrVKn366aeaMWOGnnrqKTNeEgAAAGqAwxn5Gv3RGr34vwQVldh0+SWhmjfpUo3oEGV2NAA4LxbDMAyzQzjCsWPHFBYWpqVLl+rSSy9VVlaWQkND9dVXX+n666+XJO3cuVOtW7fW6tWr1bNnT82ZM0fDhw9XUlKSwsPDJUnTp0/XY489pmPHjsnD49y/vc3OzlZgYKCysrIUEBBQpa8RAAAAVccwDH234bCem7VDeUVW+Xi4asrwNrq5WyNZLBaz4wGAXWV7aK09w/9nWVlZkqTg4NJLomzcuFHFxcUaOHCgfZ9WrVqpcePGWr16tSRp9erVateunb3sS9LgwYOVnZ2t7du3l/s8hYWFys7OLvMFAACA2i0tp0DjP92gx37cprwiq7pF19PcBy7V6O6NKfsAai2nWLTPZrNp0qRJ6tOnj2JjYyVJKSkp8vDwUFBQUJl9w8PDlZKSYt/nzLJ/evvpbeWZOnWqnn32WQe/AgAAAJjlf9uS9c+Z23Qiv1geri56eHBLje/bVK4uFH0AtZtTFP4JEyYoPj5eK1asqPLneuKJJzR58mT77ezsbDVq1KjKnxcAAACOlZVfrKd+jdcvW5IkSW2jAvTGjR11SYS/yckAwDFqfeGfOHGiZs+erWXLlqlhw4b2+yMiIlRUVKTMzMwyZ/lTU1MVERFh32fdunVljnd6Ff/T+/yZp6enPD09HfwqAAAAUJ2W7T6mR3+IU0p2gVxdLPr75c103xUt5OHmNDNeAaD2zuE3DEMTJ07UzJkz9fvvvysmJqbM9i5dusjd3V2LFi2y37dr1y4dOnRIvXr1kiT16tVL27ZtU1pamn2fBQsWKCAgQG3atKmeFwIAAIBqk19Uoid/3qbbPl6nlOwCNa3vqx/+r5ceGnQJZR+A06m1Z/gnTJigr776Sr/88ov8/f3tc+4DAwPl7e2twMBAjR8/XpMnT1ZwcLACAgJ03333qVevXurZs6ckadCgQWrTpo3Gjh2rV199VSkpKXryySc1YcIEzuIDAAA4EcMwtGBHqp6bvUNHTpyUJN3eO1qPDWklbw9Xk9MBQNWotZflO9tqqZ988oluv/12SVJBQYEeeughff311yosLNTgwYP1/vvvlxmuf/DgQd17771asmSJfH19NW7cOL388styc6vc70K4LB8AAEDNdjA9T8/8ul2Ldx2TJDUI8tar17dXn+b1TU4GABemsj201hb+moLCDwAAUDOdLLLqgyV7NX3ZfhWV2OTuatHd/Zpq4hXN5eNRawe6AkCleyg/6QAAAOBUDMPQwoQ0PTtru334fr8W9fXM1W3VLNTP5HQAUH0o/AAAAHAaB9Pz9OysHfp9Z+mizFGBXpoyvI2GxEacdUooADgrCj8AAABqvYJiq95fsk/Tl+5j+D4AnMJPPwAAANRqC3ek6hmG7wPAX1D4AQAAUCv9efh+5Knh+0MZvg8Akij8AAAAqGUKiq36YMk+fXDG8P27+jXVfQzfB4Ay+IkIAACAWmPhjlQ9O3u7DmeUDt/v27y+nr2G4fsAUB4KPwAAAGq8Q+n5enbWdi1i+D4AVBqFHwAAADXW2YbvT+zfXL6efJQFgIrwUxIAAAA10qKE0tX3zxy+/8zVbdU8jOH7AFAZFH4AAADUKIfS8/Xc7O1amPDH8P0nh7XRVe0Yvg8A54PCDwAAgBqhoNiq6Uv36f0lpcP33Vz+WH2f4fsAcP74yQkAAADTLUpI1bOzduhQRr4kqU/zED17dVs1D/M3ORkA1F4UfgAAAJjmcEbp6vunh+9HBJSuvs/wfQC4eBR+AAAAVLuCYqs+XLpf7y/Zq8JTw/fH94vR/Ve0YPg+ADgIP00BAABQrX7fmapnfv1j+H7vZiF67hqG7wOAo1H4AQAAUC1Kh+/v0MKEVEmlw/efHN5aw9pFMnwfAKoAhR8AAABViuH7AGAOfsICAACgyvy+s3T1/YPpDN8HgOpG4QcAAIDD/Xn4fniAp54c1kbD2zN8HwCqC4UfAAAADlNQbNW/l+3Xe4vPGL7fN0b3DWghP4bvA0C14qcuAAAAHGLxzjQ9M2u7ffh+r6alw/dbhDN8HwDMQOEHAADARTmcka/nZu/Qgh0M3weAmoTCDwAAgAtSUGzVR8v2690zhu/f2TdG9zN8HwBqBH4SAwAA4Lwt3pWmZ35l+D4A1GQUfgAAAFTa4Yx8PT97h+afGr4f5u+pJ4e30QiG7wNAjUPhBwAAwDkxfB8Aah9+OgMAAKBCS04N3z9wavh+z6bBeu6aWLVk+D4A1GgUfgAAAJQr8XieXp6ToHnb/xi+/89hrXV1hyiG7wNALUDhBwAAgJ1hGNpw8IQ+WrZfCxJSZRiSq4tFd/aJ1v0DWsjfy93siACASqLwAwAAQCVWm+ZuT9FHyxO19XCm/f4rWoXp8aGtGL4PALUQhR8AAKAOyy0s0bfrD+uTlYk6cuKkJMnDzUWjOjfQ+L4xah5G0QeA2orCDwAAUAclZ53UjFUH9NXaQ8opKJEkBft66NaeTXRbryaq7+dpckIAwMWi8AMAANQh25Oy9J/liZq1NUklNkOS1LS+r8b3i9Gozg3l5e5qckIAgKNQ+AEAAJyczWZo6e5j+mj5fq3al26/v0dMsO7u11RXtAqTiwur7gOAs6HwAwAAOKmCYqt+2XJUHy1P1N60XEmlK+5f1S5Sd/eLUfuGQeYGBABUKQo/AACAk8nIK9IXaw7qs9UHdDy3SJLk5+mmm7s10h19Y9QgyNvkhACA6kDhBwAAcBL7j+XqvysS9eOmIyootkmSogK9dEefGN3UvZECvNxNTggAqE4UfgAAgFrMMAytP3BCHy3fr4UJqTJK1+FTbIMA3d2vqa5qFyl3VxdzQwIATEHhBwAAqIVKrDbNiU/Rf5bv19YjWfb7B7QK0139mqpn02BZLCzEBwB1GYUfAACgFsktLNG36w/r4xWJOpp5UpLk4eaiUZ0banzfGDUP8zM5IQCgpqDwAwAA1ALJWSc1Y+UBfbXukHIKSiRJwb4eGtuzicb2aqL6fp4mJwQA1DQUfgAAgBos/miW/rN8v2bHJavEVjpBv2mor+7q21QjOzeQl7uryQkBADUVhR8AAKCGsdkMLdmdpo+WJWr1/nT7/T1igvW3S5uq/yVhcnFhfj4AoGIUfgAAgBqioNiqnzcf1X9WJGpvWq4kydXFomHtInV3v6Zq1zDQ5IQAgNqEwg8AAGCyjLwifb76oD5fc0DHc4skSX6ebhrdvZFu7xOjBkHeJicEANRGFH4AAACT7DuWq/+uSNSPG4+osMQmSYoK9NIdfWJ0U/dGCvByNzkhAKA2o/ADAABUI8MwtC4xQx8tT9SinakyStfhU7sGgbqrX4yuahcpd1cXc0MCAJwChR8AAKAalFht+l98iv6zfL/ijmTZ7x/YOkx39WuqHjHBslhYiA8A4DgUfgAAgCqUU1Csb9cf1icrD+ho5klJkqebi0Z1aajxfWPULNTP5IQAAGdF4QcAAKgCSZknNWPVAX299pByCkskSSG+Hhrbq4nG9myiED9PkxMCAJwdhR8AAMCB4o9m6aPl+/VbXLJKbKUT9JuF+uqufk11XacG8nJ3NTkhAKCuoPADAABcpJyCYi3YkarvNhzWmv0Z9vt7Ng3W3y5tqstbhsnFhfn5AIDqReEHAAC4APlFJVqYkKbZW5O0ZPcxFZ26rJ6ri0XD20fq7n5NFdsg0OSUAIC6jMIPAABQSQXFVi3emabZcclatDNVBcU2+7amob4a3j5KN3drpKggbxNTAgBQisIPAABQgcISq5bvPq5ZcUlauCNVeUVW+7bGwT4a3j5Sw9tHqXWkP5fVAwDUKBR+AACAPym22rRy73HNjkvWvO0pyikosW9rEOStYe0jNbx9pNo1CKTkAwBqLAo/AACApBKrTWsTMzQ7Lklz41N0Ir/Yvi08wFNXtSs9k9+5cRAlHwBQK1D4AQBAnWWzGVp/IEOz45I1Jz5Zx3OL7Nvq+3loaGzpmfxu0cGssg8AqHUo/AAAoE4xDEObDmVqdlyS/rctWanZhfZtQT7uGhoboeHto9QjJlhuri4mJgUA4OJQ+AEAgNMzDEPbjmZpdlyyfotL1tHMk/Zt/l5uGtw2QsPbR6pP8/pyp+QDAJwEhR8AADglwzCUkJyj2XFJ+m1bsg6m59u3+Xq46so24RrePkr9WtaXp5uriUkBAKgaFH4AAOBU9qblaNbWZM2OS9K+Y3n2+73cXTSgdbhGtI/U5ZeEycudkg8AcG4UfgAAUOsdOJ6n2XFJmh2XrJ0pOfb7Pdxc1P+SUA1vH6UBrcPk48FHHwBA3cH/9QAAQK10OCNfv20rPZMffzTbfr+7q0WXtgjV8A6RGtg6XP5e7iamBADAPBR+AABQayRnndRvccmaHZesLYcz7fe7uljUu1mIRrSP0uC2EQr0oeQDAEDhBwAANVpaToHmbEvR7LgkrT9wwn6/i0XqEROi4R0iNaRthEL8PE1MCQBAzUPhBwAANU5GXpHmxCdr9tZkrU1Ml834Y1u36Hoa3j5KQ9tFKMzfy7yQAADUcBR+AABQI2TlF2ve9hTNikvSqn3psp7R8js2CtLw9pEa1j5SkYHeJqYEAKD2oPADAADT5BQUa8GOVM2OS9byPcdUbP2j5Mc2CNDw9lEa1i5SjYJ9TEwJAEDtROEHAABVymozdDy3UEmZJ5WcVaCkzJNKySrQ/uN5WrH3uIpKbPZ9W0X4nzqTH6WY+r4mpgYAoPaj8AMAgAtmsxk6nleolKwCJWUWKDmrtNQnZxUo+VTBT80uUMmZk/D/pFmor4a3j9KIDpFqHuZfjekBAHBuFH4AAFAuwzCUkVf0x1n57DNKfWaBkrNPKjWrUEVW2zmP5epiUbi/pyICvRQZ5K2oQC9FBnqrV7MQtYrwl8ViqYZXBABA3ULhBwCgDjIMQ1kni+0FPimrQCmninzSGWfpzxxufzYWixTm76nIQG9FBXkpIqD0v5GB3ooI9FJUkJdC/Tzl5upSDa8MAACcRuEHAMDJGIah7IKSP4bXny71mQVKyT51dj6rQCeLrZU6Xn0/z1MFvrTER555lj7IW2H+nnKnzAMAUONQ+AEAqGVyC0uUnFl6Vv70PPk/z53PK6pcmQ/x9VDkn87Kl56l91JUkLfCA7zk4UaZBwCgNqLwAwBwkaw2Q0UlNhWV2FRYYlVhiU2Fp24XWW0qLLae+u+p2yXWM/a3ld2/5I/thX865vHcQiVnFiinsKRSuer5uCsi8PSZ+DPOzp8q9eEBXvJyd63iPx0AAGCWKin869ev17x587Rjxw5lZGSouLhYixYtKrPP8ePHVVRUJC8vLwUHB1dFDABAHZWSVaCjmfllivS5CvUf5dymwjPL+amyXt7+p29XtAJ9VQnwclNUUOkc+cjAP4bXlxb60vu8PSjzAADUZQ4t/Hv37tWdd96plStX2u8zDKPclXenTp2qt956S6GhoTp69KhcXflQAgC4cPuO5WpufIrmbU9R3JEs03JYLJKnm4s83Vzl4eYiTzcXebi5yMPVRZ7urvJ0dZGn++nbpf/1KGf/07dP3+fp5qJgXw97mff1ZJAeAAComMUwDIeclti0aZOuuOIK5eTk6M+HtFgsslrLziXcu3evWrZsKYvFotmzZ2vo0KGOiFHtsrOzFRgYqKysLAUEBJgdBwDqDMMwtCM5W/PiUzQnPkV70nLt2ywWqVE9n9KifLpc/6lAny7Vnn8p5X+U84pKebml3s1Fbi4WLjEHAACqVGV7qENOD5w8eVLXXnutsrOz5ebmpkcffVTjxo3T1q1bdeONN5b7mObNm6tjx47aunWrFixYUGsLPwCg+thshjYfPqG58Smauz1FhzNO2re5uVjUu3l9DWkboSvbhCvU39PEpAAAAOZzSOH/6KOPdOTIEVksFn377be67rrrJEk7duyo8HH9+vXTli1btGHDBkfEAAA4oWKrTWv3Z2ju9mTN256qYzmF9m1e7i66rGWohsRG6IpW4Qr0djcxKQAAQM3ikML/yy+/yGKxaOjQofayXxmtW7eWVDq8HwCA0wqKrVq+57jmxqdoYUKqsk4W27f5e7ppQOswDYmN0KUtQ+XjwVx2AACA8jjkU9L27dslScOGDTuvx51enT8zM9MRMQAAtVhuYYkW70zT3O0pWrwzTflnXEc+2NdDg9qEa3BshHo3C5GnGwu9AgAAnItDCv+JEyckSWFhYef1OAetFwgAqKVO5BVpQUKq5sWnaPne4yoqsdm3RQZ6aXDbCA2JjVDXJvXk5upiYlIAAIDaxyGFPzAwUOnp6crOzj6vxx05ckSSFBIS4ogYAIBaIDW7QPO3l66svzYxQ9YzrmEfU99XQ2IjNKRthNo3DGS1ewAAgIvgkMIfHR2t9PR0bdy4UXfccUelH7do0SJJUps2bRwRAwBQQx1Kz9fc7cmaG5+iTYcyy2xrHRmgIafO5LcM96PkAwAAOIhDCv+AAQO0YcMGffvtt3rppZcqdT36LVu2aN68ebJYLBo4cKAjYgAAagjDMLQ7Ndd++byE5LIjwDo3DtKQ2AgNbhuhJiG+JqUEAABwbg4p/Hfffbdef/11ZWRkaNy4cfr+++/l5nb2Q+/fv1/XX3+9DMOQr6+v7rzzTkfEAACYyDAMxR3J0tztKZoXn6L9x/Ps21xdLOoRE6yhsRG6sk2EIgK9TEwKAABQNzik8Ddt2lQPP/ywXn75Zf3666/q2LGjJk2apJycHPs+O3bs0KFDhzRnzhx9/PHHysvLk8Vi0dNPP80cfgCopaw2Q+sPZGhufIrmb09RUlaBfZuHq4v6taivwbERGtg6XMG+HiYmBQAAqHsshoOWyjcMQ7fddpu+/PLLc86/PP2U48eP10cffeSIpzdNdna2AgMDlZWVVampDABQ2xWV2LRq33HNjU/Rgh2pSs8rsm/z8XBV/1ZhGtI2QpdfEip/L3cTkwIAADinyvZQh5zhlySLxaLPP/9cffv21XPPPafk5OSz7hsaGqpnnnlG9957r6OeHgBQhfKLSrRs9zHNjU/RooQ05RSW2LcFervryjbhGtI2Qn1b1JeXu6uJSQEAAHCaw87wn6moqEjz58/XsmXLdODAAWVmZsrPz08NGzbUZZddpqFDh8rHx8fRT2sKzvADcFZZJ4v1+85UzY1P0dLdx1RQbLNvC/X31OC24RrSNlI9mgbL3dXFxKQAAAB1S2V7qEMK/6FDhyRJnp6eCg8Pv9jD1SoUfgDO5HhuoeZvT9Xc7Slatfe4Smx//C+iYT1vDY0tvXxep0b15OLC5fMAAADMUNke6pBTMtHR0YqJidGzzz7riMNVyrJlyzRixAhFRUXJYrHo559/LrP99ttvl8ViKfM1ZMiQMvtkZGRozJgxCggIUFBQkMaPH6/c3Nxqew0AUBOkZhfo4xWJuvHD1er24kL9Y+Y2Ldt9TCU2Qy3C/HT/Fc312/19tfzR/vrnsDbq0iSYsg8AAFALOGQOv4eHh4qLi9W9e3dHHK5S8vLy1KFDB915550aOXJkufsMGTJEn3zyif22p6dnme1jxoxRcnKyFixYoOLiYt1xxx3629/+pq+++qpKswOA2QzD0KZDmfpkZaLmxqeUOZPfvmGgBreN0OC2EWoe5mdiSgAAAFwMhxT+iIgIHT58WF5e1Xdd5aFDh2ro0KEV7uPp6amIiIhytyUkJGju3Llav369unbtKkl65513dNVVV+lf//qXoqKiHJ4ZAMxWWGLVb3HJmrHqgOKOZNnv79Kknoa1i9Tg2Ag1CPI2MSEAAAAcxSGFv0uXLjp8+LB27tzpiMM5zJIlSxQWFqZ69erpiiuu0AsvvKCQkBBJ0urVqxUUFGQv+5I0cOBAubi4aO3atbruuuvKPWZhYaEKCwvtt7Ozs6v2RQCAA6RlF+iLtYf01dqDOp5behk9DzcXXdsxSuN6R6ttVKDJCQEAAOBoDin8Y8eO1cyZM/X555/rH//4hzw8PBxx2IsyZMgQjRw5UjExMdq3b5/+8Y9/aOjQoVq9erVcXV2VkpKisLCwMo9xc3NTcHCwUlJSznrcqVOnVutaBQBwMbYcztSMlYn6bVuyiq2lw/YjArw0tlcT3dytkUL8PM9xBAAAANRWDin81157rUaOHKmffvpJt9xyiz777DPTL7t38803279v166d2rdvr2bNmmnJkiUaMGDABR/3iSee0OTJk+23s7Oz1ahRo4vKCgCOVFRi05z4ZH2y8oC2HM6039+1ST3d3idag9tGcBk9AACAOsAhhf/QoUOaOnWqTp48qZ9++knr1q3TnXfeqX79+qlhw4by9j73fNDGjRs7IspZNW3aVPXr19fevXs1YMAARUREKC0trcw+JSUlysjIOOu8f6l0XYA/L/4HADXBsZxCfb3ukL5Yc1BpOaVTjzxcXTSiQ5Ru7x2tdg0Ztg8AAFCXOKTwR0dHy2IpvUSTxWLRkSNH9Pzzz1f68RaLRSUlJY6IclZHjhxRenq6IiMjJUm9evVSZmamNm7cqC5dukiSfv/9d9lsNvXo0aNKswCAI207kqVPViVq9tZkFVltkqQwf0/d2rOJRndvrFB/fkkJAABQFzmk8Eull3iq6Laj5ebmau/evfbbiYmJ2rJli4KDgxUcHKxnn31Wo0aNUkREhPbt26dHH31UzZs31+DBgyVJrVu31pAhQ3T33Xdr+vTpKi4u1sSJE3XzzTezQj+AGq/YatO87Sn6ZOUBbTx4wn5/p8ZBur13tIbGRsrDjWH7AAAAdZlDCv+4ceMccZjzsmHDBvXv399++/S8+nHjxumDDz5QXFycPv30U2VmZioqKkqDBg3S888/X2Y4/pdffqmJEydqwIABcnFx0ahRozRt2rRqfy0AUFnpuYX6Zv1hfb76oFKyCyRJ7q4WDW9futp+x0ZB5gYEAABAjWExqvpUvJPLzs5WYGCgsrKyFBAQYHYcAE5qe1KWZqw8oF+2JqmopHTYfn0/T43p0VhjejRWWICXyQkBAABQXSrbQx02pB8A4FglVpsW7EjVJ6sOaF1ihv3+9g0DdUefaF3VLlKebq4mJgQAAEBNRuEHgBrmRF7RqWH7B5SUVTps383FoqHtInV772h1bhxkXygVAAAAOBsKPwDUEDtTsjVj5QHN3HxUhaeG7Yf4euiWHo01pkcTRQQybB8AAACVVyWFf9asWfrpp5+0Zs0aJScnKzc3V35+foqKilKPHj00atQoDR8+vCqeGgBqFavN0MKEVM1YeUCr96fb728bFaDbe0drRIcoebkzbB8AAADnz6GL9sXHx2vMmDGKj4+333fm4c8cgtquXTt9+eWXatu2raOe3hQs2gfgQmTlF+u7DYf16eoDOnLipCTJ1cWiIW0jdHufaHVtUo9h+wAAAChXtS/at3HjRvXv3195eXllSn5gYKD8/PyUm5urrKws+/1xcXHq1auXlixZos6dOzsqBgDUaHtSczRj1QH9tOmoThZbJUn1fNw1untj3dqziaKCvE1OCAAAAGfhkMJfUFCgkSNHKjc3V1Lp2ftHHnlEgwcPVmhoqH2/Y8eOae7cuXr99dcVFxen3NxcjRw5Urt27ZKnp6cjogBAjWO1GVq8M00zVh3Qir3H7fe3ivDXHX2idU3HBgzbBwAAgMM5ZEj/u+++q/vvv18Wi0V33nmnpk+fLlfXs394tVqtuvfee/Wf//xHFotF06ZN04QJEy42hikY0g/gbLILivX9hiP6dNUBHcrIlyS5WKRBbUqH7feICWbYPgAAAM5bZXuoQwr/lVdeqUWLFik2NlZbtmyRi4vLOR9jtVrVqVMnbd++XVdccYUWLFhwsTFMQeEH8Gf7juXq01UH9MPGI8ovKh22H+DlptHdG2tsryZqWM/H5IQAAACozap1Dv/27dtlsVg0duzYSpV9SXJ1ddVtt92mRx99VNu3b3dEDAAwjc1maOmeY5qx8oCW7j5mv79luJ9u7x2jaztFyceDK6ECAACg+jjk02dGRoYkKTo6+rwe16RJkzKPB4DaJqegWD9uPKJPVx9U4vE8SZLFIg1sHa47ekerV7MQhu0DAADAFA4p/P7+/srIyFB6evq5dz7D6f39/f0dEQMAqk3i8Tz7sP3cwhJJkr+Xm27q2ki39YpW4xCG7QMAAMBcDin8TZs2VUZGhn755Rf93//9X6Uf98svv9gfDwC1QUJytl6bt0uLd6Xp9AoozUJ9dXufGI3s1EC+ngzbBwAAQM3gkE+mgwYN0vr16zV//nx9+umnGjdu3Dkf89lnn2nevHmyWCwaPHiwI2IAQJXafyxXoz9ao8z8Ylks0oBWYbq9T7T6Nq/PsH0AAADUOA5ZpT85OVktWrTQyZMnZbFY9Pe//12PPPKIGjVq9Jd9Dx8+rNdee00ffPCBrFarfH19tWfPHkVERFxsDFOwSj9QN2TkFWnk+yt1ID1fHRoG6u2bOym6vq/ZsQAAAFAHVetl+STp448/1l133WU/y2WxWNSyZUu1bNlSvr6+ysvL0549e7Rr1y4ZhiHDMGSxWPSf//xHd9xxhyMimILCDzi/gmKrbv3PWm04eEIN63lr5t/7KNTf0+xYAAAAqKOq9bJ8knTnnXfKMAw98MADys/Pl2EY2rVrl3bt2lVmv9O/X/Dx8dG0adNqddkH4PxsNkOP/BCnDQdPyN/LTTPu6EbZBwAAQK3g4siDjR8/Xjt27NCDDz6o6Oho+5n8M7+io6P10EMPaceOHbrzzjsd+fQA4HCvL9ilWVuT5OZi0Ye3dlHzMK4qAgAAgNrBYUP6y3Ps2DElJycrJydH/v7+ioyMVGhoaFU9nSkY0g84r+/WH9ajP8ZJkv51Qwdd36WhyYkAAAAAE4b0lyc0NNTpCj6AumHFnuP6x8xtkqT7r2hO2QcAAECt49Ah/QDgDHan5ujeLzaqxGbomo5RevDKlmZHAgAAAM6bw87wb9u2TYZhKCIiQmFhYefcPy0tTSkpKXJxcVFsbKyjYgDARUnLKdAdn6xXTmGJukcH69Xr29uvPgIAAADUJg45w79y5Up16NBBnTp10v79+yv1mMTERHXs2FEdO3bUhg0bHBEDAC5KflGJ7vp0g45mnlRMfV99OLaLPN1czY4FAAAAXBCHFP4ff/xRktS6dWv17NmzUo/p0aOHYmNjZRiGvvvuO0fEAIALZrUZeuCbLYo7kqVgXw99cns31fP1MDsWAAAAcMEcUvhXrVoli8WiIUOGnNfjhg4dKsMwtGLFCkfEAIAL9tL/ErRgR6o83Fz077FdFF3f1+xIAAAAwEVxSOHfs2ePJJ33XPzWrVtLkvbu3euIGABwQT5bfUD/XZEoSXr9hg7qGh1sciIAAADg4jmk8Ofk5EiS/P39z+txp/fPyspyRAwAOG+LElL1zK/bJUmPDL5EIzpEmZwIAAAAcAyHFP7Txf3EiRPn9bjT+3t7ezsiBgCcl/ijWbrv682yGdJNXRvp75c3MzsSAAAA4DAOKfwNGjSQJK1evfq8Hnd6/8jISEfEAIBKS8o8qTtnrFd+kVV9m9fXC9fFcvk9AAAAOBWHFP5+/frZV9tPS0ur1GNSUlL07bffymKxqG/fvo6IAQCVklNQrDtnrFdaTqFahvvp/Vs7y93VIT8OAQAAgBrDIZ9wx4wZI0nKz8/XyJEjzzknPysrS6NGjVJ+fn6ZxwNAVSux2jTxq83amZKjUH9PfXx7NwV4uZsdCwAAAHA4hxT+3r17a9iwYTIMQ6tXr1b79u31/vvv68iRI2X2O3LkiN577z21b99ea9askcVi0eDBg3X55Zc7IgYAVMgwDD3163Yt3X1M3u6u+u+4rmpYz8fsWAAAAECVsBiGYTjiQCdOnFDPnj21Z8+eMvNgfX195efnp9zcXOXl5dnvNwxDLVu21OrVq1WvXj1HRDBFdna2AgMDlZWVpYCAALPjAKjAh0v3aeqcnbJYpA9v7aJBbSPMjgQAAACct8r2UIdNWq1Xr57WrFmj4cOHyzAM+1dubq5SU1OVm5tb5v5rrrmm1pd9ALXH/7Yla+qcnZKkJ4e1oewDAADA6bk58mD16tXTr7/+qnXr1unzzz/X8uXLdeTIEWVnZysgIEANGzbUpZdeqrFjx6pbt26OfGoAOKtNh07owW+3SJLG9WqiO/tEm5oHAAAAqA4OLfynde/eXd27d6+KQwPAeTmUnq+7P92gwhKbBrQK01Mj2nL5PQAAANQJXIcKgNPKyi/WHTPWKT2vSG2jAjRtdCe5ulD2AQAAUDdQ+AE4paISm+75YoP2HctTZKCXPr69m3w9q2RQEwAAAFAjVcun39WrV2vBggVKTk6Wn5+f2rVrp6uvvlpBQUHV8fQA6hjDMPT4T3Fasz9Dfp5u+vj2bgoP8DI7FgAAAFCtLqjwz5s3T1arVUFBQerdu/dZ9ztx4oRuueUWzZ8//y/bAgMD9c4772jMmDEXEgEAzmraor36adNRubpY9N6YzmodySUzAQAAUPec95D+/fv3a+jQoRoxYoRmzZp11v1KSkp01VVXaf78+WUux3f6KzMzU+PGjdPMmTMv6gUAwJlmbj6iNxfuliQ9f02sLmsZanIiAAAAwBznfYZ/4cKF9u/vuuuus+73/vvva+3atfbVsNu0aaPLL79c7u7umjNnjnbv3i2bzaaJEydqyJAh8vb2voD4APCHNfvT9egPcZKkey5rqlt6NDY5EQAAAGCe8z7Dv379eklS69at1axZs7Pu9+abb9q/nzBhgrZu3ap3331Xb775puLj43XLLbdIklJSUjjLD+Ci7TuWq3s+36hiq6Gr2kXoscGtzI4EAAAAmOq8C//27dtlsVh06aWXnnWf9evX6+DBg7JYLGrcuLHeeustubq62re7ubnpww8/VGho6VDb//3vfxcQHQBKpecW6o5P1ivrZLE6NQ7SGzd2lAuX3wMAAEAdd96F/8CBA5Kkdu3anXWfpUuX2r8fM2ZMmbJ/mq+vr0aOHCnDMBQXF3e+MQBAklRQbNXdn23QoYx8NQr21ke3dZWX+19/5gAAAAB1zXkX/szMTElS/fr1z7rP2rVr7d/379//rPt16tRJknT06NHzjQEAstkMPfTdVm06lKkALzd9cnt31ffzNDsWAAAAUCOcd+G3Wq2SSq9zfTabNm2yf9+1a9ez7hcSEiJJys3NPd8YAKDX5u/Sb9uS5e5q0Ydju6p5mJ/ZkQAAAIAa47wLf2BgoCQpKSmp3O0nTpxQYmKiLBaLYmJi7PuXp7CwUJLKHfIPABX5et0hfbBknyTp5ZHt1atZiMmJAAAAgJrlvAv/6ZX5ly9fXu72xYsX27/v2bNnhcdKS0uTJAUFBZ1vDAB12LLdx/Tkz/GSpAcGtNCoLg1NTgQAAADUPOdd+Hv37i3DMDR79mzt3r37L9v/+9//2r+/8sorKzzWli1bJEkxMTHnGwNAHbUzJVt//3KTrDZD13VqoEkDW5gdCQAAAKiRzrvw33bbbZKkkpISDR06VAsWLFBhYaEOHTqkyZMna86cOZIkHx8fXXvttRUea+nSpbJYLIqNjT3/5ADqnNTsAt35yXrlFpaoe0ywXh7VThYLl98DAAAAyuN2vg/o0KGDxowZoy+//FIHDhzQkCFD/rKPxWLR3//+9wrn769Zs0YHDx6UxWJRnz59zjcGgDomv6hE4z9dr6SsAjUN9dW/x3aRpxvrfwAAAABnc95n+CXpww8/VN++fWUYxl++pNJh/88///w5jyGV/nJg0KBBFxIDQB1htRm6/+vNij+arWBfD31yezcF+XiYHQsAAACo0S6o8Pv4+Gjx4sV6++231a1bN/n7+8vb21vt2rXT1KlTtXDhQnl4nP3DeFpamhYtWqTw8HANHDhQERERF/wCADi/52fv0MKENHm4ueij27qqSYiv2ZEAAACAGs9inD4tjwuSnZ2twMBAZWVlKSAgwOw4gNP5ZGWinp21Q5L03i2dNax9pMmJAAAAAHNVtode0Bl+AKgOC3ak6rnZpWX/sSGtKPsAAADAeaDwA6iRth3J0v1fb5ZhSKO7N9L/XdbU7EgAAABArULhB1DjHM08qTs/Xa+TxVb1a1Ffz10Ty+X3AAAAgPNE4QdQo2QXFOvOT9brWE6hLgn313tjOsvdlR9VAAAAwPniUzSAGqPYatOELzdpV2qOQv099fEd3RTg5W52LAAAAKBWovADqBEMw9CUn+O1fM9xebu76uNx3dQgyNvsWAAAAECtReEHUCNMX7pf36w/LItFemd0J7VrGGh2JAAAAKBWo/ADMN3suCS9MnenJOmp4W00sE24yYkAAACA2o/CD8BUGw9maPJ3WyVJt/eO1h19YkxOBAAAADgHCj8A0xxMz9Pdn21UUYlNA1uHa8rwNmZHAgAAAJwGhR+AKTLzi3THjPXKyCtSbIMATRvdUa4uFrNjAQAAAE6Dwg+g2hWWWPW3zzdq/7E8RQV66eNx3eTj4WZ2LAAAAMCpUPgBVCvDMPT4j9u0LjFDfp5u+viObgoL8DI7FgAAAOB0KPwAqtWbC/do5uajcnWx6P0xndUqIsDsSAAAAIBTovADqDY/bjyiaYv2SJJevDZWl7YMNTkRAAAA4Lwo/ACqxep96Xr8pzhJ0r2XN9PN3RubnAgAAABwbhR+AFVub1qO7vl8g4qthoa1j9Qjgy4xOxIAAADg9Cj8AKrU8dxC3TFjvbILStS5cZBev6GDXLj8HgAAAFDlKPwAqkxBsVV3fbpBhzNOqnGwjz66rau83F3NjgUAAADUCRR+AFXCMAw98dM2bTmcqUBvd31yRzeF+HmaHQsAAACoMyj8AKrEdxsO2y+/N/3WLmoW6md2JAAAAKBOofADcLiE5Gw99ct2SdJDg1qqV7MQkxMBAAAAdQ+FH4BD5RaWaMKXm1RYYtNlLUP1f5c2MzsSAAAAUCdR+AE4jGEY+ufMbdp/PE8RAV5686aOrMgPAAAAmITCD8Bhvll/WL9sSZKri0Xv3NJJwb4eZkcCAAAA6iwKPwCH2JGUrad/LZ23//CgS9QtOtjkRAAAAEDdRuEHcNFyC0s04atNKiqxqf8lobrn0qZmRwIAAADqPAo/gItiGIae+GmbEo/nKTLQS6/fyLx9AAAAoCag8AO4KF+tO6RZW0vn7b/LvH0AAACgxqDwA7hg8Uez9OysHZKkRwdfoi5NmLcPAAAA1BQUfgAXJKegWBNPzdsf0CpMd/dj3j4AAABQk1D4AZy30/P2D6TnKyrQS/+6oQPz9gEAAIAahsIP4Lx9sfaQZscly83Fondu6ax6zNsHAAAAahwKP4DzEn80S8+fmrf/2JBW6tKknsmJAAAAAJSHwg+g0rILijXhq00qsto0sHWY7uoXY3YkAAAAAGdB4QdQKYZh6Ikft+lger4aBHnrXzd0kMXCvH0AAACgpqLwA6iUz9cc1G/bSuftv3tLJwX5MG8fAAAAqMko/ADOaduRLL0wO0GS9PjQVurUmHn7AAAAQE1H4QdQoTPn7V/ZJlzj+zJvHwAAAKgNam3hX7ZsmUaMGKGoqChZLBb9/PPPZbYbhqGnnnpKkZGR8vb21sCBA7Vnz54y+2RkZGjMmDEKCAhQUFCQxo8fr9zc3Gp8FUDNZhiGHvshTocyTs3bv555+wAAAEBtUWsLf15enjp06KD33nuv3O2vvvqqpk2bpunTp2vt2rXy9fXV4MGDVVBQYN9nzJgx2r59uxYsWKDZs2dr2bJl+tvf/lZdLwGo8T5ddUBz4lPk7mrRe2M6K9DH3exIAAAAACrJYhiGYXaIi2WxWDRz5kxde+21kkrPSkZFRemhhx7Sww8/LEnKyspSeHi4ZsyYoZtvvlkJCQlq06aN1q9fr65du0qS5s6dq6uuukpHjhxRVFRUpZ47OztbgYGBysrKUkBAQJW8PsAMcUcyNeqDVSq2GnpqeBvdyVB+AAAAoEaobA+ttWf4K5KYmKiUlBQNHDjQfl9gYKB69Oih1atXS5JWr16toKAge9mXpIEDB8rFxUVr164967ELCwuVnZ1d5gtwNlknS+ftF1sNDW4brjv6RJsdCQAAAMB5csrCn5KSIkkKDw8vc394eLh9W0pKisLCwspsd3NzU3BwsH2f8kydOlWBgYH2r0aNGjk4PWAuwzD06A9bdTjjpBrW89arzNsHAAAAaiWnLPxV6YknnlBWVpb96/Dhw2ZHAhxqxqoDmrc9tXTe/i2dFejNvH0AAACgNnLKwh8RESFJSk1NLXN/amqqfVtERITS0tLKbC8pKVFGRoZ9n/J4enoqICCgzBfgLLYcztRL/0uQJP3zqtbq0CjI3EAAAAAALphTFv6YmBhFRERo0aJF9vuys7O1du1a9erVS5LUq1cvZWZmauPGjfZ9fv/9d9lsNvXo0aPaMwNmy8ov1sRT8/aHxkZoXO9osyMBAAAAuAhuZge4ULm5udq7d6/9dmJiorZs2aLg4GA1btxYkyZN0gsvvKAWLVooJiZGU6ZMUVRUlH0l/9atW2vIkCG6++67NX36dBUXF2vixIm6+eabK71CP+AsDMPQwz9s1ZETJ9U42EevXN+eefsAAABALVdrC/+GDRvUv39/++3JkydLksaNG6cZM2bo0UcfVV5env72t78pMzNTffv21dy5c+Xl5WV/zJdffqmJEydqwIABcnFx0ahRozRt2rRqfy2A2T5eeUALdqTKw9VF793SWQFezNsHAAAAajuLYRiG2SFqs8pe/xCoqTYfOqEbpq9Wic3Qc9e01W29os2OBAAAAKACle2hTjmHH0DlZOYXaeJXm1ViMzSsXaTG9mxidiQAAAAADkLhB+oowzD08PdxOpp5Uk1CfDR1VDvm7QMAAABOhMIP1FH/XZGohQnM2wcAAACcFYUfqIM2HTqhl+fslCRNGdFGsQ0CTU4EAAAAwNEo/EAdk5lfpIlfbiqdt98+Urf2aGx2JAAAAABVgMIP1CE2m6GHvtuqpKwCRYf46OWRzNsHAAAAnBWFH6hD/rNivxbtTJOHm4vevaWz/Jm3DwAAADgtCj9QR2w8mKFX5u6SJD01nHn7AAAAgLOj8AN1wIm8It331WZZbYZGdIjSGObtAwAAAE6Pwg84OZvN0EPfl87bj6nvq5eui2XePgAAAFAHUPgBJ/fv5fv1+6l5++8xbx8AAACoMyj8gBPbcCBDr80rnbf/zIi2ahMVYHIiAAAAANWFwg84qYy8Ik08NW//mo5RGt29kdmRAAAAAFQjCj/ghGw2Q5O/26KU7AI1re+rF69rx7x9AAAAoI6h8ANOaPqyfVqy65g83Vz03pjO8vN0MzsSAAAAgGpG4QeczLrEDL0+f7ck6dmr26p1JPP2AQAAgLqIwg84kfTcQt339SZZbYau69RAN3Vj3j4AAABQV1H4ASdhsxl68LutSs0uVLNQX71wbSzz9gEAAIA6jMIPOIkPlu7Tst3H5OXuovfHdJEv8/YBAACAOo3CDziBtfvT9fr8XZKk566O1SUR/iYnAgAAAGA2Cj9Qyx3PLdT932yWzZBGdm6gG7o2NDsSAAAAgBqAwg/UYjaboQe/3aLU7EI1D/Nj3j4AAAAAOwo/UIu9v2Svlu85Li93F713S2f5eDBvHwAAAEApCj9QS63el643FuyWJD1/DfP2AQAAAJRF4QdqoWM5f8zbH9W5oW7o2sjsSAAAAABqGAo/UMtYT83bP5ZTqBZhfnr+2rZmRwIAAABQA1H4gVrmvcV7tWLvcXm7u+r9MczbBwAAAFA+Cj9Qi6zad1xvLSydt//CtbFqEc68fQAAAADlo/ADtURaToHu/3qLbIZ0Q5eGGtWlodmRAAAAANRgFH6gFrDaDE36ZouO5xaqZbifnrsm1uxIAAAAAGo4Cj9QC7zz+x6t2pcuH4/SefveHq5mRwIAAABQw1H4gRpu5d7jenvRHknSi9fFqnkY8/YBAAAAnBuFH6jB0nIK9MA3W2QY0k1dG+m6TszbBwAAAFA5FH6ghrLaDD3wdem8/VYR/nr2mrZmRwIAAABQi1D4gRrq7UV7tHp/6bz9d2/pLC935u0DAAAAqDwKP1ADrdhzXO/8Xjpv/6Xr2ql5mJ/JiQAAAADUNhR+oIZJyy7QpG83yzCk0d0b6dpODcyOBAAAAKAWovADNUiJ1ab7vt6s47lFahXhr6dHMG8fAAAAwIWh8AM1yNuL9mhtYoZ8PVz13hjm7QMAAAC4cBR+oIZYvueY3l28V5L00sh2ahbKvH0AAAAAF47CD9QAx3ML9eC3W0/N22+sazoybx8AAADAxaHwAyaz2Qw99N1WHc8tVMtwPz09oo3ZkQAAAAA4AQo/YLKPVyZq6e5j8nRz0TujmbcPAAAAwDEo/ICJth3J0itzd0qSpgxvo0si/E1OBAAAAMBZUPgBk+QWlui+rzep2GpoSNsIjenR2OxIAAAAAJwIhR8wyVM/x+tAer6iAr308qh2slgsZkcCAAAA4EQo/IAJftp0RD9tPioXi/T26E4K8vEwOxIAAAAAJ0PhB6pZ4vE8Tfk5XpL0wICW6hYdbHIiAAAAAM6Iwg9Uo6ISm+7/erPyiqzqHhOsiVc0NzsSAAAAACdF4Qeq0b/m79K2o1kK8nHX2zd3lKsL8/YBAAAAVA0KP1BNluxK07+X7ZckvTqqvSIDvU1OBAAAAMCZUfiBapCWU6CHv98qSbqtVxMNahthciIAAAAAzo7CD1Qxm83QQ99t1fHcIrWK8Nc/rmptdiQAAAAAdQCFH6hiHy3fr+V7jsvL3UXvjO4kL3dXsyMBAAAAqAMo/EAV2nI4U6/N2yVJenpEW7UI9zc5EQAAAIC6gsIPVJGcgmLd//VmldgMDWsXqZu7NTI7EgAAAIA6hMIPVAHDMPTkz/E6lJGvBkHeemlkO1ksXIIPAAAAQPWh8ANV4MdNR/XLliS5ulg0bXRHBXq7mx0JAAAAQB1D4QccbP+xXD31S7wk6cGBLdSlSbDJiQAAAADURRR+wIEKS6y67+vNyi+yqmfTYN17eXOzIwEAAACooyj8gAO9OneXtidlq56Pu966qZNcXZi3DwAAAMAcFH7AQRbvTNN/VyRKkl67voMiAr1MTgQAAACgLqPwAw6Qll2gh77fKkm6vXe0BrYJNzkRAAAAgLqOwg9cJJvN0IPfbVFGXpFaRwbo8aGtzI4EAAAAABR+4GJNX7ZPK/emy9vdVe+M7iQvd1ezIwEAAAAAhR+4GJsOndDr83dLkp69uq2ah/mZnAgAAAAASlH4gQuUXVCs+7/eLKvN0PD2kbqha0OzIwEAAACAHYUfuACGYegfP23TkRMn1bCet14a2U4WC5fgAwAAAFBzUPiBC/D9hiOaHZcsVxeLpo3upAAvd7MjAQAAAEAZFH7gPO1Ny9XTv26XJD00qKU6N65nciIAAAAA+CsKP3AeCoqtuu/rzTpZbFWf5iH6v0ubmR0JAAAAAMpF4QfOw8tzdiohOVvBvh5688aOcnFh3j4AAACAmonCD1TSwh2pmrHqgCTp9Rs6KCzAy9xAAAAAAFABCj9QCSlZBXrkh62SpDv7xKh/qzCTEwEAAABAxSj8wDlYbYYmfbtZJ/KL1TYqQI8NvcTsSAAAAABwThR+4Bw+WLJXa/ZnyMfDVe+M7iRPN1ezIwEAAADAOVH4gQpsPJihNxfukSQ9d02smob6mZwIAAAAACqHwg+cRdbJYt3/9RZZbYau6RilUZ0bmB0JAAAAACqNwg+UwzAMPfFTnI5mnlTjYB+9cG2sLBYuwQcAAACg9qDwA+X4Zv1h/W9bitxcLJo2upP8vdzNjgQAAAAA54XCD/zJntQcPTtruyTpkcGXqGOjIHMDAQAAAMAFoPADZygotuq+rzeroNimfi3q6+5+Tc2OBAAAAAAXhMIPnOGl/yVoZ0qO6vt56PUbO8jFhXn7AAAAAGonCj9wyrztKfps9UFJ0r9u6KAwfy+TEwEAAADAhaPwA5KSMk/q0R/iJEl394vR5ZeEmZwIAAAAAC4OhR91ntVmaNK3W5R1sljtGgTqkcGtzI4EAAAAABeNwo86793f92pdYoZ8PVz1zuhO8nDjnwUAAACA2o9mgzptXWKG3l60W5L0wnWxiq7va3IiAAAAAHAMCj/qrMz8Ik36ZrNshjSyUwNd16mh2ZEAAAAAwGEo/KiTDMPQ4z9uU1JWgaJDfPTctbFmRwIAAAAAh6Lwo076cu0hzd2eIndXi94Z3Vl+nm5mRwIAAAAAh6Lwo87ZlZKj52fvkCQ9OriV2jUMNDkRAAAAADgehR91yskiq+77epMKS2y6rGWoxveNMTsSAAAAAFQJpy38zzzzjCwWS5mvVq3+uL56QUGBJkyYoJCQEPn5+WnUqFFKTU01MTGqwwu/7dDu1FzV9/PUv27oIBcXi9mRAAAAAKBKOG3hl6S2bdsqOTnZ/rVixQr7tgcffFCzZs3S999/r6VLlyopKUkjR440MS2q2pxtyfpy7SFJ0ps3dVCov6fJiQAAAACg6jj1SmVubm6KiIj4y/1ZWVn673//q6+++kpXXHGFJOmTTz5R69attWbNGvXs2bO6o6KKHc08qcd+jJMk3XNZU/VrEWpyIgAAAACoWk59hn/Pnj2KiopS06ZNNWbMGB06VHp2d+PGjSouLtbAgQPt+7Zq1UqNGzfW6tWrKzxmYWGhsrOzy3yhZiux2vTA15uVXVCiDg0D9dCVl5gdCQAAAACqnNMW/h49emjGjBmaO3euPvjgAyUmJqpfv37KyclRSkqKPDw8FBQUVOYx4eHhSklJqfC4U6dOVWBgoP2rUaNGVfgq4AjTft+rDQdPyM/TTdNGd5KHm9P+tQcAAAAAO6cd0j906FD79+3bt1ePHj3UpEkTfffdd/L29r7g4z7xxBOaPHmy/XZ2djalvwZbsz9d7/6+R5L04nWxahLia3IiAAAAAKgedeZUZ1BQkFq2bKm9e/cqIiJCRUVFyszMLLNPampquXP+z+Tp6amAgIAyX6iZTuQVadI3W2QzpOu7NNQ1HRuYHQkAAAAAqk2dKfy5ubnat2+fIiMj1aVLF7m7u2vRokX27bt27dKhQ4fUq1cvE1PCUQzD0KM/xiklu0BN6/vq2avbmh0JAAAAAKqV0w7pf/jhhzVixAg1adJESUlJevrpp+Xq6qrRo0crMDBQ48eP1+TJkxUcHKyAgADdd9996tWrFyv0O4nP1xzUgh2p8nB10bTRneTr6bR/1QEAAACgXE7bgo4cOaLRo0crPT1doaGh6tu3r9asWaPQ0NLLsb355ptycXHRqFGjVFhYqMGDB+v99983OTUcISE5Wy/8liBJemxoK8U2CDQ5EQAAAABUP4thGIbZIWqz7OxsBQYGKisri/n8NUB+UYmufnel9qbl6opWYfrvuK6yWCxmxwIAAAAAh6lsD60zc/hRNzw/e4f2puUq1N9Tr13fnrIPAAAAoM6i8MNp/BaXrK/XHZbFIr11U0eF+HmaHQkAAAAATEPhh1M4nJGvx3+KkyTde1kz9Wle3+REAAAAAGAuCj9qvWKrTQ98s1k5BSXq1DhID17Z0uxIAAAAAGA6Cj9qvbcX7tGmQ5ny93TTtJs7yd2Vv9YAAAAAQDNCrbZq33G9t2SvJOmlke3UKNjH5EQAAAAAUDNQ+FFrZeQV6cFvt8gwpJu6NtKIDlFmRwIAAACAGoPCj1rJZjP0yPdblZpdqKahvnr66jZmRwIAAACAGsXN7ADA+UrOOqnJ327V6v3p8nB10TujO8nHg7/KAAAAAHAmWhJqlTnbkvX4T9uUdbJY3u6uevX69mobFWh2LAAAAACocSj8qBXyCkv07Kzt+m7DEUlSuwaBevvmjmoa6mdyMgAAAAComSj8qPG2HM7UpG8260B6viwW6d7LmmnSwJbycGMJCgAAAAA4Gwo/aiyrzdAHS/bqzYV7ZLUZigr00hs3dVTPpiFmRwMAAACAGo/CjxrpyIl8Tf52q9YdyJAkDWsfqZeubadAH3eTkwEAAABA7UDhR43zy5ajevLneOUUlMjXw1XPXROrkZ0byGKxmB0NAAAAAGoNCj9qjOyCYj39y3bN3HxUktSpcZDeuqmjmoT4mpwMAAAAAGofCj9qhA0HMjTp2y06cuKkXCzSxCta6L4rmsvdlYX5AAAAAOBCUPhhqhKrTe/8vlfv/L5HNkNqWM9bb93UUV2jg82OBgAAAAC1GoUfpjmUnq9J327WpkOZkqTrOjXQs9e0VYAXC/MBAAAAwMWi8KPaGYahnzYd1dO/blduYYn8Pd30wnWxuqZjA7OjAQAAAIDToPCjWmXlF+ufP2/T7LhkSVK36Hp648aOahTsY3IyAAAAAHAuFH5UmzX70zX52y1KyiqQq4tFDw5soXsvby5XFy63BwAAAACORuFHlSu22vTWwt16f8k+GYbUJMRHb93UUZ0a1zM7GgAAAAA4LQo/qlTi8Tw98M1mxR3JkiTd2LWhnhrRVn6e/NUDAAAAgKpE60KVMAxD3204rGd+3aGTxVYFertr6sh2uqpdpNnRAAAAAKBOoPDD4U7kFemJn7Zp7vYUSVLPpsF648aOigryNjkZAAAAANQdFH441Mq9xzX5uy1KzS6Um4tFDw++RHf3a8rCfAAAAABQzSj8cIjCEqvemL9b/16+X4YhNa3vq7dv7qR2DQPNjgYAAAAAdRKFHxdtb1qOHvhmi7YnZUuSbunRWE8Oay0fD/56AQAAAIBZaGS4YIZh6Mu1h/TCbztUUGxTPR93vTKqvQa1jTA7GgAAAADUeRR+XJD03EI99mOcFiakSZL6taivf93QQeEBXiYnAwAAAABIFH5cgCW70vTw93E6nlsoD1cXPTrkEt3ZJ0YuLMwHAAAAADUGhR+VVlBs1Stzd+qTlQckSS3C/PT2zZ3UJirA3GAAAAAAgL+g8KNSdqXk6P6vN2tXao4kaVyvJnriqtbycnc1ORkAAAAAoDwUflTIMAx9uuqAXpqzU0UlNtX389Br13dQ/1ZhZkcDAAAAAFSAwo+zSssp0CPfx2np7mOSpP6XhOrV6zso1N/T5GQAAAAAgHOh8KNcixJS9egPcUrPK5KHm4v+eVVr3dariSwWFuYDAAAAgNqAwo8yThZZ9dL/EvT5moOSpFYR/po2upNahvubnAwAAAAAcD4o/LDbnpSlB77Zor1puZKk8X1j9MjgS1iYDwAAAABqIQo/ZLMZ+u+KRL06b6eKrYZC/T31+g0ddGnLULOjAQAAAAAuEIW/jkvJKtBD32/Ryr3pkqQr24TrlVHtFezrYXIyAAAAAMDFoPDXYXPjU/T4T3HKzC+Wl7uLnhreVqO7N2JhPgAAAABwAhT+Oii/qETPz96hr9cdliTFNgjQWzd1UvMwP5OTAQAAAAAchcJfx8QdydSkb7Zo//E8WSzSPZc20+QrW8rDzcXsaAAAAAAAB6Lw1xFWm6EPl+3TG/N3q8RmKCLAS2/c1EG9m9U3OxoAAAAAoApQ+OuApMyTevDbLVqbmCFJGhoboakj2ynIh4X5AAAAAMBZUfjrgBP5Rdp8KFM+Hq565uq2uqFLQxbmAwAAAAAnR+GvA9pGBepfN3ZQ+waBiq7va3YcAAAAAEA1oPDXEVd3iDI7AgAAAACgGrE0OwAAAAAATojCDwAAAACAE6LwAwAAAADghCj8AAAAAAA4IQo/AAAAAABOiMIPAAAAAIATovADAAAAAOCEKPwAAAAAADghCj8AAAAAAE6Iwg8AAAAAgBOi8AMAAAAA4IQo/AAAAAAAOCEKPwAAAAAATojCDwAAAACAE6LwAwAAAADghCj8AAAAAAA4IQo/AAAAAABOiMIPAAAAAIATovADAAAAAOCEKPwAAAAAADghCj8AAAAAAE7IzewAtZ1hGJKk7Oxsk5MAAAAAAOqC0/3zdB89Gwr/RcrJyZEkNWrUyOQkAAAAAIC6JCcnR4GBgWfdbjHO9SsBVMhmsykpKUn+/v6yWCxmxzmr7OxsNWrUSIcPH1ZAQIDZcXAWvE81H+9R7cD7VDvwPtV8vEe1A+9T7cD7VPPVpvfIMAzl5OQoKipKLi5nn6nPGf6L5OLiooYNG5odo9ICAgJq/F9e8D7VBrxHtQPvU+3A+1Tz8R7VDrxPtQPvU81XW96jis7sn8aifQAAAAAAOCEKPwAAAAAATojCX0d4enrq6aeflqenp9lRUAHep5qP96h24H2qHXifaj7eo9qB96l24H2q+ZzxPWLRPgAAAAAAnBBn+AEAAAAAcEIUfgAAAAAAnBCFHwAAAAAAJ0ThBwAAAADACVH464D33ntP0dHR8vLyUo8ePbRu3TqzI+EMU6dOVbdu3eTv76+wsDBde+212rVrl9mxcA4vv/yyLBaLJk2aZHYU/MnRo0d16623KiQkRN7e3mrXrp02bNhgdiycYrVaNWXKFMXExMjb21vNmjXT888/L9YQNteyZcs0YsQIRUVFyWKx6Oeffy6z3TAMPfXUU4qMjJS3t7cGDhyoPXv2mBO2DqvofSouLtZjjz2mdu3aydfXV1FRUbrtttuUlJRkXuA66Fz/ls70f//3f7JYLHrrrbeqLR9KVeZ9SkhI0NVXX63AwED5+vqqW7duOnToUPWHvUgUfif37bffavLkyXr66ae1adMmdejQQYMHD1ZaWprZ0XDK0qVLNWHCBK1Zs0YLFixQcXGxBg0apLy8PLOj4SzWr1+vDz/8UO3btzc7Cv7kxIkT6tOnj9zd3TVnzhzt2LFDr7/+uurVq2d2NJzyyiuv6IMPPtC7776rhIQEvfLKK3r11Vf1zjvvmB2tTsvLy1OHDh303nvvlbv91Vdf1bRp0zR9+nStXbtWvr6+Gjx4sAoKCqo5ad1W0fuUn5+vTZs2acqUKdq0aZN++ukn7dq1S1dffbUJSeuuc/1bOm3mzJlas2aNoqKiqikZznSu92nfvn3q27evWrVqpSVLliguLk5TpkyRl5dXNSd1AANOrXv37saECRPst61WqxEVFWVMnTrVxFSoSFpamiHJWLp0qdlRUI6cnByjRYsWxoIFC4zLLrvMeOCBB8yOhDM89thjRt++fc2OgQoMGzbMuPPOO8vcN3LkSGPMmDEmJcKfSTJmzpxpv22z2YyIiAjjtddes9+XmZlpeHp6Gl9//bUJCWEYf32fyrNu3TpDknHw4MHqCYUyzvYeHTlyxGjQoIERHx9vNGnSxHjzzTerPRv+UN77dNNNNxm33nqrOYEcjDP8TqyoqEgbN27UwIED7fe5uLho4MCBWr16tYnJUJGsrCxJUnBwsMlJUJ4JEyZo2LBhZf5doeb49ddf1bVrV91www0KCwtTp06d9NFHH5kdC2fo3bu3Fi1apN27d0uStm7dqhUrVmjo0KEmJ8PZJCYmKiUlpczPvcDAQPXo0YPPEzVcVlaWLBaLgoKCzI6CU2w2m8aOHatHHnlEbdu2NTsOymGz2fTbb7+pZcuWGjx4sMLCwtSjR48Kp2fUZBR+J3b8+HFZrVaFh4eXuT88PFwpKSkmpUJFbDabJk2apD59+ig2NtbsOPiTb775Rps2bdLUqVPNjoKz2L9/vz744AO1aNFC8+bN07333qv7779fn376qdnRcMrjjz+um2++Wa1atZK7u7s6deqkSZMmacyYMWZHw1mc/szA54napaCgQI899phGjx6tgIAAs+PglFdeeUVubm66//77zY6Cs0hLS1Nubq5efvllDRkyRPPnz9d1112nkSNHaunSpWbHO29uZgcA8IcJEyYoPj5eK1asMDsK/uTw4cN64IEHtGDBgto5f6uOsNls6tq1q1566SVJUqdOnRQfH6/p06dr3LhxJqeDJH333Xf68ssv9dVXX6lt27basmWLJk2apKioKN4jwEGKi4t14403yjAMffDBB2bHwSkbN27U22+/rU2bNslisZgdB2dhs9kkSddcc40efPBBSVLHjh21atUqTZ8+XZdddpmZ8c4bZ/idWP369eXq6qrU1NQy96empioiIsKkVDibiRMnavbs2Vq8eLEaNmxodhz8ycaNG5WWlqbOnTvLzc1Nbm5uWrp0qaZNmyY3NzdZrVazI0JSZGSk2rRpU+a+1q1b18pVdZ3VI488Yj/L365dO40dO1YPPvggI2dqsNOfGfg8UTucLvsHDx7UggULOLtfgyxfvlxpaWlq3Lix/bPEwYMH9dBDDyk6OtrseDilfv36cnNzc5rPExR+J+bh4aEuXbpo0aJF9vtsNpsWLVqkXr16mZgMZzIMQxMnTtTMmTP1+++/KyYmxuxIKMeAAQO0bds2bdmyxf7VtWtXjRkzRlu2bJGrq6vZESGpT58+f7ms5e7du9WkSROTEuHP8vPz5eJS9uOHq6ur/YwKap6YmBhFRESU+TyRnZ2ttWvX8nmihjld9vfs2aOFCxcqJCTE7Eg4w9ixYxUXF1fms0RUVJQeeeQRzZs3z+x4OMXDw0PdunVzms8TDOl3cpMnT9a4cePUtWtXde/eXW+99Zby8vJ0xx13mB0Np0yYMEFfffWVfvnlF/n7+9vnQwYGBsrb29vkdDjN39//L+sq+Pr6KiQkhPUWapAHH3xQvXv31ksvvaQbb7xR69at07///W/9+9//NjsaThkxYoRefPFFNW7cWG3bttXmzZv1xhtv6M477zQ7Wp2Wm5urvXv32m8nJiZqy5YtCg4OVuPGjTVp0iS98MILatGihWJiYjRlyhRFRUXp2muvNS90HVTR+xQZGanrr79emzZt0uzZs2W1Wu2fKYKDg+Xh4WFW7DrlXP+W/vxLGHd3d0VEROiSSy6p7qh12rnep0ceeUQ33XSTLr30UvXv319z587VrFmztGTJEvNCXyizLxOAqvfOO+8YjRs3Njw8PIzu3bsba9asMTsSziCp3K9PPvnE7Gg4By7LVzPNmjXLiI2NNTw9PY1WrVoZ//73v82OhDNkZ2cbDzzwgNG4cWPDy8vLaNq0qfHPf/7TKCwsNDtanbZ48eJy/180btw4wzBKL803ZcoUIzw83PD09DQGDBhg7Nq1y9zQdVBF71NiYuJZP1MsXrzY7Oh1xrn+Lf0Zl+UzR2Xep//+979G8+bNDS8vL6NDhw7Gzz//bF7gi2AxDMOo+l8rAAAAAACA6sQcfgAAAAAAnBCFHwAAAAAAJ0ThBwAAAADACVH4AQAAAABwQhR+AAAAAACcEIUfAAAAAAAnROEHAAAAAMAJUfgBAECdtWTJElksFlksFj3zzDNmxwEAwKHczA4AAEBtUFBQoJ9//lm///671q1bp7S0NKWnp8vNzU2BgYFq2rSpOnbsqIEDB2rIkCHy8vIyO3KddODAAc2YMUOSdPnll+vyyy83NQ8AAGai8AMAUAGbzaa33npLr776qlJTU/+yvaioSPn5+UpOTtbKlSv13nvvyd/fX/fee68efvhhhYaGmpC67jpw4ICeffZZ+20KPwCgLqPwAwBwFhkZGRo9erTmz59vvy86OloDBw5U+/btFRISIovFomPHjmnnzp1avHixdu7cqZycHL366quyWq3617/+ZeIrwLlcfvnlMgzD7BgAAFQJCj8AAOUoKirS1VdfrZUrV0qSIiIiNG3aNI0aNUouLmdfAmfLli1666239Pnnn1dXVAAAgHKxaB8AAOV4/PHH7WW/adOmWrdunW644YYKy74kdezYUTNmzNDq1avVtm3b6ogKAABQLgo/AAB/cuTIEb333nuSJBcXF33zzTdq1KjReR2je/fuuuOOOyrcZ9++fXr88cfVrVs3hYaGysPDQ+Hh4briiiv09ttvKz8/v8LHR0dHy2KxKDo6WlLpegMzZsxQ//79FR4eLi8vLzVu3Fhjx45VXFxcpbOnpKToueeeU9++fRURESEPDw/Vr19fvXv31gsvvKATJ05U+PjLL7/cvvL96VyfffaZhgwZooYNG8rd3d2+7bSSkhItWLBAjz76qC677DJFRkbKw8NDvr6+io6O1g033KAffvhBNput3Oc8vdp+//797fc9++yz9hxnfh04cOAvj6vMKv0nT57Uu+++qyuvvNKeLyQkRN26ddOTTz6ppKSkCh8/Y8YM+3OdXlhw9+7duu+++9SyZUv5+PgoKChIvXr10ttvv62ioqIKjydJy5cv15133qnWrVvL399f7u7uCgsLU5s2bTRkyBA9//zz2r179zmPAwBwUgYAACjj8ccfNyQZkoyrr77a4ce3Wq3GE088Ybi5udmfp7yvhg0bGhs2bDjrcZo0aWJIMpo0aWIcP37cuOyyy856LDc3N+Orr746Z7a3337b8PHxqTBXvXr1jLlz5571GGfmyMjIMC699NJyj3Om/v37V/icp7969+5tpKSk/OU5Fy9eXKnHSzISExPLfdzTTz991te0bt06o1GjRhUe18fHx/jvf/971mN88skn9n0/+eQT47PPPjO8vb3PerxevXoZWVlZ5R7LarUa99xzT6Ve77Bhw86aCQDg3JjDDwDAn5y5SN/YsWMdfvxx48bpiy++kCQFBwfrpptuUpcuXRQQEKC0tDT99ttvmjNnjo4cOaL+/ftrw4YNatmy5VmPV1JSolGjRmnp0qXq1auXRo0apUaNGikjI0PffvutlixZopKSEo0fP17du3dXs2bNyj3Ok08+qRdffFGS5Ovrq+uvv169evVSSEiIMjIytGjRIv344486ceKEhg8frt9//139+vWr8LWOGTNGy5YtU9u2bTV69Gg1a9ZMOTk5Wrp0aZn98vPz5evrq8svv1xdunRRTEyM/P39lZeXp4SEBH3//ffat2+fVq1apeuuu07Lli2Tm9sfH2NiY2M1c+ZMxcfHa8qUKZKkm266STfffPNfMoWFhVWY+c/i4uLUv39/5eXlSZLatGmjsWPHKiYmRhkZGfr55581f/585efna/z48TIMQ+PHj6/wmHPnztUPP/wgHx8fTZgwQd26dZOnp6e2bNmi6dOnKysrS6tXr9bDDz+sf//73395/LvvvqsPP/xQkuTv76/rr79eXbp0UWhoqIqKinTkyBFt2LBBCxcuPK/XCgBwMmb/xgEAgJokNzfXcHFxsZ8dPXr0qEOPP336dPuxR4wYYZw4caLc/X788Uf7CIA+ffqUu8/pM/ynv958881y97vrrrvs+9x3333l7jNnzhzDYrEYkoyePXsaR44cKXe/FStWGP7+/oYkIzo62iguLv7LPn8eaTBhwgSjpKSk3OOdtmDBAiMvL++s24uLi40JEybYj/n555+Xu19lz9hXdn+r1WrExsba97nrrrvKfc3/+c9/7H9+Pj4+ZUYRnHbmGX5JRtu2bcv9c05ISDD8/PwMSYa7u3u5Ixratm1rH21x4MCBs76+kydPGmvWrKn4DwEA4LSYww8AwBlSUlLs88S9vLwUFRXlsGMXFhbarxHfunVr/fDDDwoKCip335EjR+rRRx+VJK1cuVJr166t8Ni33XabJk2aVO621157TV5eXpKkOXPmlLvPP//5TxmGodDQUP32229q0KBBufv16dNHr7/+uqTSa97/+OOPFebq3Lmzpk2bJldX1wr3GzhwoHx8fM663c3NTW+99ZZ9vYJPP/20wuM5ym+//ab4+HhJUvv27TV9+vQyIwtOGz9+vO655x5JpaMV3n777QqP6+bmpp9++qncP+dWrVppwoQJkqTi4uJyz9Lv3btXUumfW5MmTc76PF5eXurRo0eFWQAAzovCDwDAGdLT0+3fn62Mn6lnz57lLgxX3gJx8+fPV3JysiRp0qRJ8vDwqPDY48aNs38/b968CvedPHnyWbcFBQWpa9eukkoXCiwoKCizfdu2bdq0aZMk6a677lJwcHCFz3XLLbfYS++5ck2YMOGcVzaoLDc3N/Xs2VOStG7dOhmG4ZDjVuSnn36yf//QQw9V+IuLxx9/3L4Y4ZmPK8/w4cMrnKZx5ZVX2r8//QuHM/n6+koqfe8qs7gfAKBuYg4/AADVZNmyZfbvc3Jy9PPPP1e4f3Fxsf37HTt2nHU/X19ftW/fvsJjNWzYUJJkGIYyMzMVERFRbi6r1XrOXJLk5+enzMzMCnNJOucc/zPl5+fr22+/1axZs7Rt2zalpqYqNze33GKfnZ2t7OxsBQYGVvr4F+LMkRWDBg2qcN8mTZqoVatWSkhI0KFDh5ScnKzIyMhy9+3Vq1eFxzr9fkkq96oIgwYN0jfffKOdO3dqwIABmjx5sgYPHlzhKAkAQN1D4QcA4AwhISH27zMzM8+5/6uvvqqMjIwy9/3tb3/TsWPH/rLvmWf7H3744fPK9efnOFNwcPBfLnP3Z56envbv/3yG/8xcr776qsNySWWLa0VWrVqlm2++WYcPH670c1dH4T89IsPf37/ML0nOpmXLlkpISLA/9myFv379+hUep6L3S5JeeeUVrVixQkeOHNGKFSu0YsUKubu7q3Pnzurdu7cuv/xyDRo0yD6VAwBQN1H4AQA4Q0REhFxcXGSz2VRQUKCkpKQK5/Ffeumlf7nvbHPpK/MLhLOpaNj2xQ6Zr6pckuTt7X3OYyQmJmrw4MHKzc2VJDVv3lxDhgxRy5YtVb9+fXl5edl/oTFt2jQtXrxYUulohKqWk5Mj6Y8h9Ofi5+f3l8eW52Lfs8aNG2vz5s168cUX9dlnnykjI0PFxcVau3at1q5dqzfffFMBAQF64IEH9M9//rPMLxAAAHUHhR8AgDP4+vqqU6dO2rhxoyRp9erVGjVqlEOOfWYZjIuLU7t27Rxy3It1Zq5ff/1VI0aMqNbnf+mll+xl/7HHHtPUqVPPOmLhyy+/rM5o8vf3V2Zmpv2SfOdy+nWcfmxVql+/vt5880299tpr2rRpk1atWqVVq1Zp0aJFysjIUHZ2tp5//nmtXLlSCxYscNhaCgCA2oOf/AAA/MmZc7W/+OILhx33zOHt5zN0vaqZnWv+/PmSpLCwML344osVTk9ITEysrliSZB+Sn5OTo9TU1HPuv3v3bvv3jrzCQ0Xc3NzUvXt3TZo0Sd99953S0tL0/fff26c7/P7775o5c2a1ZAEA1CwUfgAA/uTvf/+7fQX9WbNm2c/2X6zLLrvM/v3ZLo9nBrNzpaSkSJJiYmIqXAU/OTlZW7durfBYZ57FdsQq/mde0u70LybO5tChQ9q5c6ek0iH3lZnzXxVcXV11/fXX65lnnrHft3z5clOyAADMReEHAOBPGjZsqIkTJ0oqnSd+0003KSkp6aKPO3ToUIWGhkqSPv74Y/u11M3WpUsXxcbGSiq97vzKlSur9flPz4/ft29fhSX9ueeeU0lJSYXHOnN6QmWH4VfkzOkcr7/+eoXrBrzyyiv2/I6aBnIxYmJi7N+f688NAOCcKPwAAJTj5ZdfVp8+fSSVFtFu3brpxx9/POdZ423btik7O7vcbb6+vvazrvn5+Ro8eLA2b95c4fH27t2ryZMnKy0t7fxfRCVZLBa9/PLLkkrPil977bVauHBhhY9JSkrSM888o7i4uIt+/m7dukmSjh8/rtdff73cfV5//XVNnz79nMc6s+Ru2rTporNdddVV9rUWtm7dqnvvvbfc8jxjxgx7Ph8fHz3wwAMX/dxnk5ycrIceekj79u076z4lJSX66KOP7Lc7duxYZXkAADUXi/YBAFAOd3d3/frrr7r55pu1YMECJSUl6frrr1dMTIyuvPJKtW/fXsHBwXJzc1NWVpb27t2rJUuWaN26dfZfCtSrV+8v10X/+9//ro0bN+rjjz/W/v371aVLFw0ePFgDBgxQw4YNZbFYlJGRoYSEBC1fvlxbtmyRJE2ePLlKX++wYcP03HPP6amnntLx48d15ZVXql+/fhoyZIiio6Pl7u6uzMxM7dq1S6tWrdKaNWtkGIYGDhx40c89adIk+3D5Rx55RIsXL9aQIUMUHh6uQ4cO6bvvvtP69esVGRmpdu3aVTi0vl69eurcubM2bdqkxYsX65577tHAgQPLLKB32WWXVerqAVLpFIEvvvhCvXv3Vl5enj766COtXr1aY8eOVXR0tDIyMvTLL79o7ty59sdMmzZNTZo0ucA/jXMrLCzUG2+8oTfeeENdunRRv3791Lp1a9WrV0+5ubnav3+/vv76a/svBJo2baqbb765yvIAAGowAwAAnJXVajX+9a9/GeHh4YakSn0FBQUZkydPNtLT0/+/vft3aSQIwzj+JGxSBMUVLFIIA4uljRLbpJAkIDZBsDRYWaQUbGObNnUw5C8QuwQkdgkELAxiIUrERvDHNgErca4Ld+SSC3eHHHPfT7k7++47yxb7sMvsT2t+fn7aSqViE4nETPWWlpbsy8vLWB1jjJVkjTG/nEexWBzVGwwGE8c1Gg27uLg4U1/z8/O23++P1chkMqMxszo+Pp56LmOMvby8nGkezWbTep43sdb3x11cXIy2l8vlif31ej27vLw8tcdEImFrtdrEGvV6fTS2Xq9PvR6DwWA0tlgs/rDv4eFh5ntxdXXV3t3dTT0XAMBdvOEHAGCKaDSqw8NDlUolnZ6eqt1uq9fr6fn5WWEYyvM8+b4vY4xSqZQymYy2t7en/vc8Eono6OhI+/v7Ojk50fn5uW5ubvT29iZJ8n1fKysrSqVSymazyuVyisViXzLfvb09FQoFNRoNtVotXV1d6fX1VR8fH1pYWFAQBFpfX9fm5qa2trbGvmD4XeVyWel0WtVqVd1uV2EYyvd9BUGgQqGgg4MD+b4/U618Pq9ut6tqtapOp6Onpye9v7//UX8bGxu6vb1VrVbT2dmZrq+vFYah5ubmFASB8vm8SqXSl6zMb4zR/f29Wq2WOp2O+v2+Hh8fNRwOFY/HlUwmtba2pp2dHe3u7srzeNwDgP9VxNq/sIQtAAAAAAD4p7BoHwAAAAAADiLwAwAAAADgIAI/AAAAAAAOIvADAAAAAOAgAj8AAAAAAA4i8AMAAAAA4CACPwAAAAAADiLwAwAAAADgIAI/AAAAAAAOIvADAAAAAOAgAj8AAAAAAA4i8AMAAAAA4CACPwAAAAAADiLwAwAAAADgIAI/AAAAAAAO+gagB+qSZpY2KQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -556,16 +586,16 @@ }, { "cell_type": "code", - "execution_count": 924, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "200" + "156" ] }, - "execution_count": 924, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -576,26 +606,35 @@ }, { "cell_type": "code", - "execution_count": 939, + "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/brandonbrown/anaconda3/envs/deeprl/lib/python3.6/site-packages/ipykernel/__main__.py:6: RuntimeWarning: divide by zero encountered in log\n" + "/tmp/ipykernel_42851/1617347242.py:6: RuntimeWarning: divide by zero encountered in log\n", + " y = np.log(x)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4EAAAGzCAYAAACRhxJDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu0Zndd3/HPZJIZkkxCJncSAhsCBROICkHAiFguarq5KFgNWtuKS4taSttlu7attrV02d1alNbSC6vFaos3ltYFbA14iRQJUUAIMUEChM0ld5IBQi4zCTP9Yz+HOXNyzswkOWf/nufZr9dae+1nznnOWd+zsmCt9/r9nt/eduDAgQAAADANx5QeAAAAgPGIQAAAgAkRgQAAABMiAgEAACZEBAIAAEyICAQAAJgQEQgAADAhIhAAAGBCRCAAAMCEiEAAAIAJEYEAAAATIgIBAAAmRAQCAABMiAgEAACYEBEIAAAwISIQAABgQkQgAADAhIhAAACACRGBAAAAEyICAQAAJkQEAgAATMixpQcAAABYJFXTHZdk9+za27d1X3aih0YEAgAAk7Mm5FZfp27w9dXXiat+1a8n+f7RBt8EIhAAAFhIVdNtS7IrQ7gd6VobeCeu8ytXuzvJnlXXDWv+vXJdv5l/0xi2HThwoPQMAADAhFVNtz3JKTkYakd77c7hF7b2JrkjyZ05NNzW/vtBV9/W+zbzb5wnIhAAANgUVdPtyINX3o7mOuUIv/quDOG20bVnva/3bX3v5v11y0MEAgAAh5h9Xu60da4jxdzhtljuz6GrcIeLutVxt6dv6/s39Q+cOBEIAABLavaZuRPz4Jg7fZ2vrb5OPsyv3ZeHsSqX5Mt9W+/f1D+Qh0UEAgDAAph9bm53Dh9v68XdjsP82i9l+MzcetcX1vnanUnu7ttaRCwwEQgAACOrmm5nDo22I63MnZYhALdt8CsfyBBo64XbRoFnm+VEiUAAAHgEZlsuT8kQcmesua/3tTOSnHSYX3l3jn5lbuX6stU5jpYIBACAVaqme1QeHHAbxdzK97Zv8OvuS3L77PrC7Lp91X1t4N3Zt/V9W/F3wQoRCADA0qqa7pgMq3RHs0K38nrXBr/uQA4G2+1r7ut+rW/ru7fi74JHQgQCALAwZlsvH53kzFXXGWv+vfK1MzJ8lm6jVbq7cxQht+r1nr6tv7oVfxeMSQQCAFBU1XQnZuOQW+9rx23wq/YkuW123Z5Dt2E+KOo8SJypEoEAAGyqqul25OBK3NGE3Qkb/Kq7czDqVsfd2q/dliHqnHQJR0EEAgBwWLMtmLuSnJXk7Nl95fV6cXfKBr9qXzaOuLVfv71v63u25i+CaROBAAATdISwO2udfx+/zq85kGF75a1ZP+7Wfs1jDGAOiEAAgCWxiWF3e4awuzXJLRu8vjXDFswHtu4vAraCCAQAmHNV052Q5DEZ4m2juDuaFbvDBd3Kv4UdLDkRCABQwGzV7pQMcbfedfaq1yev8ytWb8XcKOhWXgs74GtEIADAJqqabnuGQ1IOF3Ur1851fsW9SW7e4LolBwPvdmEHPBwiEADgKFRNtzMHQ269oFu5zsz6Dyf/YjaOu9WR5/AUYEuJQABg0lat3J07u85Z5/U5SU5d58cPZDj18khxd6sHkwPzQgQCAEurarqTs3HYrbx+TB68crc/w6rcjUluml3rxZ0tmcDCEYEAwMKpmm5Hhi2ZR1q927XOj38xB+Nu9X3169vEHbCsRCAAMFeqptuV5LFJzpvdV67VgXfmOj+6L+sH3eqv3dy39d1b/CcAzDURCACMZhZ4q+PuvHXuj17nR2/Lxqt2K6/vcKAKwJGJQABgU6wJvLX3wwXerUk+n+RzG9xv6tt671bPDzAVIhAAOKKq6U5I8rjZtdEqnsADWAAiEAAmrmq6bRkekfC4JI9fc195ffo6P7pR4K28FngAc0gEAsCSm52keV7Wj7uV149a82N3J/lMks/OrtWvBR7AAhOBALDAZqt4p2T9uFu5n51k25ofvSWHxt3a4NvjkBWA5SQCAWDOVU13SpInJKnWuT8+yUlrfmRvHryCd8hKnlU8gOkSgQBQWNV0J2UIuirrx97aA1fuSvLp2fWZPDj0brOKB8BGRCAAbLHZyZqPz8areaet+ZF7kvQZIm+9u62aADxsIhAAHqGq6Y5Jcm6S81ddT8jByDtrzY/szbBqt1Hk3S7yANgqIhAAjkLVdMdniLrVoffEHAy+Have/kCGbZkbRd4tfVvvH2dyADiUCASAfO2UzdNzaNytfn3Omh+5K8mnZtcNq15/KsPBKw+MMzkAPDQiEIDJmG3bPC/Jk7P+it7aUzZvzKGBt/r1HbZsArCIRCAAS2UWeudkCL211/lJdq56+94MWzTXC71P921973iTA8A4RCAAC2e2dfPsrB96T0py/Kq3780QdZ+YXdcn+eTsutFn8wCYGhEIwFyahd4Z2Tj0dq16+/0ZVvA+sc71OaEHAAeJQACKqppuR4aoe0qSp666PzWHPiT9qxm2bq4Xep91EAsAHB0RCMAoqqY7PQ+OvKdkOJRl+6q33pTkr5J8fHathF7ft/X9Y84MAMtIBAKwaaqmOy5D1K23qnfqqrfuzfDZvI9nCL6V6Lu+b+svjzkzAEyNCATgIaua7oQMgXfBquupGbZ1HrvqrbfkYOitDr7P9m391TFnBgAGIhCADVVNd2KGuLswhwbfE5Nsm73tgQzbNT+WQ4Pv431bf3HsmQGAwxOBAKRqupOSfF0ORt5K9FWr3nZ/hri7bnZdO7t/sm/rfWPOCwA8fCIQYEJm2zgvTPL0HLq697hVb9uXYTVvdehdl+RTDmYBgMUnAgGWUNV025Ocn+SiDMG3cp2fg9s478sQe6tD77okN3jcAgAsLxEIsOCqpjsrD469C5IcP3vL/iSfTHLNmusGh7MAwPSIQIAFMTukZWUr5+rrjFVvuzWHht5Hk1zXt/W9404LAMwrEQgwh2are98wu75xdv9rObiV854M2zhXx941fVvfPv60AMAiEYEABVVNd0yGz+mthN7K9ZhVb/tMkg8nuXp2rWzl3D/utADAMhCBACOpmu5RSZ6WQ1f3vj7JibO3PJDhYJaPZIi+jyS5um/rPeNPCwAsKxEIsAVmj2L4hiQXJ3lmkmdkeA7f9tlb7soQeauva/u23jv+tADAlIhAgEeoarrjM6zorQTfxRlO5zxm9pZbknwoB1f3PpLk07ZzAgAliECAh2C2pfOiDKG3En0X5uAK321JPpgh+j6Y5IN9W99UYFQAgHWJQIANVE13XIZHMHxTDq7wPS3JsbO3fCFrgi/JjX1b+z9WAGBuiUCAJFXTbUtyXpJnz67nZPgc38oD1+/Mg4Pvc4IPAFg0IhCYpKrpTsqwsrcSfM9Ocvbs23uT/EWSP1t19YIPAFgGIhBYelXTbc9wUMvq4Ft9cMsncmjwXd239b4CowIAbDkRCCydqul2ZQi9S2bXc5KcPPv2nhwafH/et/UdJeYEAChBBAILr2q683Iw+C7J8LiGY5IcSPKXSd6X5MokVyX5pG2dAMCUiUBgoVRNd2yGEztXR995s2/fkyH0rswQflf1bf3FEnMCAMwrEQjMtarpdmbY2vmts+u5SXbNvn1jhthbua7u2/qBEnMCACwKEQjMlarpjs/wGb7nJ/m22euds29fk+S9ORh9n7W1EwDgoRGBQFFV052Y5JszRN/zMzyYfUeS/Uk+kuQ9s+u9fVvfWWpOAIBlIQKBUc2i73kZVvmen+FZfccm+WqGB7GvRN+f9m39pUJjAgAsLREIbKmq6Y5L8qwkL0rywgyf6Tsuyf1JPpCD0Xdl39Z3lZoTAGAqRCCwqaqm25bkaRmC70UZVvt2ZXhcw4eT/GGSP0ryvr6t7y41JwDAVIlA4BGrmu7xObjS94IkZ82+9YkMwfdHSa7wUHYAgPKOLT0AsHiqpjshw2f6vnN2PXn2rVszBN8fJvmjvq0/W2RAAAA2ZCUQOKLZFs+nZgi+SzM8r29nknuTXJHk3Rni71qPbAAAmG8iEFhX1XQnZ9jaeWmG+Hvc7FsfS3L57Hpv39b3lpkQAICHQwQCSb622vd1SV6aIfwuybBl/CsZtndenuTyvq0/U2xIAAAeMREIEzZ7fMPzMoTfy5I8cfatqzNE3+8neX/f1vvKTAgAwGYTgTAxVdPtzrDSt7Li9+gkezN8pu8dSd7Zt/Xny00IAMBWEoEwAVXTPSnDSt9LM6z8bU9yW5J3Zgi/P/DMPgCAaRCBsIRmn+97epJXzq4LZ9+6JkP0vSPJn/dtvb/MhAAAlCICYUnMwu/iHAy/JyXZn+S9SX4nydv7tu6LDQgAwFwQgbDAqqbbnuS5GaLvFRke4/BAkj9O8ttJfrdv69vKTQgAwLwRgbBgqqY7Jsm3JLksyXcnOTvDwS7vzhB+7+jb+s5yEwIAMM+OLT0AcGSzrZ7PTPKqJN+X5Nwk9ybpMoRf17f1XeUmBABgUVgJhDlWNd0FGcLvsgyf8bs/w/P7fj3Dit9XCo4HAMACEoEwZ6qmqzJE36uSXJThcJcrMoTf7/RtvafcdAAALDoRCHOgarqTkvzNJH8nybfOvvz+DOH3tr6tbyk1GwAAy0UEQiGzkz1fkCH8XpHk+CSfSPIrSd7qcQ4AAGwFEQgjq5ruqRnC728leWySLyX5jQzxd1Xf1v5HCQDAlhGBMIKq6XZlONXzR5I8O8Pn/C7PEH5v79v6voLjAQAwISIQtlDVdM/MEH4/kGRXko8leUuG7Z43l5wNAIBp8pxA2GRV052c4WTPH03yjCT3JfnNJG9O8n7bPQEAKMlKIGyS2arfj2UIwBOSfDRD+L21b+svlpwNAABWWAmER6Bquh1JvifJa5M8J8ndGR7r8OYkH7DqBwDAvLESCA9D1XSPSfL3ZtfZGR7t8KYk/6tv6y+VnA0AAA7HSiAcparptmVY7Xtthge7H5vk95L8UpJ39229v+B4AABwVKwEwhFUTXdsklcm+ckkFyf5coYTPt/Ut/UnS84GAAAPlZVA2MDs2X6vTvKPklRJrk/yE0l+tW/rrxQcDQAAHjYRCGtUTXdWhi2fP55kd5IrM4Tg2235BABg0YlAmKma7slJ/kmSv51kR5LfTfIf+ra+suhgAACwiUQgk1c13QVJ/nmSy5LsS/LLSX6xb+vriw4GAABbwMEwTFbVdF+f5KczHPpyT5L/kuQNfVvfWnQwAADYQiKQyama7plJfibJyzOc9PlLSd7Yt/UXig4GAAAjEIFMRtV0FyV5fZKXJdmT5I1J/lPf1l8sOhgAAIxIBLL0qqZ7UpKfTfKqDCt/P5/kl/q2/nLRwQAAoAARyNKqmu6xGbZ9/nCSvUn+Y5Kf79t6T9HBAACgIKeDsnSqpjstyT/L8GD3YzIc+PJzfVvfUnQwAACYAyKQpVE13Y4M4fcvkpyc5FeT/Gzf1n3JuQAAYJ6IQBZe1XTbknx3kn+f5Pwk70ryk31b/2XRwQAAYA6JQBZa1XQXJ/mFJM9Lcm2SS/u2vrzsVAAAML9EIAuparozkrRJXp3k9iSvSfI/+7Z+oOhgAAAw55wOykKpmm57kh9J8nNJTsrwrL/Xe9wDAAAcHSuBLIyq6Z6V4aTPi5NckeTv9219XdmpAABgsYhA5l7VdKcm+bcZVgBvyfDQ99/s29oyNgAAPEQikLk1O/XzlUnelOS0JL+Y4ZEPtn4CAMDDJAKZS1XTnZMh/r4ryYeSfHvf1leXnQoAABafCGSuzFb/Xp3kDUl2JvmnSX7RqZ8AALA5RCBzo2q6xyb55SQvSvKeJD/St/Unyk4FAADL5ZjSA0CSVE33qiTXJHlukh9P8gIBCAAAm89KIEVVTbc7w2MfLktyVZIf7Nv6k2WnAgCA5WUlkGKqpntRhtW/70ny00meJwABAGBrWQlkdFXTHZvk9UmaJH+V5OV9W3+o7FQAADANIpBRzQ5/+fUk35LkzUn+Yd/W95adCgAApkMEMpqq6b4zyf9O8qgkP9C39a8VHgkAACZHBLLlZts//3WSn0ry0STf27f1x8tOBQAA0yQC2VJV052W5LeSvCC2fwIAQHEikC1TNd1FSX43yTlJ/m7f1r9SeCQAAJg8j4hgS1RN98ok70+yM8m3CkAAAJgPVgLZVFXTHZPkXyX5mQwPf39F39Y3Fx0KAAD4GhHIpqmabmeStyT5/iS/nOTH+rbeW3YqAABgNRHIpqiabneS/5vk+RlOAf13fVsfKDsVAACwlgjkEaua7vFJfi/Jk+P5fwAAMNdEII9I1XTfmCEAj0/y7X1b/0nZiQAAgMNxOigPW9V035LkT5LsS3KJAAQAgPknAnlYqqb79iTvTnJzhgC8tvBIAADAURCBPGRV0313knckuT7DMwA/X3gkAADgKIlAHpKq6V6V5G1JPpTkr/dtfVvhkQAAgIdABHLUqqb73iT/J8mfZjgEZk/hkQAAgIdo24EDHuXGkVVN94okv5Xk/Uku7dv6K4VHAgAAHgYRyBFVTfeyJL+d5ANJvqNv67sKjwQAADxMIpDDqpruxUm6JB/OsAX0S4VHAgAAHgERyIaqprs4yRVJbkjybT4DCAAAi08Esq6q6Z6c5H1J7s7wHMCbCo8EAABsAqeD8iBV052d5F1JtmX4DKAABACAJXFs6QGYL1XT7Ury+0nOzPAcwOsLjwQAAGwiEcjXVE13TIbnAD49yUv6tv5A4ZEAAIBNJgJZ7d8keXmSf9C39eWlhwEAADafzwSSJKma7geS/FSSNyf5z4XHAQAAtojTQUnVdM9O8p4kV2V4FuC+wiMBAABbRAROXNV0Z2V4EPy9Sb6pb+s7Co8EAABsIZ8JnLCq6bYn+bUku5N8pwAEAIDlJwKn7V8meUGSV/dt/dHSwwAAAFvPdtCJqpruOzI8D/BX+rb+odLzAAAA43A66ARVTXd2hucB/mWSnyg8DgAAMCIRODFV021L8pYku5Jc1rf1PYVHAgAARuQzgdPzmiSXZngg/HWlhwEAAMZlJXBCqqZ7SpI3JHlXkjcVHgcAACjAwTATUTXdsUmuTHJ+kqf3bX1T4ZEAAIACbAedjtcleVaS7xOAAAAwXbaDTkDVdE9M8vokb0/ytsLjAAAABdkOuuRmp4G+K8lzklzQt/XnC48EAAAUZDvo8vvBJC9O8hMCEAAAsB10iVVNd2qSX8hwIMx/KzwOAAAwB0TgcvvZJLuTvKZv6/2lhwEAAMoTgUuqarqnJfmxJP+1b+trSs8DAADMBxG4hGaHwbwxyZeT/MvC4wAAAHPEwTDL6WVJXpjktX1b31F6GAAAYH5YCVwyVdPtSPKGJNfGYTAAAMAaVgKXz48mOT/JpX1bP1B6GAAAYL5YCVwiVdOdmOSnk7wnwwPiAQAADmElcLm8NslZSV7Rt/WB0sMAAADzZ9uBA1phGVRNtzvJDUn+tG/rl5aeBwAAmE+2gy6P1yU5JcN2UAAAgHVZCVwCVdOdlOQzSf5f39bfVXoeAABgflkJXA6vSbI7yc+VHgQAAJhvVgIXXNV0xyf5dJJr+rZ+cel5AACA+eZ00MX3QxlOBL2s9CAAAMD8sx10gVVNtz3JP05yVYZnAwIAAByWCFxsfyPJ+Une6LmAAADA0RCBi+11SW5M8julBwEAABaDCFxQVdM9LckLk7ypb+v7S88DAAAsBhG4uF6b5L4kby49CAAAsDhE4AKqmu7RSX4wyVv7tr6j9DwAAMDiEIGL6bIkxyf576UHAQAAFosIXEw/nOSaJB8sPQgAALBYROCCqZruoiTPSvI/PBYCAAB4qETg4vnhJPuSvLX0IAAAwOLZduCAxaRFUTXdziQ3JfmDvq0vKz0PAACweKwELpY6yalJ3lJ6EAAAYDGJwMVyWZLbkvxx6UEAAIDFJAIXRNV0u5K8JMnb+rZ+oPQ8AADAYhKBi+OlGZ4N+JulBwEAABaXCFwc35fkxiTvKz0IAACwuETgAqia7pQklyb5rb6t95eeBwAAWFwicDG8PMmOJL9RehAAAGCxicDF8F1JPpfkA6UHAQAAFpsInHOzB8S/OMk7+7Y+UHoeAABgsYnA+ff8JCcmeWfpQQAAgMUnAuffS5Lcm+SK0oMAAACLTwTOsarptmWIwD/s2/re0vMAAACLTwTOt69L8oTYCgoAAGwSETjfXjK7/17RKQAAgKUhAudbneTqvq0/X3oQAABgOYjAOVU13YlJnpvk8tKzAAAAy0MEzq9LkhyX5I9LDwIAACwPETi/Xpjk/iTvKz0IAACwPETg/HpBkqv6tr679CAAAMDyEIFzqGq63UmeEVtBAQCATSYC59PzMvy3uaL0IAAAwHIRgfPpkiT7kvxZ6UEAAIDlIgLn0yVJPtS39X2lBwEAAJaLCJwzVdPtTHJxkitLzwIAACwfETh/npFkZ0QgAACwBUTg/Pnm2V0EAgAAm04Ezp9LktzQt/UtpQcBAACWjwicP89J8v7SQwAAAMtJBM6Rqukek+QxST5YehYAAGA5icD58ozZ/S+KTgEAACwtEThfViLww0WnAAAAlpYInC/PTHJ939Z3lR4EAABYTiJwvjwjyYdKDwEAACwvETgnqqY7I8l58XlAAABgC4nA+bHyeUArgQAAwJYRgfPjotn96qJTAAAAS00Ezo8Lk9zct/WdpQcBAACWlwicHxckua70EAAAwHITgXOgarpjMkTgtaVnAQAAlpsInA+PS3JiRCAAALDFROB8uHB2F4EAAMCWEoHz4YLZ3WcCAQCALSUC58PKyaB7Sg8CAAAsNxE4Hy6MraAAAMAIRGBhVdNtS/KUJB8rPQsAALD8RGB5pyc5KcmnSg8CAAAsPxFY3vmzuwgEAAC2nAgsTwQCAACjEYHlnZ/kQJJPlx4EAABYfiKwvPOT3Ni39X2lBwEAAJafCCzv/NgKCgAAjEQElnd+khtKDwEAAEyDCCyoaroTk5wdK4EAAMBIRGBZT5zdRSAAADAKEViWx0MAAACjEoFlPWF295lAAABgFCKwrHOT3JfkztKDAAAA0yACyzo3wzMCD5QeBAAAmAYRWNa5SW4sPQQAADAdIrAsEQgAAIxKBBZSNd22iEAAAGBkIrCc05LsjAgEAABGJALLOXd2F4EAAMBoRGA5IhAAABidCCxnJQI/X3QKAABgUkRgOecmOZDk5tKDAAAA0yECyzk3yW19W99fehAAAGA6RGA5Hg8BAACMTgSWIwIBAIDRicByzokIBAAARiYCC6ia7tgkpye5tfQsAADAtIjAMk6f3W8rOgUAADA5IrCMM2b324tOAQAATI4ILGMlAq0EAgAAoxKBZZw5u1sJBAAARiUCy7AdFAAAKEIElnFmkv1J7iw9CAAAMC0isIwzktzRt/VXSw8CAABMiwgs48zYCgoAABQgAss4NckXSg8BAABMjwgs49Qke0oPAQAATI8ILGN3HAoDAAAUIALLsBIIAAAUIQJHVjXdziQnxEogAABQgAgc3+7Z3UogAAAwOhE4vpUItBIIAACMTgSOz0ogAABQjAgc36mzu5VAAABgdCJwfFYCAQCAYkTg+FZWAkUgAAAwOhE4vkfP7l8qOgUAADBJInB8Jye5p2/rB0oPAgAATI8IHN9JSb5ceggAAGCaROD4Tk5yV+khAACAaRKB4zs5VgIBAIBCROD4ToqVQAAAoBAROD4rgQAAQDEicHxWAgEAgGJE4PisBAIAAMWIwPFZCQQAAIoRgSOqmm5nkp2xEggAABQiAsd10uxuJRAAAChCBI5rJQKtBAIAAEWIwHGdPLuLQAAAoAgROK6VlcCvFJ0CAACYLBE4rhNm97uLTgEAAEyWCBzX8bP7vUWnAAAAJksEjmtlJfCeolMAAACTJQLHJQIBAICiROC4bAcFAACKEoHjshIIAAAUJQLHZSUQAAAoSgSO64Qke/u23l96EAAAYJpE4LhOiK2gAABAQSJwXMfHVlAAAKAgETguK4EAAEBRInBcVgIBAICiROC4rAQCAABFicBxiUAAAKAoETgu20EBAICiROC4rAQCAABFicBxHR8RCAAAFCQCx3VCbAcFAAAKEoHjsh0UAAAoSgSOy8EwAABAUSJwJFXTbU+yPcne0rMAAADTJQLHc9zsvq/oFAAAwKSJwPHsmN3vLzoFAAAwaSJwPCsRaCUQAAAoRgSOx3ZQAACgOBE4HttBAQCA4kTgeKwEAgAAxYnA8VgJBAAAihOB43EwDAAAUJwIHI/toAAAQHEicDy2gwIAAMWJwPHYDgoAABQnAsdjOygAAFCcCByP7aAAAEBxInA8VgIBAIDiROB4rAQCAADFicDxOBgGAAAoTgSOx3ZQAACgOBE4HttBAQCA4kTgeKwEAgAAxYnA8VgJBAAAihOB43EwDAAAUJwIHM/KdlArgQAAQDEicDw7kuzv2/qrpQcBAACmSwSO57jYCgoAABQmAsezI7aCAgAAhYnA8eyIlUAAAKAwETge20EBAIDiROB4bAcFAACKE4HjsR0UAAAoTgSOx3ZQAACgOBE4HttBAQCA4kTgeKwEAgAAxYnA8VgJBAAAihOB43EwDAAAUNyxpQeYkNcl2VZ6CAAAYNq2HThwoPQMAAAAjMR2UAAAgAkRgQAAABMiAgEAACZEBAIAAEyICAQAAJgQEQgAADAhIhAAAGBCRCAAAMCEiEAAAIAJEYEAAAATIgIBAAAmRAQCAABMiAgEAACYEBEIAAAwISIQAABgQkQgAADAhIhAAACACRGBAAAAEyICAQAAJkQEAgAATIgIBAAAmBARCAAAMCEiEAAAYEJEIAAAwISIQAAAgAkRgQAAABMiAgEAACZEBAIAAEyICAQAAJgQEQgAADAhIhAAAGBCRCAAAMCEiEAAAIAJEYEAAAATIgIBAAAmRAQCAABMiAgEAACYEBEIAAAwISIQAABgQkQgAADAhIhAAACACRGBAAAAEyICAQAAJkQEAgAATIgIBAAAmBARCAAAMCEiEAAAYEJEIAAAwISIQAAAgAkRgQAAABMiAgEAACZEBAIAAEyICAQAAJgQEQgAADAhIhAAAGBCRCAAAMCEiEAAAIAJEYHL+qV4AAAAKUlEQVQAAAATIgIBAAAmRAQCAABMiAgEAACYEBEIAAAwISIQAABgQv4/Ap1Li0zfYl4AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "[]" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAIvCAYAAAA1VREAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA990lEQVR4nO3dd5Qd+F3f/c+d3rs06tJqtb0Xd4xxwbGDKabEQHCAHDvmSSCEkIScJ8mTwIEQEgJPICdPwA7wYGxiEoKJMbYfG9u47q6396q66pqRpve5zx93ZiTtarUqc3Vn5r5e5+jcO/fOaL8zeNHqfX6lUCwWiwEAAACAZVZT6QEAAAAAWJuEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKQngCAAAAoCyEJwAAAADKoq7SAwAAAACsZvPzxYxOz2ZofCZDEzM5tfA4NDGTUxPTGZqYyc6+1rzvNdsqPeoVJzwBAAAAVa9YLGZiZu50MFqMRy+LSLM5NT6d4aXXZjI8MZP54vl//7ddv154AgAAAFjN5ueLGZkqrT46NTGdU+OlODQ0fvp5KSqd/fHwxEym5+Yv65/dVF+Tzub6dDU3pLO5Ph3N9elqqU9nc32u39C+TN/h6iI8AQAAACvO3HwxI5OlKHRyfHohHs3k1MLzU0vb2s54b2EV0tyrLT86j7qaQjqb69O5EIy6mkuPpdcalp53LXzO4vsdzfVpqq9dxp/A2iA8AQAAAGUzOze/tCVtcaXRybEzViEtvP7Sj4cnZ1K89H6U5vrapdVGXS2lVUhdLaVY1N3SkK6F1zsWVygtRKSWhtoUCoXl+wFUOeEJAAAAeFXTs/OlM47O2J52arx0cPbJ8TO3tJ3e4jY0PpORqdnL+ue2NdadjkctZ0eiM4NSV8vCo9VHK4rwBAAAAFWkWCxmeLJ0QPbJ8ZmcHJvOyYXnpdfOeD52eivb+PTcZf1zO5rqluJQKSSdXnX00o8XQ1Jnc33qa2uW6TunEoQnAAAAWKVm5uaXVhuVAtLMUlBajEiDY6efL65KutQzkAqFnHG+UUO6l1YeNZxnVVJDOprqUicgVSXhCQAAACqsWCxmfHrudER6yaqjky9diTQ+nVNjl7eNraWhtnTW0eKZRwuP3S316W5tWHqtaykwNaS9qS41Nc4/4sIJTwAAALCM5uaLGZ44Ox4Njp0jKJ0ZmcZmMj03f0n/vMVVSIuhqKelYSkWdbe+PCz1tJZWJzkDiStBeAIAAIBXUCwWMzo1m8GxUjxa3Lo2ODaVwbHS9rbB8enS48LzoYlLv42toa6mFIzOWonUsPRaaSVS/VmvdTTXp9YqJFYo4QkAAICqMTkztxCPSquMBsamFuLR6Yg0ODp9+nPGpzMzd2kVqb2xLl2tp+NRz1Iwakh369nxqKulPj2tDWmur02hICKxdghPAAAArEpz88WlLWsDo6dXI5398enHwbHpS76ZbfE8pN62hqXtamd/fOaKpFJIchsbCE8AAACsAFdyS1t9beGseNTTuvC8tbQqqbv19GuLn+M8JLg0whMAAADLrlgsZnhyMSRN5cTo6VVHJ0anMjhWWpU0sPD+4Nilb2lbPFB7KRgtPa9/+Sql1oa0N9bZzgZXiPAEAADAqyoWixmZms3g6HQGxqYysBCSBpYC0pkx6dJD0ittaetprU9Pa+NSTFqMSF3N9amzpQ1WLOEJAACgCi1ubTu96mg6A6NTSyFpcOzM56Vf03PzF/3PaWusW9qy1tdWeuxta0xv68uf97Ta0gZrjfAEAACwBpx5RtLpbW2vvMXtUkNSa0Ntetoa0ttaCka9bQ3pOev5wnttQhIgPAEAAKxYc/PFnBwvBaOB0dLj8ZHSSqQTi48L7x0fncr07MWHpJaG2qV41Le48qitIX2tjWc/b2tIr5AEXCThCQAA4Aqamp3LidHStrYTo6UVSSdGp3JipHQ20pmRaXBsOvMXeUxSS0PtObazNSw8b1x6vvi+kASUk/AEAABwGRYP3V6MRQOjUzk+urgi6cygVHp/ZHL2on7/QiHpbimdj9Tb2pi+9sb0tTWkr63xrNd6W0uvNTcIScDKITwBAAC8xLm2uJ1emXT5W9zqawvpayutPupra1yIRw1Zd47Xeloa3NoGrFrCEwAAUBUWVyYdH5k6+9fo2R+fWLjZbe4i97i1NtQurEZaWH3UXjoz6eWvNaajuS6FQqFM3ynAyiE8AQAAq9rkzNw5A9K5Pr6YlUmLW9wWt7Atbmdbd8a2NlvcAM5PeAIAAFac2bn5DIxNnzsiLTw/sfDxyNTFnZnU3lSXdQurkNa1N2bd4mP76Y/Xt5dudLPFDeDyCE8AAMAVUSwWc2p85qyIdOIcQen4yFQGx6dTvIidbg11NVm/EI7OF5TWtTe6xQ3gChKeAACAyzI/X8zg+HSODU/l6Mhkjg9P5djIZI6NTOXocOnx2HApKE3PXfhWt5pCTkekhXDUd66g1N6Y9kZnJgGsRMITAABwTnPzxQyMTuXoGSFpMS6VQtJkjg6XVi3NXsRB3J3N9Uurk84XlLpbGlJbIyYBrGbCEwAAVJmZufkcH5laCEmTOToyleOLK5POWKU0MDqVi7nYra+tIevam7K+vXRGUn9HU9Z3NC5Epqb0d5SCUmOdrW4A1UJ4AgCANWJ6dv6MrW2LIWlyYZVS6bXjI1MZGJu+4N9zcbtbKSAtxqOXx6W+tsbUO4gbgJcQngAAYIUrFosZHJvO0eHSaqQjw5M5MjSZYyOlxyMLrw9eRFCqqylk3UI8Wt+xGJJKEal/ITKtb29Mb1uj7W4AXDLhCQAAKmhiem4pJh1d+HVkaOqs144NX/ih3A21NVnXfkY86nh5XOrvKJ2fVCMoAVBmwhMAAJTB4sHcpXi08Dj00sA0meHJ2Qv+PXtbG9Lf0ZQNnaV41N/RlA0dTelf+LWhsyndLfVudwNgxRCeAADgIo1Nzebw0Ol4dGR4MscWt8ANnz5fae4CT+Zurq89T0xaOEepvSkNdc5QAmB1EZ4AAOAMI5MzOTI0mcNDpah0aGjiZR+PXOAqpZpCFra9NS0FpQ2dpS1vGzpLH6/vaEpHU51VSgCsScITAABVoVgsZmRqthSPTr08Jh1ZeD4ydWFRqb2xLv2dZ65OalxYtXT6tb62htS56Q2AKiY8AQCw6hWLxQxPzObw8MRSTDp8auH58OnQNDY9d0G/X0dTXTZ2NmdjV1M2djZlQ8fp5xs7m7Khszltjf5TGgBejT8tAQBY0Raj0qGhiRweOh2WDp2azJEzQtP4BUalrpb6bOg4HZA2dZa2vy2Gpg0dTWkVlQBgWfgTFQCAipqenc/R4ckcPDWRQwu/Dp6aXHp+6NTEBa9U6m6pf0lMOjsubehsSkuD/wQGgCvFn7oAAJRNsVjM4Nh0Dg+dHZYOnTr98fHRqRQv4PK37pb6bOpqXohJCyuUFp5v6mzOhs6mNNXXlv+bAgAumPAEAMAlm5yZy+GFw7pfGpYWX5uanX/V36ehriabu5qzqasUkTZ1NS98XHptY2dzmhtEJQBYbYQnAADOqVgs5sTo9Eu2wJ0dlgbGpi/o91rf3piNXc3ZfEZYOh2XmtLT2pBCoVDm7wgAuNKEJwCAKjU/X8zx0am8eHI8L56cyIsnS2Gp9Hw8h05NZHLm1VcrtTTUZnNX8yuGpf7OxjTWWa0EANVIeAIAWKPm5os5Ojy5EJTG8+LgmXFpPIdOTWZ67vxhqVBI+tubsqW7FJY2dTWVVimdsR2uo7nOaiUA4JyEJwCAVWpmbj5HhiaXVigtrlY6eHIiL54az+FTk5mdP/+p3bU1hWzoKIWlzd3N2dLdki3dzdnSVXq+obMpDXU1V+g7AgDWGuEJAGCFmp2bz+GhyewfHC+FpZMTZ22JOzw0kVfpSqmvLWRjZ3MpJnU3Z3NXyxmRqTkbOppSVyssAQDlITwBAFRIsVjMwNh09g+O58Bg6Zyl/QPjOXByPPsHx3N4aDJzr1KWFm+DOx2WTq9a2tzdnPXtTamtsQ0OAKgM4QkAoIzGpmZz4OR4DgxO5MDg+NLqpVJsmsjEzNx5v76hriZbupuztbvlnNvh+toaUyMsAQArlPAEAHAZztwOd2BwcbVSKTIdGBzPwNj0eb++UEg2dDRla09Ltna3ZFtPS7b2NGdrT+n5OmEJAFjFhCcAgPMoFos5NT6TfYPj2TcwdtZ2uAMLN8O92na4zub600Gpu6UUmRbC0qaupjTW1V6h7wYA4MoSngCAqjc/X8zRkcnsGyjFpX0D40uhad/AeEYmZ8/79Q11Ndna3XzOVUtbe1rS0VR/hb4TAICVRXgCAKrCzNx8Xjw5kX0DY9k/OJ69J8azf7AUlvYPjmdqdv68X7+ho2khKJ0OS4sf2w4HAHBuwhMAsGaMT88urFo6HZVKq5fGXnVLXF1NIVu6m7OttzXbe1qyvbcl23tbs723FJqa6m2HAwC4WMITALCqDE/OZO+Jsew5cUZYGhjLvsHxHB+ZOu/XNtXXZHtP60JUasm23tbs6G3J9p7WbOpqSl1tzRX6LgAAqoPwBACsOBPTc9k7UIpLi7/2nhjL3oGxnBg9/y1xXS312d5zOipt6ymtXNrR25J17Y0pFGyJAwC4UoQnAKAipmbncmBwPHtOjGfvibHsXohLe06M5cjw5Hm/dl17Y67qPb1yaXFL3Pae1nS2OMgbAGClEJ4AgLKZnZvPwVMTZ61a2jMwnj0nRnPw5ETOc+RSulrqs6O3NTv7WrOjrzVXLfza3tuSdrfEAQCsCsITAHBZisVijo1M5YXjo9l9/PSqpT0DYzkwOJ6ZuVeuS60NtblqXWt29J4OSzv6WnNVb2u6Wxuu4HcBAEA5CE8AwAWZnCmdu7T7+FheODaa3SfGlmLT6NTsK35dY11NdvS2ZkdfS67qa8tVC487+lqyrs2ZSwAAa5nwBAAsKRaLOT46lReOjWX3idHTj8dH8+LJiRRfYfFSbU0h23pazlq1tLhFbmNHU2pqxCUAgGokPAFAFZqancu+gfHsPj6aF46XVi69cHwsu4+NZuQ8q5c6mupy9fq27Oxry9XrW7Ozry271rdmW09rGupqruB3AADAaiA8AcAadmp8Os8fG81zx0bP2h53YHD8FQ/2rikkW3tacvW6tuzsa10ITaXH3tYGW+MAALhgwhMArHLFYjEnRqfz3LGRPH9stBSajpZi04nRqVf8uvbGuuxc35arF6LS1etas3NdW7b3tqSxrvYKfgcAAKxVwhMArBLFYjFHhieXotLzC6HpuWOjOTU+84pft7mrOVevb8uudae3x129vtXB3gAAlJ3wBAArzPx8MQdPTeS5YyNLkWlxq9wr3R5XKCTbe1qya31bdq1vzzXr23JNf1uuXteW1kZ/3AMAUBn+SxQAKmR+vpgDJ8fzzJGRUlw6Wnp84fhoJmfmz/k1dTWF7Ohrza51pbC0a31brlnfnp3rWtNUb3scAAAri/AEAGVWLBZzbGQqzxwZybNHR5Yenz06momZuXN+TUNtTXaua801/e1Lkema9W3Z3uv2OAAAVg/hCQCW0dD4TJ45OpJnjo7k2SMLj0dHXvEMpoa6mlyzvi3X9reXVjCta8s1/e3Z2t2culqBCQCA1U14AoBLMDE9l+eOnV699MzR0Tx7ZCRHhifP+fk1hWRHX2uu39Cea/vbc11/e67d0J7tPS0CEwAAa5bwBADnMTdfzN6BsTx1eDjPHDkdmvYNjqdYPPfXbO5qzrX9bbl2Q/tSaLp6XZszmAAAqDrCEwAsGJ6cydOHR/LU4eHSryMjeebI8Cse9N3T2pDr+ttz3eIqpg2lbXIdTfVXeHIAAFiZhCcAqs78fDH7B8eXAtOTh0fy9JHhvHhy4pyf31Rfk+v623P9ho5ct+F0aOpra0ihULjC0wMAwOohPAGwpo1OzeaZI6W49NTh4Ty9sGVubPrct8lt6mzK9Rs7csPG9tywsSM3bOzIjt7W1NYITAAAcLGEJwDWhGKxmENDk3ni4FCeWtwud2Q4+wbGz/n5DXU1uba/LTds6FgKTDdsbE9XS8MVnhwAANYu4QmAVWd+4cDvxw8N54lDQ3niYOnx5PjMOT+/v6MxN2zsyPUbSnHpxo0duaqv1W1yAABQZsITACvazNx8njs6WgpMC6HpyUPD59wqV1dTyK71bblpU+dZW+V6Wq1iAgCAShCeAFgxJmfm8tTh4aXA9PjB4TxzdCTTsy+/Va6xriY3bOzIzZs7ctOmzty8qTPX9Lelqb62ApMDAADnIjwBUBHj07N54tBwHn1xKE8cHMrjh4bywvGxzM0XX/a57Y11uXFTR27e3JmbFh532ioHAAArnvAEQNktrmR67OBQHjkwlMcOnsrzx0ZzjsaUvraG3LTpdGC6aVNHtna3pMatcgAAsOoITwAsq+nZ+Tx7dCSPvlgKTI8cGMqzR0cye47KtKGjKTdv7sytW06HpvXtjSkURCYAAFgLhCcALtns3HyePz5aikwvDuXRg0N56vDwOc9k6m1tyK1bOnPLlq7cuhCb1nc0VWBqAADgShGeALggxWIxBwYn8tCBk3n4wKk89mLplrmJmZffLtfRVJdbt3Tl1i2dS7FpU2eTlUwAAFBlhCcAzml4ciaPHDiVh/efysMHSr8GxqZf9nmtDbVL2+UWY9O2nhaRCQAAEJ4AKG2Ze/rIyFJgevhA6fDvl6qvLeTGjR25fWtXbttaikw7+9oc/A0AAJyT8ARQhQ4PTeShxZVM+0/lsYND59wyt7WnOXds7c7tW7ty+7au3LixI031tRWYGAAAWI2EJ4A1bmp2Lo8fHM4D+wbzwL7S+UxHh6de9nntjXW5bWtX7tjWtbSiqa+tsQITAwAAa4XwBLDGnBidygP7TubBfSfzwL6TefTg0MtumautKeS6/vbcvq0rdyzEJlvmAACA5SY8Aaxi8/PFPH98NPfvLUWmB/YNZu/A+Ms+r7e1IXdu785d27tz57bu3Ly5Iy0N/ggAAADKy986AFaR8enZPLz/VB7YdzL37zuZB/efzMjk7Ms+79r+tty1vSd3LcSmHb1umQMAAK484QlgBTs2Mplv7TmZb+0dzP37BvPU4ZHMzRfP+pzm+trcvrUrd+/ozp3bu3Pn1u50ttRXaGIAAIDThCeAFeTFk+O5b8/g0q/dJ8Ze9jmbOpty146e3LWtK3dt78kNG9tTV1tTgWkBAADOT3gCqJBisZjdJ8bOCk0HT02c9TmFQnL9ho68dkd37t5R2jq3qau5QhMDAABcHOEJ4AqZmy/m6SPDS5HpW3sHc2J0+qzPqa0p5JbNnXndVT157VU9uXt7j21zAADAqiU8AZTJ3Hwxjx8cyjd3DyyFppceBN5QV5M7tnYthKbe3LGtK62N/l8zAACwNvjbDcAymZ8v5ukjI/nm7oF884UTuXfPy0NTa0Nt7t5RWs302qt6cuuWzjTW1VZoYgAAgPISngAuUbFYzAvHx/LNF04sxKaBnByfOetz2pvq8rqrevL6nb153VW9DgIHAACqivAEcIGKxWIODE7km7tP5BsvlELTsZGpsz6npaE2r9nRkzdc3Zs3Xt2bmzZ1pramUKGJAQAAKkt4AjiPY8OT+foLJ/KN5wfyjRcGXnbrXENdTe7a1p03Xt2bN+7qza1bulJvRRMAAEAS4QngLBPTc7lv72C++uzxfO35E3n6yMhZ79fVFHL71q688erevP7q3ty5rTtN9c5oAgAAOBfhCahq8/PFPHl4OF997kS+9vzxfGvvyUzPzi+9XygkN23qyJuu7ssbd/Xl7u3dbp0DAAC4QP72BFSdw0MTpdD03Il8/fkTGRibPuv9jZ1NefM1fXnzNevypl196WltqNCkAAAAq5vwBKx5E9NzuWf3QL7y3PF89bkTef7Y6FnvtzbU5vU7e/Pma/rybdesy9XrWlMoOBAcAADgcglPwJq098RYvvTMsXz5meO5Z/dAps7YPldTSG7Z0pVvv6Yv37arL3ds605DnQPBAQAAlpvwBKwJkzNzuXfPYL709LF8+Zlj2Tswftb7mzqb8pbr1uXN16zLG6/uTVeL7XMAAADlJjwBq9b+gfF8+dnSqqZvvHAikzOnVzXV1RTymh09+Y7r1uWt16/PNevbbJ8DAAC4woQnYNWYmZvPfXsG88Wnj+VLzxzL7uNjZ72/oaMpb71+Xd5y7fq8aVdv2pvqKzQpAAAAifAErHBD4zP58rPH8vknj+avnz2ekcnZpfdqawq5e3t3vuO69Xnr9etyXX+7VU0AAAAriPAErDj7Bsby+SeP5q+eOpb79g5mbr649F5fW0Peet36vO369XnTNX3psKoJAABgxRKegIqbmy/m4QOn8oWnjuYLTx7Nc8dGz3r/uv72vP2G9XnHjf25fUtXamqsagIAAFgNhCegIsanZ/PV507kC08ezRefPpaBseml9+pqCnntVT15xw39eccN/dnW21LBSQEAALhUwhNwxQxPzuSLTx3LZx8/ki8/e+ysW+jam+ry1utKq5recu26dDbbQgcAALDaCU9AWQ2MTuXzTx7NZ584kq8/fyIzc6fPa9rS3ZzvvLE/33lDf15zVU/qa2sqOCkAAADLTXgClt2Rocl87okj+czjh3PfnsGccTZ4dq1vy7tu2pB33bwhN23qcAsdAADAGiY8Acti/8B4PvP44Xz2iSN5aP+ps967aVNH3n1zKTbtWt9emQEBAAC44oQn4JK9eHI8n370cP7i0cN57ODQWe/dtb17aWXT1h6HgwMAAFQj4Qm4KMeGJ/Ppxw7nU48cyoNnrGyqKSSv39mbd9+8Ie+8aUP6O5oqNyQAAAArgvAEvKqB0al85vEj+dQjh3Lf3sEUF85sKhSS1+7oyXtu25R337whfW2NlR0UAACAFUV4As5paHwmn3viSD716KF844WBzJ1xQvid27rynls35btu3WhlEwAAAK9IeAKWTM3O5UtPH88nHzqYLz59LNNz80vv3bK5M99928b8zVs2Zku3M5sAAAB4dcITVLlisZj7953Mnz10MJ9+9HCGJmaW3ruuvz3fc/umfNctG7Ojr7WCUwIAALAaCU9QpXYfH82fPXQwn3z4YA4MTiy93t/RmO+7fXO+747NuWFjRwUnBAAAYLUTnqCKnBidyl88cih/9vChPHLg1NLrrQ21efctG/PeOzbn9Tt7U1tTqNyQAAAArBnCE6xxM3Pz+dLTx/In97+YLz9zLLMLh4TX1hTy7df05b13bsl33tCf5obaCk8KAADAWiM8wRr1/LGR/Mn9L+Z/PfhiToxOL71+65bOvPeOzXnPrZuyrr2xghMCAACw1glPsIaMTM7kLx49nD+5/0Ae2n9q6fW+tob8wJ1b8kN3b8mu9e2VGxAAAICqIjzBKlcsFnPvnsH8yf0H8pePHc7kzHyS0la6t12/Pn/r7q35juvWpb62psKTAgAAUG2EJ1ilBkan8j8feDF/fN/+7B0YX3r96nWted9rtub77tic9e1NFZwQAACAaic8wSpSLBbzrb0n87F79+Uzjx3J9FxpdVNbY12++7aN+aG7t+aOrV0pFNxKBwAAQOUJT7AKDE3M5M8efDEfu3d/njs2uvT6bVs686Ov25bvvm1TWhr86wwAAMDK4m+qsEIVi8U88uJQPnbPvnzq0UNLZzc119fm++7YlB997fbcsqWzwlMCAADAKxOeYIWZnJnLnz98MH/4zX154tDw0uvX9bfnx16/Ld97x+Z0NNVXcEIAAAC4MMITrBCHTk3ko/fsyx/ftz+nxmeSJA11NXnPLRvzt1+/LXdu63Z2EwAAAKuK8AQVVCwWc/++k/mDr+/NZ584krn5YpJkS3dz/s4btueH7tqa7taGCk8JAAAAl0Z4ggqYnJnLXzx6OL//9T1nbad7w87e/OSbduTtN/SntsbqJgAAAFY34QmuoOMjU/noN/fmY/fuz8DYdJKksa4m33/n5vz4G3fk+g0dFZ4QAAAAlo/wBFfAC8dH8+Gv7M7/euhgpmdLt9Nt6mzK+9+wIz/8GtvpAAAAWJuEJyij+/cO5ne+sjuff/Lo0mt3bOvKB9+8M++8sT91tTUVnA4AAADKS3iCZTY3X8znnzya3/3KC3lw/6ml199xQ38+9JaduXu72+kAAACoDsITLJPJmbn86YMv5iNf3ZM9J8aSJA21pfObPvDmndm1vq3CEwIAAMCVJTzBZRqbms3H7t2X3/3KnpwYnUqSdDTV5f1v2J4ff+OOrG9vqvCEAAAAUBnCE1yi4cmZ/OE39ua/fW1PTo7PJEk2dzXn737bVXnfa7amrdG/XgAAAFQ3fzOGi3RybDq///U9+f1v7M3I5GySZEdvS/7+W3flvXdsTr0DwwEAACCJ8AQX7PjIVD7y1d356D37Mj49lyS5Zn1bfvptu/Jdt2x0Qx0AAAC8hPAEr2JgdCr/9a9fyEfv2ZfJmfkkyU2bOvIzb9uVd964ITU1bqgDAACAcxGe4BUMjc/kw1/dnd/7+p6lFU63b+3KP3z7rrz1uvUpFAQnAAAAOB/hCV5idGo2v/+1Pfndr+5eOsPpls2d+fl3Xpu3XLtOcAIAAIALJDzBgonpuXz0nr35f778wtItddf1t+cfv/PavPPGfsEJAAAALpLwRNWbmZvPf79vf37ri8/n+MhUkmRnX2v+0Xdem/fcstEZTgAAAHCJhCeqVrFYzOeeOJJf++wz2XNiLEmypbs5P/v2a/LeOza7pQ4AAAAuk/BEVXpg32D+7V8+nQf2nUyS9LY25GffcU1++DXb0lAnOAEAAMByEJ6oKruPj+bff/aZfPaJI0mS5vrafPDNV+XvveXqtDX61wEAAACWk79pUxUGx6bzm59/Nh+/b3/m5oupKSTve83W/KN3XJv+jqZKjwcAAABrkvDEmjYzN58/umdffvPzz2Z4cjZJ8o4b1ucX3nV9rulvr/B0AAAAsLYJT6xZX33ueH7pU0/muWOjSZIbN3bkX73nxrzh6t4KTwYAAADVQXhizdl7Yiy//Omn8oWnjiZJelob8k/eeV3e95qtqa0pVHg6AAAAqB7CE2vG6NRs/vMXn8/vfW1PpufmU1dTyN95w4787NuvSWdLfaXHAwAAgKojPLHqFYvFfO6JI/k3//vJHBmeTJK8+Zq+/OvvvjG71jvHCQAAACpFeGJVOzA4nn/zv5/IXz19LEmytac5//o9N+XtN6xPoWBbHQAAAFSS8MSqNDM3n498dU/+0189m8mZ+dTXFvKhb786P/22XWmqr630eAAAAECEJ1ah+/YM5l9+8rE8e7R0W93rrurJr7z3ZtvqAAAAYIURnlg1hsZn8m//8ql84v4DSUq31f2Lv3lDvv/OzbbVAQAAwAokPLEqfP7Jo/kXf/ZYjo1MJUl+5LVb8wvvuj5dLQ0VngwAAAB4JcITK9rg2HR+8VNP5M8fPpQk2dnXml/7wVvzmh09FZ4MAAAAeDXCEyvWpx89nP/rzx/PwNh0agrJB799Z37uHdc6PBwAAABWCeGJFefE6FT+1Scfz2ceP5Ikuba/Lf/hB2/LbVu7KjsYAAAAcFGEJ1aULzx5NL/wp49mYGw6dTWF/P237so/eOvVaayzygkAAABWG+GJFWFsaja//Okn88f3lW6su66/Pb/xvtty06bOCk8GAAAAXCrhiYp7cP/J/ONPPJy9A+MpFJIPfNtV+fl3XucsJwAAAFjlhCcqZmZuPr/9V8/lP3/p+cwXk02dTfn1v3Vb3nh1X6VHAwAAAJaB8ERFHBgcz8/88UN5+MCpJMn33b4pv/i9N6ezub6ygwEAAADLRnjiivvcE0fyT//HIxmenE1HU11+5b235Ltv21TpsQAAAIBlJjxxxUzNzuVX//Lp/ME39iZJbt/ald/+kTuytaelsoMBAAAAZSE8cUXsGxjLT3/8oTx2cChJ8sE3X5V/+jeuT0NdTYUnAwAAAMpFeKLsPv3o4fzzP300I1Oz6Wqpz3/8odvy9hv6Kz0WAAAAUGbCE2UzOzeff/eZp/ORr+1Jkty9vTu/9SN3ZFNXc4UnAwAAAK4E4YmyGBidyk9//KF8c/dAkuSn3nJ1/sk7r01dra11AAAAUC2EJ5bdoy+eyk999IEcGppMa0Ntfv2Hbsu7b9lY6bEAAACAK0x4Yln9yf0H8i8/+XimZ+ezs681v/P+u3JNf3ulxwIAAAAqQHhiWczNF/Mrn34qv/f10nlO77ihP7/xvtvS0VRf4ckAAACAShGeuGwjkzP52f/+cL749LEkyc+949r8zNt2paamUOHJAAAAgEoSnrgsBwbH84H/9/48c3QkTfU1+Y2/dXv+pvOcAAAAgAhPXIYH9p3Mhz56f06MTmd9e2M+8uN359YtXZUeCwAAAFghhCcuyaceOZSf/x+PZHp2Pjdu7Mh/+4m7s7GzudJjAQAAACuI8MRF+8hXd+eXP/1UkuQ7b+zP//2+29Pa6H9KAAAAwNnUAi7Y/Hwxv/bZp/M7X9mdJPmJN+7Iv3rPjal1iDgAAABwDsITF2Rmbj7/7H8+mj976GCS5BfedX1+6i07UyiITgAAAMC5CU+8qrGp2fwfH3swX3n2eGprCvm1H7g1P3jXlkqPBQAAAKxwwhPndXJsOj/x+/flkReH0lxfm//yY3fmrdetr/RYAAAAwCogPPGKToxO5cc+cm+ePjKS7pb6/P5Pvja3b+2q9FgAAADAKiE8cU5Hhyfzox++Jy8cH8u69sZ8/AOvyzX97ZUeCwAAAFhFhCde5sWT4/nbH7k3+wbGs6mzKR/74OtzVV9rpccCAAAAVhnhibPsGxjLj3743hw8NZGtPc35+Aden609LZUeCwAAAFiFhCeW7Dkxlh/+3W/m6PBUdva15mMffF02djZXeiwAAABglRKeSJIcGBzPj374nhwdnsq1/W35ow+8Luvbmyo9FgAAALCKCU/k4KmJ/MiH78nhocnsWt+Wj3/w9elra6z0WAAAAMAqV1PpAaisxdvrXjw5kav6WvPxD7xOdAIAAACWhfBUxY6PTOVHP3xP9g2Mlw4S/+Drsr7D9joAAABgeQhPVWpkciY/8fv35YXjY9nU2ZSPf+D1DhIHAAAAlpXwVIUmZ+by9/7wgTxxaDh9bQ352Adfn609LZUeCwAAAFhjhKcqMzdfzM994uF8c/dA2hrr8gc/+dpc1dda6bEAAACANUh4qiLFYjH/158/ns88fiQNtTX53ffflZs3d1Z6LAAAAGCNEp6qyG/91fP52L37Uygkv/m+2/PGXX2VHgkAAABYw4SnKvHJhw7mN7/wbJLkl77npnzXrRsrPBEAAACw1glPVeD+vYP5Z//z0STJh96yM+9/w47KDgQAAABUBeFpjds3MJa/99EHMj03n3fdtCG/8Deur/RIAAAAQJUQntawoYmZ/N0/+FYGx6Zzy+bO/Ob7bk9NTaHSYwEAAABVQnhao2bn5vMPPvZgXjg+lo2dTfnIj9+d5obaSo8FAAAAVBHhaY369597Jl97/kRaGmrz3378NenvaKr0SAAAAECVEZ7WoE89cii/+5XdSZL/+EO35cZNHRWeCAAAAKhGwtMa88yRkaUb7H7qLVfn3bdsrPBEAAAAQLUSntaQoYmZfOij92diZi7ftqsv//RvXFfpkQAAAIAqJjytEfPzxfzcJx7O3oHxbO5qzm/9yB2pdYMdAAAAUEHC0xrxO1/ZnS8+fSyNdTX5nffflZ7WhkqPBAAAAFQ54WkNeHD/yfz6//dMkuQXv+em3Ly5s8ITAQAAAAhPq97QxEz+4R8/lLn5Yt5z68a87zVbKz0SAAAAQBLhaVUrFov5P//ssbx4ciJbe5rzb7//lhQKznUCAAAAVgbhaRX7xLcO5NOPHk5dTSG/9cN3pKOpvtIjAQAAACwRnlap54+N5N986okkyc+/87rcsa27whMBAAAAnE14WoVm5ubzc594JJMz83nzNX350LfvrPRIAAAAAC8jPK1C/+VLL+Sxg0PpbK7Pr//Qbampca4TAAAAsPIIT6vM4weH8ttffC5J8kvfe1P6O5oqPBEAAADAuQlPq8jU7Fx+/k8eyex8Me++eUO+57ZNlR4JAAAA4BUJT6vIf/rCc3nm6Eh6Wxvyy993cwoFW+wAAACAlUt4WiWeOjyc3/nK7iTJr7z35vS2NVZ4IgAAAIDzE55Wgbn5Yv75/3osc/PFvOumDXnXzRsrPRIAAADAqxKeVoE//ObePHLgVNob6/KL33tTpccBAAAAuCDC0wp38NRE/sPnnkmS/MK7r3eLHQAAALBqCE8r3L/+8ycyPj2Xu7d350dfu63S4wAAAABcMOFpBfvS08fyhaeOpq6mkF/9/ltSU+MWOwAAAGD1EJ5WqKnZufzSXzyZJPnJN+3INf3tFZ4IAAAA4OIITyvU731tb/acGMu69sb8w7dfU+lxAAAAAC6a8LQCHRmazG9/8bkkyT9/1/Vpb6qv8EQAAAAAF094WoF+9TNPZXx6Lnds68p779hc6XEAAAAALonwtMI8fOBU/vzhQykUkl/8npscKA4AAACsWsLTClIsFvOrf/lUkuT779iSW7d0VXYgAAAAgMsgPK0gX3rmWO7dM5iGupr843deW+lxAAAAAC6L8LRCzM0X8+8+83SS5CfftCObu5orPBEAAADA5RGeVog/feDFPHt0NJ3N9fn7b9lV6XEAAAAALpvwtAJMzszlNz7/bJLkp9+6K50t9RWeCAAAAODyCU8rwMfu3Z8jw5PZ3NWc979he6XHAQAAAFgWwlOFTc7M5b/+9QtJkp9526401ddWeCIAAACA5SE8VdjH7t2f4yNT2dLdnO+/c0ulxwEAAABYNsJTBZ252umn37orDXX+zwEAAACsHUpHBVntBAAAAKxlwlOFWO0EAAAArHVqR4V84lsHrHYCAAAA1jThqQJm5+bzka/tTpJ86Nt3Wu0EAAAArEmKRwV87omjOTA4ke6W+vzgXVsrPQ4AAABAWQhPV1ixWMzvfqV0ttP737AjzQ21FZ4IAAAAoDyEpyvsvj2DeeTFoTTW1eTvvGF7pccBAAAAKBvh6Qr78FdLZzv9wF1b0tfWWOFpAAAAAMpHeLqCnj82ki88dSyFQvKBb7uq0uMAAAAAlJXwdAX93tf3Jkm+84b+7FzXVtlhAAAAAMpMeLpCRiZn8smHDiZJfuJNOyo7DAAAAMAVIDxdIZ986GDGp+dy9brWvGFnb6XHAQAAACg74ekKKBaL+aN79idJ/vbrtqdQKFR4IgAAAIDyE56ugPv3ncwzR0fSVF+TH7hrS6XHAQAAALgihKcr4I/u2Zck+Z7bNqWzub7C0wAAAABcGcJTmQ2MTuUzjx1JkvzY67dXeBoAAACAK0d4KrM/uf/FTM/N59Ytnbl1S1elxwEAAAC4YoSnMioWi/nEt0qHiv/Y66x2AgAAAKqL8FRGD+w7mb0D42lpqM133bqx0uMAAAAAXFHCUxn96YMvJkneffPGtDbWVXgaAAAAgCtLeCqTyZm5/MUjh5MkP3jXlgpPAwAAAHDlCU9l8rknjmRkajabu5rzuqt6Kj0OAAAAwBUnPJXJnz54MEnyA3dtSU1NocLTAAAAAFx5wlMZnBidytefP5Ek+f47Nld4GgAAAIDKEJ7K4DOPH8ncfDG3bunMjr7WSo8DAAAAUBHCUxl86pFDSZLvvnVThScBAAAAqBzhaZkdGZrMt/YOJkm+69aNFZ4GAAAAoHKEp2X26ccOp1hM7t7enU1dzZUeBwAAAKBihKdltrTN7jbb7AAAAIDqJjwto0OnJvLwgVMpFJJ337Kh0uMAAAAAVJTwtIy+8NTRJMld27qzvr2pwtMAAAAAVJbwtIw+98SRJMk7b+qv8CQAAAAAlSc8LZOh8Zncs7t0m907b7TNDgAAAEB4WiZffOZo5uaLua6/PTv6Wis9DgAAAEDFCU/L5HOPl853ss0OAAAAoER4WgaTM3P562ePJ7HNDgAAAGCR8LQM7t0zmImZufR3NObmzR2VHgcAAABgRRCelsFfP1Na7fQd165PoVCo8DQAAAAAK4PwtAy+/OyxJMl3XLeuwpMAAAAArBzC02U6MDie3cfHUltTyBt39VV6HAAAAIAVQ3i6TF9eOFT8rm3d6Wyur/A0AAAAACuH8HSZFs93eottdgAAAABnEZ4uw9TsXL7xwokkyVuuFZ4AAAAAziQ8XYYH953K+PRc+toac9OmjkqPAwAAALCiCE+X4Zu7B5Ikb7y6N4VCocLTAAAAAKwswtNluOeFUnh6w9W9FZ4EAAAAYOURni7RxPRcHjpwMknyhp3CEwAAAMBLCU+X6IF9JzMzV8zGzqZs722p9DgAAAAAK47wdIm+ubt0m90bdjrfCQAAAOBchKdLdM/uwSTJ622zAwAAADgn4ekSjE3N5pEDp5I4WBwAAADglQhPl+CBfSczO1/M5q7mbO1xvhMAAADAuQhPl+D+faXb7F57VU+FJwEAAABYuYSnS/DQ/lJ4unN7d4UnAQAAAFi5hKeLNDdfzMP7TyVJ7tzWVdFZAAAAAFYy4ekiPXdsJCNTs2lpqM11/e2VHgcAAABgxRKeLtKD+04lSW7f2pW6Wj8+AAAAgFeinFykBxfPd9rmfCcAAACA8xGeLtJSeNreVdlBAAAAAFY44ekinBybzu7jY0mSO7Za8QQAAABwPsLTRXjoQGm10851relubajwNAAAAAArm/B0ER4+MJTEaicAAACACyE8XYQnD5XC0y2bOyo8CQAAAMDKJzxdhMcPDidJbtrcWeFJAAAAAFY+4ekCnRidypHhyRQKyQ0brXgCAAAAeDXC0wV64lBptdNVva1pa6yr8DQAAAAAK5/wdIGeWDjfyTY7AAAAgAsjPF2gJxbPd9pkmx0AAADAhRCeLtDiiqebN1nxBAAAAHAhhKcLMDw5k70D40mseAIAAAC4UMLTBXhq4WDxzV3N6W5tqPA0AAAAAKuD8HQBHl8ITzda7QQAAABwwYSnC/D04YXwtFF4AgAAALhQwtMFeP74aJLk2v72Ck8CAAAAsHoIT6+iWCzm+aOl8HRNf1uFpwEAAABYPYSnV3F0eCojU7OprSlkR29rpccBAAAAWDWEp1fx3LGRJMmO3pY01PlxAQAAAFwoJeVVPLe4zW69850AAAAALobw9CqeO+Z8JwAAAIBLITy9iucXttrtWi88AQAAAFwM4ek8isVinl3Yaic8AQAAAFwc4ek8ToxOZ2hiJoVCcvU64QkAAADgYghP57F4o922npY01ddWeBoAAACA1UV4Oo/nFw8Wt80OAAAA4KIJT+fx3NL5Tu0VngQAAABg9RGezmPPibEkydXrWis8CQAAAMDqIzydx/7B8STJ9l7hCQAAAOBiCU+vYGZuPgdPTSQpHS4OAAAAwMURnl7B4VOTmZsvpqGuJuvbGys9DgAAAMCqIzy9gsVtdlu7m1NTU6jwNAAAAACrj/D0ChbDk212AAAAAJdGeHoF+wZLN9o5WBwAAADg0ghPr+DA4lY7K54AAAAALonw9ApstQMAAAC4PMLTK9g/IDwBAAAAXA7h6RxOjU9neHI2ifAEAAAAcKmEp3NY3Ga3rr0xzQ21FZ4GAAAAYHUSns7B+U4AAAAAl094OgfhCQAAAODyCU/ncEB4AgAAALhswtM57HOjHQAAAMBlE57O4dCpiSTJ5u7mCk8CAAAAsHoJTy9RLBZzeGgySbKpU3gCAAAAuFTC00ucHJ/J1Ox8kqS/s7HC0wAAAACsXsLTSyxus+tra0xjXW2FpwEAAABYvYSnl1jcZrexs6nCkwAAAACsbsLTSxwZKq14Ep4AAAAALo/w9BKHFg8W73KwOAAAAMDlEJ5e4shCeNpgxRMAAADAZRGeXmLxcHFb7QAAAAAuj/D0EkeGFw8Xt9UOAAAA4HIIT2coFos5NjyVJOnvaKzwNAAAAACrm/B0htGp2UzMzCVJ1rULTwAAAACXQ3g6w/GR0mqntsa6tDTUVXgaAAAAgNVNeDrDsYXwtN5qJwAAAIDLJjydYTE82WYHAAAAcPmEpzMcW7jRbn1HU4UnAQAAAFj9hKczLJ7xtK7NiicAAACAyyU8nWHpjKcO4QkAAADgcglPZzjucHEAAACAZSM8neHYyMIZT+3OeAIAAAC4XMLTGY671Q4AAABg2QhPC+bmizk1MZMk6WltqPA0AAAAAKuf8LTg5Ph0isXS8+6W+soOAwAAALAGCE8LBsemkyRdLfWpq/VjAQAAALhcCsuCgdFSeLLNDgAAAGB5CE8LFlc89QpPAAAAAMtCeFowOFa60c6KJwAAAIDlITwtGBhb3GrXWOFJAAAAANYG4WmBrXYAAAAAy0t4WnB6xZPwBAAAALAchKcFgwu32vW2CU8AAAAAy0F4WrC41a67RXgCAAAAWA7C04LBcVvtAAAAAJaT8JSkWCzmpDOeAAAAAJaV8JRkbHous/PFJElXS32FpwEAAABYG4SnJEMTM0mS+tpCmutrKzwNAAAAwNogPCUZGi+Fp87m+hQKhQpPAwAAALA2CE85veKpo9k2OwAAAIDlIjzldHjqEp4AAAAAlo3wlGR44vRWOwAAAACWh/CU5NTEdBLhCQAAAGA5CU85vdVOeAIAAABYPsJThCcAAACAchCekgxNzCZxqx0AAADAchKeYsUTAAAAQDkITxGeAAAAAMpBeEoyNF661a6rpaHCkwAAAACsHcJTrHgCAAAAKIeqD0/FYjHDk6XDxYUnAAAAgOVT9eFpfHouc/PFJElHc12FpwEAAABYO6o+PI1OlVY71RSS5vraCk8DAAAAsHYITwvhqbWxLoVCocLTAAAAAKwdVR+exhbCU1ujbXYAAAAAy6nqw9OZK54AAAAAWD7C06TwBAAAAFAOVR+exqZL4aldeAIAAABYVlUfnkan5pIkrY1utAMAAABYTsKTrXYAAAAAZVH14WnxVjtb7QAAAACWV9WHJ7faAQAAAJRH1YenMeEJAAAAoCyqPjwtrnhqE54AAAAAlpXwJDwBAAAAlEXVhydb7QAAAADKQ3iamktixRMAAADAcqv68LS01a5JeAIAAABYTsLT0hlPtRWeBAAAAGBtqerwVCwWnfEEAAAAUCZVHZ6mZuczO19MIjwBAAAALLeqDk+Lq52SpLVBeAIAAABYTlUdniZmSjfaNdbVpLamUOFpAAAAANaWqg5PkwvhqaneweIAAAAAy63Kw9N8kqSpvqp/DAAAAABlUdXFZXHFU7MVTwAAAADLrqrD04StdgAAAABlU9Xh6fRWO+EJAAAAYLlVdXg6veKpqn8MAAAAAGVR1cXFGU8AAAAA5VPV4WnKGU8AAAAAZVPV4cnh4gAAAADlU9XhyeHiAAAAAOVT1eHJ4eIAAAAA5VPVxcXh4gAAAADlIzzFVjsAAACAcqjy8FQ648mKJwAAAIDlV+XhyRlPAAAAAOVS1cVl8XDxRiueAAAAAJZdVYcnh4sDAAAAlE9Vh6eJhTOeHC4OAAAAsPyqOjxNWfEEAAAAUDZVHZ4cLg4AAABQPlVdXCaWwpMVTwAAAADLrarD06QzngAAAADKpqrD04StdgAAAABlU7XFZX6+mOnZ0oonh4sDAAAALL+qDU9TC9EpsdUOAAAAoByqNjwtbrNLhCcAAACAcqja8DS5EJ4aamtSW1Oo8DQAAAAAa0/Vh6fGuqr9EQAAAACUVdVWl9n5YpKkQXgCAAAAKIuqrS6LN9rV1dpmBwAAAFAOVRueFlc81ddW7Y8AAAAAoKyqtrrMzJVWPAlPAAAAAOVRtdXldHiy1Q4AAACgHKo4PJW22tXVVO2PAAAAAKCsqra6zC6ueHKrHQAAAEBZVG11WdpqV2OrHQAAAEA5VG14mp5zqx0AAABAOVVtdVncalfncHEAAACAsqja8LS41a7BiicAAACAsqja6rJ0q50VTwAAAABlUcXhaeFwcSueAAAAAMqiaqvLrMPFAQAAAMqqaqvL9NKKJ1vtAAAAAMqhasPT7NIZT1X7IwAAAAAoq6qtLm61AwAAACivqq0uM/Ol8FRXY6sdAAAAQDlUb3iaXThcvK5qfwQAAAAAZVW11WV2YcVTvRVPAAAAAGVRteFpZulWu6r9EQAAAACUVdVWlxm32gEAAACUVdVWl9Mrnmy1AwAAACiHqg1Pswsrnmy1AwAAACiPqq0u0854AgAAACirqq0us7baAQAAAJRV1YanGVvtAAAAAMqqaqvLjK12AAAAAGVVtdVlMTzV2WoHAAAAUBZVG55m50tb7RqseAIAAAAoi6qtLtOzVjwBAAAAlFPVhqfFFU/OeAIAAAAoj6qtLqcPF7fiCQAAAKAcqjY8zc5Z8QQAAABQTlVbXaYXb7WrqdofAQAAAEBZVW11mV0ITw11ttoBAAAAlEPVhqeZha12VjwBAAAAlEfVVpelw8XrqvZHAAAAAFBWVVtdlsJTja12AAAAAOVQleFpbr6Y+dJOO7faAQAAAJRJVVaXxdVOSVJXa8UTAAAAQDlUfXiy4gkAAACgPKqyuswu3GiXCE8AAAAA5VKV1WVxxVNNIal1uDgAAABAWVRneFo4WbzOaicAAACAsqnK8jIzW1rx1CA8AQAAAJRNVZaX2flSeHKjHQAAAED5VGV4mp4tbbVzsDgAAABA+VRleVlc8VTvYHEAAACAsqmr9ACV0NvWmA+9ZWfaG6vy2wcAAAC4IgrFYrFY6SEAAAAAWHuqcqsdAAAAAOUnPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFsITAAAAAGUhPAEAAABQFv8/o8+EXJquf28AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -611,24 +650,17 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "def running_mean(x,n=5):\n", - " conv = np.ones(n)\n", - " y = np.zeros(x.shape[0]-n)\n", - " for i in range(x.shape[0]-n):\n", - " y[i] = (conv @ x[i:i+n]) / n\n", - " return y" - ] + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -640,9 +672,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 6/MNIST Genetic Algorithm.ipynb b/Chapter 6/MNIST Genetic Algorithm.ipynb index f7ca019..5be5c6c 100644 --- a/Chapter 6/MNIST Genetic Algorithm.ipynb +++ b/Chapter 6/MNIST Genetic Algorithm.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 194, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -69,11 +69,80 @@ "output_type": "stream", "text": [ "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████| 9912422/9912422 [00:08<00:00, 1196163.77it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw\n", + "\n", "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████| 28881/28881 [00:00<00:00, 22109088.12it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw\n", + "\n", "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████| 1648877/1648877 [00:01<00:00, 1292398.41it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw\n", + "\n", "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", - "Processing...\n", - "Done!\n" + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████| 4542/4542 [00:00<00:00, 8038197.79it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" ] } ], @@ -84,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -109,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -118,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -127,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -139,7 +208,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -149,16 +218,234 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/torch/nn/modules/module.py:1511: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return self._call_impl(*args, **kwargs)\n" + ] + }, + { + "data": { + "text/plain": [ + "tensor([[2.7988e-02, 9.2476e-01, 2.8312e-02, 5.7766e-03, 3.1261e-04, 8.6586e-05,\n", + " 7.4683e-07, 1.0717e-04, 3.0326e-05, 1.2625e-02],\n", + " [1.1727e-02, 9.1829e-01, 1.5762e-02, 3.3097e-03, 3.2942e-03, 7.6944e-04,\n", + " 8.7624e-03, 6.2241e-04, 2.9262e-02, 8.2016e-03],\n", + " [7.9934e-01, 6.6551e-02, 3.5123e-02, 7.5844e-02, 6.6300e-04, 1.9790e-02,\n", + " 7.0070e-07, 1.5790e-04, 1.5448e-04, 2.3762e-03],\n", + " [8.5457e-02, 9.1158e-01, 3.6383e-04, 1.4504e-03, 2.2931e-05, 6.0192e-04,\n", + " 1.5989e-05, 2.5796e-04, 1.0023e-04, 1.4733e-04],\n", + " [9.3388e-01, 2.3687e-03, 1.1790e-03, 5.7466e-02, 6.1725e-04, 5.3604e-04,\n", + " 1.6360e-07, 1.5933e-05, 2.7593e-03, 1.1742e-03],\n", + " [4.8667e-03, 9.8599e-02, 1.7211e-01, 5.8648e-01, 1.7908e-04, 4.0506e-02,\n", + " 3.6000e-05, 4.7075e-04, 4.9481e-02, 4.7267e-02],\n", + " [2.9993e-01, 1.3598e-01, 8.0386e-03, 5.3354e-01, 2.6618e-03, 1.5952e-04,\n", + " 9.0557e-04, 1.1860e-03, 4.6532e-03, 1.2945e-02],\n", + " [2.4034e-01, 4.8383e-01, 1.1624e-01, 8.2345e-02, 4.7858e-03, 6.6922e-02,\n", + " 1.1793e-05, 2.4248e-04, 2.4327e-03, 2.8549e-03],\n", + " [7.5101e-02, 7.9598e-01, 4.6868e-03, 7.8001e-02, 1.1390e-03, 3.3590e-04,\n", + " 7.2739e-04, 1.9484e-03, 2.6317e-02, 1.5759e-02],\n", + " [3.7047e-01, 3.3841e-02, 9.9279e-04, 9.9054e-02, 4.9452e-02, 4.1406e-01,\n", + " 7.9806e-03, 5.1487e-03, 5.0587e-03, 1.3944e-02],\n", + " [3.7202e-01, 3.4961e-01, 2.9385e-02, 1.0329e-01, 6.6566e-03, 1.2609e-01,\n", + " 1.3931e-06, 8.6646e-03, 3.4321e-03, 8.4015e-04],\n", + " [4.8603e-01, 2.5375e-02, 2.8300e-01, 1.1196e-01, 1.4914e-03, 5.8615e-02,\n", + " 2.7102e-07, 3.1493e-02, 1.4427e-03, 5.9013e-04],\n", + " [9.3542e-01, 2.4221e-03, 6.5208e-04, 3.2151e-02, 1.3700e-03, 7.4728e-05,\n", + " 2.9960e-05, 1.0431e-03, 2.7715e-04, 2.6557e-02],\n", + " [2.0475e-03, 9.7593e-01, 4.8786e-04, 2.1466e-02, 1.5732e-05, 1.9375e-05,\n", + " 8.0954e-08, 5.8644e-06, 5.0159e-06, 2.4099e-05],\n", + " [3.7378e-01, 5.7183e-01, 6.3882e-03, 3.0805e-03, 3.0438e-02, 9.7105e-04,\n", + " 5.6609e-04, 2.7311e-04, 1.7953e-03, 1.0871e-02],\n", + " [1.1995e-02, 9.8133e-01, 1.7418e-04, 2.7897e-04, 5.0370e-03, 1.7871e-04,\n", + " 1.1592e-04, 5.3222e-05, 1.1610e-04, 7.1687e-04],\n", + " [9.6034e-03, 1.1875e-01, 2.2373e-01, 6.4638e-01, 8.7277e-05, 2.2660e-05,\n", + " 2.2855e-06, 1.2523e-05, 1.4015e-03, 1.9031e-05],\n", + " [4.9973e-01, 1.2228e-02, 4.4713e-03, 4.7099e-01, 1.5279e-05, 1.6875e-04,\n", + " 6.5396e-06, 9.0488e-03, 2.3536e-03, 9.8573e-04],\n", + " [8.1872e-03, 9.5637e-01, 8.5150e-03, 8.7448e-05, 2.5842e-02, 1.3225e-04,\n", + " 6.1234e-05, 3.4310e-04, 1.1949e-04, 3.4631e-04],\n", + " [2.0103e-02, 9.4294e-01, 3.1306e-02, 1.3870e-03, 2.9450e-05, 6.5246e-05,\n", + " 5.5806e-07, 4.6505e-04, 1.9382e-04, 3.5072e-03],\n", + " [8.6097e-02, 5.8410e-03, 3.8532e-01, 4.9271e-01, 1.6522e-04, 2.0271e-02,\n", + " 1.8709e-04, 5.0118e-05, 9.2893e-03, 6.5712e-05],\n", + " [5.3268e-01, 4.3336e-01, 1.5621e-02, 6.2046e-03, 9.0200e-03, 1.9586e-03,\n", + " 7.4844e-07, 5.3389e-04, 1.0674e-04, 5.1340e-04],\n", + " [5.9433e-03, 9.8936e-01, 2.3726e-03, 1.7168e-03, 1.3709e-06, 2.6123e-04,\n", + " 1.5834e-05, 2.2111e-06, 2.2714e-06, 3.1964e-04],\n", + " [2.1867e-01, 6.5368e-01, 3.2843e-03, 7.4376e-02, 1.8185e-03, 2.3459e-03,\n", + " 4.4252e-04, 1.2705e-03, 3.5658e-02, 8.4600e-03],\n", + " [1.7324e-01, 5.1678e-01, 1.6366e-01, 5.2131e-02, 3.0429e-04, 8.7195e-02,\n", + " 6.3313e-07, 4.8192e-04, 4.7221e-04, 5.7349e-03],\n", + " [3.7504e-01, 5.4302e-03, 1.6203e-03, 5.8099e-01, 4.9077e-03, 1.4154e-02,\n", + " 2.8281e-03, 1.0259e-02, 2.5350e-03, 2.2374e-03],\n", + " [1.0605e-01, 7.5449e-01, 3.3160e-03, 1.1890e-01, 1.9425e-03, 1.3317e-02,\n", + " 1.0252e-05, 5.5637e-04, 1.3834e-03, 3.2713e-05],\n", + " [1.1738e-02, 9.1099e-01, 4.1634e-02, 2.2926e-02, 9.5613e-05, 9.7395e-03,\n", + " 5.2456e-06, 5.2877e-04, 5.5144e-04, 1.7907e-03],\n", + " [3.0590e-01, 3.2414e-01, 1.5123e-01, 2.0795e-01, 5.3588e-03, 5.3890e-04,\n", + " 6.3444e-06, 3.5471e-04, 2.9403e-03, 1.5870e-03],\n", + " [7.3998e-03, 6.0460e-01, 3.4699e-01, 3.6728e-02, 6.4951e-05, 3.7104e-03,\n", + " 1.1097e-06, 1.6417e-04, 3.2014e-04, 1.6271e-05],\n", + " [3.9374e-01, 5.7836e-01, 6.6583e-03, 1.1588e-02, 4.8586e-04, 1.8419e-03,\n", + " 4.4088e-07, 6.9062e-05, 1.3612e-03, 5.9007e-03],\n", + " [7.5531e-01, 1.7531e-01, 8.7696e-04, 1.4202e-02, 2.0623e-03, 4.1171e-02,\n", + " 1.1493e-03, 4.1249e-04, 7.3885e-03, 2.1147e-03],\n", + " [9.2635e-03, 9.5223e-01, 1.0543e-02, 2.1753e-02, 1.3715e-03, 4.5919e-04,\n", + " 6.0621e-05, 5.3983e-05, 2.5742e-03, 1.6948e-03],\n", + " [1.0460e-01, 7.8333e-01, 4.5598e-02, 7.0820e-04, 5.2773e-03, 1.8351e-02,\n", + " 2.4484e-05, 2.7105e-03, 2.9514e-02, 9.8886e-03],\n", + " [7.0495e-03, 9.7865e-01, 2.0733e-03, 1.9493e-04, 9.4404e-03, 9.2086e-05,\n", + " 1.8819e-06, 1.4242e-04, 2.8870e-05, 2.3281e-03],\n", + " [9.8314e-01, 1.8584e-03, 9.6638e-04, 1.6923e-03, 1.5455e-05, 2.3965e-04,\n", + " 1.8115e-06, 7.9079e-06, 1.2053e-02, 2.7917e-05],\n", + " [2.2095e-01, 6.6557e-01, 6.6399e-02, 2.8580e-02, 2.6655e-03, 8.4691e-03,\n", + " 1.6092e-05, 8.1822e-04, 5.6342e-03, 8.9749e-04],\n", + " [2.1514e-02, 9.7244e-01, 7.2101e-04, 1.2352e-03, 3.8963e-04, 4.9260e-04,\n", + " 3.5003e-04, 5.4118e-04, 7.9781e-04, 1.5168e-03],\n", + " [1.0161e-02, 8.5247e-01, 2.3017e-02, 3.3210e-02, 4.0687e-04, 9.1576e-03,\n", + " 9.5777e-05, 1.6161e-02, 1.6017e-04, 5.5163e-02],\n", + " [7.9407e-01, 1.4356e-01, 2.3195e-02, 3.4865e-02, 1.2331e-04, 2.0640e-03,\n", + " 3.1798e-07, 1.4677e-03, 5.8093e-04, 6.8949e-05],\n", + " [1.3184e-02, 9.5788e-01, 4.6697e-03, 6.7727e-03, 6.0061e-04, 9.4261e-05,\n", + " 9.8289e-05, 2.7793e-05, 5.5947e-03, 1.1074e-02],\n", + " [3.9309e-01, 5.5534e-01, 3.5861e-02, 7.0278e-03, 8.8388e-05, 7.4785e-03,\n", + " 4.7545e-07, 3.1300e-04, 9.9259e-05, 6.9554e-04],\n", + " [8.6388e-01, 3.4587e-02, 5.1888e-04, 8.7794e-02, 4.7435e-03, 2.2924e-04,\n", + " 3.5134e-04, 1.1717e-03, 3.0010e-03, 3.7265e-03],\n", + " [9.5885e-01, 1.4483e-02, 1.4430e-02, 2.5186e-03, 1.0640e-03, 1.1394e-03,\n", + " 7.5173e-05, 7.4881e-04, 6.6155e-03, 7.4889e-05],\n", + " [4.0321e-01, 2.7564e-01, 1.5955e-02, 3.7922e-03, 1.4261e-02, 2.4205e-04,\n", + " 2.9686e-05, 1.6594e-03, 2.1711e-04, 2.8500e-01],\n", + " [1.4032e-01, 5.0354e-02, 5.5555e-02, 1.9979e-01, 2.0862e-03, 2.3895e-03,\n", + " 9.9947e-05, 2.1251e-03, 3.9977e-04, 5.4689e-01],\n", + " [3.3291e-01, 5.7686e-01, 2.2905e-02, 6.4046e-03, 1.7323e-02, 1.1186e-02,\n", + " 4.4525e-04, 1.3642e-03, 2.3058e-02, 7.5442e-03],\n", + " [8.5510e-02, 1.3548e-01, 7.0160e-02, 6.7719e-01, 6.5128e-03, 3.0660e-05,\n", + " 1.5008e-04, 3.2489e-04, 2.1409e-02, 3.2315e-03],\n", + " [7.6177e-02, 8.9778e-01, 5.9292e-03, 1.7652e-02, 2.6974e-05, 2.1610e-03,\n", + " 1.2985e-06, 1.0459e-04, 4.9049e-05, 1.1422e-04],\n", + " [1.2016e-01, 2.2813e-03, 8.4806e-02, 5.8295e-01, 1.7562e-05, 9.7919e-05,\n", + " 2.5544e-06, 3.6272e-04, 2.0928e-01, 5.0265e-05],\n", + " [7.3195e-02, 9.1937e-01, 3.2669e-03, 1.1572e-03, 2.7806e-04, 7.1638e-05,\n", + " 4.6884e-07, 5.0210e-05, 3.0845e-04, 2.2999e-03],\n", + " [1.0837e-01, 5.3273e-01, 5.7104e-03, 4.7121e-02, 1.1419e-03, 8.4297e-04,\n", + " 1.0061e-03, 7.5065e-03, 1.4168e-03, 2.9415e-01],\n", + " [6.9411e-02, 4.8520e-01, 4.2764e-01, 1.1852e-02, 2.3112e-04, 8.1047e-04,\n", + " 1.4129e-06, 1.2975e-03, 6.0124e-05, 3.5015e-03],\n", + " [9.7106e-01, 1.7418e-02, 1.3138e-04, 9.7416e-03, 7.9039e-04, 2.5621e-05,\n", + " 3.9321e-06, 3.6996e-05, 4.1360e-04, 3.7365e-04],\n", + " [8.3596e-01, 1.2149e-01, 4.3467e-03, 1.2176e-02, 8.4751e-03, 7.2550e-04,\n", + " 7.2769e-04, 1.2780e-04, 9.0044e-03, 6.9738e-03],\n", + " [9.1970e-01, 5.1068e-02, 5.3421e-04, 2.7660e-03, 1.4056e-03, 6.8603e-04,\n", + " 1.6135e-04, 7.5665e-05, 2.0696e-02, 2.9118e-03],\n", + " [8.2926e-01, 2.6309e-02, 4.8176e-03, 2.7271e-02, 1.3177e-03, 7.5973e-02,\n", + " 1.3266e-05, 7.2175e-04, 3.2527e-02, 1.7936e-03],\n", + " [4.6345e-01, 4.6971e-01, 7.3113e-03, 7.3401e-03, 1.4622e-03, 1.0859e-03,\n", + " 7.0994e-05, 7.7204e-03, 1.4915e-03, 4.0357e-02],\n", + " [8.0189e-02, 2.1937e-01, 8.7469e-02, 2.8501e-01, 4.8147e-03, 2.5399e-04,\n", + " 1.3397e-03, 7.6974e-04, 1.1075e-01, 2.1002e-01],\n", + " [7.2939e-01, 6.9914e-03, 4.7141e-03, 1.9849e-01, 1.5684e-02, 6.5705e-03,\n", + " 8.3176e-05, 5.3919e-03, 3.1843e-02, 8.4135e-04],\n", + " [5.7113e-01, 4.0609e-01, 2.9997e-04, 2.1372e-02, 9.9053e-05, 1.6626e-04,\n", + " 7.7545e-06, 2.3584e-04, 2.8327e-04, 3.1340e-04],\n", + " [1.5679e-01, 8.3852e-01, 9.8214e-05, 3.0148e-03, 4.6465e-05, 1.2274e-05,\n", + " 1.1272e-05, 9.1220e-06, 6.8115e-04, 8.1950e-04],\n", + " [2.2512e-01, 2.1756e-01, 3.9590e-01, 1.2758e-01, 2.2819e-02, 1.8866e-04,\n", + " 2.6917e-05, 1.8067e-04, 3.9653e-03, 6.6579e-03],\n", + " [9.0080e-01, 8.9011e-02, 3.4923e-04, 7.7714e-03, 8.6201e-05, 1.5651e-04,\n", + " 2.3872e-06, 7.0969e-04, 7.5135e-04, 3.5820e-04],\n", + " [9.3834e-01, 3.9562e-03, 6.8730e-04, 4.5449e-02, 1.3724e-03, 3.2233e-04,\n", + " 4.6818e-05, 1.1562e-04, 8.8452e-03, 8.6090e-04],\n", + " [2.5024e-02, 1.7527e-01, 9.9358e-03, 7.8223e-01, 1.6651e-05, 4.0892e-03,\n", + " 1.8355e-06, 9.1534e-05, 2.7056e-03, 6.3399e-04],\n", + " [9.6987e-02, 7.8229e-02, 8.3448e-02, 1.8838e-02, 6.7763e-01, 3.6586e-04,\n", + " 1.5585e-03, 2.6448e-04, 1.1736e-03, 4.1504e-02],\n", + " [9.0812e-01, 1.4756e-02, 1.9525e-02, 3.2163e-02, 3.2422e-04, 1.3074e-02,\n", + " 3.8975e-06, 4.6088e-03, 7.3792e-03, 4.3116e-05],\n", + " [5.3897e-01, 2.5086e-01, 1.3517e-02, 1.9301e-01, 1.8546e-05, 2.2942e-03,\n", + " 2.5474e-07, 3.5570e-05, 4.5148e-05, 1.2589e-03],\n", + " [1.5765e-03, 9.9736e-01, 3.0302e-04, 3.3522e-04, 3.6091e-05, 5.2803e-05,\n", + " 5.0484e-06, 4.8817e-06, 6.2249e-05, 2.6625e-04],\n", + " [7.2508e-03, 9.7563e-01, 1.6366e-03, 1.0521e-02, 7.0999e-05, 1.9370e-05,\n", + " 8.7313e-06, 4.9068e-05, 1.9358e-04, 4.6233e-03],\n", + " [8.9402e-01, 2.2917e-02, 3.1558e-03, 7.4573e-02, 5.5549e-05, 5.2072e-04,\n", + " 3.8440e-06, 7.6550e-05, 1.6247e-03, 3.0539e-03],\n", + " [8.6049e-01, 1.0594e-01, 4.3422e-04, 2.7249e-02, 2.1282e-03, 3.2550e-03,\n", + " 4.2999e-06, 3.2828e-06, 4.2082e-05, 4.5254e-04],\n", + " [3.0535e-02, 9.3298e-01, 1.7627e-03, 3.1167e-02, 4.6050e-05, 1.6266e-04,\n", + " 5.1992e-05, 1.1424e-04, 2.3063e-03, 8.7489e-04],\n", + " [9.8941e-01, 3.2990e-03, 2.0609e-03, 3.1292e-04, 4.7586e-05, 1.4192e-04,\n", + " 2.4126e-08, 1.9984e-04, 4.5177e-03, 7.1552e-06],\n", + " [1.6406e-02, 6.7993e-01, 4.7180e-03, 2.7206e-01, 2.9321e-03, 2.8106e-05,\n", + " 5.2356e-06, 6.4744e-05, 1.5481e-02, 8.3706e-03],\n", + " [8.2937e-01, 1.0095e-01, 8.9817e-03, 4.1795e-02, 2.0303e-03, 1.0243e-02,\n", + " 7.1102e-05, 1.7639e-03, 3.9207e-03, 8.7040e-04],\n", + " [1.8089e-01, 5.8664e-01, 3.3891e-02, 1.7688e-01, 2.3276e-03, 4.1789e-03,\n", + " 4.4113e-04, 2.1526e-03, 1.1401e-02, 1.1936e-03],\n", + " [8.5302e-01, 9.2270e-02, 6.0709e-03, 3.4102e-02, 1.3667e-04, 7.0179e-04,\n", + " 7.5298e-05, 2.9533e-04, 9.3186e-03, 4.0082e-03],\n", + " [2.7100e-01, 1.9653e-02, 4.3131e-02, 6.3118e-01, 6.3474e-04, 5.7471e-03,\n", + " 1.8805e-04, 8.8908e-04, 2.5241e-02, 2.3407e-03],\n", + " [9.0043e-01, 1.4801e-02, 7.2607e-03, 5.9797e-02, 5.0437e-05, 2.4524e-03,\n", + " 8.7220e-06, 6.6932e-03, 8.3556e-03, 1.4910e-04],\n", + " [6.2002e-01, 3.7474e-01, 5.2334e-04, 2.9364e-03, 1.1297e-03, 5.8717e-05,\n", + " 1.0414e-05, 1.7066e-05, 2.3252e-04, 3.2920e-04],\n", + " [8.3772e-01, 4.1029e-02, 1.6870e-04, 1.0463e-01, 2.1851e-03, 8.6542e-03,\n", + " 1.4161e-04, 4.2182e-04, 2.0276e-03, 3.0205e-03],\n", + " [1.6073e-02, 5.9784e-01, 3.6434e-01, 1.2385e-02, 1.1161e-04, 1.7163e-03,\n", + " 1.2109e-05, 6.5098e-05, 3.9280e-03, 3.5297e-03],\n", + " [2.6108e-01, 6.9634e-01, 2.3334e-02, 3.4346e-03, 1.0446e-03, 4.1833e-03,\n", + " 1.4817e-05, 8.7162e-03, 1.6325e-03, 2.1510e-04],\n", + " [1.9527e-01, 7.8920e-01, 9.2121e-03, 1.4738e-03, 1.0729e-03, 3.2465e-05,\n", + " 4.5569e-07, 3.4033e-03, 2.5517e-05, 3.0834e-04],\n", + " [9.3969e-01, 6.8670e-04, 2.9368e-02, 8.9107e-03, 1.0640e-04, 3.9312e-03,\n", + " 3.6311e-05, 6.0918e-04, 1.6460e-02, 2.0251e-04],\n", + " [5.1472e-01, 2.2245e-01, 2.1579e-01, 1.8642e-02, 3.0290e-04, 2.5452e-02,\n", + " 1.2674e-07, 9.5780e-04, 1.6812e-03, 6.0959e-06],\n", + " [6.3710e-03, 5.6793e-01, 1.8647e-01, 1.5316e-01, 2.4464e-02, 2.9308e-02,\n", + " 3.0118e-05, 6.3178e-06, 6.0691e-03, 2.6190e-02],\n", + " [8.3681e-01, 1.5193e-01, 5.5928e-04, 7.2157e-03, 1.2402e-03, 3.5531e-04,\n", + " 2.5100e-06, 1.0196e-03, 8.8791e-05, 7.7883e-04],\n", + " [3.1993e-01, 6.0267e-01, 8.7614e-05, 7.1469e-02, 1.7005e-04, 4.6948e-03,\n", + " 6.2005e-06, 4.7526e-04, 2.6460e-04, 2.3186e-04],\n", + " [1.3798e-01, 8.4928e-01, 2.1796e-03, 4.4654e-03, 6.8257e-05, 1.0480e-03,\n", + " 6.7516e-06, 5.9620e-04, 8.3075e-04, 3.5411e-03],\n", + " [5.4199e-01, 1.8051e-01, 1.6640e-03, 2.6760e-01, 6.6408e-03, 6.1406e-05,\n", + " 5.5723e-06, 5.5624e-05, 6.9276e-04, 7.7933e-04],\n", + " [7.2478e-01, 7.5089e-03, 6.5652e-02, 1.8251e-01, 5.2839e-05, 2.4028e-03,\n", + " 4.8239e-05, 2.0167e-03, 1.4941e-02, 8.6270e-05],\n", + " [6.8222e-01, 4.0088e-02, 5.2161e-04, 2.5321e-01, 1.3471e-03, 1.1130e-02,\n", + " 2.7955e-04, 3.8195e-04, 1.0686e-02, 1.3994e-04],\n", + " [1.4406e-02, 9.5614e-01, 2.8227e-04, 2.7118e-02, 5.2172e-04, 3.0296e-04,\n", + " 3.3306e-05, 6.3699e-04, 2.9382e-04, 2.6409e-04],\n", + " [6.0878e-01, 3.6382e-01, 4.8436e-03, 3.0899e-03, 9.2064e-04, 8.9208e-04,\n", + " 3.0934e-04, 2.1728e-03, 7.6586e-03, 7.5145e-03],\n", + " [5.6040e-01, 3.0436e-01, 1.4689e-02, 9.2105e-02, 1.2011e-03, 2.4623e-02,\n", + " 1.2905e-05, 6.0689e-04, 7.8789e-04, 1.2140e-03],\n", + " [6.8282e-01, 1.8538e-01, 2.3172e-03, 9.7782e-02, 2.7628e-03, 4.0170e-03,\n", + " 5.3378e-05, 1.7997e-03, 5.2222e-03, 1.7840e-02],\n", + " [5.0811e-01, 2.7065e-01, 3.5471e-03, 8.1615e-02, 8.0110e-02, 2.9781e-03,\n", + " 1.6455e-05, 9.2245e-05, 4.5950e-04, 5.2416e-02]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "model(x,torch.rand(784,10))" ] }, { "cell_type": "code", - "execution_count": 324, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -168,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -177,16 +464,16 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6" + "8" ] }, - "execution_count": 173, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -197,7 +484,7 @@ }, { "cell_type": "code", - "execution_count": 325, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -216,47 +503,7 @@ }, { "cell_type": "code", - "execution_count": 185, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([784, 10])" - ] - }, - "execution_count": 185, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pop[0].param.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 184, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([15680])" - ] - }, - "execution_count": 184, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "torch.stack((pop[0].param.view(-1),pop[1].param.view(-1)),dim=0).view(-1).shape" - ] - }, - { - "cell_type": "code", - "execution_count": 269, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -279,7 +526,7 @@ }, { "cell_type": "code", - "execution_count": 238, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -296,7 +543,7 @@ }, { "cell_type": "code", - "execution_count": 275, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +559,7 @@ }, { "cell_type": "code", - "execution_count": 304, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -321,23 +568,15 @@ }, { "cell_type": "code", - "execution_count": 305, + "execution_count": 19, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/brandonbrown/anaconda3/envs/deeprl/lib/python3.6/site-packages/ipykernel/__main__.py:2: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " from ipykernel import kernelapp as app\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 25.2 s, sys: 488 ms, total: 25.6 s\n", - "Wall time: 13.2 s\n" + "CPU times: user 55.6 s, sys: 46.2 ms, total: 55.6 s\n", + "Wall time: 20.2 s\n" ] } ], @@ -348,7 +587,7 @@ }, { "cell_type": "code", - "execution_count": 306, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -357,7 +596,7 @@ }, { "cell_type": "code", - "execution_count": 307, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -366,7 +605,7 @@ "1000" ] }, - "execution_count": 307, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -384,7 +623,7 @@ }, { "cell_type": "code", - "execution_count": 330, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -402,18 +641,9 @@ }, { "cell_type": "code", - "execution_count": 331, + "execution_count": 23, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/brandonbrown/anaconda3/envs/deeprl/lib/python3.6/site-packages/ipykernel/__main__.py:2: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " from ipykernel import kernelapp as app\n" - ] - } - ], + "outputs": [], "source": [ "pop_fit = []\n", "pop = spawn_population(pop_size=population_size) #initial population\n", @@ -427,24 +657,24 @@ }, { "cell_type": "code", - "execution_count": 332, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 332, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXmYXHd55/t5a1973yV1tyxZkuVFlpAdwCYEJyyBCZhAhmEyJFxCGPIwMziBucnNzGQyl+QmDnPJ5OYmISwhMHFWvIQMq3EMxrEDyJK8Sd60tVpS70ttXftv/jjnVFdX13Kqu6q7uvv3eR4e5KpTVae6pfM97/Z9RSmFRqPRaDSOzT4BjUaj0bQGWhA0Go1GA2hB0Gg0Go2JFgSNRqPRAFoQNBqNRmOiBUGj0Wg0gBYEjUaj0ZhoQdBoNBoNoAVBo9FoNCauzT6Beujp6VGjo6ObfRoajUazpXjqqadmlFK9tY7bUoIwOjrKiRMnNvs0NBqNZkshIpfsHKdTRhqNRqMBtCBoNBqNxkQLgkaj0WgAG4IgIntE5FEROSsiz4vIR8sc8w4ReUZETovICRG503z8DeZj1v+SInK3+dx9IvKiiDwnIn8mIu7Gfz2NRqPR2MVOhJAFPqaUugF4NfARETlccswjwBGl1K3AB4DPASilHlVK3Wo+fheQAL5lvuY+4BBwM+AHPrjeL6PRaDSatVNTEJRS15RSJ80/R4GzwK6SY2JqedNOECi3defdwNeVUgnzNV9TJsAPgN1r/xoajUajWS911RBEZBQ4Cny/zHPvFJEXgK9iRAml/Cvgr8q8zg28D/hGhc/8kJmGOjE9PV3P6Wo0Go2mDmwLgoiEgPuBe5RSkdLnlVIPKqUOAXcDnyh57SBGauibZd76j4HHlFLfK/e5SqnPKKWOK6WO9/bWnKvQaLYNJy7O8cz4wmafhmYHYUsQzLv4+4H7lFIPVDtWKfUYsE9Eeooe/pfAg0qpTMn7/legF/iVus5ao9kB/KcHn+Njf/v0Zp+GZgdhp8tIgM8DZ5VSn6pwzH7zOETkGOABZosOeS8l6SIR+SDwZuC9Sqn82k5fo9meKKW4NBfn5akYF2bim306mh2CnQjhDowc/11F7aNvFZEPi8iHzWPeBTwnIqeBPwLeYxWZzbrDHuC7Je/7aaAfeNJ8z99Y/9fRaLYH07EUyYxxn/St5yc2+Ww0O4WaXkZKqccBqXHMvcC9FZ67SElXkvn4lvJR0mg2kstzCQBcDuGbz0/wb1+/b5PPSLMT0JPKGk0LMmYKwr+4ZZBTlxeYiiQ3+Yw0OwEtCBpNCzI2u4QIfODOvSgFD5+d3OxT0uwAtCBoNC3I2FyCgTYfN+9qZ6Q7wLee14KgaT5aEDSaFmRsLs6ergAiwptvHOCJczNEkpnaL9Ro1oEWBI2mBRmbSzDSFQDgTYf7yeQU33lRT+prmosWBI2mxUhmckxGUgybgnB0uJOekJdv6vZTTZPRgqDRtBjj80aH0XC3IQhOh/DGw31854UpUtncZp6aZpujBUGjaTGsltM9ZoQA8KYbB4inczzxymyll2k060YLgkbTYozNmhFCkSC8dl83Ia+Lb53RaSNN89CCoNG0GGNzSwQ8TrqDnsJjXpeTHzvYy8NnJsnly60b0WjWjxYEzY5HKcUff+eVgl3EZjM2F2fYbDkt5k03DjATS3NqbH6Tzkyz3dGCoNnxjM8v8XvfeJGvPH11s08FMGoIxfUDizcc7MXtFN1tpGkaWhA0Ox7LXnpxafMHv5RSK2YQign73Lx2Xw/fOjPJ8sZajaZxaEHQ7HgKgpDYfEGwbK+tltNS3nzjAJdmE7w4Gd3gM9PsBLQgaHY856djQGtECJfLtJwW8xOH+xBBextpmoIWBM2O53wLpYysGYThCoLQF/ZxbLhTt59qmoKdFZp7RORRETkrIs+LyEfLHPMOEXnG3Hx2QkTuNB9/Q9GWtdMikhSRu83n9orI90XkZRH5GxHxlL6vRrMRtFINwbK93tXhr3jM8dFOXpqI6TqCpuHYiRCywMeUUjcArwY+IiKHS455BDiilLoV+ADwOQCl1KNKqVvNx+8CEsC3zNfcC/y+Uup6YB74hXV/G42mTpKZHFcWloAWEQTT9trndlY8pi/sI53Lt8T5arYXNQVBKXVNKXXS/HMUOEvJSkylVEwt364EgXK3Lu8Gvq6USojRYH0X8GXzuS8Cd6/tK2g0a+fSbAKloCfkaYkLrGV7XY2+sBeAqWhqI05Js4Ooq4YgIqPAUeD7ZZ57p4i8AHwVI0oo5V8Bf2X+uRtYUEplzf8ep8zeZY2m2VyYMQrKt+7pIJbKks3lN/V8xuYSFesHFpYgTGtB0DQY24IgIiHgfuAepVSk9Hml1INKqUMYd/qfKHntIHAz8E3roTIfUTYhKiIfMusSJ6antR+8prFYBeVb93QAEElmqx3eVCzb63IzCMX0FiIEvWdZ01hsCYKIuDHE4D6l1APVjlVKPQbsE5Geoof/JfCgUsqKyWeADhFxmf+9Gyg7JqqU+oxS6rhS6nhvb6+d09VobHNhOk5v2MuuTqOIu5lpo1Lb60r0tfkAmIroCEHTWOx0GQnweeCsUupTFY7Zbx6HiBwDPECxT+97WU4XYdYbHsWoKwD8PPD3a/kCGs16OD8TZ29PkHa/G4CFRHrTzqWc7XU5gh4nfrdTp4w0DcdV+xDuAN4HPCsip83Hfh0YBlBKfRp4F/BzIpIBloD3WEVms+6wB/huyfv+KvDXIvJbwCkM0dFoNpQLM3HefGN/QRA2M0IoZ3tdDhGhr82ri8qahlNTEJRSj1M+5198zL0YbaTlnrtImYKxUuo8cLuts9RomsBCIs1cPL0iQthUQShje12J3pBXRwiahqMnlTU7FmsgbW9PiHa/cRGObKoglLe9LocRIeiisqaxaEHQ7FjOTxuCcF1vq0QI5W2vy6EjBE0z0IKg2bFcmInjdAh7OgN4XA78bicLm+R4atle16ofWPS1+YgksyQzuSafmWYnoQVBs2O5MBNnT6cfj8v4Z9Dud29ahGDZXo/UaDm16A3p4TRN49GCoNmxWC2nFpspCLVsr0vpbdP2FZrGowVBsyPJ5xUXZmJc1xsqPNYe2DxBqGV7XcqyfYUuLGsahxYEzY5kIpIkmcm3TIRgx/a6mF7tZ6RpAloQNDsSq+X0ulYRBBu218V0B704RKeMNI1FC4JmR2KtzVyRMtpUQahte12M0yF069ZTTYPRgqDZkZyfieN3O+k3i7NgCEIinSOzCRbY9bScWvSFtX2FprFoQdDsSC6YHUbFU8Edgc0ZTrNsr+sVhN6wjhA0jUULgmZHcmEmzt7e4IrHNmta2bK9tjuDYGFECLrLSNM4tCBodhypbI7Lcwn29awUhLaCBXZtQXj68gJfe/ZaQ87Hru11Kb1hLzOxNLl82d1SGk3daEHQ7DguzyXIKypGCHYM7v70sXP8xt8/35DzsWt7XUpf2Ecur5jfxB0Omu2FFgTNjsMytdvbE1rxeD0po6lIitl4qiE7mOuxvS7GGk7Tm9M0jUILgmbHsWx7vTJC6KhDEKZjKZSC2fj6787rsb0upjCcFtOCoGkMdlZo7hGRR0XkrIg8LyIfLXPMO0TkGRE5LSInROTOoueGReRb5uvPmBvUEJEfF5GT5mseF5H9jfxiGk0lzk/H6Ql5ChGBRZtNQVBKFe7KG3F3Xo/tdTF9YWu3si4saxqDnQghC3xMKXUD8GrgIyJyuOSYR4AjSqlbgQ8Anyt67kvAJ83X3w5MmY//CfCz5mv+EvjPa/8aGo19LpSY2lm4nQ6CHmdNQYincyyZttPr7fJRSnF5bqnu+gHoCEHTeGoKglLqmlLqpPnnKHCWkpWYSqmYtUMZCALWPuXDgEsp9XDRcQnrZUCb+ed24Oo6v4tGY4tSl9Ni2v3uml1Gxb3/6x0Mm4gkWcrkKp5PNfweJ2GvS9cQNA2j5k7lYsx0z1Hg+2WeeyfwO0Af8Dbz4QPAgog8AOwFvg38mlIqB3wQ+JqILAERjOhDo2kqkWSGmVhqhWVFMW027CuKUzTrvRifm1re2rYWesNeHSFoGobtorKIhID7gXuUUpHS55VSDyqlDgF3A58wH3YBrwM+DtwGXAe833zul4G3KqV2A18APlXhcz9k1iVOTE9P2z1djaYsF6bLF5QtOgLumm2nxRfg9aaMzpmeSvsrCFQtesNepnWEoGkQtgRBRNwYYnCfUuqBascqpR4D9olIDzAOnFJKnVdKZYGHgGMi0otRc7Aijb8BXlvh/T6jlDqulDre29tr71tpNBUo53JajB2DOytl1NsAL6Fz0zHCXlehHlAvvXpaWdNA7HQZCfB54KxSqtJd/H7zOETkGOABZoEfAp2mAADcBZwB5oF2ETlgPv5GjNqERtNUzs/EcQgMV7CJsCMIU9EULodwsD+8bkE4Px3nur5Q3S2nFn1hn/Yz0jQMOzWEO4D3Ac+KyGnzsV8HhgGUUp8G3gX8nIhkgCXgPWaROSciHwceMQXjKeCzSqmsiPwicL+I5DEE4gON/GIaTTkuzMTZ3RnA6yq/d6Dd72ZhqfpswXQ0RU/IS1+bl/PnYus6n3PTMV5zXfeaX9/X5iWezhFPZQl66yoJajSrqPk3SCn1OFD19kUpdS9wb4XnHgZuKfP4g8CD9k5To2kM56djVTt62v1ukpk8qWyuomhMR1P0tXmNu/NYCqXUmu7wY6ks1xaT7OtbW/0AoDe0vDlNC4JmvehJZc2OQSlVcQbBoj1g2EdUSxtNR1P0hrz0hb1kcop5G2Z45bAK3PvW2GEERoQAa29//R/ffoknz82u+fM12wstCJodw1Q0RSKdq3oBtmNwNxVN0Rv2Fl2M11bUtTqM9q2xwwjWt1s5lc3xB4+8zFee1iNAGgMtCJodg9VhNFojZQSVI4RcXjEXT9EX9hZZR6zt7vz8dKxqgdsOhXNYgyhdmV9CKVjQbqkaEy0Imh2DdeHrDlZu8WyvsRNhNp4ir4w784Lb6BrTNeemDVO7SrUKO3T43bgcsqZzuGTuYZhrgEFfJbK5PL/5lecLYqxpbbQgaHYMkaUsAGFf5eJrrQjBigYalTJaT7oIwOGQNa/SvGwKgp2FQGvl3HScP3/iIo++MFX7YM2mowVBs2OIJI0LX5vPXfGYWhbY1pRyb9hHwOMitEYvoVxecX4mvq4OI4u1DshdMhfzNHPBzsVZIzKIpbJN+wxN49CCoNkxRJPGRSlUJUKoZYFt3Ylb6aK+Nd6dX11YIp3NV5yYroe1nsNYUYSw7E3ZWC5pQdhSaEHQ7BgiyQwhrwuno/LMgNMhhL2umoJgdfes1TriFavDqEERwvQazsFa3ZnO5Umkc+s+j3JcmDE+wxJjTWujBUGzY4gms7RViQ4s2vxuFivk1aejKcI+Fz63UQhea7rm3NT6W04tesM+ZuPputZ5KqUYm0sQNofZmpU20hHC1kILgmbHEE1mCFepH1hU8zOaNmcQLPrCPqYiqbpTLuem43QG3HTVuUe5HH1hb93rPKdjKZYyOW7Z0w40r7Bs1SliyeYVrjWNQwuCZscQWcpW7TCy6AhUFoSpaLJgFwHGpPBSJke8zpTL+elYxZ0M9bKW4TSrw+jI7g6gORFCMpPj6uISoCOErYIWBM2OIZrKFIrG1agvQjBbT+vca3xuOr4uy4piluch7J+Dded+ZI8hCM2YRbg8l0ApENE1hK2CFgTNjsFuhFBLEKzpYCieFLZ/d76YMLa2NaJ+AMsRQj3tr2NzCUTg5l3NSxldNEXnup6gFoQtghYEzY7BqCHYE4SFMoIQT2WJp3MrI4Q1mMudmzEKypuZMhqbTTDQ5itEF81IGVkF5Zt2teuU0RZBC4Km5Xn4zCQvT0bX9R5KKbPLqHbKqM3vJp3Nk8ysrAuUtpzC2lJGyx1GjUkZeV1O2v3uukRpbC7BcFcAl9NB2OdqUoQQp93vZnenn1gq27RZB03j0IKgaWmUUvzy35zmf3z75XW9z1ImRzavbHUZdQTKD6dZU8p9RYLQ7nfjcTnqujs/PxPH7RT2dK3d1K6UeofTLEEA6Ax4mhIhXJxJMNoTJOR1k8srkhn7bbGazcHOCs09IvKoiJwVkedF5KNljnmHiDwjIqdF5ISI3Fn03LCIfMt8/RkRGTUfFxH5bRF5yXzuPzTyi2kaSy6/OXd3c/E0sVSWM9ci63ofK4dtN2UEZQShTIQgIvSG6ptFODcVY6Q7iNvZuPuxegbkltI5pqIpRrotQXCveadDNS7OxhntDhQmw6Mp3Xra6tj5G5kFPqaUugF4NfARETlccswjwBGl1K0YqzA/V/Tcl4BPmq+/HbBcrt4P7AEOmc/99Zq/haapKKX4iU99l3v++lRdw0+NwLJXuDgbX1ceOmr5GNnsMoLVgmClhYoFAYw6Qj0dPuemYw2xrFhxDmFvIYKpxeV542dqRSgdAU/DLbBT2RxXF5YY6Q4Wht9iurDc8tQUBKXUNaXUSfPPUeAssKvkmJhaThAGAQVgCofLXKNpHZcwj/sl4P9WSuXN57QdYouykMhwYSbOQ6ev8u//6hSZNYpCKpvj8Zdn+Mvvj5G3GXFcnjf62JWCF9YRJSzacDq1qGSBPR1L4XQIXYGVw2R9Ya/tDp9MLs+l2URDLCtWnEOb/QE5q+V0OWXkbnjKaHx+ibzCiBAsQdCF5ZanriWsZrrnKPD9Ms+9E/gdoA94m/nwAWBBRB4A9gLfBn5NKZUD9gHvMV83DfwHpdT6EsWapmDdpd91qI+vPzfBR+47yf//r4/hcdUOMMdmE3znpSm+++I0T5ybZcks1N4wGObocGfN11sDVABnrkU4Ptq1pu9QiBDWmTLqCXlwlHgh9YV9/PP5OVvncXkuQTavGtZyatEb8pLK5okks4Xzr4T1+xzpNqKUzqCH+bi9dM7ZaxEef3mGX/zR66oed7FoGVEma9xA6Aih9bGdxBSREHA/cI9SatWtmlLqQaXUIeBu4BPmwy7gdcDHgduA6zBSRQBeIKmUOg58FvizCp/7IbMucWJ6etru6WoaiLVI5Vffcojf/KnDfOvMJL/0F0+Rypafzp2NpfiDb7/MXf/9O/zoJx/lN/7+eV6eivEzx3fzW3ffBGB7YcrYbIKekIeuoIczV9ceIVg1BDtdRh3+8nuVp0qG0iz6wl4WlzKrupLKca4Be5TLYbW/2iksj83GCXlddJrF886Ah1gqSzpbO/L72xOX+e2vna35OdYMwmh3sKiGYE8QTo3N848vTNo6VtNYbEUIIuLGEIP7lFIPVDtWKfWYiOwTkR5gHDillDpvvs9DGHWIz5vP3W++7EHgCxXe7zPAZwCOHz+u+9Y2AesufbgrwMGBvbicDv7zQ8/xoS89xZ++71UFo7dXpqJ8/vELPHDyCqlsnjv39/Bzrxnh9Qf7Covt09k8v/H3zxXuIGthdcMEPK51FZatXQh2uozCPhci5SOEvnKCUHQxrtU5ZO1RbtQMgoVlpzEVTbK/RjrK+pmKGJGOJQwLS+kVQ3flsITg5Ng8b75xoOJxl2bjhH2G6FiRgd0I4Y8ePce56Rh3Heq3dbymcdQUBDH+1nweOKuU+lSFY/YD55RSSkSOAR5gFpgHOkWkVyk1DdwFnDBf9pD5338GvB54ab1fRtMcxmYT9Ia9+D3Ghf/fvHoEt1P4tQee5YNfPMEHX7eXLz5xkUdfnMbrcvDTx3bzC3fuLXth8rgc7O4McL4OQbhttJO+Nh9//sRFsrk8rjV059TTZeQwLbAjZQThpqH2VccXTyvXFISpGD0hb820Tr3UEyFcmktwoC9c+O8OsyaykMjUFASrm+rkpeqCcHE2wWh3EBEpRAh2awiLS+mmLu3RVMZOhHAH8D7gWRE5bT7268AwgFLq08C7gJ8TkQywBLzHLDLnROTjwCOmsDyFkR4C+F3gPhH5ZSAGfLBB30nTYC7NxQsFSIv33DaM0+HgP375aR5/ZYaekIdfeeMBfvZHhukOVd5ZDEZe2dqkVY10Ns+1xSWGu3ZxXW+IdDbPuek4BwfCNV9bSjSZwekQAh57+4vbA+4VnTe5vGImVj5ltDwpXLvT6PxM4zyMVpxDyGeeQ3VByOcV43NLvPGG5bvvTlMQ5m34GRVHCNW4OBMv+CQFvcbPPGrT8TSylGVxKUM+r1bVazTNpaYgKKUeB6r+VpRS9wL3VnjuYeCWMo8vsFx81rQwl+eW+JG9q4u5737VbrpDHuZiad52y2AhdVSL63qCnLw0j1KqkLYox9UFo1NlT1eAG4faADhzbXFNgmD5GFX7vGJK/Yzm4mnyanXLKdi3r1BK8cpUjLfdMljHmdujze+yNSA3EUmSzuVXRDLWIJ6dWQSr9faZ8UXS2XzZxoJ0Ns/4fIJ33DoEGJPUHpfDdg1hcSmDUkZU1x5obCSlqY6eVNZUJZ3Nc3VxqWIq5A0H+3jXq3bbFgMwWhFjqSwzsep3pGNFtYu9PUG8LseaC8vRZMZWQdmiw+9ZIQilqzOL6Q56cUhtc7m5eJrFpUzDZxDA/oDccofR8u+zM2iljKr/Piwvp1t2t5PK5ivWdK6YQm51MQGEvS7bNQTr567TRhuPFgRNVcbnDQvj0pTRehg1L4i10kYFQeg2PHcODYTXXFiOJu05nVqURgjW0Fe5CMHpEHpCtYfTCh1GDZ5BsOhrq21fMVYygwDLReVaEYL13lbt4OSl8mkj6/e6t2f5M0I+l60aQjqbL7QmlzMY1DQXLQiaqpS7o1wvVsdRrdbTy3MJPE4H/Wah8/BQG2euRtZkkhax6XRq0eZ3F4bZoPKUsoUxrVz9Ymx1GO1vcIdR4Rxs2FeMzSVwOoShDn/hMb/bSOnUihCs73fL7naG2n0V6whWB1lxhBCyGSFEiuoMjZ6e1tRGC4KmKsUtp41iV4cfl0Nqtp6OzSXY3eUvFBYPD7Yxn8gwUecyGsC206mFESGkC+JTLUKA5VWa1Tg/HcPrcqy4GDcSO/udx+YSDHX4VvgoiRjT17WW5Fhi0xf2cXSks2KEcGk2QcjrortoPWjI67JVQyju7Kq0k0LTPLQgaKpyaTaBz+2oeCFcCy6ng+GuQM0IodiRE4wIAeD5K/WnjSJL9vYpW7T73WRyqpC+mI6mCHldBDzlo4w+Gxfjc9Nx9vYEcTapc6Yv7GMhkak4MAhGy2k5ce+wYXBnCV5v2Murhju5uphkYnG1OF+cjTPSHVhRwA/77EUIxSJgp+tJ01i0IGiqUjrE1ChGe4J1C8KhgTZEWFMdod4aQqkFdqUpZYu+sJfZeKqq+d+56VjDLStKzwHg2kLlCOryXILhrtVF7U4bBndT0RRup9AZcHNsxLAdKZc2ujSbKNSJLMI+t60aQrEg6BrCxqMFQVOV0otyo9jbE+TSbKJiPWAxkSGazK747KDXxd7uYN2dRvm8IpbO2nI6tSj1M5qOpgrTwOXobfOhFMxWuKtNZXNcnks0ZQbB4tXXdQPw1WevlX0+mswwF0+X/X12Bmsb3Fk/AxHh8GAbXpdjVdoom8tzeS7BaEnNKeS1V1SOFEURzVjao6mOFgRNRZRSjM0lGrrIxWK0J8hSJsdkhby7Vcwu/ewbhtrqjhCiqSxK2TO2sygIgnlRmomm6G2rHiFA5dbT89Nx8qrxlhXFjPYEuX20iy8/NV5WaKs1CBgW2DVSRtEkvW1Ggd/jcnDL7naeKokQriwskc2rFQVlMLuM6kgZ+d1OXUPYBLQgaCoyG0+TSOcYaUaE0F2906ggCJ0rP/vwYBtjc4kV3Si1iBZ8jOoXhIXilFGVCKEgCBW6fB590XB3v63MgF8jeffx3VyYifNUmYJvuZZTi86AsUe6WgdXqZfTseFOnr8SWVGzKDa1KybkdZHO5avWN2C5qDzcFdBzCJuAFgRNRQq++Q1sObUYNXvUK80iLEcIKztyrMLy2TrSRvU4nVoUp4wS6SyxVLZ6DaGtunXE15+d4MieDnY1qcPI4m03DxLwOPnyU+Orniue6yilM+Ahl1crUjalTJUIwtHhTtK5PM8VFfmXba9XfoYlxtEaUUJkKYPH5aCvzatTRpuAFgRNRZrRcmox1O7H43JUjRC6gp5VnUE3DloWFvYFwbrrrKvLyCwqR5YyzESNO9VyU8oWy26jqwXh8lyCZ68s8tabKpvBNYqg18Vbbx7kfz1zjUR65cX30lyCjoC7rDAuG9yVvytPZ/PMxdMrRPHYiOFVVFxHuDgbJ+BxroqmQja3pi0uZWj3u+kIeHTKaBPQgqCpiHVHubuz8YLgcAgjVVpPL1eoXfSGvfSE6tuNUI/TqUXI48JhWmBbaaBqEYLH5aAz4C6bMvrGcxMA/ORNjfcwKsfPvGo3sVS28LkWl+cSFdN/1rRypVmE2bhl3bHshtoX9rGny7+i0+jSbIIR0+W0GLtb0yLJDG2mbbYeTNt4tCBoKnJpNsFAm68un6J6GO0JVhxOq9TdJCIcHmqvK0KwlrvX02XkcIg5rZwppIFqzWJUGk77+nPXuHGorSmpt3LcvreLke4Af3diZdro0mzlBoFlP6Pyd+XW9yqNko4Nd3JybL5Qe7g4G19hWWERspkyKkQI5s/e7qpVTWPQgqCpyOUmtZxaXNcT5NJcYtU/+mwuz5WFJYa7yufbDw+28fJkzNaGLzCcTqG+CAGW/YysKeVauwLK2VdcW1zi5NgCb715Y6IDMETz3cd28+T52ULaz/qZVrIgKVhgV7grt75XX9tqQZiMpIzuIrPltLTDCCDsNcS4VoRgCUJ7wENe1RYQMIrlr/mdRzhvWoNo1o4WBE1FxuYSTb2rHe0JFtxUi7m2mCSXVxXF6PBQG+lcvuANVIu1dBmBIQgLCSNCcAh0FVkxlKM3tNpc7ptm2uYtG1A/KOZdr9qNCIXi8tWF6j/TWgZ3xbYVxbyqMKC2wLXFJJmcWjWDABQtyaleF4gsGfMiHf7lLW61OHNtkWuLSZ44N1vzWE11tCBoypLM5JiIJJsaIVitiRdnEiserzSDYHHYLCw/b7OOEE1m8boceF31pb6sCGEqkqI75K1pOdFruo0Wt25CrLhOAAAgAElEQVR+7bkJDvaHmzqhXI6hDj937u/hy0+Nk8+rIivx8oNxbT43DqlcVJ6KpBCB7tBKUTw0EMbvdnLy0nyhY6xchFBvUbkzaAqCjU6jadNG/ew6VqxqDGoKgojsEZFHReSsiDwvIh8tc8w7ROQZETktIidE5M6i54ZF5Fvm68+IyGjJa/9QRHSs12KMzzevw8ii4Hpa0no6VqO7aW9PEJ/b/m4Ew+m0/kUr7X43ETNlVG0GwaIv7COdyxcuYtPRFD+8OLfh0YHFu1+1mysLS/zz+VkuzRk/40oRn8MhtPsrTytPx1J0BTwrTPHA8KW6ZXc7p8bmCzMIe8vseyi0nVZJGeXzimjSTBn5q6ewipk1U3paENaPnQghC3xMKXUD8GrgIyJyuOSYR4AjSqlbgQ8Anyt67kvAJ83X3w5MWU+IyHGgYx3nb4vz0zGeeGWm2R+zrajWs94o+tu8+N1OLkyvFgSXQxhsL19DcDqEQwNtnLm2aOtzIsksbf760kVQVEOIplblzsuxPJxmXKC++fwESrGh9YNi3nzjAGGfi797apyxuQRupzDQVrkO0hnwVE4ZRSp7OR0b6eT5qxFeuBbB53aUbc/1uhy4nVI1Qoils+SVEa2UeklVY8YUhBcmoroIvU5qCoJS6ppS6qT55yhwFthVckxMLcfJQUABmMLhMtdoWsclzOecwCeB/7NB36Uiv/7gs/zHLz9DTv9lsc2lKlOtjUJEGOkOrBpOG5tLsLvTXzVFc2MduxEMY7u1RQhW26m9CGHltPI3npvgup4gB/o3Nl1k4XM7efuRIb7+3DXOXI2wpzNQ9WfaUaXVczqaLAzflfKq4U6yecU3nptgtEzLKRi/61p+RpZNSHtxDcFGysiaE0mkc1yaS9Q4WlONumoIZrrnKPD9Ms+9U0ReAL6KESUAHAAWROQBETklIp80hQDg3wFfUUqVd+JqIO9/7ShXFpb49tnJZn/UtmFsLkHA41zhad8M9pZpPa00g1DM4aE2IsksVxaWqh4HxnBZPT5GFu1+N9m8YrLK3XEx1gVzKpJiPp7myfOz/OTNAw13iq2Hnzm+h2Qmz/denqn5M+0MeJiLVyoqpyoO5h0dNoL82Xh6lWVFMbX8jCw7kja/a9k6xI4gxFKF43XaaH3YFgQRCQH3A/copVb91JVSDyqlDgF3A58wH3YBrwM+DtwGXAe8X0SGgJ8B/tDG537IrEucmJ6etnu6K/iJG/rZ1eHnz//p4ppevxOxWk6bfTHb2xNkbC6xwjbaTrurVVi2U0eod5+yRUfRgvdqU8qlx0xFUzx8ZpJcXm3YMFoljuxu53pzZWetrXcdFSyw83llOJ1W+Bl0h7yFzqKRMjMIFiGvu2oNwUoPtfnduJwOwj6XrRrCTCzFj+ztwumQNe/c1hjYEgQRcWOIwX1KqQeqHauUegzYJyI9wDhwSil1XimVBR4CjmFEGfuBV0TkIhAQkVcqvN9nlFLHlVLHe3t77X6vFbicDt73mhGePD/LCxP6L4wdLs02dwbBYrQnSDavCnf6kWSG+USm5mcfGmjDIfY6jSJ17kKwaC8aZOutMYMAhm1E0ONkKprka89dY0+XnxtN76XNQkT4meO7gdrpv64KFtgLSxmyeVVVFK39CNUihLDXVWgBLodlMWL93DsCbps1hDS7Ov1c1xPUEcI6sdNlJMDngbNKqU9VOGa/eRwicgzwALPAD4FOEbGu5HcBZ5RSX1VKDSilRpVSo0BCKbV//V+nMv/qtj343A6++MTFZn7MtsCyvd4IQSjdr2zXP8nvcbK3J2hrYjla5z5li7YVgmBvY1xfm49XpmL80ysz/ORNg5uaLrJ417Hd3Lqng9fu66l6XEfAQzKTJ5lZ6UhaaQahmGPDhiBUi0JCvuo1BGuA0IrmOvy1l/YkMzliqSw9IS+Hh9q0IKwTOxHCHcD7gLvMttLTIvJWEfmwiHzYPOZdwHMichr4I+A9yiCHkS56RESeBQT4bBO+R006Ah7eeXQXD566olfz1WAqmiKVzddMMTSC0e7ygmBnB8PBgTDnpqp3LKezeZKZ/JpSRsURgp2UERjC8fgrM2Ryip/cpHbTUrpDXh76yB0Fp9hKVJpWLthWVOm0evutQ9zzE9dzfKSyvXfIW72GYEUDlrFgh2nJXY2CrUjIyw2DbVxdTGoPpHVQ87ZJKfU4xoW82jH3AvdWeO5h4JYar9+QNoyff+0of/WDy/zNict8+PX7NuIjtyS1BsMaSU/IQ8jrKhSW62l3HWjz850Xp1FKVbwTX+uUMpSmjGxGCGEvSsFQu49b9zS9o7qhFKaV45kVLb8F24oqP4M2n5t7fuJA1fevGSEkMzjEMBYE4yZufL5604C1oa475KG/3YhgzlyL1IyGNOXZUZPKhwbaeM113fzPJy9V3X2706m2SKXRiAijPQEumJ85VsWiuZTBdh+JdK5qoXLZ6XQtRWXjjjngcRL02hMUK63y5ps2t7toLVSywLbj9moHo4ZQPUII+9w4zNbYDn9tx9MZU6x6Qt5Co8HZa9F1nedOZkcJAsD779AtqLW4NJdApDm21+XY2xMqihCWVm1Jq4R1RzixWHmpfGE5Th1OpxZBjxOnQ2yni8AYtoPNG0ZbD5ZdROlw2nQ0RcjrIuCpP8oqJuR1kcrmK5oSWrYVFlZRudqwmTWU1hP2mtboXl1HWAc7ThCsFtQv6BbUilyeSxQW2GwEe7sDjM8nSGfzdTmsWlO31QQhso6UkYhh51DPnfFPHRniV99yiFeZRdathFVDmFsVIVSeQagH63cQrxDRRZYyKybKOyzH0yoRoCUI1rzMDYNh3Xq6DnacIDgdws+/doTvX5jTf3EqMDaXWLW6spmM9gTJKxibizM+X3sozWLQihAi1SKEtQsCGKJTTy1lqMPPL/3YvkLaYythzV0slDRdTNsczKtFyFfdAntVhFAYTqucNpqJpQn7XIWdHYeH2nhlKkZGp4TXxI4TBID3HB/G73bqFtQKXJpNMFLBFbMZjJqtp0+emyWTq2zRXIrV9VI9Qqh/n3Ixn/354/yXt5Vad21PvC4nAY9zVcpoqoptRT1YjqeV6giRZHZVygiqTyuXGg8eHqzPGl2zkh0pCO0BN+88touHTl+puDJwp5JIZ5mJpTZsuxfAXrP19LsvGZPodgXB6zKsNapFCNaw01oFYVeHv7BNbCfQWWZaeSpqz+21FmFf9TWai0srJ8oLglCl9XQmmqKn6NxuKBSWdfS/FnakIIDhb5TK5vnrH45t9qm0FJfnjDa/jWg5tegMemj3u3nSXHBST3dTf5vPVlE5tMaU0U6js2RaOZbKkkjnbLm91mJ5r3L5C/zqonL5rqdiZmIpesLLgn1dTxCPy741umYlO1YQDvSHuWN/N3/x5CVtmVvEJWvJyQYKAhhpo3g6h9MhDHbYT08MttcWhJDXVXO5jcag1AJ72sYMgl2q7VVOZnKks/kV3WB2HE9nYmm6g8vn5nI6ONgf1q2na2THCgLA248McXUxuWpBy06m1nKaZnGdWUcY6vCtWsJSjf52X/WU0RptK3YqpQZ3U5HathV2CVepIUSKjO0sajmeprN5FpcyK1JGYHQanb1mzxpds5IdLQiW/8qpsYVNPpPW4fJcgrDPtcLpcyOwLCzqFaKBNh9z8TSpbK7s82t1Ot2pdAbcKyKEwpRyI1JGVWoIiyXGdmDc7Ye9rop7la36X3HKCIw6wmw8XTh3jX12tCDs6w0R9ro4NTa/2afSMlzaINvrUkZN2+S6BaF9eQdBOSJLa3M63al0BDwsLmUKk/xTRV5B68XvduKQ8nuVC7sQSn5XHUF3xQihMJRWcm4Fa3RdWK6bHS0IDodw63CHjhCK2CiX01Is19N6i9nWcNq1CnWEaEqnjOqhs2R15VQ0icfpaEjEWG1rWrkIAao7nk5XEIRDutNozexoQQA4uqeDFyYiJNKVpyF3Crm8YnxuaUNbTi0O9If5yZsG+PFD/XW9rtZwWjSZXZNtxU5l2fHUuEBbi3EaFTGGfe4KNQTjsVWCUMXxdKZC9NLud7Orw687jdaAFoThTvIKnhm3t7B9OzMZSZLO5TclQvC5nfzJv3kVBwfCdb1u2c+ovCtmZElHCPWwPAxm3JVX25S2FsI+V9m208UyRWUw91pXTBmVryEAejfCGtnxgmBZFOu00XKIvb93c5bCr4Ww10XA42RicXUNQSlFNJldk9PpTqU0QpiKNMbHyKJWyqi0AcBogy2fMpqJpfC7nWVN924YbOPCTHzVsh9NdXa8IHQGPeztCerCMvD05QWcDuHm3e2bfSq2EREG2n1MRFZHCMlMnmxe6S6jOugKrlySMxVNNjRCCPnKL8mJLGXwu52rDBWrOZ6WDqUVc3gwTF7BixN6HqEe7KzQ3CMij4rIWRF5XkQ+WuaYd4jIM+Y2tRMicmfRc8Mi8i3z9WdEZNR8/D4ReVFEnhORPzP3Nm8KR/d0cOrywo7vWz51eYED/eF12xxvNAMVppXX43S6UylOGaWzeeYTmYbMIFiEvK6y7qWlU8oW7X53RcfT2Vh6VUHZ4vCgcVOjO43qw06EkAU+ppS6AXg18BERKXX7egQ4opS6FfgA8Lmi574EfNJ8/e3AlPn4fcAh4GbAD3xwzd9inRwd7mA6mioset+JKKV4+vICt+7ZOtGBxUC7j8kybafrdTrdiYS8LlwOYT6RKbR1NmIGwSJcIUKoJAiWfUW5OsJMLFVREHZ3+gl5XQ2rI/zw4hz/xxd+wFJ6e6egagqCUuqaUuqk+ecocBbYVXJMTC3fXgcBBWAKh8tco2kdlzD//DVz77ICfgDsbtB3qpujekCNCzNxIsksR3ZvrbWPYEQIk5HkqrRCZB3LcXYqIkJHwMN80WBXo2sIZbuMkit3IVgU1nqWqSNUEwSHQzg0EG6IIGRyeX7t/md49MVpHt7mi7XqqiGY6Z6jwPfLPPdOEXkB+CpGlABwAFgQkQdE5JSIfFJEnCWvcwPvA75R/+k3hoMDYXxuR8sLwg8uzFXsuFgvT48b3/3W4a0nCIPtPrJ5xUx8ZZSw7HSqI4R6MKaV0w21rbAIed0sZXKrVtguLmUrRAjlHU9zecVcPE1vqLITrdFpFF23V9kXn7jIuek4PreDr5y+uq73anVsC4KIhID7gXuUUqtkVyn1oFLqEHA38AnzYRfwOuDjwG3AdcD7S176x8BjSqnvVfjcD5l1iRPT09N2T7cu3E4Ht+zq4NTl1i0sL6VzvPez/8wXnrjQlPc/PbZAwOPk+r762j5bgf4Km9PWs095J2MZ3BWmlBtcVAaIp1amXoxtaeVqCOUdT+fiafLKWJ1ZiRsG24ilsozPrz0VPB1N8QfffpkfO9jLz/7ICN99aappN2WtgC1BMO/i7wfuU0o9UO1YpdRjwD4R6QHGgVNKqfNKqSzwEHCs6H3/K9AL/EqV9/uMUuq4Uup4b2+vndNdE0eHO3j+SqSiJ85mMxFJkssrzk83x4jv9PgiN+9q35KuoAMVditH17kcZ6fSETCW209FU4hAT5W78HopGNyVzCJElsp7TnWUTE5bVLKtKOaGBlhY/PdvvshSJsd/+ReHefuRITI5xTeev7bm92t17HQZCfB54KxS6lMVjtlvHoeIHAM8wCzwQ6BTRKwr+V3AGfO4DwJvBt6rlNr0fXdHhztI5/ItO904aYbvl5rgzJrK5jh7NVKYydhqDFSYVtZdRmvDihCmoym6gx5cdbjP1qKcwV0ur4imKqSMzMfm4+UFobvK8qKD/WGCHid/9viFNa3UfGZ8gb996jIfuHMv+3pD3LK7nZHuAF95evumjez8pu/AyPHfZbaVnhaRt4rIh0Xkw+Yx7wKeE5HTwB8B7zHrxTmMdNEjIvIsIMBnzdd8GugHnjTf8zca+cXqpdULywVBMO2pG8nZa1HSufyWFYSeoBeXQ8pECBmcDiHgcVZ4paYchqFcmulokt4G1g+gaGtaUWHZ6gYrlzKq5HhaiBCqpIz8Hif/z0/fzA8uzvF733ihrvNUSvGbX3me7qCXf3/XfsAouL/9yBBPnptlKlrZcn0rU/PWSSn1OMaFvNox9wL3VnjuYeCWMo+31G1bf5uPoXYfpy63tiAsJDIVW/TWytPmdz6yRQXB4RBjc1pkdcoo7HNtuHPrVqcr4CGTU1yYibO7s7E2JoW9ykURQiVjO4v2wGr7ilnLtqKGC+s7bt3FyUvzfPZ7Fzg63Mlbbx60dZ4Pnb7CybEFfu/dt6yoQb39yBB/+I+v8LVnrvH+O/baeq+txI6fVC7m6HDnhk0sn70W4dcffJaczQ6IYmuGsdnGRgmnLy/QF/YWjOK2Iv1t3lURgvYxWhuWfcXF2URDC8pQPkKoZGxnUc7gbjqWwuN02Oog+09vO8zR4Q7+4989zStTsZrHx1JZfudrL3BkdzvvPrayG/76/jCHBsLbNm2kBaGIo8MdjM8vbUg4+I3nJvjL749x1eYw3GQ0WSj4XpprbB3h6csLHNnTsaXvpAfb/WUjBF1Qrh+rkJvLq4bOIIDRdgorawiLNdqDy/kZzUTT9IQ8tv7OelwO/vhnj+F1O/nwXzxFvMzUczF/9OgrTEVT/Obbb8RRpsni7bcOcXJsgctNSN9uNloQijhq9uCf3oA6giU6tgVhMcmNQ0bXxKUGRgiLiQznZ+Jbtn5g0W/aVxTbj+j1mWujs6hQ23BBKBMhFFJGFXYulHM8NXyM7J/bYLufP3zvUc5Px/i1B56taFNzfjrG5793gXcd212oK5byU7cMAfAPz2y/KEELQhE3DrXjdsqG1BGs9EalxS6lTEaT7O0J0hv2NrTTqDCQtsUFYaDdSyKdW5Gb1k6na6Oz6MLc19bYNGLA7URkZQ3B6garJ2VUbUq5Enfs7+FjbzrIPzx9lT9/4iJgFI9fnozymcfO8d7P/DNv+v3H8Lgc/OpbDlZ8nz1dAY4Od2zLITV9+1SEz+3k8GDbhtQRJkzvnasVfPyLUUoxGUkx0OZjpCvQ0Ajh6csLiLClHE7LMdDuBwyhtdJEOmW0Niz/IGh8hOBwCCGPq2yEUOl3ZW1Ny+dVIYUzE0sVVmXWwy+9fh+nxub57a+e5fmrEZ48N1vwMDs0EOYXf/Q63nl0V00hfPuRIf7bP5zh5cko1/dvvWHOSugIoYSjw508M764arS+0VhdQ9cWakcIC4kM6WyevjYfw90BxhqYuzx9eYF9vaEtf+EcKDOtrIvKa6Oj6E69kbYVFiGfq9BqCoYguKq0B3cEVjqe5vPKcDpdg1g5HML/+y9vZU9XgK89e40bh9r4nZ++mSf/r7v4xj0/yq++5RAHbFzg33bLIA6Bf9hmxWX9r6WEo8Md/PkTF3lpMsbhofrvQOyQyuaYixtFMjs1BKtYOtDmI5bM8uCpKyQzOXzu9fXXK6V4enyB1x/oW9f7tAKlqzTzeUUsndU+RmvA5XQQ9hkmdI3uMoLVS3Is24pKBeJix9N2v7EfIZtXdaeMLNr9br5xz+sQZNX+Bbv0hX28Zl83X3n6Kr/8xgNbuiGjGB0hlHB0jzmg1kRfo6kiq+arNmoIVjTR3+ZlpDuAUjA+v/4oYXx+iZlYeksa2pViWTRbEUIsnUUp7XS6VjoDHsJeF/4mDPWFfK5VXUbV5mqsiMUaTpuNW7YVa7fU8LpWL+Opl7cfGeLibIJnr2yf9btaEErY0+WnO+hp6sSydYEf7gpwzUYNYVkQjJQRwMWZ9QtCoaC8BS2vS/G6nHQHPYUIwXI61SmjtdEZ9NDbwD0IxZRaYEeS2arCvby0x/idTkcNYehdY4TQKN5y4yBup2yr4rIWhBJEhKPDHU0tLFsXraPDHSwkMiTS1fuireUvfW1eRroMQWiEhcXpsQU8LgeHBrdHUay/aHOadjpdHz96fQ9vONicVGKbz70qQqiW2usIrFzrace2YiNoD7h5/YFe/tcz19Ztsd0qaEEow9HhTs5Nx5tmc2tdtI6arZ5XaxSWJyJJuoIevC4nXUEjlB9rQOvp0+ML3DTUhruB5mWbyUD7akHY6sXyzeJjbzrIf/kXpYsRG0PI6yqZVK6RMipxPLXjdLpR/NSRISYiSZ7aJjvZt8eVoMFYW8OalRuciqbwuhwcMtvmaqWNpiLJQvufiDDcHVh3hJDN5Xn2yiK37ik/fLMVGWj36ZTRFqC0hlBpF4KFJRZWymgmlsLpkBXdUJvFj+ztBuCFbbK7WQtCGQ4OGCmUlyajTXn/icUkA+0+hsze+VqtpxORZMHiGWCkO7BuP6MXJ6MkM3mObMEdypUYaPMxF0+TyuYKfvtaEFoPq8son1copWoWld1OByGva1kQomm6gp6ythIbTV/Yi8/taOhsUDma3QZvoQWhDD0hD11BT/MEIZKkv81Hf7sXEQqDMZWYjKToL+oHH+4Kcnk+YdsYrxxPXzain60+oVyMJZpTkdRyyqgF7iI1K7FEOp7OGus086qme2+7313YmraWKeVm4XAIw10BLjZJEK4sLPE7Xz/La3/3Hwupsmaib5/KICIc6A/xYpMEYTKS5JbdHXhdTnpC3qopo0wuz0wsRX9JhJDJKa4uLLGna232xKcvz9MZcDO8xte3ItZw2rXFpE4ZtTCWBXZx2qhWraczuGxfYQhC47a4rZeR7mBD7WSUUpy4NM8X/ukC33x+EqUUb75xgKV087c56n8tFTjYH+b+k1dQSjV06EQpxcRikjcdNu5whtp9Vf2MZmIplFq+2AGFTqOxucSaBeHpy4tb3uG0lOLhtGgyi8flwOvSy3FajWKDu5xpMlcrQrDsKwBmYmn29Yaae5J1MNIV4LGXpldYa9RDKpsjnsoRT2X54cU5/uyfLvDclQhtPhcfvHMv73vNSMP3UlSipiCIyB7gS8AAkAc+o5T6g5Jj3gF8wnw+C9xjLtZBRIaBzwF7AAW8VSl1UUT2An8NdAEngfcppVZ63G4iBwbCxFJZri4m2dXhb9j7RpaypLL5wmL4wXY/L09VjkSsrpn+op5waxbh0myCO/bXfw6xVJaXpqL85M0D9b+4hekv7FZeMnrbdYdRS2JFCJFktpD2rJkyCri5uriEUqpup9NmM9ITJJXNMxVNraj1VeL3H36JLz81TjydJZ7KksmtTP3u7wvxW3ffxE8f20XAs7H37HY+LQt8TCl1UkTCwFMi8rBS6kzRMY8AX1FKKRG5Bfhb4JD53JeA31ZKPSwiIQzRAGPD2u8rpf5aRD4N/ALwJ434Uo3A8jN5aSLaUEEo2FCYf3GGOvx896XpipGINYPQXxQhDLb78Tgda96L8Oz4Ikpt3Q1plQh7XQQ8TiYWU0SS1XvbNZtHuGivcjprXA7a/NV/Vx1+NwuJDLGUcUPVUikjM0q/OBu3JQhffmocr8vBXYeGCHpdhLxOgl4XQa+L4a4AP7K3a9MidzsrNK8B18w/R0XkLLALOFN0TPEaoiBGJICIHAZc5hrNwnFifNu7gH9tvuaLwG/SSoLQZwjCi5NR3nCocQM6E0VTxwBDHT6WMjkWlzIrXCYtJkuOB3A6hN1d/jV3Gr04YbTI3dgkr6bNQkTM1tMlYqkcYV1QbkkKS3KSRlEZakcInQGPuee5dWYQLEa7g4CxyfDV13VXPTaRznJlYYlfeeMB/sOPX78Rp1cXdXUZicgocBT4fpnn3ikiLwBfBT5gPnwAWBCRB0TklIh8UkScQDewoJSyqkrjGCLTMrQH3Ay0+XhporGF5cnFZaM6MO72ofJw2mQkicshdAdXisXIOjobriws4XM7Nn30vxkMmNPKkRrTr5rNYzlCyBSK/7XSe5bj6UWzeNvdQn93hzp8uBxSOLdqnJ82jtnf1zo1kGJsC4KZ7rkfoz6wagpDKfWgUuoQcDdGPQGMCOR1wMeB24DrgPcD5eKhsj2UIvIhETkhIiemp6ftnm5DODAQbninkRUhWGZsQx1WZ0z5TqMJcyittFg10h1kbDZecfNTNcbnlxjq8G+rgrLFQLuPyUiKqN6W1rJYReVoMru8C8FG2ylQ2IncSikjl9PB7k6/rWFR6/y3tCCIiBtDDO5TSj1Q7Vil1GPAPhHpwbjzP6WUOm9GAw8Bx4AZoENErH+xu4GyDlFKqc8opY4rpY739vba+lKN4mB/iFemYuvq9y9lssiGAowaAlS2wZ6KrGw5tRjuChBP55iN11+Hv7KwtGFdCxvNQJuPyUiSxSVdVG5Vgp7lGkIkmSHsdRX2hVfCSqdaF9RWi27ttp6+PBXF6ZBCmqnVqCkIZr7/88BZpdSnKhyz3zwOETkGeIBZ4IdAp4hYV/K7gDPKuK19FHi3+fjPA3+/ni/SDA70h0ll8w1dSDNZZEMBRi7U5ZCKNtgTkeSKoTSLkaJOo3q5Mr/U0EJ5KzHY7iObNzpRdITQmjgdQtDjJGZGCHaGB621ni9PxRCBrmDrRAhg/Hu8NJuoGbG/MhVjpDuwbuvtZmHnrO4A3gfcJSKnzf+9VUQ+LCIfNo95F/CciJwG/gh4jzLIYaSLHhGRZzFSRZ81X/OrwK+IyCsYNYXPN/B7NQSr0+jFBtYRSm0onA6hv83HtQoRwmTJ8RYjViGrzk6jRDrLbDzN7s7tKQjFxXftdNq6WH5GtXyMLCyDu1emYnQGPLhazJBxpDtINJllvoYh5itTMfa30AxFKXa6jB6nfM6/+Jh7MdpIyz33MHBLmcfPA7fbO83N4fp+4xf30mSUt9zUmJ79icUUNw2t9A/a1eEvW1ROpLNEk9lCvaGYPV1+ROqPEKzU1HYVhGLx1EXl1iXkdRFNZYksZWmv0XIK0O43IoJoMsuB/ta7oBZs6WfjFaOXTC7PpdkEb76xded/WktmW4yAx+gLblRhOZPLMxtPrbiLBRjs8HG1TFHZmkEYKLPw2+tyMtjmq1sQxts16vgAABI2SURBVOeNz9muKaNiQdARQusS8rmXU0Y2fk/Fbamt1HJqMdpTO4V7aTZONq9atqAMWhBqcqA/3LDW0+moaUNRkgIabPczGUmuWrKxPKVcfthluDtQt4dKQRC2aYTQEzRqMqB9jFqZsOl4GklWdzq18LgchQnnVmo5tdjdGUCEqq2nrd5hBFoQanJwIMSFmXhhonI9TERW21CA0XqayalVboZT0eqCMNIVrLvgfWVhCbdT6CtTqN4OOMyaDGin01bGWKOZsV1UhuUooZVaTi18biNirzYsaglCK/kwlaIFoQYH+sNk84oLM+t3M5yscMdv7UUotcEu52NUzHB3gJlYeoVrZC2uzC8x2O6v2ea3lbF+XjpCaF1CPhfziQyJdM5WhADLheVWTBmB8e+xVoQw1O4j6G3dv5daEGpQ6DRqQB2h4GNUpoYArHI9nYykCHqcFXPhVutpPRYW4/OJbVs/sLBScnoOoXUJeV0FG4p6BaHVZhAsRrurR+yvTMfY18LpItCCUJPreoM4HdKQOsJkJIXbKau6EIbayw+nTZqLdCoxuobWU2MobZsLQpvx/bQgtC7FHWC1jO0srOG0nnDrpYygesSezyvOTcW53vRIa1W0INTA63KytyfYkAjBGErzrbKM6Ai48budZSKE6oJg2WDb9TRKZXNMRlLbtqBsccf+bm7f26VTRi1MqOh3YztC8Ld2ysi6QSvX6HF1cYmlTK6lC8qgBcEWB/vDDVmnae1SLkVEjNbT0hpCJFmxfgDGHXBnwG279dTa3bxdbSssfvyGfv72376mJXbuaspjOZ5C/SmjVhWE4a7KradbocMItCDY4kB/mLG5RNUVdo+/PMPLNURjMpIsO1MARtqo2L5CKVXRx6iY4e6g7ZSRVbTe7jUETetTHCHYTe3dvKuD63qC9LbQcpxiqtnJaEHYRhwcCKHU8i+1lOloil/44g/5ra+erfo+1VJAg+0r7SvmExnSuXxZH6NiRroCtiOE8XnjuO1eQ9C0PmFv/Smjt9w0wD9+/Mdwt5hthUXY56Y76CmbMnplKkZX0NNyHkyltOZPtsW4vkan0Z8/cYFUNs/JS/MVnVGjyQzxdK5iCmiow890LFWYd5gs2axWiZHuAFcXlmzNSVyZX8Ihtd9To2k2KyKEbTQvYpncldLqHkYWWhBsMNJluBOWqyNEkxn+55OX6Ai4iaaynL22alUEUPsCP9ThQ6nl4yoNsZUy3BUgr5bv/qsxvrDEQJuvZe+wNDsHa+rY43Lgczs3+WwaRzkbbKXUlmg5BS0ItnA5HezvDZV1Pf2rH4wRSWb53Z++GYAfXpwr+x4Ti6t3IxczWNJ6OlVmdWY5RnvMzgYbE8vj80vbvsNIszWwBMFuumirMNId4FokSTKzXG+cjadZSGRavn4AWhBsc3BgdadRKpvjc9+7wB37u3nLTYPs6vBXFoQKQ2kWQyXDaZaA1LKYsFwW7QynXZnfvotxNFsLqyV4uznSjnYHUSUR+1YpKIMWBNsc6A9zbTFJJLnsd/7QqStMRVN8+PX7ALhttJMfXJgvuyRjssYd/2CJfcVkNEl30FNzkUZv2Ivf7axZWM7m8kxEkrrDSNMSBLdphDBcptPIEoTrtSBsHw4OGL9Mq7U0l1f86XfPc9OuNu7c3wPAbXu7mImlyg6KTUaStPlc+D3l86VBr4t2v7uwW3lyMUlfjXQRGDMMI90Bzs+U74CymIgkyeWVThlpWgK304HP7dhWBWVYHk67WCIIQY+TwS3QzGFnheYeEXlURM6KyPMi8tEyx7xDRJ4xt6mdEJE7i57LFW1a+0rR4z8uIifNxx8Xkf2N+1qNxxo5f3HCuPB+6/kJzs/E+aXX7y9MHt8+2gXADy+sThtVGkorxmg9NSKJyWiSgRoFZYubdrXzzPhi1fV9V+a392IczdYj7HNvuwihM+Am7HUxVlRYPmcWlEsdCloROxFCFviYUuoG4NXAR0TkcMkxjwBHlFK3Ah8APlf03JJS6lbzf28vevxPgJ81X/OXwH9e87fYAHZ1+Al6nLw0GUUpxae/e47R7sCKTWr7+0J0Btxl6wi1bCjAaD29WlRDqHW8xdHhDubi6arGWnooTdNq/Ke33sD7Xzu62afRUESEkZ7AqghhK7Scgg1BUEpdU0qdNP8cBc4Cu0qOianl29MgUH3TtPkyoM38cztw1e5JbwYOh3B9f5gXJ6I8eW6Wp8cX+dCP7lthIy0iHB/tqiAIqYoFZYsh076i0ma1Shwb7gTg1NhCxWOsxThDWhA0LcLdR3dx1Py7u50o3lMSS2W5tpjcEi2nUGcNQURGgaPA98s8904ReQH4KkaUYOEz00j/LCJ3Fz3+QeBrIjIOvA/43TrPfcOxPI3+5Lvn6A17+elju1Ydc/toFxdnE4XlNmDUG6ZjtS/wg+1+FpcyXJpNoFTtllOLA/1hAh4nJ8fmKx5zZX6J3rB3W/V8azStyEh3gMtzCbK5POe2UIcR1CEIIhIC7gfuUUqtmr5SSj2olDoE3A18ouipYaXUceBfA/9DRPaZj/8y8Fal1G7gC8CnKnzuh0xBOTE9PW33dJvCgYEws/E033t5hg/csbfsxfW2vVYdYfniPBNLkcurmr5EVuvp6cvGnf5Au70agtMhHNndUTVCuLKwpNNFGs0GMNIdIJtXXFtM8vJ2FAQRcWOIwX1KqQeqHauUegzYJyI95n9fNf//PPAd4KiI9GLUHKxI42+A11Z4v88opY4rpY739vbaOd2mcdC0sAh7Xfzsq4fLHnPjUBt+t3NF2sjafFYzZWS2np4y7/TrWXN5dLiDs9ciFQ34xucTusNIo9kARgqdRnFemYrhdkphXqjVsdNlJMDngbNKqUp38fvN4xCRY4AHmBWRThHxmo/3AHcAZ4B5oF1EDphv8UaM2kRLc2gwjNMh/JvXjFR0aHQ7HRwd7uAHRZ1GtYbSLKz8vnWnX4/n0NHhTrJ5xXNXF1c9l88rri4kdYeRRrMBFLuevjIVY29PENcWsYuxMyZ4B0aO/1kROW0+9uvAMIBS6tPAu4CfE5EMsAS8RymlROQG4E9FJI8hPr+rlDoDICK/CNxvPjfPyrpDS9IT8vIP/+5Oru+vHv7dNtrF//ePLxNJZmjzuYtsKKqngPrbfIgYJnpup9AVsO+MeOueDsCILm4z218tpmMp0rk8u3XKSKNpOv1hH16Xg0uzcc5Nx7hhsLW3pBVTUxCUUo8DVRtolVL3AveWefwJ4OYKr3kQeNDeabYOh4faah5z+94ulIKnLs3zhoN9TESSOB1Cd43FHh6Xg56Ql+loioEOf10LXnrDXvZ0+cvWEcYLMwhbI2zVaLYyDocw3BXg5akYl2bj/NQtg5t9SrbZGnHMFuPocAcuhxQG1CYWU/SFvStaVCthpY36bA6lrfjcPZ1lBaEwg6BTRhrNhjDSHeSfz8+SV2yZllPQgtAUAh4XN+5qLxSW7QylWQyZdYNa9YZyHB3uYCKSLNhfWFhGW7rLSKPZGEa6AyQzxo6SrdJhBFoQmsbto508fXmRZCZXdXVmKZbJnV0BKeZohQG1K/NLdAbcBUMxjUbTXEbNwrII7NsiU8qgBaFp3DbaRTqX55nxRSYiyZoFZQtrFmEtgnB4sA2Py1FoW7W4sqD3IGg0G8mw2Xq6u9O/pYZBtSA0CavT57svTRFNZmsOpVlYNQS7Q2nFeFwObt7VvipCGJ/XQ2kazUZiRQhbxcPIQgtCk+gMeri+L8T/euYaYL8mcONQGyGvixuH2tf0uUf3dPDslcXCjmWllF6Mo9FsMLs6/PjdTm4YrN2V2EpoQWgit+3tKizKsCsII91Bnvtvb+ZA/9p6l48Od5LK5nlhwnAXmU9kWMrkdISg0WwgLqeDhz5yB7/0Y/tqH9xCaEFoIrcXDYjZWXbTCI4OWwNqRtqo0GGkawgazYZycCBMuIKjQauiBaGJWEZ3UJ8NxXoYbPfR3+YtOJ/qxTgajcYuWhCayK4OP7s6/IS8LkIb1PIpIisG1KyhtN0duoag0WiqowWhyfzEDX0c3uDC0tHhDsbmEszEUozPLxHyumjz6xkEjUZTHX2VaDK/8VM3Vt113AysAbXTYwuMzy+xu9O/Jfa5ajT/u717DbGijOM4/v1pmmmS6y1CXU0TVMjc2ETQykTCLLIrFV2MiiCCLhRRvokMwd5Ub4KSknxhF6k0KYIkjXrTZTctDc0yuojSdlFKKtP892KezcOyl1k9x8PO/D4gZ+aZcXz+OLv/mXmeOX+rLyeEGsu+v+jE/jI+e8xpnNRPbP5xnwvjmFlufmRUQKcMzOY/b/5hvwvjmFluTggF1dQ4jNbv9/HH34c9w8jMcnFCKKimxmEcTG8rj/EMIzPLIU8JzXGSNknaLulLSfd2ss8iSV9I2iKpRdKcim3/pvYtktZXtEvSMkk707HvqV5Y1jSu4f9l3yGYWR55BpUPAw9ExGeShgKtkja0l8JM3gPWp7KZ04E1wJS07a+ImNHJcW8FxgFTIuKIpNHHHoZ1NH7EYBoGD2Dfn4c8hmBmufR4hxAReyPis7T8B7AdGNNhnwNxdG7lECDPPMu7gKURcSQdo603HbfuSaKpsYFBA/oxYkj+2sxmVl69GkOQNAFoAj7uZNuVknYAbwO3VWwalB4jfSTpior2ScB1ads7kib3uvfWrbvmTmLJwql+B8HMcsn9HoKkU4HXgfsi4veO2yNiLbBW0gXA48D8tKkxIvZImghslLQ1InYBJwN/R0SzpKuAlcD5nfy7dwJ3AjQ2NvYuupI7b8Lw/+symJn1JNcdgqQBZMlgdUS80d2+EfEBMEnSyLS+J31+C7xPdocBsDsdE2AtML2L462IiOaIaB41alSe7pqZ2THIM8tIwAvA9oh4sot9zkr7IelcYCDwq6QGSSen9pHAbKB9MHodMC8tXwjsPJ5AzMzs+OR5ZDQbuBnYKmlLalsCNAJExLPA1cAtkg4BfwHXpRlHU4HnJB0hSz7LK2YnLQdWS7ofOADcUa2gzMys93Siv3jteDQ3N0dLS0u9u2Fm1qdIao2I5p7285vKZmYGOCGYmVnihGBmZoATgpmZJX1qUFnSz8D3x/jXRwK/VLE7fYXjLpeyxg3ljT1P3OMjoscXufpUQjgeklryjLIXjeMul7LGDeWNvZpx+5GRmZkBTghmZpaUKSGsqHcH6sRxl0tZ44byxl61uEszhmBmZt0r0x2CmZl1oxQJQdICSV9J+kbSw/XuT61IWimpTdK2irbhkjZI+jp9NnR3jL6oq7rfRY9d0iBJn0j6PMX9WGo/U9LHKe5XJRWyZJ6k/pI2S3orrRc+bknfSdraXr8+tVXtPC98QpDUH3gGuASYBtwgaVp9e1UzLwILOrQ9DLwXEZPJal8XMSG21/2eCswC7k7/x0WP/SAwLyLOAWYACyTNAp4Ankpx7wNur2Mfa+lespK+7coS90URMaNiqmnVzvPCJwRgJvBNRHwbEf8ArwCL6tynmkjFiX7r0LwIWJWWVwFXUDDd1P0udOyROZBWB6Q/QVZn5LXUXri4ASSNBS4Fnk/rogRxd6Fq53kZEsIY4MeK9d2prSxOj4i9kP3iBEbXuT811aHud+FjT49NtgBtwAZgF7A/Ig6nXYp6vj8NPAQcSesjKEfcAbwrqTWVF4Yqnue5ayr3YZ1VmPfUqgLqWPc7FfErtIj4F5ghaRhZKdqpne12YntVW5IuA9oiolXS3PbmTnYtVNzJ7FSjfjSwQdKOah68DHcIu4FxFetjgT116ks9/CTpDID02Vbn/tREF3W/SxE7QETsJ6tZPgsYJqn9Yq+I5/ts4HJJ35E9Ap5HdsdQ9Lgra9S3kV0AzKSK53kZEsKnwOQ0A2EgcD2wvs59OpHWA4vT8mLgzTr2pSa6qftd6NgljUp3Bkg6BZhPNn6yCbgm7Va4uCPikYgYGxETyH6eN0bEjRQ8bklDJA1tXwYuBrZRxfO8FC+mSVpIdgXRH1gZEcvq3KWakPQyMJfs2w9/Ah4F1gFryGpg/wBcGxEdB577NElzgA+BrRx9pryEbByhsLFLmk42iNif7OJuTUQslTSR7Mp5OLAZuCkiDtavp7WTHhk9GBGXFT3uFN/atHoS8FJELJM0giqd56VICGZm1rMyPDIyM7McnBDMzAxwQjAzs8QJwczMACcEMzNLnBDMzAxwQjAzs8QJwczMAPgPY/2b3ca5oxcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGdCAYAAAD5ZcJyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZFUlEQVR4nO2de3xU9bnunzXXTCaTO0MI94sSAREFRBQprQpYz1a8dGNbL1B3u6vBG273rnpqtXh2rFZb62l197QixVKrrVSlVsQgKC1YRSOCGOUaAoRAQmZynes6f8z8fmvNZC5rzW3NmrzfzycfTTIzWRkya971vM/7vIIoiiIIgiAIgiAKHIPWB0AQBEEQBJELqOghCIIgCGJIQEUPQRAEQRBDAip6CIIgCIIYElDRQxAEQRDEkICKHoIgCIIghgRU9BAEQRAEMSSgoocgCIIgiCGBSesDyCeCwSCOHTsGh8MBQRC0PhyCIAiCIBQgiiK6u7tRW1sLgyG+nkNFj4xjx45h9OjRWh8GQRAEQRApcOTIEYwaNSru96nokeFwOACEnrTS0lKNj4YgCIIgCCW43W6MHj2av4/Hg4oeGaylVVpaSkUPQRAEQeiMZNYUMjITBEEQBDEkoKKHIAiCIIghARU9BEEQBEEMCajoIQiCIAhiSEBFD0EQBEEQQwIqegiCIAiCGBJQ0UMQBEEQxJBAVdHT0NCA2bNnw+FwwOl0YsmSJWhubk54n1deeQWzZs1CeXk57HY7ZsyYgbVr1w663d69e3HllVeirKwMdrsds2fPRktLCwCgs7MTt99+OyZPngybzYYxY8bgjjvugMvlingMQRAGfbz44otqfkWCIAiCIAoUVeGEW7duRX19PWbPng2/34/7778fCxcuxGeffQa73R7zPpWVlXjggQdQV1cHi8WCDRs2YPny5XA6nVi0aBEAYP/+/Zg3bx5uueUWPPzwwygtLcWePXtQVFQEILQe4tixY/jpT3+KKVOm4PDhw/j+97+PY8eO4U9/+lPEz1u9ejUWL17MPy8vL1fzKxIEQRAEUaAIoiiKqd755MmTcDqd2Lp1K+bPn6/4fueddx6uuOIKrFq1CgBw/fXXw2w2x1SA4vHyyy/jhhtuQG9vL0ymUO0mCALWr1+PJUuWqPo9GG63G2VlZXC5XJTITBAEQRA6Qen7d1qeHtZeqqysVHR7URTR2NiI5uZmXiQFg0H89a9/xZlnnolFixbB6XRizpw5+Mtf/pL0Z5eWlvKCh1FfX4/q6mqcf/75eO6555CopvN4PHC73REfBEEQBEEUJikXPcFgEHfddRcuuugiTJs2LeFtXS4XSkpKYLFYcMUVV+Dpp5/GZZddBgBob29HT08PHn30USxevBhvvfUWrr76alxzzTXYunVrzMc7deoUVq1ahe9973sRX//xj3+Ml156CZs2bcK1116L2267DU8//XTc42poaEBZWRn/oA3rBEEQBFG4pNzeuvXWW/G3v/0N27ZtS7jGHQgVSAcOHEBPTw8aGxuxatUq/OUvf8GCBQtw7NgxjBw5Et/85jexbt06fp8rr7wSdrsdf/jDHyIey+1247LLLkNlZSVee+01mM3muD/3wQcfxOrVq3HkyJGY3/d4PPB4PBGPPXr0aGpvEYTOOXSqFxv3tOHGuWNRbKG9ygRR6Chtb6V0NlixYgU2bNiAd999N2nBAwAGgwGTJk0CAMyYMQN79+5FQ0MDFixYgOrqaphMJkyZMiXiPmeddRa2bdsW8bXu7m4sXrwYDocD69evT1jwAMCcOXOwatUqeDweWK3WQd+3Wq0xv04QhL55qvFLrP/4KCrsFvzrLFJwCYIIoaq9JYoiVqxYgfXr12Pz5s0YP358Sj80GAxyhcVisWD27NmDRt+/+OILjB07ln/udruxcOFCWCwWvPbaa3yyKxFNTU2oqKigwoYghhgdvd7Qf3u8Gh8JQRD5hCqlp76+HuvWrcOrr74Kh8OBtrY2AEBZWRlsNhsA4KabbsLIkSPR0NAAIOSbmTVrFiZOnAiPx4M33ngDa9euxTPPPMMf995778XSpUsxf/58fPWrX8Wbb76J119/HVu2bAEgFTx9fX144YUXIkzHw4YNg9FoxOuvv44TJ07gggsuQFFRETZt2oT//u//xn/8x3+k/SQRBKEvBrwBAECvx6/xkRAEkU+oKnpYobJgwYKIr69evRrLli0DALS0tMBgkASk3t5e3HbbbWhtbYXNZkNdXR1eeOEFLF26lN/m6quvxrPPPouGhgbccccdmDx5Mv785z9j3rx5AICPPvoI77//PgDwNhnj4MGDGDduHMxmM375y1/i7rvvhiiKmDRpEp588kl897vfVfMrEgRRAPT5QsVODxU9BEHISCunp9CgnB6CKAy+9sQWHDjZi2/MHIXHv3GO1odDEESWyUlOD0EQRD7Sz9pbXlJ6CIKQoKKHIIiCoy9c9PR4AhofCUEQ+QQVPQRBFBz9ZGQmCCIGVPQQBFFQ+ANBeANBAFT0EAQRCRU9BEEUFH0+qaVF01sEQcihoocgiIKCtbYAUnoIgoiEih6C0BnuAR+CQUqaiEdfRNFDRmaCICSo6CEIHXHoVC9mrtqE//rzLq0PJW/pk42pewNBeP1BDY+GIIh8gooegtARe4654QuI+PSoS+tDyVsGfJHqDrW4CIJgUNFDEDrCPeADQKF7iZC3twB6rgiCkKCihyB0hLs/VPT0kVclLoOKHnquCIIIQ0UPQegIVz8pPcnojyp6aGydIAgGFT0EoSNYe2vAF0SAJrhiMljpoaKHIIgQVPQQhI5w90tv4H2k9sQk+nmhoocgCAYVPQShI1h7CxisaBAhqL1FEEQ8qOghCB3B2lsAKRjx6KORdYIg4kBFD0HoCDcpPUmJVnp66XkiCCIMFT0EoSNcMk8PKRixifb0UHuLIAgGFT0EoSPk7S1SemLDnheH1QSAikOCICSo6CEInTDgC0TskaKsntiwNRTDHFYApPQQBCFBRQ9B6AS5nwegVOZ4MKWnOlz0kNJDEASDih6C0Any1hZASk88WNEzjBc9VBwSBBGCih6C0AlyEzNAnp54sOmtYSXU3iIIIhIqeghCJ0S3t6htE5s+X+h5GUbtLYIgoqCihyB0QnR7i5Se2PQPam9R0UMQRAgqeghCJ5DSo4w+am8ReYgoivju7z7Ed57/AKJIy4K1wqT1ARAEoQxX9PQWKT2DEEUR/VEj673eAERRhCAIWh4aMcRxD/ix6bMTAICuPh8q7BaNj2hoQkoPQegE90BIsagoNgOg6a1YDPiCYBfRrOgJBEV4ZPlGBKEFrj5ZsKiPLli0gooegtAJrL01oswGgHJ6YiFfQVEpu5KmFhehNXKltp8uWDSDih6C0AkuXvQUASClJxas5Wc1GWA2GlBsMQIg/xOhPV39Xv7/lB2lHVT0EIROYNNbNeGihzw9g2ErKFixYw/v3yKlh9Carj7am5cPUNFDEDrBHQ4nrC0PtbdIvRgMezMptoSKnRK+dJTeZAhtkbe3+kil1QwqeghCJ7CTZk0pKT3xYM+JjSs91N4i8gN50dNLr13NoKKHIHQCa2/JPT2U9xFJfziNmbe3LNTeIvIDMjLnB1T0EIQOEEVRmt4Kt7dEMTSiTUhwpcccKnqk9ha9yRDa0tVHRuZ8gIoegtABPR4/gmFRZ3iplX+dJrgikTw9ZGQm8osIpYdyejRDVdHT0NCA2bNnw+FwwOl0YsmSJWhubk54n1deeQWzZs1CeXk57HY7ZsyYgbVr1w663d69e3HllVeirKwMdrsds2fPRktLC//+wMAA6uvrUVVVhZKSElx77bU4ceJExGO0tLTgiiuuQHFxMZxOJ+699174/XSyI/QPCya0GA2wmY38TZ2yeiLpjzIy28nITOQJ8uktUh61Q1XRs3XrVtTX12PHjh3YtGkTfD4fFi5ciN7e3rj3qaysxAMPPIDt27dj165dWL58OZYvX46NGzfy2+zfvx/z5s1DXV0dtmzZgl27duGHP/whioqK+G3uvvtuvP7663j55ZexdetWHDt2DNdccw3/fiAQwBVXXAGv14t//OMfWLNmDZ5//nk8+OCDan5FgshLWGur1GaGIAj8TZ2UnkiY0lPE21thIzM9T4TGRE5vURGuFap2b7355psRnz///PNwOp3YuXMn5s+fH/M+CxYsiPj8zjvvxJo1a7Bt2zYsWrQIAPDAAw/g61//Oh577DF+u4kTJ/L/d7lc+O1vf4t169bha1/7GgBg9erVOOuss7Bjxw5ccMEFeOutt/DZZ5/h7bffxvDhwzFjxgysWrUK//Vf/4WHHnoIFgvtOSH0i4sXPUzBMOJUD42+RsMMotTeIvINGlnPD9Ly9LhcLgAhNUcJoiiisbERzc3NvEgKBoP461//ijPPPBOLFi2C0+nEnDlz8Je//IXfb+fOnfD5fLj00kv51+rq6jBmzBhs374dALB9+3acffbZGD58OL/NokWL4Ha7sWfPnnR+TYLQHK70FIX2bnGlh9o2EUR7esjITOQLEe0tUno0I+WiJxgM4q677sJFF12EadOmJbyty+VCSUkJLBYLrrjiCjz99NO47LLLAADt7e3o6enBo48+isWLF+Ott97C1VdfjWuuuQZbt24FALS1tcFisaC8vDzicYcPH462tjZ+G3nBw77PvhcLj8cDt9sd8UEQ+Qjz9JTZQkWPnXl66IoxArbI0Ral9FBxSGiJxx+IMC/3U9GjGaraW3Lq6+uxe/dubNu2LeltHQ4Hmpqa0NPTg8bGRqxcuRITJkzAggULEAyGRm6vuuoq3H333QCAGTNm4B//+AeeffZZfOUrX0n1EJPS0NCAhx9+OGuPTxCZwiXz9ABAcYG+mf/zYCcsJgNmjC5P6f4Dcaa3SOkhtETe2gLo71FLUlJ6VqxYgQ0bNuCdd97BqFGjkv8QgwGTJk3CjBkzcM899+C6665DQ0MDAKC6uhomkwlTpkyJuM9ZZ53Fp7dqamrg9XrR1dUVcZsTJ06gpqaG3yZ6mot9zm4TzX333QeXy8U/jhw5kvyXJwgNkNpbYU9PASo97gEfbvjt+7jxt+8jEEwtdFFKZGZrKMjITGiPO6rooZF17VBV9IiiiBUrVmD9+vXYvHkzxo8fn9IPDQaD8Hg8AACLxYLZs2cPGn3/4osvMHbsWADAzJkzYTab0djYyL/f3NyMlpYWzJ07FwAwd+5cfPrpp2hvb+e32bRpE0pLSwcVVAyr1YrS0tKID4LIR1gaM2tvSdNb2p88W0/3YeVLTdhzzJXe43T2w+sPonvAn3KRwtpbxWZKZCbyB7mfByClR0tUtbfq6+uxbt06vPrqq3A4HNwrU1ZWBpstlBJ70003YeTIkVzJaWhowKxZszBx4kR4PB688cYbWLt2LZ555hn+uPfeey+WLl2K+fPn46tf/SrefPNNvP7669iyZQt//FtuuQUrV65EZWUlSktLcfvtt2Pu3Lm44IILAAALFy7ElClTcOONN+Kxxx5DW1sb/vf//t+or6+H1WoFQeiZ6PYW2ynVlwcnz798fBSvfHQUAgQ88a/npPw4J9wD/P97BvzctK2GeNNb9CZDaAl7/RoNAgJBkUbWNURV0cMKlegx9NWrV2PZsmUAQgGBBoMkIPX29uK2225Da2srbDYb6urq8MILL2Dp0qX8NldffTWeffZZNDQ04I477sDkyZPx5z//GfPmzeO3+dnPfgaDwYBrr70WHo8HixYtwq9+9Sv+faPRiA0bNuDWW2/F3LlzYbfbcfPNN+PHP/6xml+RIPIStmF90PRWHpw8T4evYo+7+tN6nOMuWdGTYpEyeOFoYXqfCH3BlJ6a0iIc7eqnokdDVBU9SpYbMnWG8cgjj+CRRx5Jer/vfOc7+M53vhP3+0VFRfjlL3+JX/7yl3FvM3bsWLzxxhtJfxZB6I3o9lY+eXqYX6FNVrSkQptM6ekeSO33GpzILHl6RFGEIAhpHSNBpEJXv7QsOFT0aP+6HarQ7i2C0AHuqHDCfJreYgXZcddAWlvf22RKUdpKT9TCUVGkFFxCO1xRy4J9ARFePy0L1gIqeggiAV5/MOVJokwSHU6YX0pP6Bj6fQH+/6nQ5vbw/+9JUelhzwdrb9nMRhjC4g75egitcIU3rNeWSauVKKtHG6joIYg4eP1BfO2JLbjmV39PS8HIBNHhhPmo9ADAcXfqvp5IpceX4JbxYaPAzMgsCAJNcBGaw5SeYQ4rzMZQFU4xCtpARQ9BxOG4qx+tp/vxSasLnb1ezY7DHwjyN+zSPPT0yP03x9Pw9cg9Qal4enyBIHyBUHHKih6AzMyE9nTJpi+Z34zardpARQ9BxEGeorr/ZK9mxyEvABzhcMJ8mt6SKz2pmpn7vH6uZgGpFSjyNxFbRNET+n9SegitYOeScpuZF+T5cMEyFKGihyDiEFn09Gh2HKyosFuMMBtDL9l8yekRRTEibTZVpSe6WEqlvTUQbm0ZDQIsRunURktHCa1x9UnTl1LRo/0Fy1CEip48oaPHg288+w+89CGtwsgX5KbcAxoWPdHBhED+KD293gDkPu+2FLN6Bhc96gsUvmHdbIwYTeftLbqyJjSCtbfKiy3875GUHm2goidP2PrFSXxw6DTWvd+i9aEQYfKlvRUdTAjIlB6NT5zRO4VSVnrckfdLxdMTPbnFYG8y1N4itEAURX4uKbOZeZwCKT3aQEVPnsBO+tFvIoR2yL0qWio90cGEgKT0aJ33IX+OgNSLHnY/Y3i+PJUCpT9qwzqD2luElvR4/Dz2orzYLCk9ZKzXBCp68oT2cEZJ9JsIoR1ypaelsw8evzYnKVdUMCEQ+cauZd4HU2RM4WIlVSMz27s1tqoYQGo5PdEb1hmSkZneZIjcw16/FpMBRWYjVyKp3aoNVPTkCeyk7+r3aZ4JQ4SQq25BETjc0afpccjbW2ajARZT6OWr5cmTHdu4ajuA0FVtdwqFO1N6znCW8MdRS18cpYeWjhJawvZulQ+Km6AiXAuo6MkTWHvLFxAx4KN48nzAFdVq1KrFxdQ/uZEZyI+sHnZsI8qKUBoep09F7WFF/6Rw0ZOKp6ffF/b0mKPaWxYqegjtcHMTc+SyYK39eNkgH9Lrk0FFT57QLovgj36zJbSBy9Lh8WetzMyxprcA2QSXhm0bucl6RFlor1Aqvh5J6XEASE/pISMzkU909Ud68gp1ZP3BV3dj5iObcDzFCc5cQUVPHhAMimjvlt4oyNeTH7CwvCm1pQC0y+qRCovYXpV8aG85ikyoCe8VUqv0+AJBnOoJFf2TZO0ttW1eMjIT+Yg0uWUBgII1Mv993yl09fmw40CH1oeSECp68oDOPi+PzwdI6ckX2Bv6uWPKAWin9MSa3gJkMrmGJ89u2XqMEeGiR63S097tgSiGzNDMyBwIqm/zJvf0FNabDKEPuvoiX7+s/VpoRmZPeIp0f7t28R5KoKInDzgRlVFCY+v5Aft3OG9MBQDgQHuPJibzeO2tfFJ6SuVKj8qlo0wZGl5ahBKrCSxXsFtlKjNbNmozx5veKqw3GUIfdPWH9vYxTw/7eyy0LevsIuXAKe3iPZRARU8eIPfzAKT05APyQLHpo8pgEEKqxskeT5J7Zp5Y01sA8mJxodxknarSw4qemrIiCILA21Fqx9aTtrcK7Mqa0AfuKE+PzVKYf4+e8EUHKT1EUqLTaEnp0Z4+bwD+8CTCMIcVoytDbRctXtDMWzS4vRVWejRUMORG5pqwkVmtp4f9/deUhoomR4rG42SJzOTpIbSAj6wXR46sF5rSw9pbBzt683qKi4qePCC6veXqp5Oz1jAFw2wUYDMbMSGcQ6OFdBsrnBDIL6XHUWRCbcpKT6gdxtpjJUWpKT3xPD0lNL1FaIhrkNLD2tKFU/QEgiK8gVDR4/UHcfR0/k5wUdGTB5wIt7eYl4Gmt7THJWspCYKAicNCU0W5VnoGfAG+ZiJeTk9eeHpsZl60uPp9qjJI2sJ//0zpYUVKt8oiJV57iyk9A74g/AHKwCJyS7SR2R6+WCkkpSc6rV6rSVclUNGTBzClZ0y4hUKeHu1hbRt2opoQLnpyrfSwAtggSCF7jOI8GH1lIYKlRWY4isy8YFHT4hqs9ISe81SVnnhrKIDCurom9IGLhxOykXXtL1YyjSdq0pKKHiIhrOhhwWzk6dGe6ImpicNC7a1cv5ilHBwzDOH9VgytlR5RFGVG5lChkUpWD/f0lKXp6QkbKYujEpmtJiPMxtBzR74eItcMbm9pf7GSaQZI6SHUwNpbZwwPqQmk9GiPO7roCYfmtZ7ux4Avdycr5u+K9vMA2is9A74gz5dik2VqJ7hEUcQJV+z2ltqipz+OkRmQp1dT0UPkDl8gyP+Oo3dveQNB+Aqk3RqdqaVVppkSqOjRGF8giI7e0En/zHDR405h7xCRWaKvzqrsFpQWmSCKwKGO3L2g4wUTAtorPezYjAaB+2hY4aI0ir6z18sNkMNLI43MavdvxVtDAcjH1gvn6prIf+SqfWmUkRkonFUU0Z4erfYUKoGKHo05GU6jNRsFjKsKtVCovaU9LlnoHoCQmdmZezNzvIweQPvpLfkKCiHswler9LDWVnWJhW+Nl3ZlqQwnjGNkDj2m9uP9xNCjS/YaMYbb0xajAabw/xeKmZkpPRXhsfxTPV509Xm1PKS4UNGjMczP43QUcaMbFT3aE0thmVAdNjPn8ComUdGj9Ru5W2ZiZqjN6pEHEzIcKa6N4CPr5sGtQFo6SmhBtGIMhC6givNg8jKTsJZ/pd3C1d58bXFR0aMxvOgptXJVodvjz+twp6FArNUPE525NzPHCyYE8kDpiTIxA6krPexECaTW3hJFUVpDkai9RUUPkUNcUcGEjOICG1tnwYRWk5GfJ/O1xUVFj8ackGWUyN9guymrR1OiR9YBSFk9ObyCcccJJgQkpUdNJk4miaVCSfu3Uld6SlJob8mNlDHbW2RkJjSAj6uHN6wzigus3cqUniKzQZPzpBqo6NEYpvQMLy2C2WjgJ2ya4NKW6H05gDS2fuBk7haPuhK1tyyptYEyRaz2FlN6Onu9iqbceNETQ+lR04qSF342cyxPD3vMwriyJvQB87XEWyFTKEZmqegxyooeUnqIGLTJ2luA9OJw0yoKTYlVbIyptMNoENDrDXCFLttwb1FxrPZWeIePL6BJO1RuZGaU2cwoModOK9HrVWIhZfTY+NccKSwcZW8eRWbDoDwjACgpsCtrQh+wyIno16/WrelMw8IJrSYDJmiUaaYUKno0pj0qgp+9yZLSoy2xjMwWk4GnZueqXy1f6BkNUy8AcD9LLpFvWGcIgoAR4QJGia8nU0oP+/2LLYPbgAAZmQlt6OpPrPQUipGZjazLlZ6Wjr68zCGiokdj5O0tQKb0kKdHU+It+cx1MnO84wBCV1VM1OjT4M28O0Z7C5AKGCUTXIk8PWqMzDyjJ0ZrC6BN64Q2cCPzoL15hWVkZp66IrMRNaVFKLYY4Q+KaOns0/jIBkNFj8a08aIn1N5ib26k9GiHLxDkb6LRV2i5NuklCicUBEHy9Whw8oxnsh5RrmyCq8fj50tFI0fWQ7+rxx/ky1aT0ZcgjRmQhxNS0UPkjlgj60DhKT3M02M1hdrLvMXVnn8tLip6NKTP6+dXs0zpKeWeHip6tEL+3DuiVIxc96sT5fQA2k6BxDIyA5KZuS1JKjNTeRxWEy9KgKgFoQp/r0TBhKHHJCMzkXtYOOHgkfWwkblA/h7ZyHpRWGllmWb5OMFFRY+GMD9PscXIT/rk6dEe9mbusEopqgym9BzIwYs5tNCT7d6KXfTYNTRExjIyA5IpOZnSw1u7MpUHAExGA29TKfXgJGtvkZGZ0IJYeV+AbG9ewbS3wkpPeIhBOk+S0kPIkAezsRj/THh6/s9fP8P1v96uuDVARBLvRAUAE8Iv5qNd/Vnvx/d6pamsWO0tQKb0aCCTxzIyA8CIUmVZPawoGhFV9ADqAwqVKj1U9BC5pIt7eqJyeszaZmxlGrZl3WoK/V5aBLkqhYoeDTkRNa4OSG8grjRG1n//fgt2HOhEc1t3egc4RElU9FTaLXy/zIFT2X1BMyXFYjTAaor9UuWjrxrI5HGNzApTmaNN/HIcKqet2JsHTW8R+YIoivw1PKi9VWBKj4cbmSOVnv0ne3OWaaYUVUVPQ0MDZs+eDYfDAafTiSVLlqC5uTnhfV555RXMmjUL5eXlsNvtmDFjBtauXRtxm2XLlkEQhIiPxYsX8+9v2bJl0PfZxwcffAAAOHToUMzv79ixQ82vmFNYe0t+0i9L09Mz4AvwFxIblyTUIQUTxn4DzVWLSz65xZTAaLTctB7XyBwuek71eBKqjWwTeyKlR2kqc3/4pJvUyExFD5Ej+n0BeMMj29FKrd1SaEpPuOgJKz3jq+0QhNA5rKM3v96HYp/V47B161bU19dj9uzZ8Pv9uP/++7Fw4UJ89tlnsNvtMe9TWVmJBx54AHV1dbBYLNiwYQOWL18Op9OJRYsW8dstXrwYq1ev5p9brZL6ceGFF+L48eMRj/vDH/4QjY2NmDVrVsTX3377bUydOpV/XlVVpeZXzCmx9g6x/Vupenrkf2BMWiXUkSgFGQiZmT88fDrr0q07geLE4FeMOX4zH/AFuHkx+vgq7RZYjAZ4A0G0dw9gVEVxzMdocw0u+hlqx9b7udKTrL1VGFfWRP7DziNmozDo79JWoInMzNNTZDZiZLkNraf7ceBkL6pLrInunlNUFT1vvvlmxOfPP/88nE4ndu7cifnz58e8z4IFCyI+v/POO7FmzRps27YtouixWq2oqamJ+RgWiyXiez6fD6+++ipuv/32QVfAVVVVcR8n35DaWzGUnhQ9PZ098qInvypsvZBoTBzI3dh6vOkoOZLSk9uTJytGBAEoiWopCYKAmrIitHT24bgrQdHjTqD0qG5vxV82CkjH6A2ExuAtcdqFBJEp2EVnmc086H1Ky6iJbOCJUnqA0Hmy9XQ/9p/swfnjK7U6tEGk9cp3uVwAQmqOEkRRRGNjI5qbmwcVSVu2bIHT6cTkyZNx6623oqOjI+7jvPbaa+jo6MDy5csHfe/KK6+E0+nEvHnz8NprryU8Ho/HA7fbHfGRS6T21mBPT6rtrU5ZoXOalJ6UiJetwZiQo8mERN4ihhRnn1ulhxWGJVZTzLUPSnw9CZUe1t5SqPT0sURmczxPj/oxeIJIB3nRE400sl4Yf4vy3VsMfnGYZ1k9KRc9wWAQd911Fy666CJMmzYt4W1dLhdKSkpgsVhwxRVX4Omnn8Zll13Gv7948WL87ne/Q2NjI37yk59g69atuPzyyxEIxK6Cf/vb32LRokUYNWoU/1pJSQmeeOIJvPzyy/jrX/+KefPmYcmSJQkLn4aGBpSVlfGP0aNHq3wW0iNWe0u+eysVA1hnr7QTitpbqZGsrSQtHu1FMIs7r2ItPY3Gzkexc3vFmCw/KFlWj9cfxKkeT8Rt5ag1Mieb3jLJzOBkZtaG7gEfnt26H0fyMKU3GyS6eCo8I7MUTshgmWYHTuVXVo+q9pac+vp67N69G9u2bUt6W4fDgaamJvT09KCxsRErV67EhAkTeOvr+uuv57c9++yzMX36dEycOBFbtmzBJZdcEvFYra2t2LhxI1566aWIr1dXV2PlypX889mzZ+PYsWN4/PHHceWVV8Y8rvvuuy/iPm63O2eFjyiKMadX2ButNxDEgC8YV66PRwe1t9KG7buKV2yMriyG2Sig3xdAm3sAteW2mLdL+zjYSHhR/JepVkpPd5L8oGRKT3t36OsWowGVdsug76sdWU+WyAyEVCmP31swKbh645WPjuLRv32OAyd78Nh152h9OFnHFR4kKS8e/PddXGBG5uhwQgB5u209JaVnxYoV2LBhA955550ItSXuDzEYMGnSJMyYMQP33HMPrrvuOjQ0NMS9/YQJE1BdXY19+/YN+t7q1atRVVUVt5CRM2fOnJiPwbBarSgtLY34yBWufh//QxnmkNpbdouRB+Kl4us5LSt0uijgMCUS7bsCALNRWjyazRe0kvaWVp6eZAXZiCT7t9jXh5dZY06mlYRXUWQqnBCgrB6tYcq2kkW0hUBCpadAjcxsZB2QsnqOdPbx7+cDqooeURSxYsUKrF+/Hps3b8b48eNT+qHBYBAejyfu91tbW9HR0YERI0YM+vmrV6/GTTfdBLM5/hsBo6mpadBj5Asnwn6eimJzRHUsCEJaE1ydvXJPDyk9qZDMyAzkpl+dTHECtJve4tvf4yo9iVOZY7V25bAEZaWenmTtLYBWUWgNa7ef7I5/7i8kEnl6mJHZ4w/Cn4ebyNUiXzjKGFZihaPIhKAIHO7In5amqvZWfX091q1bh1dffRUOhwNtbW0AgLKyMthsoZPcTTfdhJEjR3Ilp6GhAbNmzcLEiRPh8XjwxhtvYO3atXjmmWcAAD09PXj44Ydx7bXXoqamBvv378d//ud/YtKkSRHTXQCwefNmHDx4EP/2b/826NjWrFkDi8WCc889F0AoH+i5557Db37zG5VPSW5IFMxWZjPjdJ8vJTOzvL3lIk9PSiQbWQeYmflEVvvVkpqSSOnRZgqEHVv0CgqG5OlJrPSw4igaKacnM9NbAK2i0BrW7sm33JZs4YoTTAhE/p32+QIoNep7mtDjH+zpEQQBE4aV4JMjXThwsgeTaxxaHV4EqooeVqhEj6GvXr0ay5YtAwC0tLTAYJB+8d7eXtx2221obW2FzWZDXV0dXnjhBSxduhQAYDQasWvXLqxZswZdXV2ora3FwoULsWrVqoisHiBkYL7wwgtRV1cX8/hWrVqFw4cPw2Qyoa6uDn/84x9x3XXXqfkVc0ZbjHF1hpTKnF57i5Se1FBiIJ6Yg8WjydpsgLSGIufTW8mMzOFN6+3dA/AHgjBFndR50VMaO79DbXurn01vxUlkBiiVWWuY8tHZ60UwKMac+iskuhKcR6wmA4wGAYGgiH5vIOGFjR6IpfQAofPkJ0e68srXo6roUTJNtGXLlojPH3nkETzyyCNxb2+z2bBx40ZFP3/dunVxv3fzzTfj5ptvVvQ4+UC7O/5JP52sHvlVlKvfNyROLplEvuQzYdHjzH4qs6LpLY3WUCQzMlfbrTAZBPiDIk72eDAiStE57k6i9KS8hiJBe8tCnh4tYREagaAIV78PFTEM7IVEvBUUQEgFKTYb0e3x6/7vURRFafeWOfLiJleZZmrQt6amY07EWEHB4JvWU2hPyT09QVH59AsRosfj50s+ExmIJ1aHXszHXQNZUw7i7baSU6zRGopkRmaDQeB/27F8PSdciT09DpU5Pf0K2lt2am9pikumPLO4gkImkacHkKu0+vaY+QIimB5iNUUrPfk3wUVFj0YoaW+5VRYs/kBwUEuMWlzqYM+5xWQYJNXKKSs2o7okdKV6MEtXMYqmt6zaKD1KVmQk8vUc556eeEZmlTk9PjIy5zvyadJTPYV/XmK7D8tssRUtrtLqvOhhKg8QOb0FRGaa5cviUSp6NKI9wfQK83Co9fR09fsgiqHVACzlmcbW1cHUNSU9dp7MnIVt6/5AkL/hJ25vSUpPLk8qSlZkxMvqCQZFntMTt+iRGZmTBUD6AkH4AqHbxEtkBmjpqJZ4/IGIN/eO3sJXelxJlB5bgWT1sHF0QQjlbskZU1UMo0FAj8eP9jyZ2qOiRyNOxFhBwUh10zprbZXZzKiyhx6XlB51SOPqye1u3MychbF1ucIRb0IKkEbWg6IUEJYLJCNz/GOLl8rc0euFLyBCEACnI56RWXrcZK07+Ztp4vYWFT1aEd2q7yhwpScQlLyBsTw9QOEoPZ6widlqMgzK3LKajFKmWZ6so6CiRwMCYXMnkMTTo7LoYSeSSruFv9BobF0dSlpKDN6vzsLYOjuOYosR5gTjrPIwvly+mSczMgPxs3pYXEN1iTXu72Y1GWA2hk6gyVpczM9jMggJF4nS9JZ2RCvOhe7p6ZYNoSRTevRehLNx9Xh2gFxMuqqBih4N6OjxIBAUYRBCJ/5oUp3eYqpOld2CinD0OSk96ki2bFTOhCwqPUqCCQHAaBB44ZPLK0YlGULxPD2sCIq1c4shCILk60nibeMrKBJ4sABZTo/O2wl6JHoPYKF7etjva09w0cKM9f15lFacCnxc3RT79Tchzya4qOjRANbaGuaw8pUTcqScHnUnZzauXmm3oCys9NDSUXUoGRNnMKXn4KnMLx5VUlQw7Dl+M/cFgrzASpQhFM/T05YgmFMO37+V5EpYSTAhIB9Z1/ebjB6JvvjqKHClRwomjD+WbzMXxt+jJ864OoOUHiLpST9lT4+svVXBi57CvqLKNMlC9+SMqiiGxWiAxx/E0a7Y28RTRUkwIaM4x2/m8hgEufcmGqbknHAP8BgAQPL4JFJ6Qo8dDihMovQomdySH6ve2wl6hLXZmeWj0NtbXYomL8NKj86Vx2RKD7s4zGammRqo6NGARCsoAMkcqrboYVdTlRHtLVJ61KAkmJBhNAgYV52dxaNqFKdcb2xmx2a3GAclLcsZVmKFQQD8QTHiyr7NFd/PJseh0IMjKT2JC0QyMmsHG98eWR7yeRX6Kgp2sVmeaG+eRitkMk2sZaNyWHvraFd/XkyqUdGjAe286Ik9ucLe6LplQXlKkNpbVv4YNLKuDjUKC5C9qxh17a3cKj382JIUZCajAU7H4BZXm1uh0qMwoLBfQRozQEZmLWFt9knhJPNCn95SctGS64uVbMGmRqODCRnyzsPBLO4qVAoVPRrA21uOOEqP7IXSrcLM3BnOvqi0m7nSQ+0tdahRWACZmTnDSo+aKbJcnzyVJEUzYvl62pKkMTNYO0qpp0dxe8sbyJugtKECU5zZRUKPx88VgkKEFXnxxtUB+etW388D+3eM5+kB8msdBRU9GsAzeuJc6ZqNBv6CcKswM3f2hl5olXYrf7GRkVkdSjasy8ma0tOffCSckeu8D7cKNSxWVk9bkjRmhmKlJ3zSTTa9xTwUgaCY00wjQtqwPqrCxgPsCtnXo2QKNNdevGwRb9moHF705EFWDxU9GpDM0wOkltXDlJ4qu4VPDdDIujrUjKwD2dstk2y3lZyce3pUtN640hP+m+8e8HEPQ7KiR/L0JH4N9CtUeuwyzw+1uHILu/iqKLbw9S2F3OLiG9YTKD3SyLq+/xa50pMgI4sp4geovTU0OZFgBQVDbVaPKIo8kblCFk7YPeCHP0BXtUpR6ldhsBdze7dHVSsyGaraW3yRZq6UHuUqVG04oJCpO+y/pUUmfqUbD6X7t5QamQ0GQVrQSkVPTpG3e6rC2WSFvIpCycUTUyb1rvQw1ZSUHiImHn+A97fjGZkB9fu3ejx+vn+oym6JmBpQm+w8lFGr9DiKzBgWXqWQyRaXGm+R1N7KrdKTaD0GI9rTw/xsyVQeQJbTkzScUJnSA5CZWSv4NFOxBVVhpaeQAwrZiH55nGWjgPS32F8gnp5401sAMNEp7SnMdKaZWqjoyTHtYT+PxWRI+IamNquHqTzFFiOKzKFRYvamRGPryvD4A7w/rVTpAYBxVaGx9cOdfRk7FiULPRm5Hn1VY2SOTmWWtqvbkt5XaYGidHoLkGf16PuNRm+wdk+5bC/gUPD0KDEy6z0hnG1Zjze9BQCjK2wwGwUM+II45spspplaqOjJMfLWVvRyNjlqPT1sXL1ClgDK92/1F+4VVSZhbRtBkPwkShhbFWpxtXRkTulRMzrPvAF9OVIv1BiZa2RFjyiKOMEnt+KrnAyH4jUUiXf/yOHp1aT05Az5hvWKYguqHUPB0yMtf45HcYEtHE2k9JiMBn6e1DqkkIqeHJNou7qcUpWeHpbGzKRjQCqATveS0qMEVmg4rCYYYqwHicfY8BbhQx0ZVHpUhRPmVulRY2R2OoogCIA3EERnr5cbmpUoPXx6K5mnR2EiMyC1AvXc3vIHgvjnwU7djHzL05gdRSZUh5WeQl5FwTxMQyOnJ3zRkUDpAfJnHQUVPTmGKT3OJBkl0v4thUWPLI2ZQQGF6mBv5okmLmIxtpopPZkpegZ8AW4OVDSybs11IrNyI7PFZOBLdY+7BmRKjwJPj1WZp0fp9Jb8MfWs9Pyl6Rj+9X+242dvf6H1oSiiS1bAGwwCvzAr1FRm+es30bmE/b0O+IKqQmjzDWYJSJTTA2Rv0lUtVPTkGCWTW4B8FYWykzPz9FQWD1Z6KKBQGWozehhM6TncmRnZlhVfggCUJJlIAnKf96HGyAxE+nqUbFhnsMdP5nngW9YVPFeFYGRubnMDAA6fypyymE345Fa4SGZF8MnuwlR62HnEaBAStsntsu/pedM6V3qStJelCS5qbw0pTiRZQcEoU6v09A5WeiigUB1q05gZY8NG5hNuT0YmMbiSUmRW1Gaza7R7S2lxyAr84+4BRRlVDPnC0UQJylzpUeTp0b+RmbXIu5PkF+UL8sktAAWv9EgXT6aEvk2ryQD28s6VHy8bJFs4ypCyekjpGVJInh5l7S3Fnh5W9JTIix4KKFSD2jdzRnmxhRdKLRmY4JKygpQpKcU5fiPn01sKi0Om6rR09PI3OiVKD/P0+JMkKCvdsg4AJVb9T8ywwlFNWruWRK9kYEpPZ69X8/HlbCD9vvHH1QFAEISCWDqqZA0FIC0ePeHObKaZWqjoyTFKr3RTVnoi2luk9KhBzYb1aJjacygDE1xq22y5VHoCQZHvwlKSFg1IpuWmI10AQj6fRKO8jGKzEexCOZGvRwonHBo5Pe3htpCWbxxqYJNMrL3F1OhAUCxIv2E+783LBskWjjLKbNnJNFMLFT05RmnRw97wlF7NdSRqb9HIuiLUbliXI42tZ0DpUdlmK7bm7mpRPj7uUFiUMVVnV6uLf55I9mcYDAL3NCUqUiQjc/J/N70bmUVR5OeQZAbvfCFa+TAbpaK3ECe4eDtPVdGjf6Un0cg6Ix8muKjoySE9Hj9/Y0rq6SmWwgmVbIQ+3Tt4ZL2cRtZV4VIwZhoPaWw9/SsYNcGEgKT0eP1B+LK8coS13orMBlgS7NqRw7J62BWhEj8PQ8nSUTWJzJLpWx8FQzQ9Hj//fd0Dys4NWtMVI6ivyl64qcxKggkZhZDVI+3eSv76m5ClBc1qUH9JS6QMS6V1KNg7xFoH3kAQHn8wqTNeMjJLxVS5yhbZUIePrKdQ9IwJt7cy4ulRq/TI/pb6vAGU2bJ3LZPKhFu0f0eJn4fBx9bjmHaDQVHasq6ovRW6jV7bW8wTCAC+gKjo3KA1sZSPqhIr9p/sLcj9W2pW2XClR6d/j4B891by887SWaOx4MxhmDayLNuHFRcqenJIu6rJFRMMAhAUQy+iRCc2jz/AT+KxRtbJyKwMNb34aMaF21uHM9jeUtpms5gMMBsF+AIi+rz+lIo2pag1MQOD/96VZPQwkik9LAIfGBprKNg5hOEeSHxuyAdiGXvZpvVTBTi2Hj2inwjWmta30pN84SjjnNHlWT6a5FB7K4ec6FY2rg6EnP18giuJUsPaVyaDEPFGyeTVPm+AZykQ8VG7YV0OMzIf7epPu8WkJvGYkausHunYlF8vFZmNvJ0BKFs2yki2aV3+ZpFsZBaQj6zr88qanUMYevD18HRiWbunmm9aL7wLMjUXT7mOm8gGHp+ynJ58gYqeHNLmUjauzlA6wcUk4gq7JcIgWlpk5jkQLprgSkqq4YQA4HRYUWQ2IBAUcfR0egv1uDyuIhk6VydPd4pqmLzQUaP0OJKsouj3SiZKJZlGyYqofEfe3gKULyTWEvb3LN8LKC0dLbyiR/IwJR5ZB6SWrJ5H1qXpLX2UE/o4ygJBTTAbIJvgSjKaGmtcHQhNv7DCiTatJycdI7MgCBhbGWpxpWtmlocTKiVXWT1qTdYMuY8nFaUnnqLRp2JyCygApcetP6XndExPD1s6WnjtLTWeHrvOjcyBoAhvQHl7Kx+goieHtLP2liN5ewtQrvTESmNmlNMqCkUE5fkzKYysA1KLK10zs9pwQiD3So/SFRSMmpSLnnAqc9z2VngFhcITLt+y7g3oMhivPUrpyfeiR75hvTyivcWmtwqw6OEJ1IVvZJbbJpQYmfMBfRxlgcCmt5Se9NmbXrKsnlhpzAz2wiOlJzHdHj/Y9G+qRmBW9KRrZlZzpcjIVbJrqr6nEeGAQoMADCtRVvQDyY3MapaNApJyBEjb2fUEU3pYF1tpYrtWsL9lQYhUB4eCp0fZ9FZY6dHh3yIAeHySf1HJyHo+QEVPDmH9+GQb1hmqlZ4YPWRpbL3wTi6ZhCkYRWZDyi/eMXyCK932lnpvEd+0nuUrxu4U21vMxzPMYYXJqPy040jiwVGzggIIKULM+qPHFhczMo+qCBWR+Z7K3CVrGcs9V1Ws6CkwT08wKEo5PUraWzl63WYLNj1pNgowKvDU5QNU9OQIURSl9pZaT09SI3P89pY0tp7fJ0etScfEzBiXAaVHFEXJN5OPSk+KqdVTaktD/x1Rqup+TOlJ5ulRktEDhLxXdgUpz/lIKI05dOE0KRzylu/trXjj28zT0+Px83C7QqDb4wfrmip5/dp0nsisdNloPkFFT47o7PXCFwi9GpwKPT2lCpWeWGnMjDLav6WIdIIJGczIfLizL2W/SK83gED4vmqOJVdXjKmM0wPAWSNK8bc7L8ZT3zxX1f2kaavYf79qVlAw9GpmdvX74A1PykxyhoqefJ/eYl7CsigV2mE18UTvQvL1yBVjJcZevRuZmacn2bLRfEI/R6pz2BVadYkFZoXyvtJN60zpqYjR3qogI7MiUh3FllNbXgSTQYDXHxyUp6L2OCxGg6oR0NwpPaFCQa2RGQgVPmqLpeQ5PWEjs0KlB9AulflIZx/eP9CR8v3ZOaS82Mw9MXmv9PBx9ch/d0EQUG1nE1yFc26SlK3k4+qAfGQ9v/8d48GUHr34eQCVRU9DQwNmz54Nh8MBp9OJJUuWoLm5OeF9XnnlFcyaNQvl5eWw2+2YMWMG1q5dG3GbZcuWQRCEiI/FixdH3GbcuHGDbvPoo49G3GbXrl24+OKLUVRUhNGjR+Oxxx5T8+tlFfYm6HQon1xR6+mpitneYkbmwjmxZINUzMPRmIwG7rVItcUln9xSspSTkbPprTQCHFMhmZGZGUCLVYzLapXK/L21O3H9/9uBfe3dKd2fR144iviyV3e+Fz0Jlm9yX08BraJQex5hSk+/TpUeNctG8wVVl2tbt25FfX09Zs+eDb/fj/vvvx8LFy7EZ599BrvdHvM+lZWVeOCBB1BXVweLxYINGzZg+fLlcDqdWLRoEb/d4sWLsXr1av651Tq4BfTjH/8Y3/3ud/nnDoeD/7/b7cbChQtx6aWX4tlnn8Wnn36K73znOygvL8f3vvc9Nb9mVjihcnILkFJvk01vnU4wvVXGlZ78lsG1RsrGSW8zy5gqOw519OFwRy8umFCl+v4sK0htUZGrnJ5Ujcypkkzp6Vfp6QGk9lYuU3A7ejzYe9wNANh7vBuTnI4k9xgMK3qcpVZpslMnRuZYQX1VfGy9cC7IuvpZO0/Z60PvSo8UTKgfpUfVGf7NN9+M+Pz555+H0+nEzp07MX/+/Jj3WbBgQcTnd955J9asWYNt27ZFFD1WqxU1NTUJf77D4Yh7m9///vfwer147rnnYLFYMHXqVDQ1NeHJJ5/Mj6LHzdKYlY/rKlF6gkGRqzixprcqyNOjiEwoPUDIzPwu0lF6UisqcqH0BIMinxZKNctILUrDCVMpenLZ3mo60sX//8jp1P422rulRHem9OilvRXrdcVadIXk6VGt9IRbraT05I60jtTlcgEIqTlKEEURjY2NaG5uHlQkbdmyBU6nE5MnT8att96Kjo7Bve9HH30UVVVVOPfcc/H444/D75de8Nu3b8f8+fNhsUhv/IsWLUJzczNOnz4d83g8Hg/cbnfER7ZIpb2lxNPT1e/j0wIVscIJw73lLhpZT0gmjMwAMKYyvQmuVL1FufD09Hplkyk5UnqYd8jjD8bcacYTmc3Ki7ASDYzM8qKnNcU1JVKiu5U/L/k+ss6Uy2hPDyBPZS6cc5OaZaOA1N7S6wLcAZ3t3QLS2LIeDAZx11134aKLLsK0adMS3tblcmHkyJHweDwwGo341a9+hcsuu4x/f/Hixbjmmmswfvx47N+/H/fffz8uv/xybN++HUZj6Mm84447cN5556GyshL/+Mc/cN999+H48eN48sknAQBtbW0YP358xM8dPnw4/15FRcWg42poaMDDDz+c6lOgilTaW+wNuHvAj0BQjJmDwPw8pUWmmAZpeTihKIqqfCJDiXQ2rMvh29Y7U8vqSVVxysX0FlOhLCZlkymZwC4LE+z1+Ae1SfrDypbSnJ7QYzIjc+7eaD5u6eL/fyTFxG75GpvSJKP8+QJfQRFDha62s6yewlF63Hzvlrr2Vr8vlBCuZH9cPqG3vVtAGkVPfX09du/ejW3btiW9rcPhQFNTE3p6etDY2IiVK1diwoQJvPV1/fXX89ueffbZmD59OiZOnIgtW7bgkksuAQCsXLmS32b69OmwWCz493//dzQ0NMT0/yjhvvvui3hct9uN0aNHp/RYyVCzYZ0hv5ruGfDH7BNzE3OclFv24vP6gxjwBVW1AYYSmSp6eCrzqb6UisxUtpgDuVF6pNDE3LS2AMBsNKDIbMCAL4jugcFFTzrtrVwpPcGgiE9kSk+qC2l5uKmjiJ8bugfy+2Im1oZ1RkF6elTu77PLohb6fYGIIl8P6G3DOpBie2vFihXYsGED3nnnHYwaNSr5DzEYMGnSJMyYMQP33HMPrrvuOjQ0NMS9/YQJE1BdXY19+/bFvc2cOXPg9/tx6NAhAEBNTQ1OnDgRcRv2eTwfkNVqRWlpacRHtpA8PcqVHovJwHcKxfP1dLIN63GuLEqsJpjCVw80wRWfVFKQYzE63N7q9vhTCoTkhupUlZ4senoy9RypJdH+LbWJzABQYslt0bP/ZA+6PX6+OqK1qz+lHKf2iPZW6DkJivm9oTvWhnVGIXp6JCOzspH1IrOB/13o0czMwwkLtegRRRErVqzA+vXrsXnz5kHtJKUEg0F4PPH/0FtbW9HR0YERI0bEvU1TUxMMBgOcTicAYO7cuXj33Xfh80lvNJs2bcLkyZNjtrZyiS8Q5C9sNUUPgKRTGlIac2ylRxAEfnVMRU98MmVkLjIb+UbxVNZRpHocxTnwBrBWiiNH4+oM5l+JWfSo3L0F5N7IzFpbM8dUwBjOcTqp8o0+GBQjjMxFZgO/mMlnX0+sDesM7ukpoP1bal+/giDwuAU9mpmZp0dP7S1VR1pfX48XXngB69atg8PhQFtbG9ra2tDfL8m1N910E+677z7+eUNDAzZt2oQDBw5g7969eOKJJ7B27VrccMMNAICenh7ce++92LFjBw4dOoTGxkZcddVVmDRpEp/u2r59O37+85/jk08+wYEDB/D73/8ed999N2644QZe0HzrW9+CxWLBLbfcgj179uCPf/wjnnrqqYj2lVac6vFAFEP7SWJNWCUi2QTX6QQZPQzW4nLRBFdcmF8l3aIHSM/MnGrisZTsmk1PT+7bW4BsbD2Gf0Vqb+WvkfnjI6FBilnjKvkOslaVE1ydfV74w+rQMIcVgiBIgw5JIi20It6GdQZTejp7vbrceB8LtUZmIHdxE9mAeXr0pPSoOns988wzAAaPoa9evRrLli0DALS0tMBgkGqp3t5e3HbbbWhtbYXNZkNdXR1eeOEFLF26FABgNBqxa9curFmzBl1dXaitrcXChQuxatUq7tWxWq148cUX8dBDD8Hj8WD8+PG4++67IwqasrIyvPXWW6ivr8fMmTNRXV2NBx98MK/G1Z2OItVGtWT7t3gac4Kip4I2rSfFleJOqViMq7Lj/YOdqRU9KR5HMW9vZc8QmYnU6lTgY+sZam/Zc/wmw5SeGaPL0XTkNI529eNIZz9mjlX+GMzELE90dxSZ0NnrzVulR75h3RGjiGe7AgNBEV39vpi7A/WGOwWltpibmfOzeE0EV3p0NLKu6swqismr8S1btkR8/sgjj+CRRx6Je3ubzYaNGzcmfMzzzjsPO3bsSPqzp0+fjvfeey/p7XJNm0sKFVNLMqUnURqz9Bg0tp6IAV+A7zTKiNLDF4/mrr2VC0OklCGUY6UnQSozX0Oh4kozl2soejx+fHEilMB87phyvL23GECnaqWnXXbhxHDk+QSXS2bqjTV5ajYaUF5sRlefDx09noIoerpUTm8BuWlNZwu2ZV1P4YT6Kc90DN+uriKjh5Esq6czwYZ1BgUUJoZdnRmEyOIhVfgEVwqjyakmHufCEKmVkdmRYOloXwqeHt7eyoFxdFdrF4IiMLLchuGlRRhdEfrbUJvVI8/oYXAVOE+VntMKWj3sYq0QJri8/iD/e0xF6cllQnim8HAjs35KCf0cqY5pSyGjh6FU6UlU9JTzokf/J5ZsIB9Xz0RbiGf1pNXeUldYCIIg+XqydMXIC7Jct7cSKD3prKHIhaeHhRLOGF0OAHw3m9pU5ljTn0zpydf9W/E2rMsppP1bydp58ZCKHj0qPeGih5QeQs5ZI0px1YxanDumXPV9k+3fUlb0sOmt/Lwi1JpUzcPxYO2tUz0eVS2UQFDkvpVU2mzFWd7jo7WROdrT4/UHublXTSIzKw5z0d5ifh722mdFj2qlhyW6RxQ9UlZPPsJbPQn+loexsfXuQih6WFBs7HZePKTXrQ6LnkL39BCp8S/n1OJfzqlN6b6lCZQeURQVtrdo6WgiMjWuzigtMqPSbkFnrxctHX2YUqss/0n+5uVIobCwW01AtydrV4y53rDOiKf0yEd81Sk9odsO+ILwB4IwxUgyzwSiKA4qeliO07Gu/rgp67FoT9DeyndPT7wMMaCwxtbT9eP167G9RUoPkWkSeXr6vAH+R0ftrdRhKlqmih5APrau3MzMjqPYYoy5UiQZ/IoxSwoGO75UCrJ0cMTJ1ekLT7uYDAIsKnJCIlZbZPHq+mhXP071eGAyCJhaWwYg1J4yGQT4AiL36SiBt7diGJnjTXZqTaIVFIwqOwso1P+5SdoorzJjy8pet/pVevQ0sk5FT56TyNPDVB6ryZDQyCnt39L/iSUbZHJcnZGKmTldxUnK6smy0pPrROY44YSprKAAQq8XFuyXTV8PU3mm1JbyNwWjQUBtufoWl3zvFiPfp7cSbVhnSEtHC6G9lV6wqD6NzAUeTkjknkQ5PR2ycfVEu3fYpvV4ZuihTqbbWwAwlpuZVSg9aRYV0hVjlqe3cp7TE7uNk0oaMxA2fefAzMxbW2ETM2N0ZdjMrLAgDgRFWaJ7rPZWfr6uXQqUj0JaRaF27xZDz0ZmPYYTUtGT50hKz+CT82kFwYSh70sj60qyloYa2RjFHptCKnOqwYSMbJ48RVFMeZw+XeLl6kjBhOqfr5IcrKJoCicxz4gaYBhVrm5svaPHg6AYilSQLxaWVtTkp0LAcsFi7d1iVJOnR9dFj9Te0k8poZ8jHaIk2r3VocDEDEhKjz8o5mzfkJ7I1IZ1OeOq1Rc96SpO0qb1zP8b9/sCfFIqk21AJTjYwtGBOO2tFK4y7Vn2UXj8Aew+5gYAnDs6cvcfV3oUjq0zP88whzXC+Jzv01une+NvWGfwkfUC8PS4UggmBPTd3mILRymckMgY7A3Q6w/yqprBNqwnSmMGQp4H1nOlCa7BZGMqaUxlqL11zNUPj1/ZG2u67S07u2LMwhs5MzGbDEJKRUY6xPP0sGkXte0tIPtLR/ce74bXH0RFsZn7uxijeECh0qJnsJ8HyH9Pj0vByDrz9PR4/IPOb3pjKCo97NxGSg+RMewWE9jFXbSvpzN8JRVvw7qcckpljks2PD3VJRYUW4wQReVtjO37OwAAoyqLk9wyNsVZTBpmBZmjyJTQP5YN5K0o+WLKVI3M8sfMlqfn45Zwa2t0+aDnS21WD8/oiUp0T7aXT2vYtGii9pbDauKTd3r39XTxjfLq1mkUZ3kAIZsM+MjTQ2QYg0GIm9XDlJ5Ke/I36woeUKh/GTnTuLIwsi4Igiozc5trAFu/OAkAWDIjtUwntUrP6V6vYqO1ViZmIHJEXl7QpbKCgmHPYisQkJKYzx1TMeh7LKvnuGsA/kAw6WNJacyRFzfseen1BhDIsy3lXn+QxwEkavcIgoBqO5vg0ve5iU+rqWxv2bM8gJAtRFGU7d7STymhnyMdwsTbsSMFEypXeqjoGYxkZM6sV0WNmflPO48gKALnj6vEhGElKf08tZ6e76z5AJf97F1FhY9WJmYgcsRc3o7qT8vTk932lnyzejTDSqywmAwIBEUcdyXP6mmP296S/i1irejQEmZiVrKSoVBWUQy19pYvIILNxVhJ6SEySbysHiVpzIxsja33ePy468WP8daetow+biL6vP6MTqG5s9DeAoCxCs3MwaCIlz5sBQD86+zRKf88dsWo5OTZPeDDxy1d8PqDePfLU0lvL/mech/iLghCzFRmqb2VyvRW9q6uO3o8aAmPo58To+gxGASMKlduZo61bBQALCYD91Lk29JRNq6uZCUD8/Wc6tb3BZmSEf1Y6LW9NSDzKurJ00NrKHQAn+CKGltXU/SwsXU2UZEp3v3iJP7SdAyft3Vj4dSajD52LB7f+Dl++c5+mAwCqkusqHZYMKzEiuoSK4Y5pP/WlhdhxuiKpCdc+b6rTLduxlYqa2/tONiBls4+lFhN+PrZqT+HXOlR8Ebe3NbN//+Dg5248YKxCW+v1YZ1RonVhK4+X4QywxKZ0zEyZ2N6i7W2JjlL4hbSIytsOHCqV5Gvh7W3nKWDFxY7iswY8HnyruhhrZ5EKygYPKtHx0qPKIoZUHryS61LBjOeCwJgydIql2xARY8OiKf0KB1ZDz1GeP9Wf2avppj5cP/JHvgCwZTWJyilx+PH6r8fAhAav29zD6AtQZT/ysvOxB2XnJHwMeXjvhlXehSmMr8cVnn+5ZzalDJnGEzp6VcwBbP3uJv//weHOiGKYkKDMsuCyfUKCkasXJ1UwwmB7La3ErW2GNIEV/Kipz1sZB7uiFX0mHCy25N3E1wsQyzRhnWGlMqsX6Wn1ytFOqRqZO73BRAMijCoWFaqJR4+rm7I+XBDOlDRowNiTWn4AkF+oks2sg5IV1yZnt5iJypfQMThjl5Mcjoy+vhyXv/kGPq8AUyotmPtv83BqW4PTvV4cDLiv14cPNWLz467sXFPW9KiJ919V4lgRc+Rzr64yyVd/T688elxAMDSNFpbgDql57PjktJz3DWA1tP93GAbC62VHkfC9lZ+TW99HA4lPDcqlFAOy+ppTVIQ+wJBvpcqur0F5O/SUSUb1hnVdpbVo1+lh12QWowG1a0edrEiiqGWUToXPrlEGlfXj58HoKJHF8RSetiVlEFQplBka+lopyxJ9YsTPVktev7wzxYAwDfPH4OR5TaMDPsiojnZ7cHs//M29hxzo6PHE5FiG40ri2/mI8psMBtDyyWPu/r51b2c1z45Bo8/iMnDHThnVFlaP0/N7q3PwkqPIIROth8c6kxc9Gi0YZ3BipTuWEpPHhmZA0ERnxxxARgcSihHqdJzsjtUCJiNQszR73xdOqrG31LtCHt6dKz0sPNqWbFZteoh31De69FP0cPH1XUUTAiQkVkXxNq0zlpbFcUWRXJoOR9Zz+zJMbLo6U5wy/TYfdSFXa0uWIwGXDtzVMLbDnNYUVcTKr7+Hs6+iUc2MnoYRoPAC4mWOGbmlz44AiBkYE5XIla6eysQFNHcFip6LqlzAgD+ebAz4X3cfHpLo/ZW0eBU5vTWUGTHyLz/ZA96PH7YzEacOTz+FB7L6klmZGYmZqejKObrPF/3bylZQcGQNq3rV+k51hX6d6pOcIEVD4NB4C3afh2ZmZnSY9WRiRmgokcXxMrpUWNiBqSTT6aVHvmYaTaLHqbyLJw6XNHvfPEZ1QCAbV+eTHi7bE8lsbH1QzGKns+OufHpURfMRgFXnzsy7Z8lV3oSTbcd6ujFgC+IIrMB35gVaqn981CSokfDnB4gtqeHGT9TaW9ly8jMQgmnjyqDKUG7dHRY6WlzD8Drj5/VI5mYY7+Z5msq82kVyzerCmD/FvPInVWTmtLNip5s5UZlA1J6iKxRWjR4eqtT4bJRBm9vZVgGj25vZYM+rx+vNh0DAHzr/DGK7nPRJFb0nEpYAGRT6QFk29Y7B09wvfRhSOW5bIqyQi4ZTOnxB0V4E4TefRbeCTW5phRzxlcCAA6c7E14pe3WMKcHkHl6MmxkzvSbTKJQQjnVJRYUmQ0QReC4K36LK5GJGYitAucDqtpbYXWks9cbkbitJ9hrakptaUr31+PYuh6XjQJU9OiCWJ4eVmwoMTED0snH1e/LaHqrvOg5dKo34VVrqmz45Dh6PH6MqyrGBROqFN1nzvgqWIwGHHMN4MCp+CPj2Tbo8gmuU5FKz4AvgPUfHwUA/Ous9AzMDLm3JVEqM7sqnTLCgfJiCyYPD12dfphA7enul9ZQaAH39OS5kVnJ5BYQyh5ivp4jnfGLnngZPQxHjOclH1DT3mIFfyAoZvyiLFcwj1zqRY/+xtY9fv0tGwWo6NEFiTw9ShUCNkYpipnr/weDIpexDUJIYTiYoMBIlXXh1tbS2WMUj3PaLEbMHBu62v77vvjhe9nYsC4n3tj6W5+dgKvfh9qyIlx8xrCM/CyT0cDj4BMpGFLREzpBzx4fep7+efB03Pvki5E5sr2VfiJzJttbPR4/msMt3kSTWwxpB1d8X0+ijB4gf9tbbEpUyUoGs9HAL8r0OMHlHvDxMEr2mlKLHlOZmdJDnh4i4ySa3lJa9FhMBr6bKVNmZrlqxK5wMu3r2XvcjaYjXTAZBFyXxMAczbywr+e9BInDOWtvdfRGtNmYgfm6maOSBiiqgb2ZJzp57g2Pq5/Fip5xoRbXBwmUHt7e0qro4SPr0t9uWkbm8H28gWDG1MldrV0QRWBkuW3QyohYKFk8Gm/DOiNf21us6FEysg5IirUeJ7j2hltbI8ttfGBELdLrNr+K10TocdkoQEWPLmCtF/mWabVGZkCa4MqUmZmpTQ6rCdNqQ+PWX2a46HlRZmAe5lA3GcHMzDv2d8Rd7JjtN/NRFTYIQqgIYSf0I5192BZWn76RodYWgxsi47RtOnu9PNCxLlz0nB/29ew55oo5wj3gC/DCQKvpLUcCI3Nqnh75mHBm3miUtrYYzMycaIKrPc6yUYaD7+XLrzdLvnFcYRHAYiX0OMHFWltnpajyAJJamY2E8Gzh0eGyUYCKHl3AJotCranQya2Db1hXU/RkNqCQF14lFpwR9oU0Z7Do6fcG8ErY9/JNhQZmOVNry1BebEa3x49PWrti3ibbSo/VZERtWeiKviVsZv7TzlAC80WTqhJm46RCsqwe1toaW1XMW0YjymwYVWFDUAQ+Ojy4xcVUBIMgPX6uKYlq4wSDIr/STMXTI28FZiqrhxU9SlpbgLKsnhPdiZUeqb2VP0qPfMO6kjUUQGgJK6DP9la6JmZAUnr0NLJOSg+RNawm46DFgmyHVpWCDeuMCp7Vkxmlp1NWeLFMki8zOMH1xqfH0T3gx+hKGy6aWK36/kaDgAsnhozP8Vpc2dqwLof5eg6dCiUzs6InUwZmOcmyeqTR2sgT9PkJWlxsarDEatIsIj/a0yNftZGK0iN/zExMcImiKJvcKld0H5bKfCROKvOAL8AvUOJOb/G09vxRetRsWGfoeWz9syiPXCrYdDmyTtNbRBaJ9vXwcEK7coWiLMNKT4dsguzMsNITyoDJzNUKy+a5XoWBOZp5k0Im4W1Jip5sKT1ApJn57/tO4WhXP8psZizKwoLWZEpPPCmetbjejxFSqLWJGRhc9Mh/v1RzQpSGOSqh9XQ/TvV4YDIImFqrLFmbKT3t3Z6YrxmWxmw1GeLmSOWj0qNmwzpDCijUV9Hj9Qf5hd7UdJQeHYYTDvD2Fik9RBaQ798KTU2xgkON0pPZVRSdPZKvyOmwosxmRlAMZb6kyxcnuvHh4dMwGgR8Q6WBWQ7z9Xx8pCvmG0Mu3tDlZuY/hrN5lsyozYosnCzkjEnxZ42IDFGbHS56mo508V49Q+u9W4DcyOyHKIr8zcFmNqZcELMCsScDPoqPwyrPlNpSxf+uFcVm/u91rGtwi0tuYo6X1s3+TTz+zBmy04Xv3VLY2gIkpUdvnp79J3vgDQThsJq4MT0V+N48HSk9Ht7e0lcZoa+jHcLIlZ7uAT+fmlKj9JTzTeuZVXoq7VYIgiC1uNrT9/UwleeSOmfccV0ljK4sxtiqYgSCIt4/EKliiKKYdU8PIKUyf9rqwqY9JwBk3sDM4FMgMd7Ivf4g9p8MXZVG+w8mVNtRXWKB1x/Ep62uiO91c7O3djuBmNLjD4rw+IOyya3UC8dMZvU0MT+PQhMzEMrqkczMsYqexCZmQCoGgfxRe/jklopJpmqdenr4RURtaVprZPjIug6NzJTITGQF+WgqMzGXWE2qpEV25ZWpkfXogERuZm5Lr+gZ8AXwykdhA/Mc9QbmaOaxdOaovJ5+XwC+QKh4zG57K6T0HDjVC28giKm1pZg2Mr3lovFIpPTsa++BLyCitMg0aFmrIAiYNTak9kSvpOBqmIZKj9xA3T3gT2sFBX/MDC4dZZvVZyj08zASZfXwvVsJin6jQeDFW75McDEVWum4OhBKqAb05+lh7eJ0WlsAUKwgaiLfYEZmyukhsoJc6UllXB3I/Mh69HGc6QwpPemuo3hzdxtc/T6MLLdhfgaC+y7meT2Re7iY+dMoW/iXDcZURU5oLZ2dHZUHSJzTw07QdSNiX5WyFtcHUb4e9jxp6ekxyN7cezz+tFZQMDKl9Gzf34E9R0PPbaLN6rHgi0djpDKfSLKCgpFvvh41KygYVVzp0VnRcyx9EzMgpanrqr3FlB6a3iKygXz/lto0ZkZFlozMleGrNGZmTre9JSUwj85IcN/cCdUwCMD+k70Re47kra10N5wnosRq4leyFpMBV52T/nLReCTK6YlOYo6GTXB9ePh0xKoSpvRotYKCwYueAb9sBUXqx2RP08gcDIp4Zst+fPs3O+ANBDFrbAU3rSuFRRbEUnqSZfQw8i2VmU1vqVF6mKenx+PP2CBEthFFMe31Ewz2t6grIzMtHCWyiVzpUZvGzCjP8Mj66TjtrZbOvpRfvPtP9uCfBzthEIBvzErdwCynrNiMs0eVA4gcXZfaNtl/M2ctrsun1SiK5k+VRNNbyYqes0Y4YLcY0T3gj2hR5oORGZBl9Xh86PMxI3PqpzCpvaX+b9XV58P31u7ET978HEERuObckfjdLeerLp4TpTInS2NmyIcc8oFUPD0OqwmWcG6SXszMx1wDcPX7YDYKOMOZ2nZ1ho0bmZX9LX7Uchr16z5KuMIk29AaCiKrRHp6Ui16woVTBpQeURQHtbeqSyyotFsgiuCGWbWwBOav1Tkxoiz1aYhoLpZtXWew5yGbfh7G1eeOxMhyG77/lYlZ/TnxxrBFUZQyeuIUPSajAeeF95XJ83q6NV5BwSiR7cvq52nMqRes7PE+bjmNlg7lbx67j7rwv/7ve3h77wlYjAb899Vn44l/PSelY5ECChN5enSm9KTQ3hIEAdXh84heWlx7joYM/5OcDl6wpYo0sq7s3/DXWw/gr7uO49WmY2n93HSghaNEVimN4elRumGdwcIJuz1++OKsZVBKj8cPb/gx2Ni8IAg4g/t61Le4PP4AD+5LJYE5EWwP19/3neKrPLK9bFTODReMxd9/8LW0ouqVEE/paXMP4HSfD0aDgDPCU3axmDN+sJk5l4pYItibe4/Hl9aGdcaEYSH17f2DnfjKT9/BstX/ROPeExGtPTmiKOLFf7bgmmf+gSOd/RhVYcOfb70Q35ozJuX2KJveOtXjHaSOSu2tZJ6e/Nq/xdtbKhVN7uvp1YfSk4lQQkaxSqWHJd9rqYoNiXDChoYGzJ49Gw6HA06nE0uWLEFzc3PC+7zyyiuYNWsWysvLYbfbMWPGDKxduzbiNsuWLYMgCBEfixcv5t8/dOgQbrnlFowfPx42mw0TJ07Ej370I3i93ojbRD+GIAjYsWOHml8xb5FL2Kd5MKG6okf+puVKUwpnhZfNbIx44zkzjXUUb+05gdN9PtSUFuErZ2Zm8zjjvDEVKLYY0dHrxefh1k0+hO5lmnjTW0zlmTjMntB4yJaP/vNgJ1+Q6s5hcZiIWJ6e4jRMlEtmjMRvb56Fr5w5DKIIbGk+iVvWfIivPP4OntmyP2J8ut8bwH+8vAs/eOVTeP1BXFLnxIbb5+HsUelN4ZXaTHyvmFzt6fX40R1W65K2t2z5Nb2VSnsLkCa4TnXrQ+nJxPoJhjSynvzfsN8bwKGOUBaalqoYb2/pTOlRdem2detW1NfXY/bs2fD7/bj//vuxcOFCfPbZZ7Db7THvU1lZiQceeAB1dXWwWCzYsGEDli9fDqfTiUWLFvHbLV68GKtXr+afW62SpPv5558jGAzif/7nfzBp0iTs3r0b3/3ud9Hb24uf/vSnET/v7bffxtSpU/nnVVVVan7FvEXu6Um1vWUyGlBaZIJ7wI+uPi/PxkiFeMeQzjqKFz8Itbb+dfZomIyZvXqwmAyYM74S7zSfxLZ9JzGltjQnGT25Jl5OT/Rm9XicM7ocFqMBJ7s9ONzRh3HVdv5mmi9G5u4MTW8JgoBLzhqOS84ajkOnevH79w/jpQ9b0Xq6Hz9583P8bNMXuGL6CFw+rQZPbvoCn7d1wyAA9yycjFu/MjEjKzkEQcCoymLsPe5G6+l+7otrD6cx2y1G/nvHgyk9+TK9pXbDOoMvHR2KSk+4Ld3nC0AUxYTK4b72HoSvR/jFpxaw9pbelB5VZ7E333wz4vPnn38eTqcTO3fuxPz582PeZ8GCBRGf33nnnVizZg22bdsWUfRYrVbU1MSO5V+8eHGE8jNhwgQ0NzfjmWeeGVT0VFVVxX0cPSO/mku1vQWErr5CRU+aSk/4CoNNXTDYSVtte6uz14vt+zsAIK0E5kTMO2MY3mk+ife+PIXvzZ8ojWJrbNDNJPGUHimJOfEJushsxPRRZfjw8Gn881BnqOjJMyNzz4Bftmw0M4XYuGo7HrhiCu5ZOBmvf3IMa3ccxq5WF9Z/fBTrw0tvq0ss+MU3z8WFKeyBS8SoClu46JGUHqUmZiAfPT3qNqwz+P4tHXh6XP0+bj7PZHtLFENTUYnatnIVXdv21hBcOOpyhYxclZWVim4viiIaGxvR3Nw8qEjasmULnE4nJk+ejFtvvRUdHR1Jf3asn3vllVfC6XRi3rx5eO211xT+JvlPrJwete0tQBpbTzegMF5WEGtvtZ7uVzUK/M7n7QiKoRNIpjePM1hezz8PdmLAFyhspccbrfQovyqNzuthbUCtnyeHPKcnA4nMsSgyG/GNWaPx2op5eLX+Ilw3cxSsYZXwr3dcnPGCB0DMVGalJmZAKkbzQemRb1hXq/RU8/1b+a/0sNfTyHJbRqYxbbLCoS+JmVl+QallmKOHt7cKWOmREwwGcdddd+Giiy7CtGnTEt7W5XJh5MiR8Hg8MBqN+NWvfoXLLruMf3/x4sW45pprMH78eOzfvx/3338/Lr/8cmzfvh1G4+CT2r59+/D0009HqDwlJSV44okncNFFF8FgMODPf/4zlixZgr/85S+48sorYx6Xx+OBxyO9wNxut9qnIWcwP4XXH0R7OLQsVaUHSD+gMF57q9JuQXWJFad6PNjX3oNzFMbyb/68HQBwyVnOtI4rEWc4S+B0WNHe7cHOw6dlnh5t2zaZJFZOT5/Xj4NhD4ASI/X54yrxDPbjg0Od8PqD/Ioun5SeYFjfz2ao5Dmjy3HO6HI8es3ZMBqErGU5xUplVmpiBiSlJx82rbMLCUFQ7wGrduhH6WHKabpJzAyjQYDNbES/L4A+bwCJTBmfy+IkOnu9CAbFjLRa1SK1t/Sl9KR8tq+vr8fu3buxbdu2pLd1OBxoampCT08PGhsbsXLlSkyYMIG3vq6//np+27PPPhvTp0/HxIkTsWXLFlxyySURj3X06FEsXrwY3/jGN/Dd736Xf726uhorV67kn8+ePRvHjh3D448/HrfoaWhowMMPP6zm19aMEosJBgEIiuCrE9R6egBpoiLt9la47x6r8DpzeAlO9XjQfKJbUdHj9Qex9YtQWvIlZw1P67gSIQgC5k2qxisfH8W2facKU+kJy+QefxD+QBAmowHNbd0QxdB+o2GO5MrBeWMrIAjAoY4+HDglebNKNPf0hBUNjx/sFJ/O9JZSMu0viyZWKrOa9hZXejzaKz3sYkrNhnVGlY6UnkyFEsoptoSKnmSpzF/Iip5AUIR7wKe6lZgugaDIp3f1VvSk9GpesWIFNmzYgHfeeQejRiX3XxgMBkyaNAkzZszAPffcg+uuuw4NDQ1xbz9hwgRUV1dj3759EV8/duwYvvrVr+LCCy/Er3/966Q/d86cOYMeQ859990Hl8vFP44cOZL0MbXCYBC4YREALEZDUoNjLCoyFFAoXzYaDU9mVujr+efBTvR4/KgusWJ6lnZSMdjo+rYvT3GvSiEVPcwQCYAH+H3G83mUBaiV2cyoqwmdzBv3hhS4EqspI+nY6SBXerLV3tKCWKnMJ8JGZqeCIpUplfng6UllwzqjSkf7tzK1fkIONzMnGFt39fnQFi6IrTzMMffPF1tBIT8OvaDqaEVRxIoVK7B+/Xps3rwZ48ePT+mHBoPBiLZSNK2trejo6MCIESP4144ePYoFCxZg5syZWL16NQyG5Ife1NQU8RjRWK1WlJaWRnzkM/I35wp7aqsT2GOku2k9kZma5cAo3cHV+Hlo8/jX6oZlXaZly0d3H3PhaFfoylrrtk0msRgNMIWfQzbBtTeFq1KW1/P23tC/jdYZPUCkp4fn9OjsKjMWI8NKz+k+H19+qs7InD+JzKlObgHSpnXWsslXvP4gX7WTUaXHHHvyUg4zMY8st6E2vDRYi830Hp+U86Y3pUfVmay+vh7r1q3Dq6++CofDgba2NgBAWVkZbLbQP8BNN92EkSNHciWnoaEBs2bNwsSJE+HxePDGG29g7dq1eOaZZwAAPT09ePjhh3HttdeipqYG+/fvx3/+539i0qRJfLqLFTxjx47FT3/6U5w8KS2OZJNaa9asgcViwbnnngsglA/03HPP4Te/+U06z09eIfeexFJYlCDt30rv6iDR0lM1So8oilxNyGZri+EsLcLk4Q40n+jmV8aFpPQIQmh5qnvAz2VyNq6u5qp09rhKPP+PQ2g60gVA+4weQKb0ePwoCoZOtJma3tKS0iIzymzm8ERQH+pqStGe4vRWsnHnbJPq5BYgnUsCQRFd/b6U2ve5YF97D3wBEaVFJowsz1xqvKT0xFfsWNEzucYBd78PB0/1aqKMDYSVHrNR0FwBVouqMwYrVKLH0FevXo1ly5YBAFpaWiJUmN7eXtx2221obW2FzWZDXV0dXnjhBSxduhQAYDQasWvXLqxZswZdXV2ora3FwoULsWrVKp7Vs2nTJuzbtw/79u0b1E5jAWoAsGrVKhw+fBgmkwl1dXX44x//iOuuu07Nr5jXyN+cUzExA3Ijc3pXhcxsWFkSo+gJ76E55hpA94Avoi0Xzb72HrR09sFiMnAVJtvMO6M6YuwzH97QM4ndGspi6vMEEAwmXz8Ri9njQ+so2MsrH9QwntMTfnMHCqO9BQCjK21wHfWhtbMfk4c7cELhslFAUnr8QTHpuHO2SWUFBcNsNKC82IyuPh86ejx5W/TI/TyZLDB5QGGC9hbz85w53IGDYb+dJkWPTpeNAiqLHnmBEY8tW7ZEfP7II4/gkUceiXt7m82GjRs3JnzMZcuW8aIqHjfffDNuvvnmpMenZ+RvPKmMqwPSyShjI+sxrujKis0YXmrFCbcHX7b34LwxFXEfpzE8tTV3QhUft8428yZV47fbDvLP86F1k0nkWT0tnX3o8wZgMRkwoTp2gGgsnI4ijKsqxqHwTqp8mHDjicweH9jFZSG0twBgVHkxdh9148jpvlD4Ytiz5HQkV3rsFiMfcnAP+LQtelLYsC6nym5BV58Pp3q8OCP7wm9K7DkWimqZMiKz/sPiBMuCGZLSU8KnTzVpb/n1uWwUoN1buiITSg8zMrvSaG/1ewP8pBxL6QGkFpd80iAWjWHPyKVZHFWPZs6ESpiNoXdNu8WY9emcXCNl9fi5yjN5uEP178lWUgD5pfQM+IK8NVlISg8Qyrdira3SIpOiAkYQhLxJZU51BQWDpzJn4I184542/Pj1z5Lm3qglk+sn5NgtidtboiiiWab0VGm4oJUpPXpbQQFQ0aMr5G2YVKXfTCg9bCGg2Shwc2k0ZzhZMnN8M/PpXi92Hj4NAPhaDvw8jGKLiatPheTnYUhZPQFZa0vZ5JYcFlIIaL+CAkCEEihNb2l/XJlAvm39hIqMHgbP6tF4giud6S0AGMaWjqZZ9IiiiP/9l9147u8H8dBre9J6rOjHzeT6CTnMn9Ybx8jc3u2Bqz+0NHjisBKp6NFgbYdel40CVPToisjprfQ8Pf2+AP/DVYvcxByvp813cLXHV3q2fBFKYa6rcWTUEKgEls5caH4eQC6T+9M6QZ8vV3ry4HmymAyDxmO1bOVkEnlWj5rJLUZpihNcP93YjCffalZkXVCCZGROsb2VobH11tP9OBke+3/pw1a89smxtB5P/rjdA35YjAZMcpZk5DEZXOnxxS5cmcozrqoYRWajtJVek5F1UnqIHCD3nqTa3nJYTdwPkeqm9UQZPQwlO7jeDk9tXZpDlYfxL+fUorTIhPkZ3uaeD0QqPcoWjcZibFUxz4nJh/YWMFhxKpz21mClR8kKCkYq+7fauwfwf9/Zh19s3oeWzr7kd1CANLKeYnuLBxSm90b+UUtIQWaTRfe/8ilaOtL/HdlFxBnDS2DJcD6NtGk99sUoK3om14TOrVrmGpHSQ+SETLS3DAaBqz2pBhTyZaMJjoFl9Zxwe+CK0Urz+oN4t5mlMOfOz8MYW2VH04MLcf/Xz8r5z842LJX5uKufZxHVpVD0CIKABZNDReHYquzsQ1OLPJDTbBRgLhA/FlM63QN+ro6qa28xT4/yoqdVtutr275Tiu+XiHSmtwBpFUW6np6PW7oAAN86fwxmja1Aj8eP21/8GL5AMPEdk5CNUEJGcZy9eQxuYh4e+tmsQNTCyCwVPfq76CiMM8YQIRNFDyBNVqQ6tp4oo4dRWmRGbVnopP1FjBbXh4c60e3xo7rEgnNGlad0HOmixb6aXMDyPj4M+6VGlttS9i796F+m4s+3XojLpuTHKI18FUahTG4BIb8Su4j4KPzvNlxBGjNDSmVW/pqWFz1/z1jRk3pOD5C5N/KPw0rPrHEV+Pn1M1BaZMInR7rw07ea03rcbKyfYBQnMTJ/IZvcAiSl53SfD/40izm1SO0t/ZUQ+jviIUxZpoqeNAMK4y0bjSZRi4u1tr462VmwxYdWMKVn99HwaG0aJ2i71YSZYys0DbyTI1d6CsXEzGC+HhYTkJKnR0XRczSi6OlAIM0U5HQ2rDNGhC+UDp7qTTmVecAXwJ6wInPemAqMqijGY9dNBwD8z9YDePeLk4nunpCsKj0JRtaDQZGfR9lkbEWxBexlmW4EiVo8pPQQuYCd2AQh9ZMKII2tp670xF82KoebmaMmuERR5KsncpHCPNRgSg9bTJuKnydfYUtHgcIxMTPYBBfDmcL0lpr21tEuyePi6vfx/JlUSWfDOmNKbSlsZiNO9/nwZbuyNTbR7Dnmgj8oorrEygvJxdNG4NtzxgAAVr70CTc5q8HV5+Pt4rOyoPQkGllv6ezDgC8Iq8mAsVWhvC2jQeA5abme4OLhhFT0ENlkbFUxpo0sxeXTatLKlilLc2ydt7fiZPQw4ik9+0/24nBHHyxGA5+iIjKHPUoBmZLCuHq+4ijQ9hYAjKqMnGBUksbMKE3B08OUHmb2TdfX4+pPfcM6w2w0YNa4UJzEjgMdKT3GR4e7AADnjimPUCh/+L+mYPJwB071eLDypSbVShJrbY2utGXF2G+TDSBEw/w8ZwwviXhuKzXK6uHhhNTeIrKJ2WjA6yvm4VffnpnW40hKT3rtreRKT+ysHhZIeMHE3KUwDyWiJ5oynRyrJZHtrQIreqKUnmEqPD08p0fFRCbz9Hx1cmiQIF1fz+k0TcyMCyZUAQC270+t6Pn4SMjPc+6Y8oivF5mNePpb56LIbMB7X57C/3vvgKrHzVY+D4OdC/tjRInI10/IYb6eTIQ5qoGUHiJnZMJbkTkjc+KT8hnhHItTPR5+HwB8wWguU5iHEvJCssRq4hJ/IRBhZC6wome07N+p0m5RlYGidnpLFEXeqlk6ezQA4INDp1PO7gLS27AuhxU97x/sSMnXw5SeWOtvzhzuwIP/ayoA4PGNzXyhrhKytX6CwZTLXs/gf8PP+eRWdNEjbabPJezvhNZQELqg3J7myLpCI7Nd9obLWlxdfV58eLgTAPC1Oip6soFcAamrcRSUUXyoKD1OFSoPIE9kVnYh09Xn44bZi8+oxoiyInj9QXxwqFPVz418zPQmtxjTR5VxX0+syc9EHHf1o809AKNBwPRRsYuTb54/GlecPQL+oIg7/vCx4om3bK2fYHClJ4aR+YuojB6GVqsoBnh7S3+vQSp6hiBc6UkhnNDrl/YeKQlIZHLsl+GiZ0vzSZ7CHC3nE5lBrvQUkokZiPT0FOr0FqBucguQjMNKlR7W2qousaLIbMRFk0LeunR8Pa40V1AwInw9KltcTOWpq3HE/fsQBAH/fc3ZGFluQ0tnHx5YvztpIrXHH8C+sLF6araKHtmiYPnxePwBHDzVCyBW0RMe8c+xkdnD21v6KyH0d8RE2qTj6WHqkNEgKMp+YSGFzNfz9l42tUUqT7aQKyDZuirVCrnSU2jtrSKzkft41JiYAfVKD5vcGhkutOaFi550fD3s3JBuewuQWlw7DqhTnlg+T7SfJ5oymxm/+Oa5MBoEvPbJMfzw1d0JF5N+eaIH/qCI8mIzH6vPNOzvOShKOThAaHzfHxThKDKhJqoYljw9uVZ6wkUPKT2EHpByetQrPUxGrSg2K2qbnOmUJrh8gSC2hjMyvlZHo+rZQj69VWhKT0R7S4cmymQwtUet0sOKnh6PX5EPhik9o8JJ0Ezp2XPMnbI/hJ1PytJsbwGp+3rY+olYfp5oZo6twH2X1wEAXtjRgq8/9R52Ho5dZMlNzNnKrJIrU/KsHr5+Yrhj0M+uDhc95OlRjv6OmEgbedGjdtGgUj8P40zZ2PoHhzrRPeBHld2CGaPLVf1cQjllNjMEIbSmIdr4qHdKigrX0wNIRaraZZZshFoUgZ4EigWDmZhZkTXMYUVdjQOiCPxjf2pqD2uXV6TZ3gJCvp5iizpfj8cfwO6w7+ZcBUUPAPzbxROw9pbzUVNahEMdffjGs9vx6N8+5yPZjGyGEjKMBoGPgMvNzNE7t+RUarSKwkNKD6EnWHvLGwjG3fMSD9Y7Vlr0THKWQBBC46wvfXAEAPDVOmfKOR5EcirsFjx6zdl46vpzC64F5IgIJywsTw8A/ODyOvzuO+fjirNHqLpfkdkISzi7S4mvhyk9I2U+oovSbHG5MjSyDjBfTyUA5b6evce74fUHUVFsxjgVu+IuPmMYNt49H9ecOxJBEXh2635c9X//HhHWmM31E3Jija1L6ycGFz186Wiu21uUyEzoiWKLEWZjqOhQa2bu5Bk9yjwHNosRY8IbpF/fdRwAcAlNbWWdpbPH4Osq3zj1QKErPaVFZsw/c1hK4aNSKnPy1zQLJmSLTgHJ15OqmVny9KTf3gKACyaEix6Fvh62s+zcMerXppTZzHhy6Qw8e8NMVNkt+LytG0t++Xf8381fwhcIYm+WJ7cYscbWP4+T0QMA1eHzcLfHP0idyiZsDQWFExK6QBBkm9ZV9oLVtrcA4IywrycQFEMpzGcOU/UzCYIRYWTW4VVmNlEzwcXaW3Kl5/zxlTAbBRzp7EdLR1+8u8ZF8vRkJq1Yra/n43DmznlJTMyJWDytBhvvno+FU4bDFxDx07e+wP/6xTZ0e/ywGA2YOExd21Et9vAKGTa23uPxc1UuVqu61GaCKaya59LXw9tbOnwNUtEzRGETFi6VSo/SZaNy2A4uAJgzoTLijYsg1FDI01vpojSVuXvAx1/3cqXHbjVxL8x7+9Qv5XRxT09mlJ6zR6rz9ciVnnSoLrHif26ciSf/9Rw4ikx8BcSZNSUwp7H+RwnMzMwWt7KoD6fDiooY51xBEDRZRSG1t/RXQujviImMwE5MagMKO8MvrKoke7fkyGVZam0R6VBkNnA/WCG2t9JB6dJRpvKU2cw8yZmR6ui61x9ET7glk4mRdSDS15NsJUW7ewBHu/ohCMA5GRiSEAQB15w3Chvvms+fkwvGV6X9uMkojlo6msjPw2CpzLlcRcHWUFA4IaEbhoezJph0qpSU2lsypYe2qhPpIAgCV3tI6YlEWjqaWOmJ5edhMDPzP/Z3IKBiVFyuGKe6YT0Wkq8ncdHzUUsXgFALKJNKcm25DWtvOR9v3HEx/is83p5NmNLDBkwS+XkY1RqYmZl/SI9KD/UZhigTh9kBAPvbe5LcMhK101sAUFdTiivPqUVViQWjKymFmUiP4aVWuPp9qlc1FDpSQKEypSfWTrZzRpWhxGpCV58Pnx1z4+w4qxyikTasmzI6mSn5ejoRDIpxs8GkJaPptbZiIQhCzkI+iy2RRmZFSo8991k9el44SkXPEIUZ8vafVFf0qJ3eAkL5E7/45rmqfg5BxONnS2dg/8leTHIWVgZRurBWVbJU5qMxxtUZJqMBF0yowtt7T+C9fScVFz3MxBzLd5IOzNfT1edD84nuuGGbH4fXTyRLYs53oo3MzW2h83OivC2W1XMqR6soRFGU7d7Sn9KjvyMmMgILP9t/sldxQGEgKPIRdzVKD0Fkkqm1ZbjynFqtDyPvUOrpaU3Q3gJCC0gBdb6e0xnasB5NRF5PnBaXLxDErqNdAJQlMeczciNzR48Hp3o8EIRIi0A0uc7q8QVEsLcMqw6VHip6hijjq+0QhFAvvkOhLHq6z8v/2DORukoQROZgnp5k01utCdpbgOTr+eDQaT6lkwy2xy8TKyiiSebraW7rxoAviNIiEyZU2zP+83OJ3MjMpsbGVBYnXK6b61UUA7I8ID16evR3xERGKDIb+UlPqa+HvajKi80phacRBJE9FE9vsb1bFbH9dROH2VFTWgSvP4gPD51W9LNdGVxBEU20ryeaj1okP4+SfYD5jNzI/IUCEzMg27Seo+ktVggLAngKuJ7Q3xETGYP5evYp9PUw+ZRaWwSRfzgUTG8N+AJ8tDlee0sQBK72KM3r6cpSewsY7OuJ5uPw5Jbe/TxAbKUn2f68yhxvWvfwcXVD1pavZhMqeoYw3Mzc3qvo9nxcPQsSNkEQ6VFqS670sMmtYosx4Y4stb6e01lsbyXz9ajZrJ7vSEVPgC8aPTPB5BYgraLoyJGRWRpX15+fB6CiZ0ijdoKrM4VxdYIgckOpgukteUZPoqv0CyeFWkp7jrmTekXe+bwdf/6oFQAwKo56lC7xfD0dPR4cDq/MyEQoodZwI7PHjy9OhM7LdUmKHmZkHvAFeahhNuHj6joMJgSo6BnSSBNcCttbverTmAmCyA1KPD2JMnrkOB1FmDzcAVFMnIb8p52t+LfffYgBXxDzzxyGK2dkZ6ounq+HtbbOcJagLAuttVxTHB5Z33+yFz0eP8xGAeOqEpuziy1GbijOxQQXU3qsOjQxA1T0DGlYQOHRrn6eC5GIVNKYCYLIDUzp6fMG4A8EY96m9XRIFYmV0RPNRQm2rouiiGe37sd/vPwJAkERV587Er+9eVbWWh7xfD1SKGF5Vn5urrGHlR52rp1QXQJLkiwcQRC4mTkXqyhI6SF0S6XdgvJiM0QROHgqua9HWjZKSbgEkW+UFEljzfHUHqm9lTwZfd4ZIXVlW5SZORgU8chf9+LRv30OAPjuxePxxDfOyeoyznh7uD4KhxIWgp8HGLxPLlESs5xcZvXoedkoQEXPkEYQBFW+Hr5slJQegsg7zEYDbGGlJW7Ro7C9BQBzxlfBZBBwpLMfLWHfjNcfxN0vNeG32w4CAO7/eh0euGJKTkbFo309gaCIT1q7AGRn/YQWpFz05HAVhcev32WjABU9Qx7W4tqnIKuH2lsEkd+wCa54ZuZEKyiisVtNXEHZtu8Uej1+3LLmA7zadAwmg4An//UcfG/+xAwdeXKifT1fnOhGnzcAh9WEM5zxE4v1RHQIYbKMHkYuV1EwpYc8PYQuUaP0dFDRQxB5TaL9W75AEG3uAQDKp6yYr+eNT4/jW/9vB9778hRsZiN+c/MsXHPeqAwdtTLOHlkGu8UIV78Pn7d181H1c0aX6z6UkMGMzIxkGT2MXG5a1/OyUYCKniGPVPQk9vQEgyLP4qDpLYLITxJNcLW5BhAUQym61SXKfHmSr+cUPml1oaLYjHXfnYMFk52ZO2iFROf1FFIoIaNYVkgUW4yK2pCA3NOTfaXHo+Nlo4DKoqehoQGzZ8+Gw+GA0+nEkiVL0NzcnPA+r7zyCmbNmoXy8nLY7XbMmDEDa9eujbjNsmXLIAhCxMfixYsjbtPZ2Ylvf/vbKC0tRXl5OW655Rb09ESqE7t27cLFF1+MoqIijB49Go899piaX29IwsbWD5zsiRnxzuge8CMQ/j4pPQSRn0ipzIOLnlZZa0upMjJ9VDlKrKFCamS5DX+69UJN/TOsxbXjQEdBhRIyTEYDn9Y6Y7hD8b8TX0WRA0/PkFJ6tm7divr6euzYsQObNm2Cz+fDwoUL0dsbXyWorKzEAw88gO3bt2PXrl1Yvnw5li9fjo0bN0bcbvHixTh+/Dj/+MMf/hDx/W9/+9vYs2cPNm3ahA0bNuDdd9/F9773Pf59t9uNhQsXYuzYsdi5cycef/xxPPTQQ/j1r3+t5lcccoyqsMFiNMDjD3KTYyxY2meJ1aRbAxtBFDqlYaUn1tJR9vqOt34iFmajAT+4vA6XT6vBn2+9kCvDWsHMzP/Y34EDYXV6RgGEEsqxh83MkxNsVo+mkqa3FBN/dWsM3nzzzYjPn3/+eTidTuzcuRPz58+PeZ8FCxZEfH7nnXdizZo12LZtGxYtWsS/brVaUVNTE/Mx9u7dizfffBMffPABZs2aBQB4+umn8fWvfx0//elPUVtbi9///vfwer147rnnYLFYMHXqVDQ1NeHJJ5+MKI6ISExGA8ZVF+OLEz3Yf7IHoytjj7KSiZkg8p/ESk84o0dlavINF4zFDReMTf/gMsC0sK+nxxP6/SZU21FRYOekYosJp/t8mFxTqvg+uVxFMaSnt1wuF4CQmqMEURTR2NiI5ubmQUXSli1b4HQ6MXnyZNx6663o6JCyGLZv347y8nJe8ADApZdeCoPBgPfff5/fZv78+bBYpBfAokWL0NzcjNOnY28K9ng8cLvdER9DESW+HjIxE0T+U8o9PTGUHhWTW/mK3NcDADMKyM/DYP6cqbXKix52n85eL0Qxvk0hE+hd6Un5qIPBIO666y5cdNFFmDZtWsLbulwulJSUwGKx4IorrsDTTz+Nyy67jH9/8eLF+N3vfofGxkb85Cc/wdatW3H55ZcjEAg9uW1tbXA6I41zJpMJlZWVaGtr47cZPnx4xG3Y5+w20TQ0NKCsrIx/jB49Wt2TUCDwbesJxtaZ0kMZPQSRv5Ta4is9ajJ68hnm6wEKy8/D+O+rz8b/uXoa5oxXJiYA0sWoLyDCnWANSSbgC0d1qvSoam/Jqa+vx+7du7Ft27akt3U4HGhqakJPTw8aGxuxcuVKTJgwgbe+rr/+en7bs88+G9OnT8fEiROxZcsWXHLJJakeYlLuu+8+rFy5kn/udruHZOEz0RnK6kk0tk7tLYLIf9j0VqyR9dbT6j09+Qjz9QCFNbnFmDayDNNGlqm6T5HZiBKrCT0ePzp6PFndQ8aMzHrN6Ump6FmxYgU3E48alTyrwWAwYNKkSQCAGTNmYO/evWhoaBjk92FMmDAB1dXV2LdvHy655BLU1NSgvb094jZ+vx+dnZ3cB1RTU4MTJ05E3IZ9Hs8rZLVaYbXSSoVJw0JZEAcSFD3MIFdJ4+oEkbfEG1kPBkUcd+m/vQWE8npY60dpjs1QoKrEEip6er2YMCx7P4crPUNheksURaxYsQLr16/H5s2bMX78+JR+aDAYhMcT33DV2tqKjo4OjBgxAgAwd+5cdHV1YefOnfw2mzdvRjAYxJw5c/ht3n33Xfh80hXOpk2bMHnyZFRUFJ4EmkkmhFOZT/V40dUX2/3fGTbIUXuLIPKXUm5kjlR62rs98AVEGA0CakqLtDi0jGEyGvDXOy7GX++4GKYs7vvSG+zcnO2sniG1cLS+vh4vvPAC1q1bB4fDgba2NrS1taG/Xxp1vummm3DffffxzxsaGrBp0yYcOHAAe/fuxRNPPIG1a9fihhtuAAD09PTg3nvvxY4dO3Do0CE0NjbiqquuwqRJk/h011lnnYXFixfju9/9Lv75z3/i73//O1asWIHrr78etbW1AIBvfetbsFgsuOWWW7Bnzx788Y9/xFNPPRXRviJiY7eaMKIsdCKMZ2amZaMEkf9IicyRSs/RrtDkVk1pERUKBUpVSW6yevS+hkJVe+uZZ54BMHgMffXq1Vi2bBkAoKWlBQaD9GT09vbitttuQ2trK2w2G+rq6vDCCy9g6dKlAACj0Yhdu3ZhzZo16OrqQm1tLRYuXIhVq1ZFtJ5+//vfY8WKFbjkkktgMBhw7bXX4he/+AX/fllZGd566y3U19dj5syZqK6uxoMPPkjj6gqZOKwEx10D2H+yBzPHDlbGyMhMEPmPI870VmsBTG4RiZGUnuwWPXofWVdV9CgZhduyZUvE54888ggeeeSRuLe32WyDggpjUVlZiXXr1iW8zfTp0/Hee+8lfSxiMBOH2bFt36m4ZmYyMhNE/sOmt6KVHlb0KN25ReiPXK2iGLIj60RhMTG8jmJ/jLF1URQpp4cgdABTerz+IH9zAgpnXJ2ITxXftJ6j9pZOlR4qeggAwKQEAYW93gC8YUmTlo0SRP5SYjFBCK9rkk9wFUIwIZEYHlCYo/YWKT2ErmFKT0tnHx9JZLAXUZHZgGJLytFOBEFkGYNBQIllsK9HWkERe80MoX+qcrSKYkgtHCUKF6fDihKrCYGgiJaOvojvdfBxdZrcIoh8J9rXI4qitGyUlJ6CpSpHS0c9vL2lz/JBn0dNZBxBEDBxWOxkZjIxE4R+iJ7g6uz18qvz2nJ9Z/QQ8eHtrT4vAsHs7d+S2luk9BA6J97iUTIxE4R+iE5lZpNbTodVt+ZTIjmVxaHzsygibshsugSCIrwBKnqIAiHeBBdl9BCEfohOZabW1tDAZDSgvDj0b5+tgEK535PaW4TuYe2tfdTeIgjdwpeO9oeUHja5NaqCTMyFDrswPZWlrB5PuE0KkNJDFACTZEqPPIiSGeMqqOghiLzHEU/poWDCgoevosiSmXkgrPSYjQKMBiErPyPbUNFDcMZU2mE0COj1BnDCLV0p0LJRgtAPpbaw0sM9PeFxdWpvFTzVzMycpfYWM8Tr2RtGRQ/BsZgMGFsZksDlE1zU3iII/SAtHQ0pPbSCYuhQmeVN68zTo9dgQoCKHiKKCXyCSyp6mCmO0pgJIv+Jnt6iFRRDh2yvoiClhyg4JjrDWT3tsZQeCickiHxHPr3l6vfx4ofaW4VPdZaXjup92ShARQ8RRXRWz4AvgD5v6A+d2lsEkf/Ip7fY5FZFsZlWyAwB2IVptjw9LJiQlB6iYGATXPvCSg9rbZmNAkqL6KRJEPkOn97y+GStLRpXHwpkexUFKT1EwTGxOlT0tLkH0OPx43S46KkotkAQ9DmiSBBDiVKZp+coXzRKra2hAGtvZSunRyp6SOkhCoSyYjOqw1kPB0720AoKgtAZbOFo94CfT26Rn2dowIzM7gE/vP5gklurR2pv6bd00O+RE1lDvniUZ/TQ5BZB6ALm6QkERXwZblOT0jM0KLOZeWjg6Szs3/KQ0kMUItIOrl7eG6bJLYLQBzazkb/xfd7mBkDj6kMFg0FARXH2WlxsZJ2KHqKgmCjL6qFlowShLwRBGjpgyerU3ho6VGfRzMzCCam9RRQUfAeXrOghTw9B6Ac2wcUYVU7TW0MFPsHVS0pPLKjoIQbBPD0HT/WivTv0wqGihyD0g0MWL1FiNfF9XEThw6wI2VB62PSWlUbWiUKitsyGIrMBvoCIXa1dAKi9RRB6olSm9IyqsFHcxBCCnas7shBQSOGEREFiMAiYEM7rOdVD7S2C0BtypYcmt4YW2VxFQeGERMHCJrgYNLJOEPpB7ukhE/PQoqoki+2tsNJTREoPUWgwXw+DRtYJQj/IPTw0rj60qMxie4s8PUTBwsbWAcAgAOU2c4JbEwSRT0QoPTS5NaSozuL0loeUHqJQmSRrb1UUW2AwkBGSIPSCfDkwtbeGFlU5mN6ikXWi4BhfbQcb+CATM0HoCzIyD12Y/7LPG0C/N5DRx2ZrKCickCg4isxG7gWgoocg9AUbWbeaDLzdQQwNSqwmWIyht/ZMt7h4e4uUHqIQYb4emtwiCH3BJnjGVhVTRs8QQxAEKZU5wy0uGlknCpozwr6eYSU0uUUQemLm2Arcc9mZWHXVNK0PhdCAbK2iYGso9BxOSNnkRFxuvGAcXP0+3HDBWK0PhSAIFRgNAm6/5AytD4PQCGZmPpVhpYctHNWz0kNFDxGXMVXFeOy6c7Q+DIIgCEIFbBVFZ4azemjhKEEQBEEQeUVVFlZRiKKIAT9NbxEEQRAEkUdkYxWFLyBCFEP/bx0qSk9DQwNmz54Nh8MBp9OJJUuWoLm5OeF9XnnlFcyaNQvl5eWw2+2YMWMG1q5dG/f23//+9yEIAn7+85/zr23ZsgWCIMT8+OCDDwAAhw4divn9HTt2qPkVCYIgCELXZGMVBVN5gCHk6dm6dSvq6+sxe/Zs+P1+3H///Vi4cCE+++wz2O32mPeprKzEAw88gLq6OlgsFmzYsAHLly+H0+nEokWLIm67fv167NixA7W1tRFfv/DCC3H8+PGIr/3whz9EY2MjZs2aFfH1t99+G1OnTuWfV1VVqfkVCYIgCELXZGMVBRtXFwTwHCA9oqroefPNNyM+f/755+F0OrFz507Mnz8/5n0WLFgQ8fmdd96JNWvWYNu2bRFFz9GjR3H77bdj48aNuOKKKyLuY7FYUFNTwz/3+Xx49dVXcfvttw/KoKiqqoq4LUEQBEEMJbKxisLDx9UNus5+Sqtcc7lcAEJqjhJEUURjYyOam5sjiqRgMIgbb7wR9957b4RKE4/XXnsNHR0dWL58+aDvXXnllXA6nZg3bx5ee+21hI/j8XjgdrsjPgiCIAhCz8jDCUVmxEkTaVxdv34eII2iJxgM4q677sJFF12EadMSB2C5XC6UlJTAYrHgiiuuwNNPP43LLruMf/8nP/kJTCYT7rjjDkU/+7e//S0WLVqEUaNG8a+VlJTgiSeewMsvv4y//vWvmDdvHpYsWZKw8GloaEBZWRn/GD16tKKfTxAEQRD5ClN6vIEgejz+jDzmgEzp0TMp5/TU19dj9+7d2LZtW9LbOhwONDU1oaenB42NjVi5ciUmTJiABQsWYOfOnXjqqafw0UcfKZLMWltbsXHjRrz00ksRX6+ursbKlSv557Nnz8axY8fw+OOP48orr4z5WPfdd1/EfdxuNxU+BEEQhK6xWYwothjR5w2go8cLR3gXWzoUitKTUtGzYsUKbNiwAe+++26E2hIPg8GASZMmAQBmzJiBvXv3oqGhAQsWLMB7772H9vZ2jBkzht8+EAjgnnvuwc9//nMcOnQo4rFWr16NqqqquIWMnDlz5mDTpk1xv2+1WmG10ooFgiAIorCoKrGgr7MfHb0ejKuOPWikBh5MqOMVFIDKokcURdx+++1Yv349tmzZgvHjx6f0Q4PBIDyekKv8xhtvxKWXXhrx/UWLFuHGG28c5NkRRRGrV6/GTTfdBLM5eeXa1NSEESNGpHSMBEEQBKFXquxWHOnsz9gqikJYNgqoLHrq6+uxbt06vPrqq3A4HGhrawMAlJWVwWazAQBuuukmjBw5Eg0NDQBCvplZs2Zh4sSJ8Hg8eOONN7B27Vo888wzAELTVtFj5WazGTU1NZg8eXLE1zdv3oyDBw/i3/7t3wYd25o1a2CxWHDuuecCCOUDPffcc/jNb36j5lckCIIgCN2TbBVFvzeAXa1d2H3MjTnjKzFtZFnCx/P49b9sFFBZ9LBCJXoMffXq1Vi2bBkAoKWlBQaDVAn29vbitttuQ2trK2w2G+rq6vDCCy9g6dKlqg/2t7/9LS688ELU1dXF/P6qVatw+PBhmEwm1NXV4Y9//COuu+461T+HIAiCIPRM9CqKE+4B7Dx8Gh8eOo2dLaex56gL/mBosmtCtR2b/2NBwsdjSo9V50qPIGZqnq0AcLvdKCsrg8vlQmlpqdaHQxAEQRAp8ZM3P8czW/ZjTGUxgqKI1tP9g27jdFjR3h0qij55cCHKiuPbRta934L713+Ky6YMx/+7aVbc22mF0vdv2rJOEARBEAXGcEdoSKelsw8AYBCAyTWlmDW2AjPDH6MqbLj4sXfQerofnx13Y+7E+BsMPAWwbBSgoocgCIIgCo6rzxuFg6d6UV5swaxxFZgxujzm6PqUEaWKih4+vTUUR9YJgiAIgshfymxmPHxV4uBgAJhSW4q3PjuBz44l3khQKNNb+j56giAIgiBSZsqIkP/ls+OJi55Cmd6ioocgCIIghihTakNFz772bnjDhU0sSOkhCIIgCELXjCy3ocxmhi8g4sv27ri342soSOkhCIIgCEKPCIIgtbgS+Ho8bOEoKT0EQRAEQegV1uLak6DoGSiQhaNU9BAEQRDEEEaJmblQFo5S0UMQBEEQQxim9Ow95ka8JQ2FsoZC30dPEARBEERaTBxWAovRgG6PP+a6CoBG1gmCIAiCKAAsJgPOGF4CIL6vh0bWCYIgCIIoCJL5enh7i5QegiAIgiD0zNTaxGPrrL1FSg9BEARBELpmSm0ZAGBvXKWnMBaOUtFDEARBEEOcuhEOAMDRrn6c7vUO+r6Ht7f0XTbo++gJgiAIgkib0iIzxlQWA4it9kjtLVJ6CIIgCILQOfHMzIGgCG+Aih6CIAiCIAqEKXHMzGzZKEDtLYIgCIIgCoB4Sg9bNgqQ0kMQBEEQRAEwdWSo6NnX3sNzeQBp2ajZKMBoEDQ5tkxBRQ9BEARBEKgpLUJFsRn+oIh97T3862xcXe/BhAAVPQRBEARBABAEIaavh3l69B5MCFDRQxAEQRBEGObr2XPMxb9GSg9BEARBEAUHV3pkZma+d4uUHoIgCIIgCoUpI9g6im4EgyIAWTAhKT0EQRAEQRQKE4bZYTEZ0OPx48jpPgCS0kOeHoIgCIIgCgaz0YDJw0N7uJiZWSp6SOkhCIIgCKKAmBrl62HtLb2nMQNU9BAEQRAEISN6bN1DSg9BEARBEIVI9DoKNrJORQ9BEARBEAVFXbjoOe4aQGevl4cTUnuLIAiCIIiCosRqwriqYgChFhcpPQRBEARBFCxSSKGLwgkJgiAIgihcuK/nmFs2vUVKD0EQBEEQBcbU2lAy82fH3RROSBAEQRBE4cLaW/tP9sLV7wMwBNdQNDQ0YPbs2XA4HHA6nViyZAmam5sT3ueVV17BrFmzUF5eDrvdjhkzZmDt2rVxb//9738fgiDg5z//ecTXx40bB0EQIj4effTRiNvs2rULF198MYqKijB69Gg89thjan49giAIgiAAOB1WVNktCARFfHo0tHF9yHl6tm7divr6euzYsQObNm2Cz+fDwoUL0dvbG/c+lZWVeOCBB7B9+3bs2rULy5cvx/Lly7Fx48ZBt12/fj127NiB2tramI/14x//GMePH+cft99+O/+e2+3GwoULMXbsWOzcuROPP/44HnroIfz6179W8ysSBEEQxJBHEASu9hx3DQAoDKXHpObGb775ZsTnzz//PJxOJ3bu3In58+fHvM+CBQsiPr/zzjuxZs0abNu2DYsWLeJfP3r0KG6//XZs3LgRV1xxRczHcjgcqKmpifm93//+9/B6vXjuuedgsVgwdepUNDU14cknn8T3vvc9Fb8lQRAEQRBTRpTivS9P8c+H/Mi6yxWSvCorKxXdXhRFNDY2orm5OaJICgaDuPHGG3Hvvfdi6tSpce//6KOPoqqqCueeey4ef/xx+P1+/r3t27dj/vz5sFgs/GuLFi1Cc3MzTp8+HfPxPB4P3G53xAdBEARBEJKvh1EI4YSqlB45wWAQd911Fy666CJMmzYt4W1dLhdGjhwJj8cDo9GIX/3qV7jsssv493/yk5/AZDLhjjvuiPsYd9xxB8477zxUVlbiH//4B+677z4cP34cTz75JACgra0N48ePj7jP8OHD+fcqKioGPWZDQwMefvhhxb8zQRAEQQwV2Ng6oxCUnpSLnvr6euzevRvbtm1LeluHw4Gmpib09PSgsbERK1euxIQJE7BgwQLs3LkTTz31FD766CMIghD3MVauXMn/f/r06bBYLPj3f/93NDQ0wGq1pvQ73HfffRGP63a7MXr06JQeiyAIgiAKifHVdlhNBp7TUwgj6ykVPStWrMCGDRvw7rvvYtSoUUlvbzAYMGnSJADAjBkzsHfvXjQ0NGDBggV477330N7ejjFjxvDbBwIB3HPPPfj5z3+OQ4cOxXzMOXPmwO/349ChQ5g8eTJqampw4sSJiNuwz+P5gKxWa8oFE0EQBEEUMiajAXUjSvHJkS4AQzCcUBRFrFixAuvXr8fmzZsHtZOUEgwG4fF4AAA33ngjdu3ahaamJv5RW1uLe++9N+aEF6OpqQkGgwFOpxMAMHfuXLz77rvw+Xz8Nps2bcLkyZNjtrYIgiAIgkiMvMU15JSe+vp6rFu3Dq+++iocDgfa2toAAGVlZbDZbACAm266CSNHjkRDQwOAkG9m1qxZmDhxIjweD9544w2sXbsWzzzzDACgqqoKVVVVET/HbDajpqYGkydPBhAyKb///vv46le/CofDge3bt+Puu+/GDTfcwAuab33rW3j44Ydxyy234L/+67+we/duPPXUU/jZz36WxtNDEARBEEMXuZl5yHl6WKESPYa+evVqLFu2DADQ0tICg0GqBnt7e3HbbbehtbUVNpsNdXV1eOGFF7B06VLFP9dqteLFF1/EQw89BI/Hg/Hjx+Puu++O8OOUlZXhrbfeQn19PWbOnInq6mo8+OCDNK5OEARBECkiV3oKYXpLEEVR1Pog8gW3242ysjK4XC6UlpYmvwNBEARBFDC9Hj/OXbUJoijikx8tRLEl5fmnrKL0/Ts/j54gCIIgCM2xW034zU2z4PUH87bgUYP+fwOCIAiCILLG/DOHaX0IGUP/DTqCIAiCIAgFUNFDEARBEMSQgIoegiAIgiCGBFT0EARBEAQxJKCihyAIgiCIIQEVPQRBEARBDAmo6CEIgiAIYkhARQ9BEARBEEMCKnoIgiAIghgSUNFDEARBEMSQgIoegiAIgiCGBFT0EARBEAQxJKCihyAIgiCIIQFtWZchiiIAwO12a3wkBEEQBEEohb1vs/fxeFDRI6O7uxsAMHr0aI2PhCAIgiAItXR3d6OsrCzu9wUxWVk0hAgGgzh27BgcDgcEQcjoY7vdbowePRpHjhxBaWlpRh+bGAw937mFnu/cQs93bqHnO7ek8nyLooju7m7U1tbCYIjv3CGlR4bBYMCoUaOy+jNKS0vpRZND6PnOLfR85xZ6vnMLPd+5Re3znUjhYZCRmSAIgiCIIQEVPQRBEARBDAmo6MkRVqsVP/rRj2C1WrU+lCEBPd+5hZ7v3ELPd26h5zu3ZPP5JiMzQRAEQRBDAlJ6CIIgCIIYElDRQxAEQRDEkICKHoIgCIIghgRU9BAEQRAEMSSgoicH/PKXv8S4ceNQVFSEOXPm4J///KfWh1QQvPvuu/iXf/kX1NbWQhAE/OUvf4n4viiKePDBBzFixAjYbDZceuml+PLLL7U52AKgoaEBs2fPhsPhgNPpxJIlS9Dc3Bxxm4GBAdTX16OqqgolJSW49tprceLECY2OWN8888wzmD59Og9omzt3Lv72t7/x79NznV0effRRCIKAu+66i3+NnvPM8dBDD0EQhIiPuro6/v1sPddU9GSZP/7xj1i5ciV+9KMf4aOPPsI555yDRYsWob29XetD0z29vb0455xz8Mtf/jLm9x977DH84he/wLPPPov3338fdrsdixYtwsDAQI6PtDDYunUr6uvrsWPHDmzatAk+nw8LFy5Eb28vv83dd9+N119/HS+//DK2bt2KY8eO4ZprrtHwqPXLqFGj8Oijj2Lnzp348MMP8bWvfQ1XXXUV9uzZA4Ce62zywQcf4H/+538wffr0iK/Tc55Zpk6diuPHj/OPbdu28e9l7bkWiaxy/vnni/X19fzzQCAg1tbWig0NDRoeVeEBQFy/fj3/PBgMijU1NeLjjz/Ov9bV1SVarVbxD3/4gwZHWHi0t7eLAMStW7eKohh6fs1ms/jyyy/z2+zdu1cEIG7fvl2rwywoKioqxN/85jf0XGeR7u5u8YwzzhA3bdokfuUrXxHvvPNOURTp7zvT/OhHPxLPOeecmN/L5nNNSk8W8Xq92LlzJy699FL+NYPBgEsvvRTbt2/X8MgKn4MHD6KtrS3iuS8rK8OcOXPouc8QLpcLAFBZWQkA2LlzJ3w+X8RzXldXhzFjxtBzniaBQAAvvvgient7MXfuXHqus0h9fT2uuOKKiOcWoL/vbPDll1+itrYWEyZMwLe//W20tLQAyO5zTQtHs8ipU6cQCAQwfPjwiK8PHz4cn3/+uUZHNTRoa2sDgJjPPfsekTrBYBB33XUXLrroIkybNg1A6Dm3WCwoLy+PuC0956nz6aefYu7cuRgYGEBJSQnWr1+PKVOmoKmpiZ7rLPDiiy/io48+wgcffDDoe/T3nVnmzJmD559/HpMnT8bx48fx8MMP4+KLL8bu3buz+lxT0UMQhGrq6+uxe/fuiB48kXkmT56MpqYmuFwu/OlPf8LNN9+MrVu3an1YBcmRI0dw5513YtOmTSgqKtL6cAqeyy+/nP//9OnTMWfOHIwdOxYvvfQSbDZb1n4utbeySHV1NYxG4yDH+YkTJ1BTU6PRUQ0N2PNLz33mWbFiBTZs2IB33nkHo0aN4l+vqamB1+tFV1dXxO3pOU8di8WCSZMmYebMmWhoaMA555yDp556ip7rLLBz5060t7fjvPPOg8lkgslkwtatW/GLX/wCJpMJw4cPp+c8i5SXl+PMM8/Evn37svr3TUVPFrFYLJg5cyYaGxv514LBIBobGzF37lwNj6zwGT9+PGpqaiKee7fbjffff5+e+xQRRRErVqzA+vXrsXnzZowfPz7i+zNnzoTZbI54zpubm9HS0kLPeYYIBoPweDz0XGeBSy65BJ9++imampr4x6xZs/Dtb3+b/z8959mjp6cH+/fvx4gRI7L7952WDZpIyosvviharVbx+eefFz/77DPxe9/7nlheXi62tbVpfWi6p7u7W/z444/Fjz/+WAQgPvnkk+LHH38sHj58WBRFUXz00UfF8vJy8dVXXxV37dolXnXVVeL48ePF/v5+jY9cn9x6661iWVmZuGXLFvH48eP8o6+vj9/m+9//vjhmzBhx8+bN4ocffijOnTtXnDt3roZHrV9+8IMfiFu3bhUPHjwo7tq1S/zBD34gCoIgvvXWW6Io0nOdC+TTW6JIz3kmueeee8QtW7aIBw8eFP/+97+Ll156qVhdXS22t7eLopi955qKnhzw9NNPi2PGjBEtFot4/vnnizt27ND6kAqCd955RwQw6OPmm28WRTE0tv7DH/5QHD58uGi1WsVLLrlEbG5u1vagdUys5xqAuHr1an6b/v5+8bbbbhMrKirE4uJi8eqrrxaPHz+u3UHrmO985zvi2LFjRYvFIg4bNky85JJLeMEjivRc54Loooee88yxdOlSccSIEaLFYhFHjhwpLl26VNy3bx//fraea0EURTE9rYggCIIgCCL/IU8PQRAEQRBDAip6CIIgCIIYElDRQxAEQRDEkICKHoIgCIIghgRU9BAEQRAEMSSgoocgCIIgiCEBFT0EQRAEQQwJqOghCIIgCGJIQEUPQRAEQRBDAip6CIIgCIIYElDRQxAEQRDEkICKHoIgCIIghgT/H8fZcJfbxJV5AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -457,29 +687,14 @@ }, { "cell_type": "code", - "execution_count": 328, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 329, + "execution_count": 25, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/brandonbrown/anaconda3/envs/deeprl/lib/python3.6/site-packages/ipykernel/__main__.py:2: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " from ipykernel import kernelapp as app\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(2.3526)\n" + "tensor(2.3625)\n" ] } ], @@ -511,7 +726,7 @@ }, { "cell_type": "code", - "execution_count": 347, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -521,43 +736,58 @@ }, { "cell_type": "code", - "execution_count": 348, + "execution_count": null, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/brandonbrown/anaconda3/envs/deeprl/lib/python3.6/site-packages/ipykernel/__main__.py:2: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " from ipykernel import kernelapp as app\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(2.3012)\n", - "tensor(2.2111)\n", - "tensor(2.2311)\n", - "tensor(2.2209)\n", - "tensor(2.2511)\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mloss_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtrain_loader\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0moptim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mpred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m784\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/deeprl/lib/python3.6/site-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_workers\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# same-process loading\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 263\u001b[0m \u001b[0mindices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample_iter\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 264\u001b[0;31m \u001b[0mbatch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollate_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 265\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[0mbatch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpin_memory_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/deeprl/lib/python3.6/site-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_workers\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# same-process loading\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 263\u001b[0m \u001b[0mindices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample_iter\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 264\u001b[0;31m \u001b[0mbatch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollate_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 265\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[0mbatch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpin_memory_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/deeprl/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.egg/torchvision/datasets/mnist.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, index)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;31m# doing this so that it is consistent with all other datasets\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;31m# to return a PIL Image\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfromarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'L'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/deeprl/lib/python3.6/site-packages/PIL/Image.py\u001b[0m in \u001b[0;36mfromarray\u001b[0;34m(obj, mode)\u001b[0m\n\u001b[1;32m 2448\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtostring\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2449\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2450\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfrombuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"raw\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrawmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2451\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2452\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/deeprl/lib/python3.6/site-packages/PIL/Image.py\u001b[0m in \u001b[0;36mfrombuffer\u001b[0;34m(mode, size, data, decoder_name, *args)\u001b[0m\n\u001b[1;32m 2394\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;31m# may change to (mode, 0, 1) post-1.1.6\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2395\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32min\u001b[0m \u001b[0m_MAPMODES\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2396\u001b[0;31m \u001b[0mim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2397\u001b[0m im = im._new(\n\u001b[1;32m 2398\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_buffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdecoder_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/deeprl/lib/python3.6/site-packages/PIL/Image.py\u001b[0m in \u001b[0;36mnew\u001b[0;34m(mode, size, color)\u001b[0m\n\u001b[1;32m 2297\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageColor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetcolor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2298\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2299\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_new\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2300\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2301\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "tensor(2.2609, grad_fn=)\n", + "tensor(2.2409, grad_fn=)\n", + "tensor(2.1612, grad_fn=)\n", + "tensor(2.1011, grad_fn=)\n", + "tensor(2.2305, grad_fn=)\n", + "tensor(2.1408, grad_fn=)\n", + "tensor(2.2312, grad_fn=)\n", + "tensor(2.1411, grad_fn=)\n", + "tensor(2.1711, grad_fn=)\n", + "tensor(2.1588, grad_fn=)\n", + "tensor(2.2111, grad_fn=)\n", + "tensor(2.1912, grad_fn=)\n", + "tensor(2.1711, grad_fn=)\n", + "tensor(2.2008, grad_fn=)\n", + "tensor(2.2110, grad_fn=)\n", + "tensor(2.2610, grad_fn=)\n", + "tensor(2.1912, grad_fn=)\n", + "tensor(2.1311, grad_fn=)\n", + "tensor(2.1512, grad_fn=)\n", + "tensor(2.2211, grad_fn=)\n", + "tensor(2.1811, grad_fn=)\n", + "tensor(2.1412, grad_fn=)\n", + "tensor(2.1912, grad_fn=)\n", + "tensor(2.2710, grad_fn=)\n", + "tensor(2.1910, grad_fn=)\n", + "tensor(2.1511, grad_fn=)\n", + "tensor(2.0911, grad_fn=)\n", + "tensor(2.2011, grad_fn=)\n", + "tensor(2.0711, grad_fn=)\n", + "tensor(2.1211, grad_fn=)\n", + "tensor(2.2012, grad_fn=)\n", + "tensor(2.1908, grad_fn=)\n", + "tensor(2.2911, grad_fn=)\n", + "tensor(2.1811, grad_fn=)\n", + "tensor(2.1712, grad_fn=)\n", + "tensor(2.1612, grad_fn=)\n", + "tensor(2.1512, grad_fn=)\n", + "tensor(2.1711, grad_fn=)\n", + "tensor(2.1512, grad_fn=)\n", + "tensor(2.1609, grad_fn=)\n", + "tensor(2.2111, grad_fn=)\n", + "tensor(2.1209, grad_fn=)\n", + "tensor(2.2312, grad_fn=)\n", + "tensor(2.1111, grad_fn=)\n", + "tensor(2.1411, grad_fn=)\n" ] } ], @@ -585,9 +815,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -599,9 +829,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 6/String Genetic Algorithm.ipynb b/Chapter 6/String Genetic Algorithm.ipynb index 6e8ad87..a1dd4cc 100644 --- a/Chapter 6/String Genetic Algorithm.ipynb +++ b/Chapter 6/String Genetic Algorithm.ipynb @@ -122,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -138,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -147,14 +147,14 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.115\n" + "0.11083333333333341\n" ] } ], @@ -165,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -174,16 +174,16 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.08333333333333333" + "0" ] }, - "execution_count": 29, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -194,7 +194,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -206,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -222,14 +222,24 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAFACAYAAAASxGABAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4VeW5/vHvk0CAJEwJYQoJMwICCgZE1Dor1lnbitaqdWprtdrWtra12uNpT21Pf7WtWi0qTq2gtQ7Y43GsWrUqhEFExjAEkgAJIfOc7Of3R7aciEGCsLJ2kvtzXbmy19pvdm7YrORmDe8yd0dEREREwhMXdgARERGRrk6FTERERCRkKmQiIiIiIVMhExEREQmZCpmIiIhIyFTIREREREKmQiYiIiISMhUyERERkZCpkImIiIiErFvYAfbXgAEDfMSIEWHHEBEREdmnJUuW7HT3tH2N63CFbMSIEWRnZ4cdQ0RERGSfzCy3LeN0yFJEREQkZCpkIiIiIiFTIRMREREJWaCFzMxmm9laM8sxs5tbeX64mb1mZivM7A0zGxZkHhEREZFYFFghM7N44B7gdGAicJGZTdxj2G+BR919CnA78Kug8oiIiIjEqiD3kM0Actx9o7vXAwuAc/YYMxF4Lfr49VaeFxEREen0gixk6cDWFst50XUtfQBcEH18HtDbzFIDzCQiIiISc4IsZNbKOt9j+SbgODNbBhwH5AONn3ohs2vMLNvMsouKig5+UhEREZEQBVnI8oCMFsvDgIKWA9y9wN3Pd/epwE+j68r2fCF3n+vuWe6elZa2z8luRURERDqUIGfqXwyMNbORNO/5mgNc3HKAmQ0Adrl7BPgxMC/APCIiItJJuDvlNY30TIgjIT4Os08fmHN3quubqKpvpKL244+G3Z8np/dj4tA+IaT/tMAKmbs3mtl1wEtAPDDP3T8ys9uBbHdfCBwP/MrMHPgX8O2g8oiIiEjH4+6U1TSwcWcVa7ZVsHpbOWu2l7NmWwUVdc1nOXWLMxIT4knq0Y0e3eKoaWiiqq65iPmeJ0u18IPTDomZQmb+WUljUFZWluteliIiIh2Pu7Orqp7NxVVs2llNbnEVFbWNxJkRHwdxcUa8GVV1jeSV1EQ/qqmqb9r9Gsk9ujF+cG/GD+nN8JQk6psiVNU1Ul3fRHV9I7UNEXp1by5nyT2aPyf26Eafnt3o3bMbvXt23/05JTGBXgnxgf6ZzWyJu2fta1yHu7m4iIiIxIb80hqWbylle3ktu6rqKK6sp7iqnl1V9TQ0RYi40xRpLmJNEWdHeS3ltf937V58nJGUEE/EoSniNLnj7vTsHs+w/olkpiZy1OhUhvXvxfDUJMYP7s2w/r1aPTzZ0amQiYiIyD41NEXYUFTJ4s0lZG/exeJNuygoq939fHyckZKUQGpSAilJCfTp2Y04Myy698swjhyVwsgByYwckMiI1CSG9U8koZvu4ggqZCIiIhLV2BShsKKObWW15JVUs6GwkvXRj807q2iMNJ/mNLB3D6aPTOGa4f05YngKw/r3om+v7sTFdb49V+1FhUxERKSLiESc7eW15BZXs2VXFbnF1eQWV5NXUs22slp2VtYRaXFqeZzBiNQkxgxM5rRDBzF2YG+OGN6/0x42DJMKmYiISAdXXttAWXUD9U0RGpoi1Dc2f95eVseGokpyCps/Nu6spLYhsvvrusUZw/r3IiMlkUMG92Zw314M7tOTIX17MqRfT0akJtGze7AnvUszFTIREZEOpLiyjo8KyllZUMbK/DJW5pezZVf1Z35Ner9ejBmYzMxRqYxKS2JEahLDUxMZ0rcn3eJ1DlcsUCETERGJIe5OSXUDO8pr2V5Wy4aiyk/s5Sqpbtg9NjMlkUnpfbhwegaD+vSke7yREB9H9/g4uneLIzUpgVFpSSQm6Nd9rNM7JCIi0s7cnaLKOtbvqGTt9grWF1aQU1jJtrJaCsvrqG+KfGJ8SlICY9KSmT1pMKPTkpk4tA+HDulL38TuIf0J5GBTIRMREQmYu7NuRyX/3rCTf28oZkluCbuq6nc/3z+xO2MH9iZreH8G9em5+2Nw3x6MHJBMSlJCiOmlPaiQiYiIHET1jRG27KpiQ1EVm3ZWsTK/jHc3FFMcLWDDUxM5afxAJgzpwyGDezNuUG8GJCfoqsUuToVMRERkP3x8+5+tJTVs3VW9+/Y+eSU15BZXsbWkhqYWc0cM6duT48alcdTo1Ois84khppdYpUImIiKyF8WVdbyds5O12yvILa5mc3EVW4qrd9/U+mP9E7uTkZLIoUP7ctZhQxmVlsSoAcmMTEuiT0+d5yX7pkImIiISFYk4H+aX8cbaIl5fW8gHeaW4N8/XlZGSyPDURKaPSGF4aiIZ/RPJSEkkvX8vknvo16kcGP0LEhGRLqespoFXV+1gy65qtpfVsq28lh1ltRSU1lBR14gZHDasHzeeNI7jD0nj0KF9NF+XBEqFTEREugR3Jzu3hPmLtvDCh9uobYhgBmnJPRjctyfDUxOZOSqFqZn9+cK4NF3ZKO1KhUxERDqtyrpG1m6vYEnuLp7MziOnsJLkHt04f9owLszKYOLQPnTXni+JASpkIiLSoUUiTmFFHbnFVeTuqmbTzirWba9gzfYK8ktrdo+bmtmP31wwhTOmDCFJ53xJjNG/SBERiXnuTnFVPZt2VrGpqIqNO6vYtLOSTTur2LKr+lM3zB6dlsy04f25+MhMxg3qzYQhvTXdhMQ0FTIREYlZkYjz8qrt3P16Divzy3ev7x5vDE9tvkn2F8amMTw1kczUJEakJjK0Xy8dhpQOR4VMRERiTlPE+ceKAu55PYd1OyoZkZrIj08fz7jBvRk1IIn0fr101aN0KipkIiISMworanlx5XYeemczm3ZWMXZgMn+YczhnTB6iAiadmgqZiIiEqqC0hhdXbud/V24jO7cEd5iU3of7LpnGqRMHExenezxK56dCJiIi7a6suoHnVxTw9NI8lm4pBWD84N7ceNI4Tp88mLEDk3WzbelSAi1kZjYb+AMQDzzg7nfs8Xwm8AjQLzrmZnd/IchMIiISjsamCG/l7OSpJXm8smoH9Y0Rxg1K5genHcLpkwYzKi057IgioQmskJlZPHAPcAqQByw2s4XuvqrFsFuAJ939XjObCLwAjAgqk4iItC93Z9W2cp5Zms9zHxRQVFFHv8TuXDwjkwumDWNSeh/tCRMh2D1kM4Acd98IYGYLgHOAloXMgT7Rx32BggDziIhIOykoreG55QU8syyPdTsq6R5vnHDIQM6fls6J4weR0E0n6Iu0FGQhSwe2tljOA47cY8zPgZfN7HogCTi5tRcys2uAawAyMzMPelARETkwVXWNLNq0i7fW7+SdnJ2s3VEBwBHD+/Of507izMlD6K97Q4rsVZCFrLV90L7H8kXAw+7+/8zsKOAxM5vk7pFPfJH7XGAuQFZW1p6vISIi7ay4so5lW0pZuqWE7NwSlm0poaHJSegWx4wRKZw3LZ3TJw1meGpS2FFFOoQgC1kekNFieRifPiR5JTAbwN3fNbOewACgMMBcIiKynyIR51/ri1j4QQFLc0vYXFwNNN+maMKQPlxxzEiOHZNG1oj+9OweH3JakY4nyEK2GBhrZiOBfGAOcPEeY7YAJwEPm9kEoCdQFGAmERHZD2U1DTy1JI/H3t3M5uJq+id2Z/qIFObMyGRaZn8mp/elV4IKmMiBCqyQuXujmV0HvETzlBbz3P0jM7sdyHb3hcD3gfvN7Ls0H8683N11SFJEJEQNTRGW5Jaw8IMCnlmaT01DE1nD+/O9Uw9h9qGDdUK+SAACnYcsOqfYC3usu7XF41XA0UFmEBGRfdu6q5p/rS/izbVF/HtDMZV1jfToFse5h6fztaOGMym9b9gRRTo1zdQvItIFuDubdlbx3sZdbCiqpKiirvmjso7C8lrKaxsBSO/Xi7MOG8px49I4ekwqvXt2Dzm5SNegQiYi0gm5O7nF1by7sZj3oh87yusA6NU9noF9epCW3IOxA5OZNTqVEalJfGFcGqPTkjRRq0gIVMhERDqJ4so6/r2hmLfX7+TtnJ3kl9YAkNa7BzNHpTJzVApHjUpl5ACVLpFYo0ImItJBFVXUsXjzLhZt2sX7m3axels5AL17dmPW6FS+edwojho9QHu9RDoAFTIRkQ6isSnCuxuL+d+V23lvYzEbi6oA6Nk9jmmZ/bnp1HEcPWYAk9P70i1eV0KKdCQqZCIiMSwScZZuKeH5Dwr4nw+3sbOynqSEeGaOSuXCrAymj0xh0tC+mopCpINTIRMRiUGbd1bx96V5PL00n/zSGnp0i+OkCQM5+7ChHH/IQM2GL9LJqJCJiMSIyrpG/mdFAU8tyWPx5hLiDI4dm8ZNp43jlImDSe6hH9kinZW2bhGRdlbb0MTS3BJyd1WTW1zN1l3V5O6qIqewktqGCKPSkvjR7PGcNzWdwX17hh1XRNqBCpmISDvZXlbLo+9u5vFFWyitbgCge7wxrH8imSmJzJiRypmHDWFqRj9dFSnSxaiQiYgEbPnWUua9vYkXPtxGkzunThzEnOmZjB2UzJC+vYiPU/kS6epUyEREApBfWsPzHxSwcHkBq7aV07tHNy6fNYLLZo0gIyUx7HgiEmNUyEREDpKSqnqeX9FcwrJzSwA4LKMf/3H2oVxwxDCdlC8ie6WfDiIiB8jdeXZ5Pv/x/CpKqxsYNyiZm04dx1mHDWV4alLY8USkA1AhExE5ANvKavjJ0x/y+toipmX24/ZzJjEpvW/YsUSkg1EhExH5HNyd+Yu28qsXVtMYcW49cyKXzRqhE/RF5HNRIRMR2Q9NEeeVVTu4/62NLMktYdboVO44fwqZqTpRX0Q+PxUyEZE2KK9t4MnFW3n435vJK6khvV8v7jh/MhdOz9CcYSJywFTIREQ+w87KOu55PYcnFm+lur6JGSNSuOWMCZw8YRDd4nVDbxE5OFTIRERaUVPfxINvb+TeNzZQ2xjhnMOGcsUxI3XCvogEQoVMRKSFpojz96V5/O7ldWwvr+WUiYP40ezxjBmYHHY0EenEVMhERGi+4ffCDwp48K1NrN1RwWEZ/fjjRVOZMTIl7Ggi0gWokIlIl1ZQWsNf3stl/qItlEQndb374qmcMXmITtYXkXYTaCEzs9nAH4B44AF3v2OP5+8EToguJgID3b1fkJlEpGuLRJz1hZUsyS3hzXWFvLq6EHfnlImDuGzWCI4alaoiJiLtLrBCZmbxwD3AKUAesNjMFrr7qo/HuPt3W4y/HpgaVB4R6Zp2VtbxYX4ZH+aVsSS3hKVbSqiobQRgQHICVx07kq/NHM6w/ppHTETCE+QeshlAjrtvBDCzBcA5wKq9jL8IuC3APCLSBWzeWcXzHxSwIr+MlfllbCurBcAMxg3szZlThnLE8P5kDe/P8NRE7Q0TkZgQZCFLB7a2WM4DjmxtoJkNB0YC/9zL89cA1wBkZmYe3JQi0inklVRz12s5PLU0j6aIM3JAElkjUpic3ofJ6f04NL0PfXp2DzumiEirgixkrf230/cydg7wlLs3tfaku88F5gJkZWXt7TVEpAvaXlbL3a+v54nFWzGMr80czrXHj2Zgn55hRxMRabMgC1kekNFieRhQsJexc4BvB5hFRDqByrpGcgorySmsZH1hBTk7KnkrZyeRiHPh9AyuO3EMQ/r2CjumiMh+C7KQLQbGmtlIIJ/m0nXxnoPM7BCgP/BugFlEpINyd95cV8QfX1vP0i2lu9cnxMcxKi2JLx8xjG8eN5qMFJ2ULyIdV2CFzN0bzew64CWap72Y5+4fmdntQLa7L4wOvQhY4O46FCkiu7k7b+fs5M5X1rF0Synp/Xrx3ZPHMX5Ib8YOTCYzJVH3khSRTsM6Wg/Kysry7OzssGOISEDcnX9vKOb3r65j8eYShvTtyXUnjuHLR2SQ0E0FTEQ6FjNb4u5Z+xqnmfpFJCZEIs4rq3fwpzc28MHWUgb16cF/nnMoX5meQY9u8WHHExEJlAqZiISqsSnC8ysK+NPrG1hfWElGSi9+ce4kvnTEMHp2VxETka5BhUxEQrG9rJYns7fyxOKt5JfWMG5QMr+/8HDOnDJE54aJSJejQiYi7aaxKcKb64qYv2gL/1xTSMRh1uhUbjtrIidPGERcnGbNF5GuSYVMRALX0BThb9l53P3P9RSU1TIguQffOG40F2ZlMGJAUtjxRERCp0ImIoGJRJznVxRw5yvr2FxczdTMftx61kROmjCI7josKSKymwqZiBx07s4/1xTy3y+tZc32CsYP7s2Dl2Vx4viBupm3iEgrVMhE5KAqrKjllmdW8vKqHYxITeQPcw7nrClDdX6YiMhnUCETkYPC3XlueQG3LfyImoYmfnz6eK44ZqQOTYqItIEKmYgcsMLyWn7yzEpeXb2DaZn9+M2XDmPMwOSwY4mIdBgqZCLyueWVVPPk4q088m4utQ1N3HLGBL5+9EjidXhSRGS/qJCJyH5pbIrwzzWFPL5oC2+uKwLghEMG8tMzJjA6TXvFREQ+DxUyEWmTmvomHn13Mw++vYnCijoG9enB9SeM4SvTMxjWPzHseCIiHZoKmYh8pvrGCE8s3sJd/8yhsKKOY8cO4JfnTeaEQ9J0iyMRkYNEhUxEWtUUcZ5Zls/vX11HXkkN00f0566LpnLkqNSwo4mIdDoqZCLyKau3lfPDp1bwYX4Zhw7twy/OncRx49I0qauISEBUyERkt/rGCPe8nsM9r+fQt1d3TeoqItJOVMhEBIAVeaX88KkVrNlewbmHD+XWsw4lJSkh7FgiIl2CCplIF+burMgrY8HirTyxeAtpvXvw4GVZnDRhUNjRRES6FBUykS6osKKWZ5fl89SSPNbtqKRHtzgumpHJD2ePp2+v7mHHExHpclTIRLqQgtIafvnCal5cuZ2miDMtsx+/On8yZ0wZQp+eKmIiImFRIRPpAhqaIjz8zmbufHUdEXeuOnYkX8nK0Mz6IiIxQoVMpJNbklvCT5/5kDXbKzhp/EB+fvahZKRoZn0RkVgSaCEzs9nAH4B44AF3v6OVMV8Bfg448IG7XxxkJpGuorS6nl+/uIb5i7YypG9P/vy1Izh14iDNJSYiEoMCK2RmFg/cA5wC5AGLzWyhu69qMWYs8GPgaHcvMbOBQeUR6SrcnaeW5PGr/11DWU0DVx87khtPHkdSD+0QFxGJVUH+hJ4B5Lj7RgAzWwCcA6xqMeZq4B53LwFw98IA84h0emu3V3DLsx+yeHMJRwzvzy/OncSEIX3CjiUiIvsQZCFLB7a2WM4DjtxjzDgAM3uH5sOaP3f3F/d8ITO7BrgGIDMzM5CwIh3Zrqp67ntzA/Pe3kRyz278+oLJfPmIDM2wLyLSQQRZyFr7TeCtfP+xwPHAMOAtM5vk7qWf+CL3ucBcgKysrD1fQ6TL2lZWw/3/2sT8RVuoaWjiK1nDuPn0CZphX0SkgwmykOUBGS2WhwEFrYx5z90bgE1mtpbmgrY4wFwiHd6mnVXc98YGnl6WR8ThnMOH8q3jRjN2UO+wo4mIyOcQZCFbDIw1s5FAPjAH2PMKymeBi4CHzWwAzYcwNwaYSaRDW5Jbwv3/2shLq7aTEN88u/7Vx47SNBYiIh1cYIXM3RvN7DrgJZrPD5vn7h+Z2e1AtrsvjD53qpmtApqAH7h7cVCZRDqipojzyqrt3P/WJpbkltC3V3euPX40l88aSVrvHmHHExGRg8DcO9YpWVlZWZ6dnR12DJHA1TdGeHppHve9uYHNxdVkpPTiqmNG8eWsYSQmaAoLEZGOwMyWuHvWvsbpp7pIjKlvjPC3JVv50+sbyC+tYXJ6X+65eBqzJw0mXldNioh0SipkIjGirrGJJ7PzuPf1HArKajk8ox+/OG8Sx49L0+z6IiKdnAqZSMhqG5pYsGgL9725ke3ltRwxvD93XDCFY8cOUBETEekiVMhEQlJT38Tji7bw5zc3UFhRx4wRKfy/rxzGrNGpKmIiIl2MCplIO6upb+Kv7+dy35sb2VlZx8xRKfxhzlSOGp0adjQREQmJCplIO6ltaGL+oi386Y0NFFXUcfSYVO45cSpHjlIRExHp6lTIRAJW19jEk4u3cvfrOewor+PIkSncfZGKmIiI/B8VMpGANDZF+PvSPP74Wg75pTVkDe/PnRcezqzRA8KOJiIiMUaFTOQgi0Sc51cUcOcr69hcXM1hGf341fmTddWkiIjslQqZyEFS3xjh5VXbueu1HNbuqGD84N7cf2kWJ08YqCImIiKfSYVM5ADlFFbwxOKtPL00n+KqekYNSOKui6ZyxuQhxGlmfRERaYM2FTIz+w3wC6AGeBE4DLjR3f8SYDaRmOXuPL9iG4/8ezNLckvoFmecMnEQF07P4NixabrFkYiI7Je27iE71d1/aGbnAXnAl4HXARUy6XLqGpv42bMreTI7j1FpSfz0ixM4b1o6A5J7hB1NREQ6qLYWsu7Rz18E5rv7Lp0TI11RYXkt3/jLEpZtKeX6E8fw3ZPH6bCkiIgcsLYWsufNbA3NhyyvNbM0oDa4WCKxZ9mWEr75lyWU1zTyp69O44uTh4QdSUREOok2FTJ3v9nMfg2Uu3uTmVUB5wQbTSR2/C17Kz99ZiUD+/Tg6WtnMWFIn7AjiYhIJxLXlkFm9mWgMVrGbqH53LGhgSYTiQFl1Q18Z/4yfvDUCrJG9GfhdceojImIyEHX1kOWP3P3v5nZMcBpwG+Be4EjA0smErJ/rSvih0+tYGdlHd87ZRzXHj+abvFt+j+MiIjIfmlrIWuKfj4DuNfdnzOznwcTSSRc1fWN/OqFNTz2Xi5jBiZz/6VZTB7WN+xYIiLSibW1kOWb2Z+Bk4Ffm1kP2ni4U6QjWbO9nG/9ZSmbi6u46piR3HTaIfTsHh92LBER6eTaWsi+AswGfuvupWY2BPhBcLFE2t8rq3Zw44JlJPXoxuNXzeSo0alhRxIRkS6irVdZVptZIXAMsB5ojH4W6fDcnXvf3MB/v7SWyel9mfu1LAb37Rl2LBER6ULaepXlbcCPgB9HV3WnDbP0m9lsM1trZjlmdnMrz19uZkVmtjz6cdX+hBc5ULUNTXz3ieX85sW1nDllKE9+4yiVMRERaXdtPWR5HjAVWArg7gVm1vuzvsDM4oF7gFNovt3SYjNb6O6r9hj6hLtft3+xRQ7c1l3VXD9/Gcu3lnLTqeP49glj0B0oREQkDG0tZPXu7mbmAGaW1IavmQHkuPvG6NcsoHky2T0LmUi7qm1o4t43NnDvmxvoHmfcd8kRzJ40OOxYIiLShbW1kD0Zvcqyn5ldDVwB3L+Pr0kHtrZYzqP1ecsuMLMvAOuA77r71lbGiBwwd+eVVTu4/R+ryCup4azDhvKTL45nSN9eYUcTEZEurq0n9f/WzE4ByoFDgFvd/ZV9fFlrx358j+Xnab5ZeZ2ZfRN4BDjxUy9kdg1wDUBmZmZbIot8wuadVdy28CPeXFfEuEHJzL9aV1GKiEjsaOseMqIFbF8lrKU8IKPF8jCgYI/XLG6xeD/w671877nAXICsrKw9S53IXtU1NjH3zY3c9XoOCfFx3HLGBC6bNYLumnFfRERiSJsKmZmdT3NZGkjzni8D3N0/66Z+i4GxZjYSyAfmABfv8bpD3H1bdPFsYPX+xRfZu/c3FvOTZz5kQ1EVZ0wewq1nTWRQH11BKSIisaete8h+A5zl7m0uTO7eaGbXAS8B8cA8d//IzG4Hst19IfAdMzub5nnNdgGX71d6kVaUVtfzXy+s5snsPIb178VDl0/nhPEDw44lIiKyV+a+7yOAZvaOux/dDnn2KSsry7Ozs8OOITEqv7SGrz34PluKq7nq2FHccNJYeiXo1kciIhIOM1vi7ln7GtfWPWTZZvYE8CxQ9/FKd3/6c+YTOeg2FFXytQfep6KukfnXzGT6iJSwI4mIiLRJWwtZH6AaOLXFOgdUyCQmrMwv49J5i4gzWHDNTA4d2jfsSCIiIm3W1kL2gLu/03KFmcXEIUyR9zYWc9Uj2fTt1Z2/XHUkIwe0Zd5iERGR2NHWa//vauM6kXbj7jz/QQGXzVvE4L49+fu3ZqmMiYhIh/SZe8jM7ChgFpBmZt9r8VQfmq+cFAlFTmEF//H8Kt5av5PDMvrx0OXTSUlKCDuWiIjI57KvQ5YJQHJ0XMubiZcDXwoqlMjelNU08IdX1/Pou5tJTIjntrMmcsnM4ZroVUREOrTPLGTu/ibwppk97O657ZRJ5FPcnWeW5fPL/1nNrup65kzP5KZTx5Ga3CPsaCIiIgdsX4csf+/uNwJ3m9mnJixz97MDSyYSVV3fyC3PruTppflMy+zHI1fMYFK6rqIUEZHOY1+HLB+Lfv5t0EFEWpNTWMG1f13K+sJKbjhpLN85aSzxca3dt15ERKTj2lchK4Ldhy5F2tWzy/L5yTMf0qt7PI9eMYNjx6aFHUlERCQQ+zoT+tmPH5jZ3wPOIgI0H6L88dMruPGJ5UxK78sLNxyrMiYiIp3avvaQtTw2NCrIICIAS3J38b0nP2DLrmq+dfxovn/KOLrpCkoREenk9lXIfC+PRQ6q+sYIv391Hfe9uYGh/Xqx4OqZHDkqNexYIiIi7WJfhewwMyuneU9Zr+hjosvu7n0CTSddwprt5Xz3iQ9Yva2cC7MyuOXMCfTu2T3sWCIiIu1mX/OQaTZ+CYy789f3t3D786vo06sbD1yaxckTB4UdS0REpN219ebiIgdVVV0jP3nmQ55bXsBx49L43VcO0ySvIiLSZamQSbtbv6OCb/11KRuLKrnp1HFce/wY4jS3mIiIdGEqZNKunl6ax0+fWUlSj2785aojmTV6QNiRREREQqdCJu2isq6R2577iL8vzePIkSncddFUBvbpGXYsERGRmKBCJoH7YGspNyxYxpZd1XznpLF858QxmltMRESkBRUyCUwk4sx9ayO/fWktA3v3YME1RzFjZErYsURERGKOCpkEYldVPdfPX8o7OcV8cfJgfnXeFPomam4xERGR1qiQyUFXWdfI5Q8tYs32Cu44fzIXTs/ATFdRioiI7E2gJ/KY2WwzW2tmOWZ282ei7g7UAAAVU0lEQVSM+5KZuZllBZlHglfb0MTVj2TzUUE5f7p4GnNmZKqMiYiI7ENghczM4oF7gNOBicBFZjaxlXG9ge8A7weVRdpHY1OE78xfxrsbi/ntl6do1n0REZE2CnIP2Qwgx903uns9sAA4p5Vx/wn8BqgNMIsELBJxbn76Q15etYOfnzWR86YOCzuSiIhIhxFkIUsHtrZYzouu283MpgIZ7v6Pz3ohM7vGzLLNLLuoqOjgJ5UD4u781wureWpJHjecNJbLjx4ZdiQREZEOJchC1tqJQ777SbM44E7g+/t6IXef6+5Z7p6VlpZ2ECPKgdpeVsuNTyzngbc3cfmsEdx48tiwI4mIiHQ4QV5lmQdktFgeBhS0WO4NTALeiJ70PRhYaGZnu3t2gLnkIKhtaOL+f23kT29soMmd75w4hhtPHqcT+EVERD6HIAvZYmCsmY0E8oE5wMUfP+nuZcDuGxma2RvATSpjsc3d+d+V2/nl/6wmv7SG0ycN5idfnEBGSmLY0URERDqswAqZuzea2XXAS0A8MM/dPzKz24Fsd18Y1PeWYNQ3Rvjek8v5x4ptjB/cm/lXz+So0alhxxIREenwAp0Y1t1fAF7YY92texl7fJBZ5MDU1Dfxzb8s4c11RfzgtEP45nGjiY/T4UkREZGDQTP1yz6V1zZw5cOLyc4t4Y7zJzNnRmbYkURERDoVFTL5TMWVdVw6bxHrdlRw10VTOXPK0LAjiYiIdDoqZLJX28pquOSB98kvrWHupVmccMjAsCOJiIh0Sipk0qriyjouvv99dlbU8egVRzJjZErYkURERDotFTL5lOr6Rq54JJuC0hoev/pIjhiuMiYiIhKkIGfqlw6osSnC9Y8v48O8Uv540VSVMRERkXagPWSym7vzs+dW8tqaQn5x7iROO3Rw2JFERES6BO0hk93++FoO8xdt5boTxnDJzOFhxxEREekyVMgEgCcWb+HOV9dxwbRhfP/UcWHHERER6VJUyITnPyjgx09/yBfGpXHHBZN1g3AREZF2pkLWxb380Xa++8RysoancN8l0+ger38SIiIi7U2/fbuwN9cVcd3jy5iU3pcHL88iMUHXeIiIiIRBhayLem9jMd94LJsxA5N55Osz6N2ze9iRREREuiwVsi5o6ZYSrnx4MRn9E3nsyhn0TVQZExERCZMKWReTU1jB5fMWkda7B3+96khSk3uEHUlERKTLUyHrQooq6rj8ocUkdIvnsSuPZGCfnmFHEhEREVTIuoya+iauejSb4sp65l2eRUZKYtiRREREJEqX1XUBTRHnhgXLWJFXytyvZTFlWL+wI4mIiEgL2kPWBfzyf1bz8qod3HbmRE6ZOCjsOCIiIrIHFbJO7qF3NjHvnU1ccfRILj96ZNhxREREpBUqZJ3YY+/lcvs/VnHqxEH89IwJYccRERGRvdA5ZJ2Qu3PXP3P43SvrOHnCQP540VTi43R/ShERkVilQtbJRCLO7f9YxcP/3sz509L59QVTdH9KERGRGBfob2ozm21ma80sx8xubuX5b5rZh2a23MzeNrOJQebp7BqaInz/bx/w8L83c+UxI/ntlw5TGRMREekAAvttbWbxwD3A6cBE4KJWCtfj7j7Z3Q8HfgP8Lqg8nV1tQxPfeGwJzyzL5wenHcItZ0wgTocpRUREOoQgD1nOAHLcfSOAmS0AzgFWfTzA3ctbjE8CPMA8nVZlXSNXPbKY9zft4hfnTuKSmcPDjiQiIiL7IchClg5sbbGcBxy55yAz+zbwPSABOLG1FzKza4BrADIzMw960I6srKaByx9axIq8Mn5/4eGcc3h62JFERERkPwV5glFrx8s+tQfM3e9x99HAj4BbWnshd5/r7lnunpWWlnaQY3Zcu6rqufj+91iZX8Y9F09TGRMREemggixkeUBGi+VhQMFnjF8AnBtgnk6lsLyWOXPfJaewkrmXZjF70uCwI4mIiMjnFGQhWwyMNbORZpYAzAEWthxgZmNbLJ4BrA8wT6exrayGC+e+R15JDQ99fTonHDIw7EgiIiJyAAI7h8zdG83sOuAlIB6Y5+4fmdntQLa7LwSuM7OTgQagBLgsqDydxfayWubMfY9dlfU8duUMjhieEnYkEREROUCBTgzr7i8AL+yx7tYWj28I8vt3NoXltVx0/3sUV9bz6JUzmJbZP+xIIiIichBo1tAOorCiuYztKK/l4a9PVxkTERHpRFTIOoCdlXV89f732VZWy8Nfn0HWCB2mFBER6UxUyGLcrqp6vnr/+2wtqWbe5dOZMVJlTEREpLNRIYthtQ1NXPnIYjYXVzHvsunMHJUadiQREREJQKAn9cvn1xRxblywnOVbS7nvkiOYNWZA2JFEREQkINpDFqP+64XVvPjRdn52xkROO1STvoqIiHRmKmQx6OF3NvHg25u4fNYIrjhmZNhxREREJGAqZDHmlVU7uP0fqzhl4iB+dubEsOOIiIhIO1AhiyHLt5Zy/fylTE7vyx/nTCU+rrX7s4uIiEhno0IWI1bml3Hpg++T1rsHD1w2nV4J8WFHEhERkXaiQhYDVhWUc8mD79O7Z3cev2omab17hB1JRERE2pEKWcjWbC/nqw+8R2L3eOZfPZOMlMSwI4mIiEg7UyEL0bodFXz1/vfp0S2ex6+eSWaqypiIiEhXpEIWkpzCCi6+/z3i44z518xkxICksCOJiIhISFTIQpBfWsMlDywCmsvYSJUxERGRLk2FrJ2VVtdz2bxFVNU18tiVMxidlhx2JBEREQmZ7mXZjppvFp7NluJqHrliBhOG9Ak7koiIiMQAFbJ20tgU4fr5y1i6pYS7L5rGUaNTw44kIiIiMUKHLNuBu/Oz5z7ilVU7uO3MiZwxZUjYkURERCSGqJC1g7v/mcP8RVu49vjRXH60bhYuIiIin6RCFrD3Nhbzu1fXce7hQ/nBaYeEHUdERERikApZgMpqGvjeE8sZnpLIL8+bjJluFi4iIiKfppP6A3TrcyvZUVHH3781i6Qe+qsWERGR1gW6h8zMZpvZWjPLMbObW3n+e2a2ysxWmNlrZjY8yDzt6bnl+Ty3vIAbThrL4Rn9wo4jIiIiMSywQmZm8cA9wOnAROAiM5u4x7BlQJa7TwGeAn4TVJ72lFdSzS3PrOSI4f259vjRYccRERGRGBfkHrIZQI67b3T3emABcE7LAe7+urtXRxffA4YFmKddNEWc7z35AQ78/sLD6Rav0/RERETkswXZFtKBrS2W86Lr9uZK4H9be8LMrjGzbDPLLioqOogRD74//2sDizbt4j/OPpSMlMSw44iIiEgHEGQha+2SQm91oNklQBbw36097+5z3T3L3bPS0tIOYsSDa0nuLn738jrOmDKE86d9VvcUERER+T9BXvqXB2S0WB4GFOw5yMxOBn4KHOfudQHmCdSuqnque3wZQ/v14r80xYWIiIjshyD3kC0GxprZSDNLAOYAC1sOMLOpwJ+Bs929MMAsgYpEnBufWE5xVT1/+uo0+vbqHnYkERER6UACK2Tu3ghcB7wErAaedPePzOx2Mzs7Ouy/gWTgb2a23MwW7uXlYtrdr+fwr3VF/PysQ5mU3jfsOCIiItLBBDpbqbu/ALywx7pbWzw+Ocjv3x7eXr+TO19dx3lT07loRsa+v0BERERkD5qT4QBsL6vlhgXLGJOWzC/Pm6TzxkRERORzUSH7nJoiznfmL6OmoYl7L5lGYoJujSQiIiKfj1rE5/TQO5tYtHkXv/vKYYwZ2DvsOCIiItKBaQ/Z57B1VzX/7+V1nDR+IOdN1XxjIiIicmBUyPaTu/OTZz4kzuA/z9V5YyIiInLgVMj20zPL8nlr/U5+OHs8Q/v1CjuOiIiIdAIqZPthZ2Udt/9jFdMy+3HJzOFhxxEREZFOQoVsP/znP1ZRVdfIHRdMIT5OhypFRETk4FAha6PX1xTy3PICrj1+DOMG6apKEREROXhUyNqgur6RW55dyZiByVx7wuiw44iIiEgno3nI2uCZZfnkl9Yw/+qZ9OgWH3YcERER6WS0h2wf3J3H3s1l4pA+zByVEnYcERER6YRUyPYhO7eENdsruPSo4ZpzTERERAKhQrYPj76bS++e3TjncM3ILyIiIsFQIfsMhRW1vLhyG18+IoNeCTp3TERERIKhQvYZnli0lYYm55KZmWFHERERkU5MhWwvGpsiPL5oC8eOHcCotOSw44iIiEgnpkK2F6+uLmRbWS1f0y2SREREJGAqZHvx2HubGdq3JyeOHxh2FBEREenkVMhakVNYyTs5xXx15nC6xeuvSERERIKlttGKv7yXS/d44ytZGWFHERERkS5AhWwPVXWN/H1JHl+cPIS03j3CjiMiIiJdQKCFzMxmm9laM8sxs5tbef4LZrbUzBrN7EtBZmmrF1dup6KukUuP0sn8IiIi0j4Cu7m4mcUD9wCnAHnAYjNb6O6rWgzbAlwO3BRUjv113tR0hvbrxbTM/mFHERERkS4isEIGzABy3H0jgJktAM4Bdhcyd98cfS4SYI79EhdnHDU6NewYIiIi0oUEecgyHdjaYjkvuk5EREREWgiykFkr6/xzvZDZNWaWbWbZRUVFBxhLREREJLYEWcjygJbzRgwDCj7PC7n7XHfPcvestLS0gxJOREREJFYEWcgWA2PNbKSZJQBzgIUBfj8RERGRDimwQubujcB1wEvAauBJd//IzG43s7MBzGy6meUBXwb+bGYfBZVHREREJFYFeZUl7v4C8MIe625t8XgxzYcyRURERLoszdQvIiIiEjIVMhEREZGQqZCJiIiIhEyFTERERCRk5v655moNjZkVAbkBf5sBwM6Av4d8PnpvYpPel9il9yY26X2JXQf7vRnu7vucRLXDFbL2YGbZ7p4Vdg75NL03sUnvS+zSexOb9L7ErrDeGx2yFBEREQmZCpmIiIhIyFTIWjc37ACyV3pvYpPel9il9yY26X2JXaG8NzqHTERERCRk2kMmIiIiEjIVMhEREZGQqZDtwcxmm9laM8sxs5vDztNVmVmGmb1uZqvN7CMzuyG6PsXMXjGz9dHP/cPO2lWZWbyZLTOzf0SXR5rZ+9H35gkzSwg7Y1djZv3M7CkzWxPddo7SNhMbzOy70Z9lK81svpn11DYTDjObZ2aFZrayxbpWtxNr9sdoJ1hhZtOCyqVC1oKZxQP3AKcDE4GLzGxiuKm6rEbg++4+AZgJfDv6XtwMvObuY4HXossSjhuA1S2Wfw3cGX1vSoArQ0nVtf0BeNHdxwOH0fz+aJsJmZmlA98Bstx9EhAPzEHbTFgeBmbvsW5v28npwNjoxzXAvUGFUiH7pBlAjrtvdPd6YAFwTsiZuiR33+buS6OPK2j+xZJO8/vxSHTYI8C54STs2sxsGHAG8EB02YATgaeiQ/TetDMz6wN8AXgQwN3r3b0UbTOxohvQy8y6AYnANrTNhMLd/wXs2mP13raTc4BHvdl7QD8zGxJELhWyT0oHtrZYzouukxCZ2QhgKvA+MMjdt0FzaQMGhpesS/s98EMgEl1OBUrdvTG6rG2n/Y0CioCHooeSHzCzJLTNhM7d84HfAltoLmJlwBK0zcSSvW0n7dYLVMg+yVpZp3lBQmRmycDfgRvdvTzsPAJmdiZQ6O5LWq5uZai2nfbVDZgG3OvuU4EqdHgyJkTPRzoHGAkMBZJoPhS2J20zsafdfrapkH1SHpDRYnkYUBBSli7PzLrTXMb+6u5PR1fv+Hh3cfRzYVj5urCjgbPNbDPNh/VPpHmPWb/o4RjQthOGPCDP3d+PLj9Fc0HTNhO+k4FN7l7k7g3A08AstM3Ekr1tJ+3WC1TIPmkxMDZ65UsCzSddLgw5U5cUPSfpQWC1u/+uxVMLgcuijy8DnmvvbF2du//Y3Ye5+wiat5F/uvtXgdeBL0WH6b1pZ+6+HdhqZodEV50ErELbTCzYAsw0s8Toz7aP3xttM7Fjb9vJQuDS6NWWM4Gyjw9tHmyaqX8PZvZFmv+3Hw/Mc/dfhhypSzKzY4C3gA/5v/OUfkLzeWRPApk0/5D7srvveXKmtBMzOx64yd3PNLNRNO8xSwGWAZe4e12Y+boaMzuc5gstEoCNwNdp/o+3tpmQmdl/ABfSfAX5MuAqms9F0jbTzsxsPnA8MADYAdwGPEsr20m0QN9N81WZ1cDX3T07kFwqZCIiIiLh0iFLERERkZCpkImIiIiETIVMREREJGQqZCIiIiIhUyETERERCZkKmYjEHDMbZGaPm9lGM1tiZu+a2XkhZTnezGa1WP6mmV0aRhYR6by67XuIiEj7ic778yzwiLtfHF03HDg7wO/ZrcU9Bfd0PFAJ/BvA3e8LKoeIdF2ah0xEYoqZnQTc6u7HtfJcPHAHzSWpB3CPu/85OkHtz4GdwCSab9x8ibu7mR0B/A5Ijj5/ubtvM7M3aC5ZR9M8G/c64BaaJ1UtBr4K9ALeA5povnH39TTPsl7p7r+NTsR6H5AIbACucPeS6Gu/D5wA9AOudPe3zOxQ4KHo94gDLnD39Qfnb05EOjIdshSRWHMosHQvz11J861LpgPTgavNbGT0uanAjcBEYBRwdPR+qHcBX3L3I4B5QMu7b/Rz9+Pc/f8BbwMzozfmXgD80N0301y47nT3w939rT3yPAr8yN2n0HxXidtaPNfN3WdEM328/pvAH9z9cCCL5vvkiYjokKWIxDYzuwc4BqgHcoEpZvbx/f/6AmOjzy1y97zo1ywHRgClNO8xe6X5SCjxQMv70D3R4vEw4InojYUTgE37yNWX5kL3ZnTVI8DfWgx5Ovp5STQLwLvAT81sGPC09o6JyMe0h0xEYs1HwLSPF9z92zQfJkwDDLg+urfqcHcf6e4vR4e2vAdgE83/4TTgoxbjJ7v7qS3GVbV4fBdwt7tPBr4B9DzAP8fHeT7Ogrs/TvO5cDXAS2Z24gF+DxHpJFTIRCTW/BPoaWbfarEuMfr5JeBb0UORmNk4M0v6jNdaC6SZ2VHR8d2j53G1pi+QH318WYv1FUDvPQe7exlQYmbHRld9DXhzz3EtRW/AvtHd/0jzeWtTPmu8iHQdKmQiElO8+Uqjc4HjzGyTmS2i+XDgj4AHgFXAUjNbCfyZzzj1wt3rgS8BvzazD4DlwKy9DP858Dcze4vmk/8/9jxwnpktb1G+PnYZ8N9mtgI4HLh9H3+8C4GV0UOq42k+B01ERFdZioiIiIRNe8hEREREQqZCJiIiIhIyFTIRERGRkKmQiYiIiIRMhUxEREQkZCpkIiIiIiFTIRMREREJ2f8HrfBUDiGvd+UAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHACAYAAACVhTgAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYr0lEQVR4nO3dd3hUZeL28Xtmkkx6IT0hEHqRnkB+gHU3imVZ2yoqCqJrRVfN6goWsLwaLKuosGB3F1dFXXQVBUsUFUWCobdQQ0JJIySTPsnMef+IRrOUhBByUr6f65orzJnnTO7ZPRfM7TnneSyGYRgCAAAAAByV1ewAAAAAANDWUZwAAAAAoBEUJwAAAABoBMUJAAAAABpBcQIAAACARlCcAAAAAKARFCcAAAAAaATFCQAAAAAa4WF2gNbmdru1f/9+BQQEyGKxmB0HAAAAgEkMw1BpaaliYmJktR77nFKnK0779+9XXFyc2TEAAAAAtBE5OTnq2rXrMcd0uuIUEBAgqe5/nMDAQJPTAAAAADCLw+FQXFxcfUc4lk5XnH65PC8wMJDiBAAAAKBJt/AwOQQAAAAANILiBAAAAACNoDgBAAAAQCMoTgAAAADQCIoTAAAAADSC4gQAAAAAjaA4AQAAAEAjKE4AAAAA0AiKEwAAAAA0guIEAAAAAI2gOAEAAABAIyhOAAAAANAIihMAAAAANMLD7AAAAAAA2jfDMFRY5lR2Ubn2HKxQdlGFiitqVFXjUmWNS5XOup+/ff7B1LEK9PY0O3qTUZwAAAAANKrW5db+4irt+U052nOw7s85RRUqd7qO6/0qnS6KEwAAAID2xeU2lF9apX2HKrWv+OfHocqfC1KF9hVXyuU2jrq/xSLFBPmoWxdfdQ/1Vai/l3y9POTtaZOPp00+XlZ5e9jk7VX3PMin/ZQmieIEAAAAdAqlVTU6UFKlfcWV2l9cqQPFVdpf/GtJyi2pUu0xipEkeXlY64pRF1/FdfFVfKivuof6qVuor7qG+MjuYWulT9P6KE4AAABAO/bLJXQ5hyqUX1qlgtJq5TuqlV9aXffn0irll1artKq20ffysFoUFeStmGAfdQ32UWyIj+JCfNUttO4sUmSAt6xWSyt8qraH4gQAAAC0YYZhqKSyRrmOujNEWYV19xZl/XyfUU5RRaNnin4R5OOp6CBvxQb7KCbYR9HBdX/+5XlkoLdsnbQYNYbiBAAAAJik1uVWQVm1DpRUKfeXh+PXn3k/P6pq3Md8H7uHVV1D6opPRIBd4QF2RQR4//yz7nl0sI/87Xz9by7+lwMAAABagGEYcrrcqnK6VVFTq5LKGh0sc6qwrFpF5U4dLHPqYLlTB8vqLqPLLalSfmmVmniySCG+nooK8qm/r6j+Z1jnvoSutVCcAAAAgGNw1rq1v7hudrlfLo3LLqpQzqEKOSprG6xTdKxZ547Gw2pRZKC3ooJ+fgTWPSJ/8+eIQLu8PTvuxAvtAcUJAAAAnZ5hGMovrdbO/DLtLCjTzoJy7Swo066Cch0oqWzyWaFf2KwWBfl4KtTPS6H+Xgr1s9f/7OLvpXB/u2KC60pRqL+d+4raAYoTAAAAOpWDZdXKzC3VltxSbT3gUGZeqXYVlKus+uizznl71k3D3e3nabi7dfFVXIivQvy85ONpk6+XTT5etvo1i7w8rK34idAaKE4AAABodwzDkKOqVvt/XpNof0mVDpZVyzAk49dB9eMrnC5l5pUqM7dU+aXVR3xPq0Xq1sVXvcL91SvCX73C/dQz3F/dQ30V7m+XxcJZoc6M4gQAAADTVDjrys/eQ5X1C7OWVNbI5TZ+fkhuw1Ct25Dbbais+teyVO50Nfv3dg/1Vb/IAPWPDlT/qAD1ifBXt1DfDr2AK04MxQkAAAAnlWEYynVUafN+h7YccGjLgVLtKSrXvkOVOlRRc0Lv3cXPSzHB3ooJ8lFYgF22n88K/fbkkEWSh82qXuH+6h8doH6RAfJjWm4cJ44YAAAANFml06U9ReXKKixXTlGlnC63rBaLbFbJarHIYrHI9nNpyS6qrCtKuQ4VH6MgBdg9FBtStwhrbIiPQny95GG1yGq1yGa1yGb5+afVIh9Pm2KCfRQT7K3oIB/5eHGGCK2D4gQAAIB6tS638kurtb+47tK5vYcqlX2wQlkHy5V1sFx5jiPfH9QYm9WiXuF+GhAdqAHRgeod7l9XlkJ8FOjt2cKfAmh5FCcAAIBOwlnrVn5plfIcVcpzVCvPUaVcR5XySqq0v7hK+4orleuoanQtoiAfT8WH+al7F1/5eNrkMgy5jbp7kNyG5DIMGYahiABvDYwJ1MDoQPWO8GcdIrRrFCcAAIAOory69uezRBXae6jy50fdn/cdqtTBcmeT3sfDalH0z/cNxQb7qFuor+JD/RQf5qf4UF8F+3qd5E8CtD0UJwAAgDaiutal7IMVKq6sUa2rbla5Wrf755+/zipXUFatgtLfPH5+Xlp19HWIfuFlsyoi0K7IwLrFVyMC7YoK9P75vqG6ohQewIKswP+iOAEAALSyfEeVMvNKtbuwXLsKyut+FpZp36FKNXKVXKOCfDzVNcTn54dv/c9fJlMI8fVkPSKgGShOAAAAJ5HbbWhnQZlWZR3ST1lFWrWnSDlFlUcd72/3UHiAXR7WX2eS86j/aZW3l03h/naFB/zm4W9XRKBdEQF2BTDRAnBSUJwAAABaUKXTpfV7i7U6u1gZe4r0055Dh03FbbVI8WF+6hnmr57hfuoZ5qceYX7qEe6ncH87Z4SANojiBAAA0EyGYSi7qEKrsw9pTXaxVmcf0pYDpYfNSuftadXwuBCNjA9RYnwXDe8WzJkhoJ0xvTjNnTtXTz31lHJzczV06FC98MILGjVq1FHHz549W/PmzVN2drbCwsL0pz/9SampqfL29m7F1AAAoDMoKndqR36Z8hxVyi+tVn5pVYNJGQ6UVKmk8vCFXSMD7RrRLUQJ3euK0ikxgfK0WU34BABaiqnFaeHChUpJSdH8+fOVlJSk2bNna9y4ccrMzFRERMRh49966y1NmzZNr732msaMGaNt27bp2muvlcVi0TPPPGPCJwAAAB1BVY1LO/LLlJlbqq25Dm3NLVVmbqnySxtf7NXTZtEpMUEa0S1EI7oHa3i3EMUEeXO5HdDBWAzDOMG5W5ovKSlJI0eO1Jw5cyRJbrdbcXFxuv322zVt2rTDxt92223asmWL0tLS6rf99a9/1cqVK7V8+fIm/U6Hw6GgoCCVlJQoMDCwZT4IAABo034pRvuKK3WguFL7S6q0v7hSB37+meeoOupsdl1D6qbpDg+om3yh7qd3/fMeYX4s7Aq0U8fTDUw74+R0OpWRkaHp06fXb7NarUpOTtaKFSuOuM+YMWP05ptvKj09XaNGjdKuXbv06aef6pprrjnq76murlZ19a//tcjhcLTchwAAAG1Sda1L63JKtGLnQa3YVajV2cVy1rqPuU+wr6f6RQaof1SA+kcHql9UgPpGBsjfbvqdDQDaANP+JigsLJTL5VJkZGSD7ZGRkdq6desR97nqqqtUWFioU089VYZhqLa2VjfffLPuu+++o/6e1NRUPfzwwy2aHQAAtC2GYWjTfoeWZeZrxa6DythzSFU1DYtSiK+nunXxVUywj6KDfBQT7P3zn73rF33l8joAR9Ou/hPKsmXL9Pjjj+sf//iHkpKStGPHDt1xxx169NFH9eCDDx5xn+nTpyslJaX+ucPhUFxcXGtFBgAAJ9H2vFJ9vP6AFq/br12F5Q1eC/P3UlLPUI3uGar/6xmqXuF+FCMAzWZacQoLC5PNZlNeXl6D7Xl5eYqKijriPg8++KCuueYa/fnPf5YkDR48WOXl5brxxht1//33y2o9fLYau90uu93e8h8AAACYYs/Bci1ef0Afr9uvrbml9dvtHlad0Tdcp/YJ0//1DFWfCH+KEoAWY1px8vLyUkJCgtLS0nTRRRdJqpscIi0tTbfddtsR96moqDisHNlsdTdjmjjHBQAAOEkMw9DeQ5X6aU+RVmUd0k9ZRdqWV1b/uqfNotP7hGv80BglD4zkfiQAJ42pf7ukpKRo8uTJSkxM1KhRozR79myVl5drypQpkqRJkyYpNjZWqampkqTx48frmWee0fDhw+sv1XvwwQc1fvz4+gIFAADarxqXW1sPlOqnPUX6KeuQftpTpDxHwynBbVaLxvQK1fghMRp3SpSCfFlIFsDJZ2pxmjBhggoKCjRjxgzl5uZq2LBhWrp0af2EEdnZ2Q3OMD3wwAOyWCx64IEHtG/fPoWHh2v8+PF67LHHzPoIAADgBBSVO7V6zyGtzj6kjD2HtG5v8WGTOvyyTtLI+BAldO+iUT26qIufl0mJAXRWpq7jZAbWcQIAoPU5qmqUVViu3YXlyiqs0K7CMq3fW6Ld/zOhgyQFentoRPcQjYzvooTuIRraNVg+XlxZAqDltYt1nAAAQMdiGIYKyqq1LbdMW3Md2pZXql0F5co6WK7CMudR9+sd4a8R3YKV0D1ECd1D1DPMX1YrkzoAaFsoTgAAoFn2FVfq++2F2nzAoczcUmXmlaqo/OgFKczfrh5hvuoR5qf4MD8NiArU8G7BCvblsjsAbR/FCQAANImz1q1VWUValpmvZZkF2p5fdtgYi0WKD/VTv8gA9YsKUK8If/UM81P3UF8FeDOJA4D2i+IEAAAaMAxDpdW1yndUKc9RrV2F5fp2W4F+2FGocqerfpzVIo3oFqJhccHqFxWg/lGB6h3hz/1IADokihMAAJ1UYVm1Nu13aOO+Em3PK1Xuz0Upz1Glit8UpN8KD7DrjL7hOrNfuE7rHc5U4AA6DYoTAAAdXHWtS/sOVWpnQbk27S/Rxn0ObdpfogMlVcfcL8DbQ1GB3ooK8lZSjy46s1+EBkYHMnEDgE6J4gQAQAeRVViuVVlFyjlUqb1FFco5VKGcokrllVbpSIuPWCxSjzA/DYoJUv/oAMUG+ygy0FtRgd6KCLTL14uvCQDwC/5GBACgHSuvrtWnGw7ovZ/2Kj2r6KjjfDxt6h7qq1NigjQoNlCDYoM0IDpQ/na+CgBAU/C3JQAA7YxhGFqdXaz3fsrRx+v210/YYLVIifFd1CvcT11DfBXXxVdxIT6K6+KrUD8vWSxcYgcAzUVxAgCgjXO5DWUdLFdmbqk273doycYD2llQXv96fKivLkuM06UjuioqyNvEpADQcVGcAABoQ4rKndp6wKEtuaXKzHVoa26ptuWVqqrG3WCcj6dN5w+O1uWJXTWqRxfOJgHASUZxAgDABDUut3YVlGvLAYe25Dq09UCptuY6lOeoPuJ4H0+b+kYFqH9kgBK6h+i8wVEsKAsArYjiBABAK3G7Df2466D+s3qflm480GAx2d/qHuqrfpEBGhAdqP5RAeofHahuXXxlYxpwADANxQkAgJNse16pFq3Zpw/X7GuwdpK/3UP9o34uSNEB6h8VqH5RAcx0BwBtEH8zAwDQAqprXTpUXqOicqcOVThVVO7UvuJKfbL+gDbsK6kfF+jtoQuGxOjSEbEa0S2ExWQBoJ2gOAEAcJxqXG6l7y7SZ5tytXx7ofJLq1VWXXvU8R5Wi87sF6FLRsTqd/0j5O1pa8W0AICWQHECAKAJqmpc+m57oT7blKsvt+SpuKLmsDE2q0Uhvp4K8fVSF7+6x//1DNUfhkQr1N9uQmoAQEuhOAEAcBQut6FlmflatHqfvs7MV8VvJnPo4uelswdE6uyBkeoZ7qcufl4K9Pbk0jsA6KAoTgAA/I88R5UWrsrRO+nZ2v+byRxigrx1zilROndQlBK7h8jDZjUxJQCgNVGcAABQ3VTh3+0o1Fsr9+jLLflyuQ1JUrCvp/40oqv+OCxGg2ODWGgWADopihMAoFNzuQ29+1OO5i3bqeyiivrto+K76Kqkbjp3UBSTOQAAKE4AgM4rY88hzfxoozbuc0iSArw9dOmIrroqqZv6RgaYnA4A0JZQnAAAnU5+aZVmLdmqRav3SaorTHcm99VVo7rJx4uzSwCAw1GcAACdhrPWrX/+kKXn0rarrLpWFot0eUKc7jm3n8KYLhwAcAwUJwBAh3ewrFrLMgv0j2U7tLOgXJI0NC5Yj/zxFA2NCzY3HACgXaA4AQA6HLfb0Mb9Jfp6a4G+zszXur3FMuomyVOYv5f+dm5//WlEV9ZcAgA0GcUJANCuGYahgrJqZRVWaHdhmVZlHdKyzAIVllU3GDcwOlBnD4zUdaf2UJCPp0lpAQDtFcUJANBuGIahb7cXKmPPIWUVlmv3z4+y6trDxvrbPXRq7zCd1T9cZ/SNUFSQtwmJAQAdBcUJANDmudyGPtlwQP/4eoe25pYe9rrFInUN8VGPMH8NiArQGf3Cldi9i7w8rCakBQB0RBQnAECbVV3r0qLV+/TiNzuVdbBucVo/L5vOGxytPhH+6hHmp57hforr4iu7B9OIAwBOHooTAKDNqXDW6q2V2Xr5u13Kc9TdqxTi66kpY3to8uh4BflyjxIAoHVRnAAAbYaz1q1/r9yjF77aoaJypyQpKtBbN5zeU1eOipOvF/9sAQDMwb9AAADTud2GPl6/X09/nqmcokpJUnyor24+o5cuHhHLZXgAANNRnAAAplq+vVCzlm7Rxn0OSVJEgF13JvfV5Yld5WFjcgcAQNtAcQIAmGLT/hLNWrJV320vlFQ3ffjNZ/TUdaf24JI8AECbw79MAIBWle+o0lOfZer91XtlGJKnzaKJSd11++96K9TfbnY8AACOqE1cAzF37lzFx8fL29tbSUlJSk9PP+rYM888UxaL5bDHBRdc0IqJAQDHq6rGpTlfbdeZTy/Texl1pWn80BilpZyph/54CqUJANCmmX7GaeHChUpJSdH8+fOVlJSk2bNna9y4ccrMzFRERMRh4xctWiSn01n//ODBgxo6dKguu+yy1owNAGgiwzC0eP0BzVqyVfuK6yZ+GBYXrBnjB2pEtxCT0wEA0DQWwzAMMwMkJSVp5MiRmjNnjiTJ7XYrLi5Ot99+u6ZNm9bo/rNnz9aMGTN04MAB+fn5NTre4XAoKChIJSUlCgwMPOH8AICjW5dTrEcWb1bGnkOSpOggb007r7/+ODRGFovF5HQAgM7ueLqBqWecnE6nMjIyNH369PptVqtVycnJWrFiRZPe49VXX9UVV1xx1NJUXV2t6urq+ucOh+PEQgMAjsntNvTt9gK99n2Wvt1WIEny8bTp5jN66cbTe8rHi6nFAQDtj6nFqbCwUC6XS5GRkQ22R0ZGauvWrY3un56ero0bN+rVV1896pjU1FQ9/PDDJ5wVAHBsFc5a/Wf1Pr3x/W7tLCiXJFks0sXDYnXPuf0UHeRjckIAAJrP9HucTsSrr76qwYMHa9SoUUcdM336dKWkpNQ/dzgciouLa414ANAp7Cuu1L9WZOntldlyVNVKqptafMLIOE0eHa9uob4mJwQA4MSZWpzCwsJks9mUl5fXYHteXp6ioqKOuW95ebneeecdPfLII8ccZ7fbZbczUxMAtCTDMJS+u0j/XJGlzzblyeWuu122e6ivrh0Trz8ldFWAt6fJKQEAaDmmFicvLy8lJCQoLS1NF110kaS6ySHS0tJ02223HXPf9957T9XV1br66qtbISkAQJIqnS79d+0+vfFDlrbmltZvH90zVNed2kO/6x8hm5VJHwAAHY/pl+qlpKRo8uTJSkxM1KhRozR79myVl5drypQpkqRJkyYpNjZWqampDfZ79dVXddFFFyk0NNSM2ADQqeQUVejNH/fonVU5KqmskSR5e1p18fBYTRodrwHRzFIKAOjYTC9OEyZMUEFBgWbMmKHc3FwNGzZMS5curZ8wIjs7W1Zrw3V6MzMztXz5cn3++edmRAaATmN3Yblmf7lNH6/br5+vxlPXEB9NGt1dlyfGKdjXy9yAAAC0EtPXcWptrOMEAI3bV1yp57/crvdX762/f+nU3mGaPCaey/EAAB1Gu1nHCQDQtuSXVukfX+/UWyuz5XS5JUln9QvXX8/pp0GxQSanAwDAPBQnAICKyp168dud+ucPWaqqqStMo3uG6u5xfZXQvYvJ6QAAMB/FCQA6sS0HHHr9+936cO1+OWvrCtOwuGDdM66fxvYOMzkdAABtB8UJADoZl9vQl1vy9Pr3u/XjrqL67YNjg3Rnch/9rn+ELBbuYQIA4LcoTgDQSTiqarQwPUf/XJGlvYcqJUk2q0XnnhKlKWPjldA9hMIEAMBRUJwAoINzuQ29sypbT3+WqUMVdWswBft66oqR3TRpdHfFBPuYnBAAgLaP4gQAHdjKXQf10MebteWAQ5LUM9xPN5zWUxcNi5WPl83kdAAAtB8UJwDogPYeqlDqkq36ZP0BSVKgt4fuOruvrv6/7vK0WRvZGwAA/C+KEwB0IJVOl+Z/s1Pzv9mp6lq3rBbpylHdlHJ2X4X6282OBwBAu0VxAoAOoNLp0lvp2Xrp253Kc1RLkkb16KKZ4wfqlBgWrgUA4ERRnACgHSutqtGCH/fo1e9262C5U5IUG+yj+84foPMHRzFLHgAALYTiBADtUHGFU69/n6XXv98tR1WtJCmui49uPbO3LhkRK7sHEz8AANCSKE4A0I643IaeT9uuV5fvVll1XWHqFe6nqWf11h+HxsiDiR8AADgpKE4A0E44a926a+FafbKhbqa8/lEBuv13fXTuoCjZrFySBwDAyURxAoB2oLy6Vje/maHvthfK02bRrEuG6JIRsdzDBABAK6E4AUAbV1zh1JQ3VmlNdrF8vWx68ZoEndYn3OxYAAB0KhQnAGjDckuqNOm1ldqWV6ZgX0+9fu1IDe8WYnYsAAA6HYoTALRRWYXluvrVldp7qFKRgXYtuD5JfSMDzI4FAECnRHECgDZo836HJr2WrsKyasWH+mrB9UmK6+JrdiwAADotihMAtCHVtS7984csPZ+2Q2XVtRoYHah/XjdK4QF2s6MBANCpUZwAoA0wDEOfbDigWUu2au+hSklSUo8uenlyogK9PU1OBwAAKE4AYLKMPYf02CebtTq7WJIUEWDX3eP66dIRXVmfCQCANoLiBAAmySmq0KylW/XJ+roFbX08bbrpjJ668fSe8vXir2cAANoS/mUGgFbmcht65btd+vsX2+SsdctikS5L6Kq/ntNPkYHeZscDAABHQHECgFa052C57n5vnVZlHZIkje0dqvvPH6iBMYEmJwMAAMdCcQKAVmAYht5Kz9Zjn2xRhdMlf7uHZvxhoC5L7CqLhfuYAABo6yhOAHCS5Tmq9Lf31+ubbQWS6mbLe/qyoazLBABAO0JxAoCT6KN1+/XghxtVUlkjLw+r7j23v6aMiZeV2fIAAGhXKE4AcBLsK67UzP9u0pdb8iRJg2OD9MzlQ9UnMsDkZAAAoDkoTgDQgmpdbr3+fZae/XKbKpwuedosuvXM3rrtd73labOaHQ8AADQTxQkAWsia7EO674ON2nLAIUkaFd9Fj108iLNMAAB0ABQnADhBjqoaPbU0U2+u3CPDkIJ9PXXfeQP0p4Su3MsEAEAHQXECgGYyDEOfbsjVQx9vUkFptSTp0hFddd/5/RXqbzc5HQAAaEkUJwBohjxHlR74cKO+2Fw3+UPPcD89dtFgje4VanIyAABwMlCcAOA4GIahd1bl6PFPt6i0qlaeNotuObO3pp7VS3YPm9nxAADASUJxAoAmyios17RF6/XjriJJ0tC4YD156RD1i2LyBwAAOjrT58adO3eu4uPj5e3traSkJKWnpx9zfHFxsaZOnaro6GjZ7Xb17dtXn376aSulBdAZ1brcevGbnRo3+1v9uKtIPp42PfiHgVp0yxhKEwAAnYSpZ5wWLlyolJQUzZ8/X0lJSZo9e7bGjRunzMxMRUREHDbe6XTq7LPPVkREhN5//33FxsZqz549Cg4Obv3wADo8wzC0LLNAj3+6RdvzyyRJp/YOU+olgxXXxdfkdAAAoDVZDMMwzPrlSUlJGjlypObMmSNJcrvdiouL0+23365p06YdNn7+/Pl66qmntHXrVnl6ejbrdzocDgUFBamkpESBgYEnlB9Ax7VxX4ke/3SLfth5UFLdFOP3n183xbjFwhTjAAB0BMfTDUy7VM/pdCojI0PJycm/hrFalZycrBUrVhxxn48++kijR4/W1KlTFRkZqUGDBunxxx+Xy+U66u+prq6Ww+Fo8ACAo9lfXKmUd9dq/Jzl+mHnQXnZrLrp9J765p6zdFliHKUJAIBOyrRL9QoLC+VyuRQZGdlge2RkpLZu3XrEfXbt2qWvvvpKEydO1KeffqodO3bo1ltvVU1NjWbOnHnEfVJTU/Xwww+3eH4AHYujqkbzl+3Uq8t3q7rWLUm6cFiM7j6nH5flAQCA9jWrntvtVkREhF566SXZbDYlJCRo3759euqpp45anKZPn66UlJT65w6HQ3Fxca0VGUAbV1Zdq3/+kKWXvt2lksoaSVJSjy66/4IBGtI12NxwAACgzTCtOIWFhclmsykvL6/B9ry8PEVFRR1xn+joaHl6espm+3WtlAEDBig3N1dOp1NeXl6H7WO322W321s2PIB2r8JZq3+t2KMXv9mpQxV1halXuJ+mnTdAyQMiuCQPAAA0YNo9Tl5eXkpISFBaWlr9NrfbrbS0NI0ePfqI+4wdO1Y7duyQ2+2u37Zt2zZFR0cfsTQBwP+qdLr08re7dNoTX2vWkq06VFGjnmF+eu6KYfr8rjN09sBIShMAADiMqZfqpaSkaPLkyUpMTNSoUaM0e/ZslZeXa8qUKZKkSZMmKTY2VqmpqZKkW265RXPmzNEdd9yh22+/Xdu3b9fjjz+uv/zlL2Z+DADtgGEYevenHD312TYVllVLkrqH+uovv+ujC4fFyMNm+rJ2AACgDTO1OE2YMEEFBQWaMWOGcnNzNWzYMC1durR+wojs7GxZrb9+mYmLi9Nnn32mu+66S0OGDFFsbKzuuOMO3XvvvWZ9BADtQHWtSzM+3KSFP+VIkrqG+Ogvv++ji4fHypPCBAAAmsDUdZzMwDpOQOdSUFqtm9/MUMaeQ7JYpLvP6acbTuspLw8KEwAAnd3xdIN2NaseAByPDXtLdOOCn3SgpEoB3h564crhOrNfhNmxAABAO0RxAtAh/XftPv3t/fWqrnWrZ7ifXp6UqF7h/mbHAgAA7RTFCUCH4nIbeuqzTM3/Zqck6ax+4XruyuEK9PY0ORkAAGjPKE4AOoyicqdS3l2rZZkFkqRbzuylu8/pJ5uV6cUBAMCJoTgB6BBW7DyoOxeuUZ6jWnYPq5780xBdOCzW7FgAAKCDoDgBaNdqXW49/9UOvfDVdhmG1DPcT3OuHKGBMcyaCQAAWg7FCUC7tb+4Une+s1bpWUWSpMsTu+qhP54iXy/+agMAAC2LbxcA2qUvNufpnvfXqbiiRn5eNj1+yWAuzQMAACcNxQlAu1JSWaO/f56pf63YI0kaHBukF64crvgwP5OTAQCAjoziBKBdcNa6teDHPXrhq+0qrqiRJP351B7627n95eVhNTkdAADo6ChOANo0wzD0yYYDenJpprKLKiRJvSP8NeMPA3V633CT0wEAgM6C4gSgzVqVVaTHPtmitTnFkqQwf7v+ek5fXZbQVR42zjIBAIDWQ3EC0OYUlTt1/wcbtGRjriTJx9OmG0/vqRtP7yk/O39tAQCA1sc3EABtysZ9JbppQYb2FVfKapEmjIzTXcl9FRHobXY0AADQiVGcALQZ/127T/f+Z72qatyKD/XVPyYmsJAtAABoEyhOAExX63IrdclWvbp8tyTprH7hmn3FcAX5eJqcDAAAoA7FCYCpisqduu2t1fph50FJ0m1n9dZdZ/eVzWoxORkAAMCvKE4ATPPb+5l8vWx65vKhOndQtNmxAAAADkNxAtDqDMPQ2+k5emTxpvr7mV6alKi+kQFmRwMAADgiihOAVlVU7tS0/6zX55vzJHE/EwAAaB8oTgBazfLthUp5d63yS6vlabPo3nP767qxPWTlfiYAANDGUZwAnHTVtS49/VmmXv6ubta8XuF+ev7K4TolJsjkZAAAAE1DcQJwUu3IL9Vf3l6rzQcckqSr/6+b7j9/oHy8bCYnAwAAaDqKE4CTorSqRq8u36353+xUVY1bIb6eevJPQ3X2wEizowEAABw3ihOAFlVV49KbP+7R3K936FBFjSTptD5h+vtlQxUR6G1yOgAAgOahOAFoETUut97P2KvnvtyuXEeVJKlnmJ9Szumr8wdFMwEEAABo1yhOAE6I221o8YYDevaLbdpdWC5Jigny1p3JfXXJiFh52KwmJwQAADhxLVKcXC6XNmzYoO7duyskJKQl3hJAO5BVWK6/vb9e6VlFkqRQPy9NPau3rkrqJm9PJn8AAAAdR7OK05133qnBgwfr+uuvl8vl0hlnnKEffvhBvr6+Wrx4sc4888wWjgmgLXG7Df1zRZaeWLpVVTVu+XrZdMsZvTTl1B7yt3MiGwAAdDzN+obz/vvv6+qrr5Ykffzxx9q9e7e2bt2qBQsW6P7779f333/foiEBtB17DpbrnvfXK3133VmmMb1C9cSlQxTXxdfkZAAAACdPs4pTYWGhoqKiJEmffvqpLrvsMvXt21fXXXednnvuuRYNCKBtcLsN/WtFlp5YmqnKGpd8vWyafv4ATRzVjYkfAABAh9es4hQZGanNmzcrOjpaS5cu1bx58yRJFRUVstm4rwHoaHYVlGnaog2cZQIAAJ1Ws4rTlClTdPnllys6OloWi0XJycmSpJUrV6p///4tGhCAeYornHoubbsWrNijWrfBWSYAANBpNas4PfTQQxo0aJBycnJ02WWXyW63S5JsNpumTZvWogEBtD5nrVsLftyj59O2q6SybhHbM/uF69ELB3GWCQAAdEoWwzCMlnij4uJiBQcHt8RbnVQOh0NBQUEqKSlRYGCg2XGANsUwDH22KU+zlmxR1sEKSVL/qADdf8EAndYn3OR0AAAALet4ukGzVqZ84okntHDhwvrnl19+uUJDQ9W1a1etX7++OW8JwGSb9pdowos/6uY3M5R1sEJh/nbNumSwPvnLaZQmAADQ6TWrOM2fP19xcXGSpC+++EJffPGFlixZonPPPVd33333cb/f3LlzFR8fL29vbyUlJSk9Pf2oY9944w1ZLJYGD29v7+Z8DACqO8v0+ve7ddHc75WeVSS7h1W3/663lt1zpq4Y1U027mUCAABo3j1Oubm59cVp8eLFuvzyy3XOOecoPj5eSUlJx/VeCxcuVEpKiubPn6+kpCTNnj1b48aNU2ZmpiIiIo64T2BgoDIzM+ufWyx8sQOao6SiRn/7zzp9tilPknT2wEg9/MdTFBPsY3IyAACAtqVZZ5xCQkKUk5MjSVq6dGn9rHqGYcjlch3Xez3zzDO64YYbNGXKFA0cOFDz58+Xr6+vXnvttaPuY7FYFBUVVf+IjIxszscAOrW1OcW64IXv9NmmPHnaLJo5fqBeuiaB0gQAAHAEzSpOl1xyia666iqdffbZOnjwoM477zxJ0po1a9S7d+8mv4/T6VRGRkZ98ZIkq9Wq5ORkrVix4qj7lZWVqXv37oqLi9OFF16oTZs2NedjAJ2SYRh65btd+tO8H7T3UKW6dfHVf24Zoylje3D2FgAA4Ciadanes88+q/j4eOXk5OjJJ5+Uv7+/JOnAgQO69dZbm/w+hYWFcrlch50xioyM1NatW4+4T79+/fTaa69pyJAhKikp0dNPP60xY8Zo06ZN6tq162Hjq6urVV1dXf/c4XA0OR/Q0RRXOHX3e+v15Za6S/POHxylWZcOUaC3p8nJAAAA2rZmFSdPT88jTgJx1113nXCgxowePVqjR4+ufz5mzBgNGDBAL774oh599NHDxqempurhhx8+6bmAtm5HfqmmvLFKOUWV8rJZ9eAfBujq/+vOWSYAAIAmaNalepK0YMECnXrqqYqJidGePXskSbNnz9Z///vfJr9HWFiYbDab8vLyGmzPy8tTVFRUk97D09NTw4cP144dO474+vTp01VSUlL/+OXeLKAz+WFnoS75xw/KKaq7NG/RrWN0zeh4ShMAAEATNas4zZs3TykpKTrvvPNUXFxcPyFEcHCwZs+e3eT38fLyUkJCgtLS0uq3ud1upaWlNTirdCwul0sbNmxQdHT0EV+32+0KDAxs8AA6k/cz9mrSq+lyVNUqsXuIPpw6VoNig8yOBQAA0K40qzi98MILevnll3X//ffLZrPVb09MTNSGDRuO671SUlL08ssv65///Ke2bNmiW265ReXl5ZoyZYokadKkSZo+fXr9+EceeUSff/65du3apdWrV+vqq6/Wnj179Oc//7k5HwXosAzD0DOfZ+ru99ap1m1o/NAYvfnnJHXx8zI7GgAAQLvTrHucdu/ereHDhx+23W63q7y8/Ljea8KECSooKNCMGTOUm5urYcOGaenSpfUTRmRnZ8tq/bXfHTp0SDfccINyc3MVEhKihIQE/fDDDxo4cGBzPgrQIVXXunTv++v14dr9kqSpZ/XSX8/uJyuL2QIAADSLxTAM43h3GjhwoFJTU3XhhRcqICBA69atU8+ePfXCCy/o9ddf1+rVq09G1hbhcDgUFBSkkpISLttDh1Rc4dSNCzKUvrtIHlaLHrt4kCaM7GZ2LAAAgDbneLpBs844paSkaOrUqaqqqpJhGEpPT9fbb7+t1NRUvfLKK80KDeDEbcsr1U0LMrS7sFwBdg/NuzpBp/YJMzsWAABAu9es4vTnP/9ZPj4+euCBB1RRUaGrrrpKMTExeu6553TFFVe0dEYATfDRuv269/31qqxxKTbYR69dO1L9ogLMjgUAANAhNOtSvd+qqKhQWVmZIiIiWirTScWleuhoalxupX66Va99v1uSdGrvMD1/5XAmgQAAAGjESb9U77d8fX3l6+t7om8DoBnyHVWa+tZqrco6JKluEoiUs/vJxiQQAAAALapZ05Hn5eXpmmuuUUxMjDw8PGSz2Ro8AJx86buLdMELy7Uq65AC7B566ZoE3TOuP6UJAADgJGjWGadrr71W2dnZevDBBxUdHS2LhS9qQGsxDEOvfZ+lxz/dIpfbUL/IAM2/JkE9wvzMjgYAANBhNas4LV++XN99952GDRvWwnEAHIvLbWjmRxv15o/ZkqQLh8Uo9ZLB8vU64atuAQAAcAzN+rYVFxenE5xTAsBxqqpx6S9vr9Hnm/NksUgPXDBQ142N54wvAABAK2jWPU6zZ8/WtGnTlJWV1cJxABzJoXKnJr6yUp9vzpOXh1X/uGqErj+1B6UJAACglTTrjNOECRNUUVGhXr16ydfXV56eng1eLyoqapFwAKScogpNfj1duwrKFejtoVcmj9SoHl3MjgUAANCpNKs4Pfvss/yXbqAVbNpfomtfX6WC0mrFBHnrjetGqW8ki9oCAAC0tmbPqgfg5Ppue4FueXO1yqpr1T8qQG9MGaWoIG+zYwEAAHRKzbrHyWazKT8//7DtBw8eZB0noAV8vG6/pry+SmXVtRrdM1Tv3jya0gQAAGCiZp1xOtqMetXV1fLy8jqhQEBn9++Ve/TAhxtlGNIfhkTr75cPld2D/yABAABgpuMqTs8//7wkyWKx6JVXXpG/v3/9ay6XS99++6369+/fsgmBTuQfy3boyaWZkqSJSd30yIWDZLNyPyEAAIDZjqs4Pfvss5LqzjjNnz+/wWV5Xl5eio+P1/z581s2IdAJGIahWUu36sVvdkmSbj2zl+4Z149JWAAAANqI4ypOu3fvliSdddZZWrRokUJCQk5KKKAzcbkNPfDhRr2dni1Jmn5ef910Ri+TUwEAAOC3mnWP09dff93SOYBOyVnrVsq7a7V4/QFZLFLqxYN1xahuZscCAADA/2hycUpJSdGjjz4qPz8/paSkHHPsM888c8LBgI6u0unSLf/O0LLMAnnaLJo9YbguGBJtdiwAAAAcQZOL05o1a7R161YNHz5ca9asOeo47skAGldc4dT1//xJGXsOydvTqvlXJ+jMfhFmxwIAAMBRNLk4ff3117LZbDpw4ED9pXoTJkzQ888/r8jIyJMWEOhoDpRUavJr6dqWV6ZAbw+9du1IJcZ3MTsWAAAAjuG47nH63/WblixZovLy8hYNBHRkOwvKNOnVdO0rrlRkoF3/ui5J/aICzI4FAACARjRrcohfHG0hXACHW5dTrClvrFJRuVM9w/z0r+tHqWuIr9mxAAAA0ATHVZwsFsth9zBxTxPQuO+2F+imBRmqcLo0pGuQXr92pEL97WbHAgAAQBMd96V61157rez2ui98VVVVuvnmm+Xn59dg3KJFi1ouIdDOfbRuv/767lrVuAyd2jtM869JkL/9hE72AgAAoJUd17e3yZMnN3h+9dVXt2gYoCMxDEOvfLdbjy/ZIsOQ/jAkWn+/fKjsHjazowEAAOA4HVdxev31109WDqBDqapx6b5FG7RozT5J0qTR3TVz/CmyWbm0FQAAoD3ieiGgheU5qnTjggytyymWzWrRgxcM0OQx8dwPCAAA0I5RnIAWtCb7kG5akKH80moF+3pq7lUjNLZ3mNmxAAAAcIIoTkAL+U/GXk3/YIOctW71jfTXy5MS1T3Ur/EdAQAA0OZRnIATVOtya9aSrXpl+W5J0tkDI/XshGHMnAcAANCB8M0OOAGFZdW64501+n7HQUnSX37XW3cm95WVSSAAAAA6FIoT0Ezpu4t021urlV9aLR9Pm56+bKguGBJtdiwAAACcBBQn4DgZhqGXvt2lJz/LlMttqHeEv+ZNHKE+kQFmRwMAAMBJQnECjkNJZY3ufm+dvticJ0m6aFiMHrt4sPy4nwkAAKBD49se0EQb9pbo1rcylFNUKS+bVTPGD9TEpG6szwQAANAJUJyARhiGoTd/3KNHF2+R0+VW1xAfzZuYoMFdg8yOBgAAgFZiNTuAJM2dO1fx8fHy9vZWUlKS0tPTm7TfO++8I4vFoosuuujkBkSnVVTu1A3/ytCD/90kp8ut5AGR+uT20yhNAAAAnYzpxWnhwoVKSUnRzJkztXr1ag0dOlTjxo1Tfn7+MffLysrS3XffrdNOO62VkqKzWb69UOfO/lZfbsmTl82qBy4YoJeuSVCQr6fZ0QAAANDKTC9OzzzzjG644QZNmTJFAwcO1Pz58+Xr66vXXnvtqPu4XC5NnDhRDz/8sHr27NmKadEZOGvdSv10i65+daXyS6vVK9xPH0wdoz+f1pP1mQAAADopU4uT0+lURkaGkpOT67dZrVYlJydrxYoVR93vkUceUUREhK6//vpGf0d1dbUcDkeDB3A0OwvKdMm87/Xit7skSVclddPi20/TKTFcmgcAANCZmTo5RGFhoVwulyIjIxtsj4yM1NatW4+4z/Lly/Xqq69q7dq1Tfodqampevjhh080KjqBD9bs1X2LNqqyxqVgX0/NumSIzh0UZXYsAAAAtAGmX6p3PEpLS3XNNdfo5ZdfVlhYWJP2mT59ukpKSuofOTk5Jzkl2qNFq/fqroXrVFnj0uieoVp6x+mUJgAAANQz9YxTWFiYbDab8vLyGmzPy8tTVNThX1p37typrKwsjR8/vn6b2+2WJHl4eCgzM1O9evVqsI/dbpfdbj8J6dFRLN2Yq3veXy9JmjS6u2aOP0U27mUCAADAb5h6xsnLy0sJCQlKS0ur3+Z2u5WWlqbRo0cfNr5///7asGGD1q5dW//44x//qLPOOktr165VXFxca8ZHB/Dd9gL95e01crkNXTqiqx6iNAEAAOAITF8ANyUlRZMnT1ZiYqJGjRql2bNnq7y8XFOmTJEkTZo0SbGxsUpNTZW3t7cGDRrUYP/g4GBJOmw70Jifsop0478y5HS5dd6gKD1x6WBmzQMAAMARmV6cJkyYoIKCAs2YMUO5ubkaNmyYli5dWj9hRHZ2tqzWdnUrFtqBjftKNOWNVaqscen0vuGafcUwedg4zgAAAHBkFsMwDLNDtCaHw6GgoCCVlJQoMDDQ7DgwwY78Ml3+4goVlTs1Kr6L/nndKPl42cyOBQAAgFZ2PN2A/8SOTiWnqEJXv7JSReVODYoN1CvXJlKaAAAA0CiKEzqNfEeVrn51pXIdVeoT4a9/XZekQG9Ps2MBAACgHaA4oVMornDqmlfTtedgheK6+GjB9Unq4udldiwAAAC0ExQndHhl1bWa/PoqZeaVKiLArn9f/3+KCvI2OxYAAADaEYoTOrSqGpdu/NdPWpdTrGBfT7355yR1C/U1OxYAAADaGYoTOqwal1u3vbVGP+w8KH+7h/45ZZT6RgaYHQsAAADtEMUJHZLbbeie99bpyy15sntY9crkRA2NCzY7FgAAANopihM6HMMwNPOjTfpw7X55WC2ad/UI/V/PULNjAQAAoB2jOKHDefrzTC34cY8sFumZCcP0u/6RZkcCAABAO0dxQofyyne7NPfrnZKkxy4arD8OjTE5EQAAADoCihM6jEWr9+r/fbJFkvS3c/vpqqRuJicCAABAR0FxQofw1dY83fP+eknSn0/toVvO6GVyIgAAAHQkFCe0exl7inTrv1fL5TZ0yfBY3Xf+AFksFrNjAQAAoAOhOKFd25ZXquve+ElVNW6d1S9cT/xpiKxWShMAAABaFsUJ7dbeQxWa9Gq6SiprNKJbsOZOHCFPG4c0AAAAWh7fMtEuHSyr1qRX05XrqFKfCH+9du1I+Xp5mB0LAAAAHRTFCe1OWXWtrntjlXYVlis22Ef/un6Ugn29zI4FAACADozihHalwlmrKa+na93eEoX4euqf141SdJCP2bEAAADQwVGc0G5UOl26/o2ftCrrkAK8PfSv65LUO8Lf7FgAAADoBChOaBeqaly6ccFPWrHroPztHvrXdaM0uGuQ2bEAAADQSVCc0OY5a9269d+r9d32Qvl62fT6lJEa3i3E7FgAAADoRChOaNNqXG7d/vZqfbU1X3YPq16ZnKiR8V3MjgUAAIBOhuKENqvW5dadC9fqs0158vKw6uVJiRrTK8zsWAAAAOiEKE5ok1xuQ/e8v16frD8gT5tFL16doNP7hpsdCwAAAJ0UxQltjmEYuv+DDfpgzT55WC2ac9UIndU/wuxYAAAA6MQoTmhTDMPQ//tki95ZlSOrRZp9xTCNOyXK7FgAAADo5ChOaFNmf7ldry7fLUmadekQ/WFIjMmJAAAAAIoT2pCXv92l59K2S5IeGj9QlyfGmZwIAAAAqENxQpvw1spsPfbpFknSPeP66dqxPUxOBAAAAPyK4gTTfbhmn+7/cIMk6ZYze2nqWb1NTgQAAAA0RHGCqT7blKu/vrdOhiFNGt1dfxvXz+xIAAAAwGEoTjDNDzsKdftba+RyG7p0RFc9NP4UWSwWs2MBAAAAh6E4wRQ78kt105sZcrrcOm9QlJ64dLCsVkoTAAAA2iaKE1rdwbJqXffGTyqtqlVi9xA9O2GYPGwcigAAAGi7+LaKVlVV49JNCzKUXVShbl189eI1CfL2tJkdCwAAADgmihNajWEYuvc/6/XTnkMK8PbQa9cmKtTfbnYsAAAAoFFtojjNnTtX8fHx8vb2VlJSktLT0486dtGiRUpMTFRwcLD8/Pw0bNgwLViwoBXTormeS9uu/67dLw+rRfOvTlDviACzIwEAAABNYnpxWrhwoVJSUjRz5kytXr1aQ4cO1bhx45Sfn3/E8V26dNH999+vFStWaP369ZoyZYqmTJmizz77rJWT43h8uGafZn+5XZL06EWDNLZ3mMmJAAAAgKazGIZhmBkgKSlJI0eO1Jw5cyRJbrdbcXFxuv322zVt2rQmvceIESN0wQUX6NFHH210rMPhUFBQkEpKShQYGHhC2dE0P2UV6aqXV8rpcuum03tq+vkDzI4EAAAAHFc3MPWMk9PpVEZGhpKTk+u3Wa1WJScna8WKFY3ubxiG0tLSlJmZqdNPP/2IY6qrq+VwOBo80HqyD1boxgV1046fMzBS957b3+xIAAAAwHEztTgVFhbK5XIpMjKywfbIyEjl5uYedb+SkhL5+/vLy8tLF1xwgV544QWdffbZRxybmpqqoKCg+kdcXFyLfgYcXVWNSze9maGicqcGxwZp9hXDWKsJAAAA7ZLp9zg1R0BAgNauXatVq1bpscceU0pKipYtW3bEsdOnT1dJSUn9Iycnp3XDdmKPLt6sLQcc6uLnpZcnJcrXy8PsSAAAAECzmPpNNiwsTDabTXl5eQ225+XlKSoq6qj7Wa1W9e7dW5I0bNgwbdmyRampqTrzzDMPG2u322W3M+V1a/t43X79e2W2JOnZCcMUFeRtciIAAACg+Uw94+Tl5aWEhASlpaXVb3O73UpLS9Po0aOb/D5ut1vV1dUnIyKaYXdhuaYv2iBJmnpWL53RN9zkRAAAAMCJMf3aqZSUFE2ePFmJiYkaNWqUZs+erfLyck2ZMkWSNGnSJMXGxio1NVVS3T1LiYmJ6tWrl6qrq/Xpp59qwYIFmjdvnpkfAz+rqnFp6r9Xq6y6VqPiu+iu5L5mRwIAAABOmOnFacKECSooKNCMGTOUm5urYcOGaenSpfUTRmRnZ8tq/fXEWHl5uW699Vbt3btXPj4+6t+/v958801NmDDBrI+A3/h/n2zW5p/va3r+yuHysLXL2+gAAACABkxfx6m1sY7TyfPxuv26/e01kqR/XjeKS/QAAADQprWbdZzQcWRxXxMAAAA6MIoTTlhVjUtT3+K+JgAAAHRcFCecEMMw9PDHm7RpP/c1AQAAoOPiGy5OyMvf7dLb6TmyWFivCQAAAB0XxQnNtnRjrlKXbJUkPXDBQO5rAgAAQIdFcUKzrMsp1p0L18gwpEmju+u6sfFmRwIAAABOGooTjtveQxW6/p8/qarGrTP7hWvGHwbKYrGYHQsAAAA4aShOOC6Oqhpd/8ZPKiyrVv+oAM25agSTQQAAAKDD4xsvmqzG5dbUf69WZl6pIgLseu3akfK3e5gdCwAAADjpKE5oEsMwNPOjTfpue6F8PG16dfJIxQT7mB0LAAAAaBUUJzTJq8t3662V2bJYpOevHK7BXYPMjgQAAAC0GooTGrU6+1CDacfPHhhpciIAAACgdVGccEyOqhrd8c4audyGxg+NYdpxAAAAdEoUJxyVYRh64IONyimqVNcQHz128SCmHQcAAECnRHHCUf1n9T59tG6/bFaLnr9yuAK9Pc2OBAAAAJiC4oQj2l1Yrhn/3ShJuiu5j0Z0CzE5EQAAAGAeihMO46x16y9vr1GF06X/69lFt5zZ2+xIAAAAgKkoTjjM3z/P1IZ9JQr29dSzE4bJZuW+JgAAAHRuFCc08O22Ar347S5J0hOXDlF0EIvcAgAAABQn1Cssq1bKu+skSROTumncKVEmJwIAAADaBooTJNVNPf6399ersKxafSL89cAFA82OBAAAALQZFCdIkt5Oz9FXW/Pl5WHV81cOl4+XzexIAAAAQJtBcYKyD1bo/32yWZJ0zzn9NCA60OREAAAAQNtCcerkXG5Dd7+3ThVOl0bFd9F1p/YwOxIAAADQ5lCcOrnXlu9WelaRfL1sevqyoUw9DgAAABwBxakT25ZXqqc+z5QkPXDBQHUL9TU5EQAAANA2UZw6qRqXWynvrpWz1q0z+4XrylFxZkcCAAAA2iyKUyc156sd2rjPoSAfTz1x6RBZLFyiBwAAABwNxakTWr+3WHO+3iFJeuTCUxQZ6G1yIgAAAKBtozh1MlU1LqW8u04ut6ELhkTrj0NjzI4EAAAAtHkUp07m6c8ytSO/TOEBdv2/CwdxiR4AAADQBBSnTuTHXQf16ve7JUlPXDpYIX5eJicCAAAA2geKUydRWlWjv767ToYhTUiM0+/6R5odCQAAAGg3KE6dxKOLN2tfcaW6hvjowfEDzY4DAAAAtCsUp07g8025evenvbJYpGcuHyZ/u4fZkQAAAIB2heLUwRWWVWv6og2SpBtP66lRPbqYnAgAAABof9pEcZo7d67i4+Pl7e2tpKQkpaenH3Xsyy+/rNNOO00hISEKCQlRcnLyMcd3ZoZh6L5FG3Sw3Kl+kQG66+y+ZkcCAAAA2iXTi9PChQuVkpKimTNnavXq1Ro6dKjGjRun/Pz8I45ftmyZrrzySn399ddasWKF4uLidM4552jfvn2tnLzt+8/qffp8c548bRY9M2GovD1tZkcCAAAA2iWLYRiGmQGSkpI0cuRIzZkzR5LkdrsVFxen22+/XdOmTWt0f5fLpZCQEM2ZM0eTJk1qdLzD4VBQUJBKSkoUGBh4wvnbqr2HKnTe7O9UWl2re8b109SzepsdCQAAAGhTjqcbmHrGyel0KiMjQ8nJyfXbrFarkpOTtWLFiia9R0VFhWpqatSly5Hv3amurpbD4Wjw6OjcbkP3vLdepdW1SugeopvP6GV2JAAAAKBdM7U4FRYWyuVyKTKy4ZpCkZGRys3NbdJ73HvvvYqJiWlQvn4rNTVVQUFB9Y+4uLgTzt3Wvf5DllbsOihfL5v+ftlQ2awWsyMBAAAA7Zrp9zidiFmzZumdd97RBx98IG9v7yOOmT59ukpKSuofOTk5rZyyde3IL9UTS7dKku6/YIDiw/xMTgQAAAC0f6Yu6BMWFiabzaa8vLwG2/Py8hQVFXXMfZ9++mnNmjVLX375pYYMGXLUcXa7XXa7vUXytnW1Lrf++u46OWvdOqNvuK4a1c3sSAAAAECHYOoZJy8vLyUkJCgtLa1+m9vtVlpamkaPHn3U/Z588kk9+uijWrp0qRITE1sjarvw4re7tG5viQK9PfTEpUNksXCJHgAAANASTD3jJEkpKSmaPHmyEhMTNWrUKM2ePVvl5eWaMmWKJGnSpEmKjY1VamqqJOmJJ57QjBkz9NZbbyk+Pr7+Xih/f3/5+/ub9jnMtjXXodlfbpMkPfTHUxQVdORLFwEAAAAcP9OL04QJE1RQUKAZM2YoNzdXw4YN09KlS+snjMjOzpbV+uuJsXnz5snpdOpPf/pTg/eZOXOmHnroodaM3mbU/HyJXo3LUPKASF08PNbsSAAAAECHYvo6Tq2tI67j9OwX2/Rc2nYF+3rq87tOV0QAZ5sAAACAxrSbdZxw4jbuK9Hcr3dIkh69cBClCQAAADgJKE7tWHWtS399d51q3YbOHxylPwyJNjsSAAAA0CFRnNqx577crsy8UoX6eenRCwcxix4AAABwklCc2qk12Yc0/5udkqTHLh6sUP/OsVYVAAAAYAaKUztUVePSX99bJ7chXTgsRucOOvZiwQAAAABODMWpHZrz1Q7tKihXRIBdD//xFLPjAAAAAB0examd2ZFfqhe/rbtE75ELT1Gwr5fJiQAAAICOj+LUjhiGofs+2Kgal6Hf94/QuFO4RA8AAABoDRSnduS9jL1K310kH0+bHr7wFGbRAwAAAFoJxamdKCp3KvXTLZKkO5P7qGuIr8mJAAAAgM6D4tROpH66RYcqatQ/KkDXndrD7DgAAABAp0JxagdW7jqo9zL2Sqpbs8nTxv9tAAAAQGviG3gb56x16/4PN0qSrhzVTQndQ0xOBAAAAHQ+FKc27qVvd2pHfpnC/L007dz+ZscBAAAAOiWKUxu252C5XvhqhyTpgQsGKsjX0+REAAAAQOdEcWqjDMPQg//dpOpat07tHaYLh8WYHQkAAADotChObdQXm/P07bYCeXlY9ehFg1izCQAAADARxamNev37LEnSdWN7qEeYn7lhAAAAgE6O4tQG7cgv1YpdB2W1SJNGdzc7DgAAANDpUZzaoDd/zJYk/X5ApGKCfUxOAwAAAIDi1MZUOGv1n9V1i91e/X+cbQIAAADaAopTG/Pxuv0qrapV91BfndY7zOw4AAAAAERxalMMw9CCH/dIkiYmdZPVykx6AAAAQFtAcWpD1u0t0cZ9Dnl5WHVZQpzZcQAAAAD8jOLUhixYUXe26Q9DohXi52VyGgAAAAC/oDi1EcUVTi1ev18Sk0IAAAAAbQ3FqY14P2OvqmvdGhgdqOFxwWbHAQAAAPAbFKc2wO029ObPk0JcM7q7LBYmhQAAAADaEopTG/D9zkJlHaxQgN1DFw6LMTsOAAAAgP9BcWoDfjnbdMmIWPl6eZicBgAAAMD/ojiZ7EBJpb7YnCeJSSEAAACAtoriZLK303PkNqSkHl3UJzLA7DgAAAAAjoDiZKIal1vvpGdL4mwTAAAA0JZRnEz0xeY85ZdWK8zfrnGnRJkdBwAAAMBRUJxM9NHaugVvrxgZJy8P/q8AAAAA2iqmcDPRc1cO09KNuRrVo4vZUQAAAAAcg+mnOebOnav4+Hh5e3srKSlJ6enpRx27adMmXXrppYqPj5fFYtHs2bNbL+hJYPew6cJhsYoO8jE7CgAAAIBjMLU4LVy4UCkpKZo5c6ZWr16toUOHaty4ccrPzz/i+IqKCvXs2VOzZs1SVBT3BAEAAABoHaYWp2eeeUY33HCDpkyZooEDB2r+/Pny9fXVa6+9dsTxI0eO1FNPPaUrrrhCdru9ldMCAAAA6KxMK05Op1MZGRlKTk7+NYzVquTkZK1YsaLFfk91dbUcDkeDBwAAAAAcD9OKU2FhoVwulyIjIxtsj4yMVG5ubov9ntTUVAUFBdU/4uLiWuy9AQAAAHQOpk8OcbJNnz5dJSUl9Y+cnByzIwEAAABoZ0ybjjwsLEw2m015eXkNtufl5bXoxA92u537oQAAAACcENPOOHl5eSkhIUFpaWn129xut9LS0jR69GizYgEAAADAYUxdADclJUWTJ09WYmKiRo0apdmzZ6u8vFxTpkyRJE2aNEmxsbFKTU2VVDehxObNm+v/vG/fPq1du1b+/v7q3bu3aZ8DAAAAQMdmanGaMGGCCgoKNGPGDOXm5mrYsGFaunRp/YQR2dnZslp/PSm2f/9+DR8+vP75008/raefflpnnHGGli1b1trxAQAAAHQSFsMwDLNDtCaHw6GgoCCVlJQoMDDQ7DgAAAAATHI83aDDz6oHAAAAACeK4gQAAAAAjaA4AQAAAEAjKE4AAAAA0AhTZ9Uzwy9zYTgcDpOTAAAAADDTL52gKfPldbriVFpaKkmKi4szOQkAAACAtqC0tFRBQUHHHNPppiN3u93av3+/AgICZLFYzI4jh8OhuLg45eTkMD06mozjBs3BcYPm4thBc3DcoDla+7gxDEOlpaWKiYlpsH7skXS6M05Wq1Vdu3Y1O8ZhAgMD+UsFx43jBs3BcYPm4thBc3DcoDla87hp7EzTL5gcAgAAAAAaQXECAAAAgEZQnExmt9s1c+ZM2e12s6OgHeG4QXNw3KC5OHbQHBw3aI62fNx0uskhAAAAAOB4ccYJAAAAABpBcQIAAACARlCcAAAAAKARFCcAAAAAaATFyURz585VfHy8vL29lZSUpPT0dLMjoQ1JTU3VyJEjFRAQoIiICF100UXKzMxsMKaqqkpTp05VaGio/P39demllyovL8+kxGiLZs2aJYvFojvvvLN+G8cNjmbfvn26+uqrFRoaKh8fHw0ePFg//fRT/euGYWjGjBmKjo6Wj4+PkpOTtX37dhMTw2wul0sPPvigevToIR8fH/Xq1UuPPvqofjv3GMcNJOnbb7/V+PHjFRMTI4vFog8//LDB6005ToqKijRx4kQFBgYqODhY119/vcrKylrtM1CcTLJw4UKlpKRo5syZWr16tYYOHapx48YpPz/f7GhoI7755htNnTpVP/74o7744gvV1NTonHPOUXl5ef2Yu+66Sx9//LHee+89ffPNN9q/f78uueQSE1OjLVm1apVefPFFDRkypMF2jhscyaFDhzR27Fh5enpqyZIl2rx5s/7+978rJCSkfsyTTz6p559/XvPnz9fKlSvl5+encePGqaqqysTkMNMTTzyhefPmac6cOdqyZYueeOIJPfnkk3rhhRfqx3DcQJLKy8s1dOhQzZ0794ivN+U4mThxojZt2qQvvvhCixcv1rfffqsbb7yxtT6CZMAUo0aNMqZOnVr/3OVyGTExMUZqaqqJqdCW5efnG5KMb775xjAMwyguLjY8PT2N9957r37Mli1bDEnGihUrzIqJNqK0tNTo06eP8cUXXxhnnHGGcccddxiGwXGDo7v33nuNU0899aivu91uIyoqynjqqafqtxUXFxt2u914++23WyMi2qALLrjAuO666xpsu+SSS4yJEycahsFxgyOTZHzwwQf1z5tynGzevNmQZKxatap+zJIlSwyLxWLs27evVXJzxskETqdTGRkZSk5Ort9mtVqVnJysFStWmJgMbVlJSYkkqUuXLpKkjIwM1dTUNDiO+vfvr27dunEcQVOnTtUFF1zQ4PiQOG5wdB999JESExN12WWXKSIiQsOHD9fLL79c//ru3buVm5vb4NgJCgpSUlISx04nNmbMGKWlpWnbtm2SpHXr1mn58uU677zzJHHcoGmacpysWLFCwcHBSkxMrB+TnJwsq9WqlStXtkpOj1b5LWigsLBQLpdLkZGRDbZHRkZq69atJqVCW+Z2u3XnnXdq7NixGjRokCQpNzdXXl5eCg4ObjA2MjJSubm5JqREW/HOO+9o9erVWrVq1WGvcdzgaHbt2qV58+YpJSVF9913n1atWqW//OUv8vLy0uTJk+uPjyP928Wx03lNmzZNDodD/fv3l81mk8vl0mOPPaaJEydKEscNmqQpx0lubq4iIiIavO7h4aEuXbq02rFEcQLagalTp2rjxo1avny52VHQxuXk5OiOO+7QF198IW9vb7PjoB1xu91KTEzU448/LkkaPny4Nm7cqPnz52vy5Mkmp0Nb9e677+rf//633nrrLZ1yyilau3at7rzzTsXExHDcoMPhUj0ThIWFyWazHTaLVV5enqKiokxKhbbqtttu0+LFi/X111+ra9eu9dujoqLkdDpVXFzcYDzHUeeWkZGh/Px8jRgxQh4eHvLw8NA333yj559/Xh4eHoqMjOS4wRFFR0dr4MCBDbYNGDBA2dnZklR/fPBvF37rnnvu0bRp03TFFVdo8ODBuuaaa3TXXXcpNTVVEscNmqYpx0lUVNRhk6jV1taqqKio1Y4lipMJvLy8lJCQoLS0tPptbrdbaWlpGj16tInJ0JYYhqHbbrtNH3zwgb766iv16NGjwesJCQny9PRscBxlZmYqOzub46gT+/3vf68NGzZo7dq19Y/ExERNnDix/s8cNziSsWPHHrbkwbZt29S9e3dJUo8ePRQVFdXg2HE4HFq5ciXHTidWUVEhq7Xh10mbzSa32y2J4wZN05TjZPTo0SouLlZGRkb9mK+++kput1tJSUmtE7RVpqDAYd555x3Dbrcbb7zxhrF582bjxhtvNIKDg43c3Fyzo6GNuOWWW4ygoCBj2bJlxoEDB+ofFRUV9WNuvvlmo1u3bsZXX31l/PTTT8bo0aON0aNHm5gabdFvZ9UzDI4bHFl6errh4eFhPPbYY8b27duNf//734avr6/x5ptv1o+ZNWuWERwcbPz3v/811q9fb1x44YVGjx49jMrKShOTw0yTJ082YmNjjcWLFxu7d+82Fi1aZISFhRl/+9vf6sdw3MAw6mZ7XbNmjbFmzRpDkvHMM88Ya9asMfbs2WMYRtOOk3PPPdcYPny4sXLlSmP58uVGnz59jCuvvLLVPgPFyUQvvPCC0a1bN8PLy8sYNWqU8eOPP5odCW2IpCM+Xn/99foxlZWVxq233mqEhIQYvr6+xsUXX2wcOHDAvNBok/63OHHc4Gg+/vhjY9CgQYbdbjf69+9vvPTSSw1ed7vdxoMPPmhERkYadrvd+P3vf29kZmaalBZtgcPhMO644w6jW7duhre3t9GzZ0/j/vvvN6qrq+vHcNzAMAzj66+/PuL3msmTJxuG0bTj5ODBg8aVV15p+Pv7G4GBgcaUKVOM0tLSVvsMFsP4zdLOAAAAAIDDcI8TAAAAADSC4gQAAAAAjaA4AQAAAEAjKE4AAAAA0AiKEwAAAAA0guIEAAAAAI2gOAEAAABAIyhOAAAcpzfeeEPBwcFmxwAAtCKKEwDgpMnNzdUdd9yh3r17y9vbW5GRkRo7dqzmzZuniooKs+M1SXx8vGbPnt1g24QJE7Rt2zZzAgEATOFhdgAAQMe0a9cujR07VsHBwXr88cc1ePBg2e12bdiwQS+99JJiY2P1xz/+0ZRshmHI5XLJw6N5/wz6+PjIx8enhVMBANoyzjgBAE6KW2+9VR4eHvrpp590+eWXa8CAAerZs6cuvPBCffLJJxo/frwkqbi4WH/+858VHh6uwMBA/e53v9O6devq3+ehhx7SsGHDtGDBAsXHxysoKEhXXHGFSktL68e43W6lpqaqR48e8vHx0dChQ/X+++/Xv75s2TJZLBYtWbJECQkJstvtWr58uXbu3KkLL7xQkZGR8vf318iRI/Xll1/W73fmmWdqz549uuuuu2SxWGSxWCQd+VK9efPmqVevXvLy8lK/fv20YMGCBq9bLBa98soruvjii+Xr66s+ffroo48+qn/90KFDmjhxosLDw+Xj46M+ffro9ddfP/H/IwAALYLiBABocQcPHtTnn3+uqVOnys/P74hjfikhl112mfLz87VkyRJlZGRoxIgR+v3vf6+ioqL6sTt37tSHH36oxYsXa/Hixfrmm280a9as+tdTU1P1r3/9S/Pnz9emTZt011136eqrr9Y333zT4HdOmzZNs2bN0pYtWzRkyBCVlZXp/PPPV1pamtasWaNzzz1X48ePV3Z2tiRp0aJF6tq1qx555BEdOHBABw4cOOJn+eCDD3THHXfor3/9qzZu3KibbrpJU6ZM0ddff91g3MMPP6zLL79c69ev1/nnn6+JEyfWf84HH3xQmzdv1pIlS7RlyxbNmzdPYWFhx/m/PADgpDEAAGhhP/74oyHJWLRoUYPtoaGhhp+fn+Hn52f87W9/M7777jsjMDDQqKqqajCuV69exosvvmgYhmHMnDnT8PX1NRwOR/3r99xzj5GUlGQYhmFUVVUZvr6+xg8//NDgPa6//nrjyiuvNAzDML7++mtDkvHhhx82mv2UU04xXnjhhfrn3bt3N5599tkGY15//XUjKCio/vmYMWOMG264ocGYyy67zDj//PPrn0syHnjggfrnZWVlhiRjyZIlhmEYxvjx440pU6Y0mg8AYA7ucQIAtJr09HS53W5NnDhR1dXVWrduncrKyhQaGtpgXGVlpXbu3Fn/PD4+XgEBAfXPo6OjlZ+fL0nasWOHKioqdPbZZzd4D6fTqeHDhzfYlpiY2OB5WVmZHnroIX3yySc6cOCAamtrVVlZWX/Gqam2bNmiG2+8scG2sWPH6rnnnmuwbciQIfV/9vPzU2BgYP3nuOWWW3TppZdq9erVOuecc3TRRRdpzJgxx5UDAHDyUJwAAC2ud+/eslgsyszMbLC9Z8+eklQ/sUJZWZmio6O1bNmyw97jt/cQeXp6NnjNYrHI7XbXv4ckffLJJ4qNjW0wzm63N3j+v5cN3n333friiy/09NNPq3fv3vLx8dGf/vQnOZ3OJn7S43Osz3Heeedpz549+vTTT/XFF1/o97//vaZOnaqnn376pGQBABwfihMAoMWFhobq7LPP1pw5c3T77bcf9T6nESNGKDc3Vx4eHoqPj2/W7xo4cKDsdruys7N1xhlnHNe+33//va699lpdfPHFkupKWFZWVoMxXl5ecrlcx3yfAQMG6Pvvv9fkyZMbvPfAgQOPK094eLgmT56syZMn67TTTtM999xDcQKANoLiBAA4Kf7xj39o7NixSkxM1EMPPaQhQ4bIarVq1apV2rp1qxISEpScnKzRo0froosu0pNPPqm+fftq//79+uSTT3TxxRcfdmndkQQEBOjuu+/WXXfdJbfbrVNPPVUlJSX6/vvvFRgY2KDM/K8+ffpo0aJFGj9+vCwWix588MH6M0C/iI+P17fffqsrrrhCdrv9iBM23HPPPbr88ss1fPhwJScn6+OPP9aiRYsazNDXmBkzZighIUGnnHKKqqurtXjxYg0YMKDJ+wMATi6KEwDgpOjVq5fWrFmjxx9/XNOnT9fevXtlt9s1cOBA3X333br11ltlsVj06aef6v7779eUKVNUUFCgqKgonX766YqMjGzy73r00UcVHh6u1NRU7dq1S8HBwRoxYoTuu+++Y+73zDPP6LrrrtOYMWMUFhame++9Vw6Ho8GYRx55RDfddJN69eql6upqGYZx2PtcdNFFeu655/T000/rjjvuUI8ePfT666/rzDPPbPJn8PLy0vTp05WVlSUfHx+ddtppeuedd5q8PwDg5LIYR/oXAAAAAABQj3WcAAAAAKARFCcAAAAAaATFCQAAAAAaQXECAAAAgEZQnAAAAACgERQnAAAAAGgExQkAAAAAGkFxAgAAAIBGUJwAAAAAoBEUJwAAAABoBMUJAAAAABpBcQIAAACARvx/CnY04InQVUUAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -245,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -254,16 +264,16 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'Hello Woldd!'" + "'Hllolo Wrld!'" ] }, - "execution_count": 60, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -282,9 +292,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -296,9 +306,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 7/Ch7_book.ipynb b/Chapter 7/Ch7_book.ipynb index ae41770..c27840b 100644 --- a/Chapter 7/Ch7_book.ipynb +++ b/Chapter 7/Ch7_book.ipynb @@ -9,9 +9,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18.4\n" + ] + } + ], "source": [ "import numpy as np\n", "probs = np.array([0.6, 0.1, 0.1, 0.1, 0.1])\n", @@ -25,9 +33,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18.4\n" + ] + } + ], "source": [ "expected_value = probs @ outcomes\n", "print(expected_value)" @@ -35,9 +51,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([19.24612582])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "t0 = 18.4\n", "T = lambda: t0 + np.random.randn(1)\n", @@ -53,9 +80,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGdCAYAAAD5ZcJyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzpElEQVR4nO3df1RU953/8Regw/gjgz+IjBgitLFSKxGLMuLXxLSd4ySlddntD6Spuh4a29QS48Q2YBU0SYvRmLqJNMRtEnPO1oWwa1xrLFtCuutpmWDlRxNs9GgrISkOaq1MMqmgcL9/ZL3JlMEwNpbAfT7OuUfn83l/PvfzYQ6ZV+7MXKMMwzAEAAAwzEUP9gIAAAD+Hgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEkYM9gI+Snp7e9Xe3q7rrrtOUVFRg70cAAAwAIZh6K233lJiYqKio/u/nkPoeZ/29nYlJSUN9jIAAMBVeOONN3TDDTf020/oeZ/rrrtO0rs/NIfDMcirAQAAAxEIBJSUlGS+jveH0PM+l9/ScjgchB4AAIaYD/poCh9kBgAAlkDoAQAAlkDoAQAAlnBVoaesrEzJycmy2+1yuVw6dOjQFeurqqqUmpoqu92utLQ0HThwwOy7ePGi7r//fqWlpWnMmDFKTEzUsmXL1N7eHjLHuXPndOedd8rhcGjcuHHKz8/X22+/HVLzyiuv6JZbbpHdbldSUpK2bNlyNdsDAADDUMShp7KyUl6vVyUlJWpsbNSsWbPk8Xh0+vTpsPV1dXXKy8tTfn6+mpqalJOTo5ycHLW0tEiS3nnnHTU2NmrDhg1qbGzUnj17dOzYMS1evDhknjvvvFNHjhxRTU2N9u/fr4MHD2rlypVmfyAQ0KJFizR16lQ1NDRo69at2rhxo3bu3BnpFgEAwHBkRCgzM9NYtWqV+binp8dITEw0SktLw9Z/9atfNbKzs0PaXC6X8c1vfrPfcxw6dMiQZLz++uuGYRjG7373O0OS8Zvf/Mas+fnPf25ERUUZf/zjHw3DMIwf//jHxvjx442uri6z5v777zemT58+4L11dnYakozOzs4BjwEAAINroK/fEV3p6e7uVkNDg9xut9kWHR0tt9stn88XdozP5wuplySPx9NvvSR1dnYqKipK48aNM+cYN26c5syZY9a43W5FR0ervr7erLn11ltls9lCznPs2DH9+c9/Dnuerq4uBQKBkAMAAAxPEYWes2fPqqenRwkJCSHtCQkJ8vv9Ycf4/f6I6i9cuKD7779feXl55r1y/H6/Jk2aFFI3YsQITZgwwZynv/Nc7guntLRUcXFx5sHdmAEAGL4+Ut/eunjxor761a/KMAw98cQT1/x8RUVF6uzsNI833njjmp8TAAAMjojuyBwfH6+YmBh1dHSEtHd0dMjpdIYd43Q6B1R/OfC8/vrreumll0LuiOx0Ovt8UPrSpUs6d+6cOU9/57ncF05sbKxiY2P72y4AABhGIrrSY7PZlJGRodraWrOtt7dXtbW1ysrKCjsmKysrpF6SampqQuovB57jx4/rxRdf1MSJE/vMcf78eTU0NJhtL730knp7e+VyucyagwcP6uLFiyHnmT59usaPHx/JNgEAwHAU6SekKyoqjNjYWGPXrl3G7373O2PlypXGuHHjDL/fbxiGYSxdutQoLCw063/9618bI0aMMB555BHjtddeM0pKSoyRI0car776qmEYhtHd3W0sXrzYuOGGG4zm5mbj1KlT5vH+b2LdfvvtxuzZs436+nrjV7/6lTFt2jQjLy/P7D9//ryRkJBgLF261GhpaTEqKiqM0aNHG08++eSA98a3twAAGHoG+vodcegxDMN4/PHHjRtvvNGw2WxGZmam8fLLL5t9CxcuNJYvXx5S/9xzzxmf+MQnDJvNZnzqU58yXnjhBbPv5MmThqSwxy9/+Uuz7k9/+pORl5dnjB071nA4HMaKFSuMt956K+Q8v/3tb40FCxYYsbGxxpQpU4zNmzdHtC9CDwAAQ89AX7+jDMMwBusq00dNIBBQXFycOjs7+VfWAQAYIgb6+h3RB5nxt0kufGGwlwAAwKBp3Zw9qOf/SH1lHQAA4Foh9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEu4qtBTVlam5ORk2e12uVwuHTp06Ir1VVVVSk1Nld1uV1pamg4cOBDSv2fPHi1atEgTJ05UVFSUmpubQ/pbW1sVFRUV9qiqqjLrwvVXVFRczRYBAMAwE3HoqayslNfrVUlJiRobGzVr1ix5PB6dPn06bH1dXZ3y8vKUn5+vpqYm5eTkKCcnRy0tLWZNMBjUggUL9PDDD4edIykpSadOnQo5Nm3apLFjx+qOO+4IqX3mmWdC6nJyciLdIgAAGIaiDMMwIhngcrk0d+5c7dixQ5LU29urpKQkFRQUqLCwsE99bm6ugsGg9u/fb7bNmzdP6enpKi8vD6ltbW1VSkqKmpqalJ6efsV1zJ49W5/+9Kf11FNPvbeZqCg9//zzVx10AoGA4uLi1NnZKYfDcVVzXEly4Qsf+pwAAAwVrZuzr8m8A339juhKT3d3txoaGuR2u9+bIDpabrdbPp8v7BifzxdSL0kej6ff+oFoaGhQc3Oz8vPz+/StWrVK8fHxyszM1NNPP60rZbquri4FAoGQAwAADE8jIik+e/asenp6lJCQENKekJCgo0ePhh3j9/vD1vv9/giX+p6nnnpKn/zkJzV//vyQ9gceeECf/exnNXr0aP3iF7/Qt7/9bb399tu65557ws5TWlqqTZs2XfU6AADA0BFR6Pko+Mtf/qLdu3drw4YNffre3zZ79mwFg0Ft3bq139BTVFQkr9drPg4EAkpKSvrwFw0AAAZdRG9vxcfHKyYmRh0dHSHtHR0dcjqdYcc4nc6I6j/If/zHf+idd97RsmXLPrDW5XLpzTffVFdXV9j+2NhYORyOkAMAAAxPEYUem82mjIwM1dbWmm29vb2qra1VVlZW2DFZWVkh9ZJUU1PTb/0Heeqpp7R48WJdf/31H1jb3Nys8ePHKzY29qrOBQAAho+I397yer1avny55syZo8zMTG3fvl3BYFArVqyQJC1btkxTpkxRaWmpJGn16tVauHChtm3bpuzsbFVUVOjw4cPauXOnOee5c+fU1tam9vZ2SdKxY8ckvXuV6P1XhE6cOKGDBw/2uc+PJP3sZz9TR0eH5s2bJ7vdrpqaGv3whz/U2rVrI90iAAAYhiIOPbm5uTpz5oyKi4vl9/uVnp6u6upq88PKbW1tio5+7wLS/PnztXv3bq1fv17r1q3TtGnTtHfvXs2cOdOs2bdvnxmaJGnJkiWSpJKSEm3cuNFsf/rpp3XDDTdo0aJFfdY1cuRIlZWVac2aNTIMQzfddJMeffRR3XXXXZFuEQAADEMR36dnOOM+PQAAXDtD6j49AAAAQxWhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWMJVhZ6ysjIlJyfLbrfL5XLp0KFDV6yvqqpSamqq7Ha70tLSdODAgZD+PXv2aNGiRZo4caKioqLU3NzcZ47bbrtNUVFRIce3vvWtkJq2tjZlZ2dr9OjRmjRpkr773e/q0qVLV7NFAAAwzEQceiorK+X1elVSUqLGxkbNmjVLHo9Hp0+fDltfV1envLw85efnq6mpSTk5OcrJyVFLS4tZEwwGtWDBAj388MNXPPddd92lU6dOmceWLVvMvp6eHmVnZ6u7u1t1dXV69tlntWvXLhUXF0e6RQAAMAxFGYZhRDLA5XJp7ty52rFjhySpt7dXSUlJKigoUGFhYZ/63NxcBYNB7d+/32ybN2+e0tPTVV5eHlLb2tqqlJQUNTU1KT09PaTvtttuU3p6urZv3x52XT//+c/1hS98Qe3t7UpISJAklZeX6/7779eZM2dks9k+cG+BQEBxcXHq7OyUw+H4wPpIJRe+8KHPCQDAUNG6OfuazDvQ1++IrvR0d3eroaFBbrf7vQmio+V2u+Xz+cKO8fl8IfWS5PF4+q2/kp/+9KeKj4/XzJkzVVRUpHfeeSfkPGlpaWbguXyeQCCgI0eOhJ2vq6tLgUAg5AAAAMPTiEiKz549q56enpBgIUkJCQk6evRo2DF+vz9svd/vj2ihX/va1zR16lQlJibqlVde0f33369jx45pz549VzzP5b5wSktLtWnTpojWAQAAhqaIQs9gWrlypfn3tLQ0TZ48WZ/73Of0+9//Xh//+Mevas6ioiJ5vV7zcSAQUFJS0t+8VgAA8NET0dtb8fHxiomJUUdHR0h7R0eHnE5n2DFOpzOi+oFyuVySpBMnTlzxPJf7womNjZXD4Qg5AADA8BRR6LHZbMrIyFBtba3Z1tvbq9raWmVlZYUdk5WVFVIvSTU1Nf3WD9Tlr7VPnjzZPM+rr74a8i2ympoaORwOzZgx4286FwAAGPoifnvL6/Vq+fLlmjNnjjIzM7V9+3YFg0GtWLFCkrRs2TJNmTJFpaWlkqTVq1dr4cKF2rZtm7Kzs1VRUaHDhw9r586d5pznzp1TW1ub2tvbJUnHjh2T9O4VGqfTqd///vfavXu3Pv/5z2vixIl65ZVXtGbNGt166626+eabJUmLFi3SjBkztHTpUm3ZskV+v1/r16/XqlWrFBsb+7f9lAAAwJAXcejJzc3VmTNnVFxcLL/fr/T0dFVXV5sfGm5ra1N09HsXkObPn6/du3dr/fr1WrdunaZNm6a9e/dq5syZZs2+ffvM0CRJS5YskSSVlJRo48aNstlsevHFF82AlZSUpC996Utav369OSYmJkb79+/X3XffraysLI0ZM0bLly/XAw88EPlPBQAADDsR36dnOOM+PQAAXDtD6j49AAAAQxWhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWMJVhZ6ysjIlJyfLbrfL5XLp0KFDV6yvqqpSamqq7Ha70tLSdODAgZD+PXv2aNGiRZo4caKioqLU3Nwc0n/u3DkVFBRo+vTpGjVqlG688Ubdc8896uzsDKmLiorqc1RUVFzNFgEAwDATceiprKyU1+tVSUmJGhsbNWvWLHk8Hp0+fTpsfV1dnfLy8pSfn6+mpibl5OQoJydHLS0tZk0wGNSCBQv08MMPh52jvb1d7e3teuSRR9TS0qJdu3apurpa+fn5fWqfeeYZnTp1yjxycnIi3SIAABiGogzDMCIZ4HK5NHfuXO3YsUOS1Nvbq6SkJBUUFKiwsLBPfW5uroLBoPbv32+2zZs3T+np6SovLw+pbW1tVUpKipqampSenn7FdVRVVenrX/+6gsGgRowY8e5moqL0/PPPX3XQCQQCiouLU2dnpxwOx1XNcSXJhS986HMCADBUtG7OvibzDvT1O6IrPd3d3WpoaJDb7X5vguhoud1u+Xy+sGN8Pl9IvSR5PJ5+6wfq8sYuB57LVq1apfj4eGVmZurpp5/WlTJdV1eXAoFAyAEAAIanER9c8p6zZ8+qp6dHCQkJIe0JCQk6evRo2DF+vz9svd/vj3Cpoet48MEHtXLlypD2Bx54QJ/97Gc1evRo/eIXv9C3v/1tvf3227rnnnvCzlNaWqpNmzZd9ToAAMDQEVHo+SgIBALKzs7WjBkztHHjxpC+DRs2mH+fPXu2gsGgtm7d2m/oKSoqktfrDZk7KSnpmqwbAAAMroje3oqPj1dMTIw6OjpC2js6OuR0OsOOcTqdEdVfyVtvvaXbb79d1113nZ5//nmNHDnyivUul0tvvvmmurq6wvbHxsbK4XCEHAAAYHiKKPTYbDZlZGSotrbWbOvt7VVtba2ysrLCjsnKygqpl6Sampp+6/sTCAS0aNEi2Ww27du3T3a7/QPHNDc3a/z48YqNjY3oXAAAYPiJ+O0tr9er5cuXa86cOcrMzNT27dsVDAa1YsUKSdKyZcs0ZcoUlZaWSpJWr16thQsXatu2bcrOzlZFRYUOHz6snTt3mnOeO3dObW1tam9vlyQdO3ZM0rtXiZxOpxl43nnnHf3bv/1byIeOr7/+esXExOhnP/uZOjo6NG/ePNntdtXU1OiHP/yh1q5d+7f9hAAAwLAQcejJzc3VmTNnVFxcLL/fr/T0dFVXV5sfVm5ra1N09HsXkObPn6/du3dr/fr1WrdunaZNm6a9e/dq5syZZs2+ffvM0CRJS5YskSSVlJRo48aNamxsVH19vSTppptuClnPyZMnlZycrJEjR6qsrExr1qyRYRi66aab9Oijj+quu+6KdIsAAGAYivg+PcMZ9+kBAODaGVL36QEAABiqCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASrir0lJWVKTk5WXa7XS6XS4cOHbpifVVVlVJTU2W325WWlqYDBw6E9O/Zs0eLFi3SxIkTFRUVpebm5j5zXLhwQatWrdLEiRM1duxYfelLX1JHR0dITVtbm7KzszV69GhNmjRJ3/3ud3Xp0qWr2SIAABhmIg49lZWV8nq9KikpUWNjo2bNmiWPx6PTp0+Hra+rq1NeXp7y8/PV1NSknJwc5eTkqKWlxawJBoNasGCBHn744X7Pu2bNGv3sZz9TVVWV/vd//1ft7e36p3/6J7O/p6dH2dnZ6u7uVl1dnZ599lnt2rVLxcXFkW4RAAAMQ1GGYRiRDHC5XJo7d6527NghSert7VVSUpIKCgpUWFjYpz43N1fBYFD79+832+bNm6f09HSVl5eH1La2tiolJUVNTU1KT0832zs7O3X99ddr9+7d+vKXvyxJOnr0qD75yU/K5/Np3rx5+vnPf64vfOELam9vV0JCgiSpvLxc999/v86cOSObzfaBewsEAoqLi1NnZ6ccDkckP5YBSS584UOfEwCAoaJ1c/Y1mXegr98RXenp7u5WQ0OD3G73exNER8vtdsvn84Ud4/P5QuolyePx9FsfTkNDgy5evBgyT2pqqm688UZzHp/Pp7S0NDPwXD5PIBDQkSNHws7b1dWlQCAQcgAAgOEpotBz9uxZ9fT0hAQLSUpISJDf7w87xu/3R1Tf3xw2m03jxo3rd57+znO5L5zS0lLFxcWZR1JS0oDXBAAAhhZLf3urqKhInZ2d5vHGG28M9pIAAMA1MiKS4vj4eMXExPT51lRHR4ecTmfYMU6nM6L6/ubo7u7W+fPnQ672vH8ep9PZ51tkl8/b37liY2MVGxs74HUAAIChK6IrPTabTRkZGaqtrTXbent7VVtbq6ysrLBjsrKyQuolqaampt/6cDIyMjRy5MiQeY4dO6a2tjZznqysLL366qsh3yKrqamRw+HQjBkzBnwuAAAwPEV0pUeSvF6vli9frjlz5igzM1Pbt29XMBjUihUrJEnLli3TlClTVFpaKklavXq1Fi5cqG3btik7O1sVFRU6fPiwdu7cac557tw5tbW1qb29XdK7gUZ69wqN0+lUXFyc8vPz5fV6NWHCBDkcDhUUFCgrK0vz5s2TJC1atEgzZszQ0qVLtWXLFvn9fq1fv16rVq3iag4AAIg89OTm5urMmTMqLi6W3+9Xenq6qqurzQ8Nt7W1KTr6vQtI8+fP1+7du7V+/XqtW7dO06ZN0969ezVz5kyzZt++fWZokqQlS5ZIkkpKSrRx40ZJ0o9+9CNFR0frS1/6krq6uuTxePTjH//YHBMTE6P9+/fr7rvvVlZWlsaMGaPly5frgQceiHSLAABgGIr4Pj3DGffpAQDg2hlS9+kBAAAYqgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEgg9AADAEq4q9JSVlSk5OVl2u10ul0uHDh26Yn1VVZVSU1Nlt9uVlpamAwcOhPQbhqHi4mJNnjxZo0aNktvt1vHjx83+//mf/1FUVFTY4ze/+Y0kqbW1NWz/yy+/fDVbBAAAw0zEoaeyslJer1clJSVqbGzUrFmz5PF4dPr06bD1dXV1ysvLU35+vpqampSTk6OcnBy1tLSYNVu2bNFjjz2m8vJy1dfXa8yYMfJ4PLpw4YIkaf78+Tp16lTI8Y1vfEMpKSmaM2dOyPlefPHFkLqMjIxItwgAAIahKMMwjEgGuFwuzZ07Vzt27JAk9fb2KikpSQUFBSosLOxTn5ubq2AwqP3795tt8+bNU3p6usrLy2UYhhITE3Xfffdp7dq1kqTOzk4lJCRo165dWrJkSZ85L168qClTpqigoEAbNmyQ9O6VnpSUFDU1NSk9PT2SLZkCgYDi4uLU2dkph8NxVXNcSXLhCx/6nAAADBWtm7OvybwDff2O6EpPd3e3Ghoa5Ha735sgOlput1s+ny/sGJ/PF1IvSR6Px6w/efKk/H5/SE1cXJxcLle/c+7bt09/+tOftGLFij59ixcv1qRJk7RgwQLt27cvku0BAIBhbEQkxWfPnlVPT48SEhJC2hMSEnT06NGwY/x+f9h6v99v9l9u66/mrz311FPyeDy64YYbzLaxY8dq27Zt+n//7/8pOjpa//mf/6mcnBzt3btXixcvDjtPV1eXurq6zMeBQCBsHQAAGPoiCj0fBW+++ab++7//W88991xIe3x8vLxer/l47ty5am9v19atW/sNPaWlpdq0adM1XS8AAPhoiOjtrfj4eMXExKijoyOkvaOjQ06nM+wYp9N5xfrLfw50zmeeeUYTJ07sN8i8n8vl0okTJ/rtLyoqUmdnp3m88cYbHzgnAAAYmiIKPTabTRkZGaqtrTXbent7VVtbq6ysrLBjsrKyQuolqaamxqxPSUmR0+kMqQkEAqqvr+8zp2EYeuaZZ7Rs2TKNHDnyA9fb3NysyZMn99sfGxsrh8MRcgAAgOEp4re3vF6vli9frjlz5igzM1Pbt29XMBg0P1S8bNkyTZkyRaWlpZKk1atXa+HChdq2bZuys7NVUVGhw4cPa+fOnZKkqKgo3XvvvXrooYc0bdo0paSkaMOGDUpMTFROTk7IuV966SWdPHlS3/jGN/qs69lnn5XNZtPs2bMlSXv27NHTTz+tn/zkJ5FuEQAADEMRh57c3FydOXNGxcXF8vv9Sk9PV3V1tflB5La2NkVHv3cBaf78+dq9e7fWr1+vdevWadq0adq7d69mzpxp1nzve99TMBjUypUrdf78eS1YsEDV1dWy2+0h537qqac0f/58paamhl3bgw8+qNdff10jRoxQamqqKisr9eUvfznSLQIAgGEo4vv0DGfcpwcAgGtnSN2nBwAAYKgi9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEu4qtBTVlam5ORk2e12uVwuHTp06Ir1VVVVSk1Nld1uV1pamg4cOBDSbxiGiouLNXnyZI0aNUput1vHjx8PqUlOTlZUVFTIsXnz5pCaV155RbfccovsdruSkpK0ZcuWq9keAAAYhiIOPZWVlfJ6vSopKVFjY6NmzZolj8ej06dPh62vq6tTXl6e8vPz1dTUpJycHOXk5KilpcWs2bJlix577DGVl5ervr5eY8aMkcfj0YULF0LmeuCBB3Tq1CnzKCgoMPsCgYAWLVqkqVOnqqGhQVu3btXGjRu1c+fOSLcIAACGoSjDMIxIBrhcLs2dO1c7duyQJPX29iopKUkFBQUqLCzsU5+bm6tgMKj9+/ebbfPmzVN6errKy8tlGIYSExN13333ae3atZKkzs5OJSQkaNeuXVqyZImkd6/03Hvvvbr33nvDruuJJ57Q97//ffn9ftlsNklSYWGh9u7dq6NHjw5ob4FAQHFxcers7JTD4Rjwz2Sgkgtf+NDnBABgqGjdnH1N5h3o63dEV3q6u7vV0NAgt9v93gTR0XK73fL5fGHH+Hy+kHpJ8ng8Zv3Jkyfl9/tDauLi4uRyufrMuXnzZk2cOFGzZ8/W1q1bdenSpZDz3HrrrWbguXyeY8eO6c9//nMk2wQAAMPQiEiKz549q56eHiUkJIS0JyQk9Hs1xe/3h633+/1m/+W2/mok6Z577tGnP/1pTZgwQXV1dSoqKtKpU6f06KOPmvOkpKT0meNy3/jx4/usraurS11dXebjQCDQ/+YBAMCQFlHoGUxer9f8+8033yybzaZvfvObKi0tVWxs7FXNWVpaqk2bNn1YSwQAAB9hEb29FR8fr5iYGHV0dIS0d3R0yOl0hh3jdDqvWH/5z0jmlN79bNGlS5fU2tp6xfO8/xx/raioSJ2dnebxxhtv9Hs+AAAwtEUUemw2mzIyMlRbW2u29fb2qra2VllZWWHHZGVlhdRLUk1NjVmfkpIip9MZUhMIBFRfX9/vnJLU3Nys6OhoTZo0yTzPwYMHdfHixZDzTJ8+PexbW5IUGxsrh8MRcgAAgOEp4q+se71e/eu//queffZZvfbaa7r77rsVDAa1YsUKSdKyZctUVFRk1q9evVrV1dXatm2bjh49qo0bN+rw4cP6zne+I0mKiorSvffeq4ceekj79u3Tq6++qmXLlikxMVE5OTmS3v2Q8vbt2/Xb3/5Wf/jDH/TTn/5Ua9as0de//nUz0Hzta1+TzWZTfn6+jhw5osrKSv3Lv/xLyNtiAADAuiL+TE9ubq7OnDmj4uJi+f1+paenq7q62vzQcFtbm6Kj38tS8+fP1+7du7V+/XqtW7dO06ZN0969ezVz5kyz5nvf+56CwaBWrlyp8+fPa8GCBaqurpbdbpf07hWZiooKbdy4UV1dXUpJSdGaNWtCAk1cXJx+8YtfaNWqVcrIyFB8fLyKi4u1cuXKq/7hAACA4SPi+/QMZ9ynBwCAa2dI3acHAABgqCL0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAASyD0AAAAS7iq0FNWVqbk5GTZ7Xa5XC4dOnToivVVVVVKTU2V3W5XWlqaDhw4ENJvGIaKi4s1efJkjRo1Sm63W8ePHzf7W1tblZ+fr5SUFI0aNUof//jHVVJSou7u7pCaqKioPsfLL798NVsEAADDTMShp7KyUl6vVyUlJWpsbNSsWbPk8Xh0+vTpsPV1dXXKy8tTfn6+mpqalJOTo5ycHLW0tJg1W7Zs0WOPPaby8nLV19drzJgx8ng8unDhgiTp6NGj6u3t1ZNPPqkjR47oRz/6kcrLy7Vu3bo+53vxxRd16tQp88jIyIh0iwAAYBiKMgzDiGSAy+XS3LlztWPHDklSb2+vkpKSVFBQoMLCwj71ubm5CgaD2r9/v9k2b948paenq7y8XIZhKDExUffdd5/Wrl0rSers7FRCQoJ27dqlJUuWhF3H1q1b9cQTT+gPf/iDpHev9KSkpKipqUnp6emRbMkUCAQUFxenzs5OORyOq5rjSpILX/jQ5wQAYKho3Zx9TeYd6Ot3RFd6uru71dDQILfb/d4E0dFyu93y+Xxhx/h8vpB6SfJ4PGb9yZMn5ff7Q2ri4uLkcrn6nVN6NxhNmDChT/vixYs1adIkLViwQPv27bvifrq6uhQIBEIOAAAwPEUUes6ePauenh4lJCSEtCckJMjv94cd4/f7r1h/+c9I5jxx4oQef/xxffOb3zTbxo4dq23btqmqqkovvPCCFixYoJycnCsGn9LSUsXFxZlHUlJSv7UAAGBoGzHYC4jUH//4R91+++36yle+orvuustsj4+Pl9frNR/PnTtX7e3t2rp1qxYvXhx2rqKiopAxgUCA4AMAwDAV0ZWe+Ph4xcTEqKOjI6S9o6NDTqcz7Bin03nF+st/DmTO9vZ2feYzn9H8+fO1c+fOD1yvy+XSiRMn+u2PjY2Vw+EIOQAAwPAUUeix2WzKyMhQbW2t2dbb26va2lplZWWFHZOVlRVSL0k1NTVmfUpKipxOZ0hNIBBQfX19yJx//OMfddtttykjI0PPPPOMoqM/eOnNzc2aPHlyJFsEAADDVMRvb3m9Xi1fvlxz5sxRZmamtm/frmAwqBUrVkiSli1bpilTpqi0tFSStHr1ai1cuFDbtm1Tdna2KioqdPjwYfNKTVRUlO6991499NBDmjZtmlJSUrRhwwYlJiYqJydH0nuBZ+rUqXrkkUd05swZcz2XrwY9++yzstlsmj17tiRpz549evrpp/WTn/zk6n86AABg2Ig49OTm5urMmTMqLi6W3+9Xenq6qqurzQ8it7W1hVyFmT9/vnbv3q3169dr3bp1mjZtmvbu3auZM2eaNd/73vcUDAa1cuVKnT9/XgsWLFB1dbXsdrukd68MnThxQidOnNANN9wQsp73f+P+wQcf1Ouvv64RI0YoNTVVlZWV+vKXvxzpFgEAwDAU8X16hjPu0wMAwLUzpO7TAwAAMFQRegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCUQegAAgCVcVegpKytTcnKy7Ha7XC6XDh06dMX6qqoqpaamym63Ky0tTQcOHAjpNwxDxcXFmjx5skaNGiW3263jx4+H1Jw7d0533nmnHA6Hxo0bp/z8fL399tshNa+88opuueUW2e12JSUlacuWLVezPQAAMAxFHHoqKyvl9XpVUlKixsZGzZo1Sx6PR6dPnw5bX1dXp7y8POXn56upqUk5OTnKyclRS0uLWbNlyxY99thjKi8vV319vcaMGSOPx6MLFy6YNXfeeaeOHDmimpoa7d+/XwcPHtTKlSvN/kAgoEWLFmnq1KlqaGjQ1q1btXHjRu3cuTPSLQIAgGEoyjAMI5IBLpdLc+fO1Y4dOyRJvb29SkpKUkFBgQoLC/vU5+bmKhgMav/+/WbbvHnzlJ6ervLychmGocTERN13331au3atJKmzs1MJCQnatWuXlixZotdee00zZszQb37zG82ZM0eSVF1drc9//vN68803lZiYqCeeeELf//735ff7ZbPZJEmFhYXau3evjh49OqC9BQIBxcXFqbOzUw6HI5Ify4AkF77woc8JAMBQ0bo5+5rMO9DX7xGRTNrd3a2GhgYVFRWZbdHR0XK73fL5fGHH+Hw+eb3ekDaPx6O9e/dKkk6ePCm/3y+32232x8XFyeVyyefzacmSJfL5fBo3bpwZeCTJ7XYrOjpa9fX1+sd//Ef5fD7deuutZuC5fJ6HH35Yf/7znzV+/Pg+a+vq6lJXV5f5uLOzU9K7P7xrobfrnWsyLwAAQ8G1en29PO8HXceJKPScPXtWPT09SkhICGlPSEjo92qK3+8PW+/3+83+y21Xqpk0aVLowkeM0IQJE0JqUlJS+sxxuS9c6CktLdWmTZv6tCclJYXdCwAAuHpx26/t/G+99Zbi4uL67Y8o9Aw3RUVFIVehent7de7cOU2cOFFRUVF/17UEAgElJSXpjTfeuCZvreHDx3M2tPB8DS08X0PPYD5nhmHorbfeUmJi4hXrIgo98fHxiomJUUdHR0h7R0eHnE5n2DFOp/OK9Zf/7Ojo0OTJk0Nq0tPTzZq//qD0pUuXdO7cuZB5wp3n/ef4a7GxsYqNjQ1pGzduXNjavxeHw8Ev+BDDcza08HwNLTxfQ89gPWdXusJzWUTf3rLZbMrIyFBtba3Z1tvbq9raWmVlZYUdk5WVFVIvSTU1NWZ9SkqKnE5nSE0gEFB9fb1Zk5WVpfPnz6uhocGseemll9Tb2yuXy2XWHDx4UBcvXgw5z/Tp08O+tQUAACzGiFBFRYURGxtr7Nq1y/jd735nrFy50hg3bpzh9/sNwzCMpUuXGoWFhWb9r3/9a2PEiBHGI488Yrz22mtGSUmJMXLkSOPVV181azZv3myMGzfO+K//+i/jlVdeMf7hH/7BSElJMf7yl7+YNbfffrsxe/Zso76+3vjVr35lTJs2zcjLyzP7z58/byQkJBhLly41WlpajIqKCmP06NHGk08+GekWB0VnZ6chyejs7BzspWCAeM6GFp6voYXna+gZCs9ZxKHHMAzj8ccfN2688UbDZrMZmZmZxssvv2z2LVy40Fi+fHlI/XPPPWd84hOfMGw2m/GpT33KeOGFF0L6e3t7jQ0bNhgJCQlGbGys8bnPfc44duxYSM2f/vQnIy8vzxg7dqzhcDiMFStWGG+99VZIzW9/+1tjwYIFRmxsrDFlyhRj8+bNV7O9QXHhwgWjpKTEuHDhwmAvBQPEcza08HwNLTxfQ89QeM4ivk8PAADAUMS/vQUAACyB0AMAACyB0AMAACyB0AMAACyB0PMR8IMf/EDz58/X6NGj+705Yltbm7KzszV69GhNmjRJ3/3ud3Xp0qW/70LRr+TkZEVFRYUcmzdvHuxl4f+UlZUpOTlZdrtdLpdLhw4dGuwloR8bN27s87uUmpo62MvC+xw8eFBf/OIXlZiYqKioKPPf0rzMMAwVFxdr8uTJGjVqlNxut44fPz44i/0rhJ6PgO7ubn3lK1/R3XffHba/p6dH2dnZ6u7uVl1dnZ599lnt2rVLxcXFf+eV4koeeOABnTp1yjwKCgoGe0mQVFlZKa/Xq5KSEjU2NmrWrFnyeDx97vKOj45PfepTIb9Lv/rVrwZ7SXifYDCoWbNmqaysLGz/li1b9Nhjj6m8vFz19fUaM2aMPB6PLly48HdeaRiD/JV5vM8zzzxjxMXF9Wk/cOCAER0dbd4A0jAM44knnjAcDofR1dX1d1wh+jN16lTjRz/60WAvA2FkZmYaq1atMh/39PQYiYmJRmlp6SCuCv0pKSkxZs2aNdjLwABJMp5//nnzcW9vr+F0Oo2tW7eabefPnzdiY2ONf//3fx+EFYbiSs8Q4PP5lJaWFvIv0Xs8HgUCAR05cmQQV4b327x5syZOnKjZs2dr69atvP34EdDd3a2Ghga53W6zLTo6Wm63Wz6fbxBXhis5fvy4EhMT9bGPfUx33nmn2traBntJGKCTJ0/K7/eH/M7FxcXJ5XJ9JH7nLP2vrA8Vfr8/JPBIMh/7/f7BWBL+yj333KNPf/rTmjBhgurq6lRUVKRTp07p0UcfHeylWdrZs2fV09MT9vfn6NGjg7QqXInL5dKuXbs0ffp0nTp1Sps2bdItt9yilpYWXXfddYO9PHyAy69J4X7nPgqvV1zpuUYKCwv7fBjvrw/+o/vRFslz6PV6ddttt+nmm2/Wt771LW3btk2PP/64urq6BnkXwNByxx136Ctf+YpuvvlmeTweHThwQOfPn9dzzz032EvDMMCVnmvkvvvu0z//8z9fseZjH/vYgOZyOp19vm3S0dFh9uHa+FueQ5fLpUuXLqm1tVXTp0+/BqvDQMTHxysmJsb8fbmso6OD350hYty4cfrEJz6hEydODPZSMACXf686Ojo0efJks72jo0Pp6emDtKr3EHqukeuvv17XX3/9hzJXVlaWfvCDH+j06dOaNGmSJKmmpkYOh0MzZsz4UM6Bvv6W57C5uVnR0dHm84XBYbPZlJGRodraWuXk5EiSent7VVtbq+985zuDuzgMyNtvv63f//73Wrp06WAvBQOQkpIip9Op2tpaM+QEAgHV19f3+w3lvydCz0dAW1ubzp07p7a2NvX09Ki5uVmSdNNNN2ns2LFatGiRZsyYoaVLl2rLli3y+/1av369Vq1apdjY2MFdPOTz+VRfX6/PfOYzuu666+Tz+bRmzRp9/etf1/jx4wd7eZbn9Xq1fPlyzZkzR5mZmdq+fbuCwaBWrFgx2EtDGGvXrtUXv/hFTZ06Ve3t7SopKVFMTIzy8vIGe2n4P2+//XbIlbeTJ0+qublZEyZM0I033qh7771XDz30kKZNm6aUlBRt2LBBiYmJ5v94DKrB/voYDGP58uWGpD7HL3/5S7OmtbXVuOOOO4xRo0YZ8fHxxn333WdcvHhx8BYNU0NDg+FyuYy4uDjDbrcbn/zkJ40f/vCHxoULFwZ7afg/jz/+uHHjjTcaNpvNyMzMNF5++eXBXhL6kZuba0yePNmw2WzGlClTjNzcXOPEiRODvSy8zy9/+cuwr1nLly83DOPdr61v2LDBSEhIMGJjY43Pfe5zxrFjxwZ30f8nyjAMY7ACFwAAwN8L394CAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACWQOgBAACW8P8Bg09DUPZcvdkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import torch\n", "import numpy as np\n", @@ -79,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -104,9 +152,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784, 0.01960784, 0.01960784, 0.01960784, 0.01960784,\n", + " 0.01960784])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "probs" ] @@ -120,9 +189,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAglUlEQVR4nO3df2xV9f3H8VcvrC0ibaWV3pYVW7dOYJRWKb2UsIHhxqs2bt3QFYbSkQbmIohcf1FSWnBuRQzaIcyGPza3RAYjYcQhaVKrmVl6V6SFGIwQNGBx5RZIQ6/U0EJ7v3/45epdW+xF4NK3z0dygz33cz73c7i53ifn/mhMMBgMCgAAYJhzRHsBAAAAVwNRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABNGRnsB10tfX5/a2to0ZswYxcTERHs5AABgCILBoD777DOlp6fL4bj8uZhvTdS0tbUpIyMj2ssAAABX4MSJE/rud7972THfmqgZM2aMpC/+UhISEqK8GgAAMBSBQEAZGRmh5/HL+dZEzaWXnBISEogaAACGmaG8dYQ3CgMAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmjIz2AgAMb5mr3vzGcxxfX3QVVgLg244zNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADDhiqJmy5YtyszMVHx8vFwul/bt23fZ8Tt37tTEiRMVHx+vnJwc7d27N3TdhQsX9OyzzyonJ0ejR49Wenq6Fi1apLa2trA5Ojo6tHDhQiUkJCgpKUllZWU6d+7clSwfAAAYFHHU7NixQ16vV1VVVWppaVFubq48Ho9OnTo14PjGxkYtWLBAZWVlOnDggIqLi1VcXKxDhw5Jkj7//HO1tLRozZo1amlp0a5du3TkyBH95Cc/CZtn4cKF+uCDD1RfX689e/bo3Xff1dKlS6/gkAEAgEUxwWAwGMkOLpdL06dP1+bNmyVJfX19ysjI0PLly7Vq1ap+40tKStTV1aU9e/aEts2YMUN5eXmqra0d8Dbee+89FRQU6JNPPtGECRP04YcfavLkyXrvvfeUn58vSaqrq9P999+vTz/9VOnp6V+77kAgoMTERHV2diohISGSQwZwGZmr3vzGcxxfX3QVVgLAokievyM6U9PT06Pm5ma53e4vJ3A45Ha75fP5BtzH5/OFjZckj8cz6HhJ6uzsVExMjJKSkkJzJCUlhYJGktxutxwOh5qamgaco7u7W4FAIOwCAADsiihqzpw5o97eXqWmpoZtT01Nld/vH3Afv98f0fjz58/r2Wef1YIFC0JF5vf7NW7cuLBxI0eO1NixYwedp7q6WomJiaFLRkbGkI4RAAAMTzfUp58uXLigX/ziFwoGg3r11Ve/0Vzl5eXq7OwMXU6cOHGVVgkAAG5EIyMZnJKSohEjRqi9vT1se3t7u5xO54D7OJ3OIY2/FDSffPKJ3n777bDXzZxOZ783Il+8eFEdHR2D3m5cXJzi4uKGfGwAAGB4i+hMTWxsrKZNm6aGhobQtr6+PjU0NKiwsHDAfQoLC8PGS1J9fX3Y+EtBc/ToUb311ltKTk7uN8fZs2fV3Nwc2vb222+rr69PLpcrkkMAAABGRXSmRpK8Xq9KS0uVn5+vgoIC1dTUqKurS4sXL5YkLVq0SOPHj1d1dbUkacWKFZo9e7Y2btyooqIibd++Xfv379fWrVslfRE0Dz74oFpaWrRnzx719vaG3iczduxYxcbGatKkSbr33nu1ZMkS1dbW6sKFC1q2bJnmz58/pE8+AbgyV+OTTVfrdviEFICvE3HUlJSU6PTp06qsrJTf71deXp7q6upCbwZubW2Vw/HlCaCZM2dq27Ztqqio0OrVq5Wdna3du3drypQpkqT//ve/euONNyRJeXl5Ybf1zjvvaM6cOZKk119/XcuWLdPcuXPlcDg0b948bdq06UqOGQAAGBTx99QMV3xPDRC563WmZig4UwN8O0Xy/B3xmRoM7Eb6nz9gEY8x4MYX7X983FAf6QYAALhSRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgwhVFzZYtW5SZman4+Hi5XC7t27fvsuN37typiRMnKj4+Xjk5Odq7d2/Y9bt27dI999yj5ORkxcTE6ODBg/3mmDNnjmJiYsIujz766JUsHwAAGBRx1OzYsUNer1dVVVVqaWlRbm6uPB6PTp06NeD4xsZGLViwQGVlZTpw4ICKi4tVXFysQ4cOhcZ0dXVp1qxZeuGFFy5720uWLNHJkydDlw0bNkS6fAAAYFRMMBgMRrKDy+XS9OnTtXnzZklSX1+fMjIytHz5cq1atarf+JKSEnV1dWnPnj2hbTNmzFBeXp5qa2vDxh4/flxZWVk6cOCA8vLywq6bM2eO8vLyVFNTE8lyQwKBgBITE9XZ2amEhIQrmuNyMle9edXnBABgODm+vuiqzxnJ83dEZ2p6enrU3Nwst9v95QQOh9xut3w+34D7+Hy+sPGS5PF4Bh1/Oa+//rpSUlI0ZcoUlZeX6/PPPx90bHd3twKBQNgFAADYNTKSwWfOnFFvb69SU1PDtqempurw4cMD7uP3+wcc7/f7I1roL3/5S912221KT0/X+++/r2effVZHjhzRrl27BhxfXV2tdevWRXQbAABg+IooaqJp6dKlof/OyclRWlqa5s6dq48//ljf+973+o0vLy+X1+sN/RwIBJSRkXFd1goAAK6/iKImJSVFI0aMUHt7e9j29vZ2OZ3OAfdxOp0RjR8ql8slSfroo48GjJq4uDjFxcV9o9sAAADDR0TvqYmNjdW0adPU0NAQ2tbX16eGhgYVFhYOuE9hYWHYeEmqr68fdPxQXfrYd1pa2jeaBwAA2BDxy09er1elpaXKz89XQUGBampq1NXVpcWLF0uSFi1apPHjx6u6ulqStGLFCs2ePVsbN25UUVGRtm/frv3792vr1q2hOTs6OtTa2qq2tjZJ0pEjRyR9cZbH6XTq448/1rZt23T//fcrOTlZ77//vlauXKkf//jHmjp16jf+SwAAAMNfxFFTUlKi06dPq7KyUn6/X3l5eaqrqwu9Gbi1tVUOx5cngGbOnKlt27apoqJCq1evVnZ2tnbv3q0pU6aExrzxxhuhKJKk+fPnS5Kqqqq0du1axcbG6q233goFVEZGhubNm6eKioorPnAAAGBLxN9TM1zxPTUAAFxbw+p7agAAAG5URA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMuKKo2bJlizIzMxUfHy+Xy6V9+/ZddvzOnTs1ceJExcfHKycnR3v37g27fteuXbrnnnuUnJysmJgYHTx4sN8c58+f12OPPabk5GTdfPPNmjdvntrb269k+QAAwKCIo2bHjh3yer2qqqpSS0uLcnNz5fF4dOrUqQHHNzY2asGCBSorK9OBAwdUXFys4uJiHTp0KDSmq6tLs2bN0gsvvDDo7a5cuVL//Oc/tXPnTv3rX/9SW1ubfv7zn0e6fAAAYFRMMBgMRrKDy+XS9OnTtXnzZklSX1+fMjIytHz5cq1atarf+JKSEnV1dWnPnj2hbTNmzFBeXp5qa2vDxh4/flxZWVk6cOCA8vLyQts7Ozt16623atu2bXrwwQclSYcPH9akSZPk8/k0Y8aMr113IBBQYmKiOjs7lZCQEMkhD0nmqjev+pwAAAwnx9cXXfU5I3n+juhMTU9Pj5qbm+V2u7+cwOGQ2+2Wz+cbcB+fzxc2XpI8Hs+g4wfS3NysCxcuhM0zceJETZgwYdB5uru7FQgEwi4AAMCuiKLmzJkz6u3tVWpqatj21NRU+f3+Affx+/0RjR9sjtjYWCUlJQ15nurqaiUmJoYuGRkZQ749AAAw/Jj99FN5ebk6OztDlxMnTkR7SQAA4BoaGcnglJQUjRgxot+njtrb2+V0Ogfcx+l0RjR+sDl6enp09uzZsLM1l5snLi5OcXFxQ74NAAAwvEV0piY2NlbTpk1TQ0NDaFtfX58aGhpUWFg44D6FhYVh4yWpvr5+0PEDmTZtmr7zne+EzXPkyBG1trZGNA8AALArojM1kuT1elVaWqr8/HwVFBSopqZGXV1dWrx4sSRp0aJFGj9+vKqrqyVJK1as0OzZs7Vx40YVFRVp+/bt2r9/v7Zu3Rqas6OjQ62trWpra5P0RbBIX5yhcTqdSkxMVFlZmbxer8aOHauEhAQtX75chYWFQ/rkEwAAsC/iqCkpKdHp06dVWVkpv9+vvLw81dXVhd4M3NraKofjyxNAM2fO1LZt21RRUaHVq1crOztbu3fv1pQpU0Jj3njjjVAUSdL8+fMlSVVVVVq7dq0k6eWXX5bD4dC8efPU3d0tj8ejP/7xj1d00AAAwJ6Iv6dmuOJ7agAAuLaG1ffUAAAA3KiIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhA1AAAABOIGgAAYAJRAwAATCBqAACACUQNAAAwgagBAAAmEDUAAMAEogYAAJhwRVGzZcsWZWZmKj4+Xi6XS/v27bvs+J07d2rixImKj49XTk6O9u7dG3Z9MBhUZWWl0tLSNGrUKLndbh09ejRsTGZmpmJiYsIu69evv5LlAwAAgyKOmh07dsjr9aqqqkotLS3Kzc2Vx+PRqVOnBhzf2NioBQsWqKysTAcOHFBxcbGKi4t16NCh0JgNGzZo06ZNqq2tVVNTk0aPHi2Px6Pz58+HzfXcc8/p5MmTocvy5csjXT4AADAq4qh56aWXtGTJEi1evFiTJ09WbW2tbrrpJv3pT38acPwf/vAH3XvvvXr66ac1adIk/fa3v9Vdd92lzZs3S/riLE1NTY0qKir005/+VFOnTtVf//pXtbW1affu3WFzjRkzRk6nM3QZPXp05EcMAABMiihqenp61NzcLLfb/eUEDofcbrd8Pt+A+/h8vrDxkuTxeELjjx07Jr/fHzYmMTFRLper35zr169XcnKy7rzzTr344ou6ePHioGvt7u5WIBAIuwAAALtGRjL4zJkz6u3tVWpqatj21NRUHT58eMB9/H7/gOP9fn/o+kvbBhsjSY8//rjuuusujR07Vo2NjSovL9fJkyf10ksvDXi71dXVWrduXSSHBwAAhrGIoiaavF5v6L+nTp2q2NhY/frXv1Z1dbXi4uL6jS8vLw/bJxAIKCMj47qsFQAAXH8RvfyUkpKiESNGqL29PWx7e3u7nE7ngPs4nc7Ljr/0ZyRzSpLL5dLFixd1/PjxAa+Pi4tTQkJC2AUAANgVUdTExsZq2rRpamhoCG3r6+tTQ0ODCgsLB9ynsLAwbLwk1dfXh8ZnZWXJ6XSGjQkEAmpqahp0Tkk6ePCgHA6Hxo0bF8khAAAAoyJ++cnr9aq0tFT5+fkqKChQTU2Nurq6tHjxYknSokWLNH78eFVXV0uSVqxYodmzZ2vjxo0qKirS9u3btX//fm3dulWSFBMToyeeeELPP/+8srOzlZWVpTVr1ig9PV3FxcWSvnizcVNTk+6++26NGTNGPp9PK1eu1MMPP6xbbrnlKv1VAACA4SziqCkpKdHp06dVWVkpv9+vvLw81dXVhd7o29raKofjyxNAM2fO1LZt21RRUaHVq1crOztbu3fv1pQpU0JjnnnmGXV1dWnp0qU6e/asZs2apbq6OsXHx0v64qWk7du3a+3ateru7lZWVpZWrlwZ9p4ZAADw7RYTDAaD0V7E9RAIBJSYmKjOzs5r8v6azFVvXvU5AQAYTo6vL7rqc0by/M3vfgIAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJRA0AADDhiqJmy5YtyszMVHx8vFwul/bt23fZ8Tt37tTEiRMVHx+vnJwc7d27N+z6YDCoyspKpaWladSoUXK73Tp69GjYmI6ODi1cuFAJCQlKSkpSWVmZzp07dyXLBwAABkUcNTt27JDX61VVVZVaWlqUm5srj8ejU6dODTi+sbFRCxYsUFlZmQ4cOKDi4mIVFxfr0KFDoTEbNmzQpk2bVFtbq6amJo0ePVoej0fnz58PjVm4cKE++OAD1dfXa8+ePXr33Xe1dOnSKzhkAABgUUwwGAxGsoPL5dL06dO1efNmSVJfX58yMjK0fPlyrVq1qt/4kpISdXV1ac+ePaFtM2bMUF5enmpraxUMBpWenq4nn3xSTz31lCSps7NTqampeu211zR//nx9+OGHmjx5st577z3l5+dLkurq6nT//ffr008/VXp6+teuOxAIKDExUZ2dnUpISIjkkIckc9WbV31OAACGk+Pri676nJE8f4+MZOKenh41NzervLw8tM3hcMjtdsvn8w24j8/nk9frDdvm8Xi0e/duSdKxY8fk9/vldrtD1ycmJsrlcsnn82n+/Pny+XxKSkoKBY0kud1uORwONTU16Wc/+1m/2+3u7lZ3d3fo587OTklf/OVcC33dn1+TeQEAGC6uxXPspTmHcg4moqg5c+aMent7lZqaGrY9NTVVhw8fHnAfv98/4Hi/3x+6/tK2y40ZN25c+MJHjtTYsWNDY/5XdXW11q1b1297RkbGYIcHAAC+gcSaazf3Z599psTExMuOiShqhpPy8vKwM0R9fX3q6OhQcnKyYmJirutaAoGAMjIydOLEiWvy0heuPu6z4YX7a/jhPhteonl/BYNBffbZZ0N6q0lEUZOSkqIRI0aovb09bHt7e7ucTueA+zidzsuOv/Rne3u70tLSwsbk5eWFxvzvG5EvXryojo6OQW83Li5OcXFxYduSkpIuf4DXWEJCAg/eYYb7bHjh/hp+uM+Gl2jdX193huaSiD79FBsbq2nTpqmhoSG0ra+vTw0NDSosLBxwn8LCwrDxklRfXx8an5WVJafTGTYmEAioqakpNKawsFBnz55Vc3NzaMzbb7+tvr4+uVyuSA4BAAAYFfHLT16vV6WlpcrPz1dBQYFqamrU1dWlxYsXS5IWLVqk8ePHq7q6WpK0YsUKzZ49Wxs3blRRUZG2b9+u/fv3a+vWrZKkmJgYPfHEE3r++eeVnZ2trKwsrVmzRunp6SouLpYkTZo0Sffee6+WLFmi2tpaXbhwQcuWLdP8+fOHdDoKAADYF3HUlJSU6PTp06qsrJTf71deXp7q6upCb/RtbW2Vw/HlCaCZM2dq27Ztqqio0OrVq5Wdna3du3drypQpoTHPPPOMurq6tHTpUp09e1azZs1SXV2d4uPjQ2Nef/11LVu2THPnzpXD4dC8efO0adOmb3Ls101cXJyqqqr6vRyGGxf32fDC/TX8cJ8NL8Pl/or4e2oAAABuRPzuJwAAYAJRAwAATCBqAACACUQNAAAwgai5xn73u99p5syZuummmwb98r/W1lYVFRXppptu0rhx4/T000/r4sWL13ehGFRmZqZiYmLCLuvXr4/2svAVW7ZsUWZmpuLj4+VyubRv375oLwkDWLt2bb/H0sSJE6O9LHzFu+++qwceeEDp6emKiYkJ/Z7GS4LBoCorK5WWlqZRo0bJ7Xbr6NGj0VnsAIiaa6ynp0cPPfSQfvOb3wx4fW9vr4qKitTT06PGxkb95S9/0WuvvabKysrrvFJcznPPPaeTJ0+GLsuXL4/2kvD/duzYIa/Xq6qqKrW0tCg3N1cej6fft5DjxvDDH/4w7LH073//O9pLwld0dXUpNzdXW7ZsGfD6DRs2aNOmTaqtrVVTU5NGjx4tj8ej8+fPX+eVDiKI6+LPf/5zMDExsd/2vXv3Bh0OR9Dv94e2vfrqq8GEhIRgd3f3dVwhBnPbbbcFX3755WgvA4MoKCgIPvbYY6Gfe3t7g+np6cHq6uoorgoDqaqqCubm5kZ7GRgiScF//OMfoZ/7+vqCTqcz+OKLL4a2nT17NhgXFxf829/+FoUV9seZmijz+XzKyckJ+y3lHo9HgUBAH3zwQRRXhq9av369kpOTdeedd+rFF1/k5cEbRE9Pj5qbm+V2u0PbHA6H3G63fD5fFFeGwRw9elTp6em6/fbbtXDhQrW2tkZ7SRiiY8eOye/3hz3eEhMT5XK5bpjHm9nf0j1c+P3+sKCRFPrZ7/dHY0n4H48//rjuuusujR07Vo2NjSovL9fJkyf10ksvRXtp33pnzpxRb2/vgI+hw4cPR2lVGIzL5dJrr72mO+64QydPntS6dev0ox/9SIcOHdKYMWOivTx8jUvPSQM93m6U5yvO1FyBVatW9Xuz2/9e+B/qjS2S+9Dr9WrOnDmaOnWqHn30UW3cuFGvvPKKuru7o3wUwPBy33336aGHHtLUqVPl8Xi0d+9enT17Vn//+9+jvTQYwZmaK/Dkk0/qV7/61WXH3H777UOay+l09vukRnt7e+g6XBvf5D50uVy6ePGijh8/rjvuuOMarA5DlZKSohEjRoQeM5e0t7fz+BkGkpKS9IMf/EAfffRRtJeCIbj0mGpvb1daWlpoe3t7u/Ly8qK0qnBEzRW49dZbdeutt16VuQoLC/W73/1Op06d0rhx4yRJ9fX1SkhI0OTJk6/KbaC/b3IfHjx4UA6HI3R/IXpiY2M1bdo0NTQ0qLi4WJLU19enhoYGLVu2LLqLw9c6d+6cPv74Yz3yyCPRXgqGICsrS06nUw0NDaGICQQCampqGvQTvtcbUXONtba2qqOjQ62trert7dXBgwclSd///vd1880365577tHkyZP1yCOPaMOGDfL7/aqoqNBjjz12w/821G8Dn8+npqYm3X333RozZox8Pp9Wrlyphx9+WLfccku0lwd98fJgaWmp8vPzVVBQoJqaGnV1dWnx4sXRXhr+x1NPPaUHHnhAt912m9ra2lRVVaURI0ZowYIF0V4a/t+5c+fCzpwdO3ZMBw8e1NixYzVhwgQ98cQTev7555Wdna2srCytWbNG6enpoX9URF20P35lXWlpaVBSv8s777wTGnP8+PHgfffdFxw1alQwJSUl+OSTTwYvXLgQvUUjpLm5OehyuYKJiYnB+Pj44KRJk4K///3vg+fPn4/20vAVr7zySnDChAnB2NjYYEFBQfA///lPtJeEAZSUlATT0tKCsbGxwfHjxwdLSkqCH330UbSXha945513BnzOKi0tDQaDX3yse82aNcHU1NRgXFxccO7cucEjR45Ed9FfERMMBoPRCioAAICrhU8/AQAAE4gaAABgAlEDAABMIGoAAIAJRA0AADCBqAEAACYQNQAAwASiBgAAmEDUAAAAE4gaAABgAlEDAABMIGoAAIAJ/wdj9rdl+RWmIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ob_reward = -1\n", "Z = torch.from_numpy(probs).float()\n", @@ -139,9 +229,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmA0lEQVR4nO3dcVCcdX7H8Q8QYU0aVg0nG1KUWDEkBtlKwgbGNufcjhuHnrd3rUfoVTiG2jnnjLlbLz3IJKD1LFGHFO9gjknH1LTTXChTj7lGhpZuzVWHNTRAxtK5pHpjJDXZBc6RVRzBY7d/eG7cyxJZQrK/Xd+vmWeUZ7+/J9/fbB72k98++2xaOBwOCwAAwGDpiW4AAADgsxBYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGW5boBpZCKBTSuXPntHLlSqWlpSW6HQAAsADhcFjvvfee8vLylJ5+6TWUlAgs586dU35+fqLbAAAAi3D27Fn97u/+7iVrUiKwrFy5UtLHE87Ozk5wNwAAYCGCwaDy8/Mjr+OXkhKB5ZO3gbKzswksAAAkmYVczsFFtwAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGW5boBgAAwJVV0PDiZR/jzL7KJehk8VhhAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGW1Rg6ejoUEFBgSwWixwOhwYHBy9Z393draKiIlksFhUXF6u3tzfq8bS0tJjbM888s5j2AABAiok7sHR1dcnj8ai5uVnDw8MqKSmRy+XS+Ph4zPqBgQFVV1ervr5eIyMjcrvdcrvdGh0djdScP38+ajt48KDS0tL0x3/8x4ufGQAASBlp4XA4HM8Ah8OhzZs3q729XZIUCoWUn5+vHTt2qKGh4aL6qqoqTU9P6+jRo5F9W7Zskd1uV2dnZ8w/w+1267333pPX611QT8FgUFarVVNTU8rOzo5nOgAApDxTv0sontfvuFZYZmdnNTQ0JKfTeeEA6elyOp3y+Xwxx/h8vqh6SXK5XPPWBwIBvfjii6qvr4+nNQAAkMLi+rbmyclJzc3NKTc3N2p/bm6uTp06FXOM3++PWe/3+2PWHzp0SCtXrtTXvva1efuYmZnRzMxM5OdgMLjQKQAAgCRk3KeEDh48qG984xuyWCzz1rS0tMhqtUa2/Pz8q9ghAAC42uIKLDk5OcrIyFAgEIjaHwgEZLPZYo6x2WwLrn/55Zd1+vRp/fmf//kl+2hsbNTU1FRkO3v2bDzTAAAASSauwJKZmanS0tKoi2FDoZC8Xq/Ky8tjjikvL7/o4tn+/v6Y9c8995xKS0tVUlJyyT6ysrKUnZ0dtQEAgNQV1zUskuTxeFRbW6tNmzaprKxMbW1tmp6eVl1dnSSppqZGa9asUUtLiyRp586d2rp1q1pbW1VZWakjR47oxIkTOnDgQNRxg8Gguru71draugTTAgAAqSTuwFJVVaWJiQk1NTXJ7/fLbrerr68vcmHt2NiY0tMvLNxUVFTo8OHD2rNnj3bv3q3CwkL19PRo48aNUcc9cuSIwuGwqqurL3NKAAAg1cR9HxYTcR8WAADm97m7DwsAAEAiEFgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGG9RgaWjo0MFBQWyWCxyOBwaHBy8ZH13d7eKiopksVhUXFys3t7ei2p+8Ytf6L777pPVatWKFSu0efNmjY2NLaY9AACQYuIOLF1dXfJ4PGpubtbw8LBKSkrkcrk0Pj4es35gYEDV1dWqr6/XyMiI3G633G63RkdHIzW//OUvddddd6moqEjHjh3Ta6+9pr1798pisSx+ZgAAIGWkhcPhcDwDHA6HNm/erPb2dklSKBRSfn6+duzYoYaGhovqq6qqND09raNHj0b2bdmyRXa7XZ2dnZKk7du365prrtE//MM/LGoSwWBQVqtVU1NTys7OXtQxAABIVQUNL172Mc7sq1yCTqLF8/od1wrL7OyshoaG5HQ6LxwgPV1Op1M+ny/mGJ/PF1UvSS6XK1IfCoX04osv6rbbbpPL5dKNN94oh8Ohnp6eefuYmZlRMBiM2gAAQOqKK7BMTk5qbm5Oubm5Uftzc3Pl9/tjjvH7/ZesHx8f1/vvv699+/Zp27Zt+rd/+zd99atf1de+9jX9/Oc/j3nMlpYWWa3WyJafnx/PNAAAQJJJ+KeEQqGQJOkrX/mKvvvd78put6uhoUF/9Ed/FHnL6Lc1NjZqamoqsp09e/ZqtgwAAK6yZfEU5+TkKCMjQ4FAIGp/IBCQzWaLOcZms12yPicnR8uWLdOGDRuiatavX69XXnkl5jGzsrKUlZUVT+sAACCJxbXCkpmZqdLSUnm93si+UCgkr9er8vLymGPKy8uj6iWpv78/Up+ZmanNmzfr9OnTUTX/+7//q5tvvjme9gAAQIqKa4VFkjwej2pra7Vp0yaVlZWpra1N09PTqqurkyTV1NRozZo1amlpkSTt3LlTW7duVWtrqyorK3XkyBGdOHFCBw4ciBxz165dqqqq0h/+4R/q7rvvVl9fn/7lX/5Fx44dW5pZAgCApBZ3YKmqqtLExISamprk9/tlt9vV19cXubB2bGxM6ekXFm4qKip0+PBh7dmzR7t371ZhYaF6enq0cePGSM1Xv/pVdXZ2qqWlRY888ojWrVunf/7nf9Zdd921BFMEAADJLu77sJiI+7AAADC/z919WAAAABKBwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGG9ZohsAgIKGFy/7GGf2VS5BJwBMxQoLAAAwHoEFAAAYj8ACAACMt6jA0tHRoYKCAlksFjkcDg0ODl6yvru7W0VFRbJYLCouLlZvb2/U49/85jeVlpYWtW3btm0xrQEAgBQUd2Dp6uqSx+NRc3OzhoeHVVJSIpfLpfHx8Zj1AwMDqq6uVn19vUZGRuR2u+V2uzU6OhpVt23bNp0/fz6y/eQnP1ncjAAAQMqJO7Ds379fDz74oOrq6rRhwwZ1dnZq+fLlOnjwYMz6Z599Vtu2bdOuXbu0fv16PfHEE7rzzjvV3t4eVZeVlSWbzRbZrr/++sXNCAAApJy4Asvs7KyGhobkdDovHCA9XU6nUz6fL+YYn88XVS9JLpfrovpjx47pxhtv1Lp16/TQQw/pV7/61bx9zMzMKBgMRm0AACB1xRVYJicnNTc3p9zc3Kj9ubm58vv9Mcf4/f7PrN+2bZv+/u//Xl6vV0899ZR+/vOf695779Xc3FzMY7a0tMhqtUa2/Pz8eKYBAACSjBE3jtu+fXvk/4uLi3XHHXfo937v93Ts2DF96Utfuqi+sbFRHo8n8nMwGCS0AACQwuJaYcnJyVFGRoYCgUDU/kAgIJvNFnOMzWaLq16SbrnlFuXk5OiNN96I+XhWVpays7OjNgAAkLriCiyZmZkqLS2V1+uN7AuFQvJ6vSovL485pry8PKpekvr7++etl6T/+7//069+9SutXr06nvYAAECKivtTQh6PR3/7t3+rQ4cO6Re/+IUeeughTU9Pq66uTpJUU1OjxsbGSP3OnTvV19en1tZWnTp1So899phOnDihhx9+WJL0/vvva9euXXr11Vd15swZeb1efeUrX9Gtt94ql8u1RNMEAADJLO5rWKqqqjQxMaGmpib5/X7Z7Xb19fVFLqwdGxtTevqFHFRRUaHDhw9rz5492r17twoLC9XT06ONGzdKkjIyMvTaa6/p0KFDevfdd5WXl6d77rlHTzzxhLKyspZomgAAIJmlhcPhcKKbuFzBYFBWq1VTU1NczwIkIb6tGbiyTD3H4nn95ruEAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABhvUYGlo6NDBQUFslgscjgcGhwcvGR9d3e3ioqKZLFYVFxcrN7e3nlrv/WtbyktLU1tbW2LaQ0AAKSguANLV1eXPB6PmpubNTw8rJKSErlcLo2Pj8esHxgYUHV1terr6zUyMiK32y23263R0dGLan/605/q1VdfVV5eXvwzAQAAKSvuwLJ//349+OCDqqur04YNG9TZ2anly5fr4MGDMeufffZZbdu2Tbt27dL69ev1xBNP6M4771R7e3tU3dtvv60dO3boH//xH3XNNdcsbjYAACAlxRVYZmdnNTQ0JKfTeeEA6elyOp3y+Xwxx/h8vqh6SXK5XFH1oVBIDzzwgHbt2qXbb7/9M/uYmZlRMBiM2gAAQOqKK7BMTk5qbm5Oubm5Uftzc3Pl9/tjjvH7/Z9Z/9RTT2nZsmV65JFHFtRHS0uLrFZrZMvPz49nGgAAIMkk/FNCQ0NDevbZZ/X8888rLS1tQWMaGxs1NTUV2c6ePXuFuwQAAIkUV2DJyclRRkaGAoFA1P5AICCbzRZzjM1mu2T9yy+/rPHxcd10001atmyZli1bprfeekuPPvqoCgoKYh4zKytL2dnZURsAAEhdcQWWzMxMlZaWyuv1RvaFQiF5vV6Vl5fHHFNeXh5VL0n9/f2R+gceeECvvfaaTp48Gdny8vK0a9cu/eu//mu88wEAACloWbwDPB6PamtrtWnTJpWVlamtrU3T09Oqq6uTJNXU1GjNmjVqaWmRJO3cuVNbt25Va2urKisrdeTIEZ04cUIHDhyQJK1atUqrVq2K+jOuueYa2Ww2rVu37nLnBwAAUkDcgaWqqkoTExNqamqS3++X3W5XX19f5MLasbExpadfWLipqKjQ4cOHtWfPHu3evVuFhYXq6enRxo0bl24WAAAgpaWFw+Fwopu4XMFgUFarVVNTU1zPAiShgoYXL/sYZ/ZVLkEnQGoy9RyL5/U74Z8SAgAA+CxxvyUEAADMsRSrJ8mAFRYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8ZYluAACuloKGFy/7GGf2VS5BJwDixQoLAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDx+FjzAvBRSAAAEosVFgAAYDwCCwAAMN6iAktHR4cKCgpksVjkcDg0ODh4yfru7m4VFRXJYrGouLhYvb29UY8/9thjKioq0ooVK3T99dfL6XTq+PHji2kNAACkoLgDS1dXlzwej5qbmzU8PKySkhK5XC6Nj4/HrB8YGFB1dbXq6+s1MjIit9stt9ut0dHRSM1tt92m9vZ2/fd//7deeeUVFRQU6J577tHExMTiZwYAAFJG3IFl//79evDBB1VXV6cNGzaos7NTy5cv18GDB2PWP/vss9q2bZt27dql9evX64knntCdd96p9vb2SM2f/umfyul06pZbbtHtt9+u/fv3KxgM6rXXXlv8zAAAQMqIK7DMzs5qaGhITqfzwgHS0+V0OuXz+WKO8fl8UfWS5HK55q2fnZ3VgQMHZLVaVVJSEk97AAAgRcX1sebJyUnNzc0pNzc3an9ubq5OnToVc4zf749Z7/f7o/YdPXpU27dv1wcffKDVq1erv79fOTk5MY85MzOjmZmZyM/BYDCeaQAAgCRjzKeE7r77bp08eVIDAwPatm2bvv71r897XUxLS4usVmtky8/Pv8rdAgCAqymuwJKTk6OMjAwFAoGo/YFAQDabLeYYm822oPoVK1bo1ltv1ZYtW/Tcc89p2bJleu6552Ies7GxUVNTU5Ht7Nmz8UwDAAAkmbgCS2ZmpkpLS+X1eiP7QqGQvF6vysvLY44pLy+Pqpek/v7+ees/fdxPv+3zaVlZWcrOzo7aAABA6or71vwej0e1tbXatGmTysrK1NbWpunpadXV1UmSampqtGbNGrW0tEiSdu7cqa1bt6q1tVWVlZU6cuSITpw4oQMHDkiSpqen9eSTT+q+++7T6tWrNTk5qY6ODr399tu6//77l3CqAAAgWcUdWKqqqjQxMaGmpib5/X7Z7Xb19fVFLqwdGxtTevqFhZuKigodPnxYe/bs0e7du1VYWKienh5t3LhRkpSRkaFTp07p0KFDmpyc1KpVq7R582a9/PLLuv3225domgAAIJkt6ssPH374YT388MMxHzt27NhF++6///55V0ssFoteeOGFxbQBAAA+J4z5lBAAAMB8CCwAAMB4BBYAAGA8AgsAADAegQUAABhvUZ8SAgDTFDS8mOgWAFxBrLAAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPG4NT8AAIbiKycuYIUFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAeN44DcEVx4ysAS4EVFgAAYDwCCwAAMB6BBQAAGI9rWK6ShbyPf2Zf5VXoBACA5MMKCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgvEUFlo6ODhUUFMhiscjhcGhwcPCS9d3d3SoqKpLFYlFxcbF6e3sjj3300Uf6/ve/r+LiYq1YsUJ5eXmqqanRuXPnFtMaAABIQXEHlq6uLnk8HjU3N2t4eFglJSVyuVwaHx+PWT8wMKDq6mrV19drZGREbrdbbrdbo6OjkqQPPvhAw8PD2rt3r4aHh/XCCy/o9OnTuu+++y5vZgAAIGWkhcPhcDwDHA6HNm/erPb2dklSKBRSfn6+duzYoYaGhovqq6qqND09raNHj0b2bdmyRXa7XZ2dnTH/jP/6r/9SWVmZ3nrrLd10002f2VMwGJTVatXU1JSys7Pjmc6CLOS2+kuBW/MjFV2t8+dq4TzF1WTS+XMl/u7H8/od1wrL7OyshoaG5HQ6LxwgPV1Op1M+ny/mGJ/PF1UvSS6Xa956SZqamlJaWpquu+66mI/PzMwoGAxGbQAAIHXF9eWHk5OTmpubU25ubtT+3NxcnTp1KuYYv98fs97v98es//DDD/X9739f1dXV86atlpYWPf744/G0DmARTPrXHYDPN6O+rfmjjz7S17/+dYXDYf34xz+et66xsVEejyfyczAYVH5+/tVoEQCAJcM/ChYursCSk5OjjIwMBQKBqP2BQEA2my3mGJvNtqD6T8LKW2+9pf/4j/+45HtZWVlZysrKiqd1AFgSC3mB4ToXYOnFdQ1LZmamSktL5fV6I/tCoZC8Xq/Ky8tjjikvL4+ql6T+/v6o+k/Cyuuvv65///d/16pVq+JpCwAApLi43xLyeDyqra3Vpk2bVFZWpra2Nk1PT6uurk6SVFNTozVr1qilpUWStHPnTm3dulWtra2qrKzUkSNHdOLECR04cEDSx2HlT/7kTzQ8PKyjR49qbm4ucn3LDTfcoMzMzKWaKwAASFJxB5aqqipNTEyoqalJfr9fdrtdfX19kQtrx8bGlJ5+YeGmoqJChw8f1p49e7R7924VFhaqp6dHGzdulCS9/fbb+tnPfiZJstvtUX/WSy+9pC9+8YuLnBoAAEgVcd+HxUSpch+WheC9cVxNJv3dTyacp1ioZDrHkuo+LAAAAIlAYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDyjvksIAFIBt++HlFwfWU4GrLAAAADjEVgAAIDxeEsoyXzWEiPLzACAVMQKCwAAMB6BBQAAGI+3hIDPKT7BkFi8vZvcOH+uPgJLiuHjlACAVMRbQgAAwHissHwOsQqT+liuTn6cp4nFOWQeAgti4v11s/HLFBKhZrE4f5ITgQWLcrVO+GT7ZcsvQpiGv5NIFQQWGI1ftgAAiYtuAQBAEiCwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMtKrB0dHSooKBAFotFDodDg4ODl6zv7u5WUVGRLBaLiouL1dvbG/X4Cy+8oHvuuUerVq1SWlqaTp48uZi2AABAioo7sHR1dcnj8ai5uVnDw8MqKSmRy+XS+Ph4zPqBgQFVV1ervr5eIyMjcrvdcrvdGh0djdRMT0/rrrvu0lNPPbX4mQAAgJSVFg6Hw/EMcDgc2rx5s9rb2yVJoVBI+fn52rFjhxoaGi6qr6qq0vT0tI4ePRrZt2XLFtntdnV2dkbVnjlzRmvXrtXIyIjsdvuCewoGg7JarZqamlJ2dnY801mQgoYXl/yYAAAkkzP7Kpf8mPG8fse1wjI7O6uhoSE5nc4LB0hPl9PplM/niznG5/NF1UuSy+Wat34hZmZmFAwGozYAAJC64gosk5OTmpubU25ubtT+3Nxc+f3+mGP8fn9c9QvR0tIiq9Ua2fLz8xd9LAAAYL6k/JRQY2OjpqamItvZs2cT3RIAALiClsVTnJOTo4yMDAUCgaj9gUBANpst5hibzRZX/UJkZWUpKytr0eMBAEByiWuFJTMzU6WlpfJ6vZF9oVBIXq9X5eXlMceUl5dH1UtSf3//vPUAAAC/La4VFknyeDyqra3Vpk2bVFZWpra2Nk1PT6uurk6SVFNTozVr1qilpUWStHPnTm3dulWtra2qrKzUkSNHdOLECR04cCByzHfeeUdjY2M6d+6cJOn06dOSPl6duZyVGAAAkBriDixVVVWamJhQU1OT/H6/7Ha7+vr6IhfWjo2NKT39wsJNRUWFDh8+rD179mj37t0qLCxUT0+PNm7cGKn52c9+Fgk8krR9+3ZJUnNzsx577LHFzg0AAKSIuO/DYiLuwwIAwJWVVPdhAQAASAQCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGW1Rg6ejoUEFBgSwWixwOhwYHBy9Z393draKiIlksFhUXF6u3tzfq8XA4rKamJq1evVrXXnutnE6nXn/99cW0BgAAUlDcgaWrq0sej0fNzc0aHh5WSUmJXC6XxsfHY9YPDAyourpa9fX1GhkZkdvtltvt1ujoaKTm6aef1g9/+EN1dnbq+PHjWrFihVwulz788MPFzwwAAKSMtHA4HI5ngMPh0ObNm9Xe3i5JCoVCys/P144dO9TQ0HBRfVVVlaanp3X06NHIvi1btshut6uzs1PhcFh5eXl69NFH9b3vfU+SNDU1pdzcXD3//PPavn37Z/YUDAZltVo1NTWl7OzseKazIAUNLy75MQEASCZn9lUu+THjef1eFs+BZ2dnNTQ0pMbGxsi+9PR0OZ1O+Xy+mGN8Pp88Hk/UPpfLpZ6eHknSm2++Kb/fL6fTGXncarXK4XDI5/PFDCwzMzOamZmJ/Dw1NSXp44lfCaGZD67IcQEASBZX4jX2k2MuZO0krsAyOTmpubk55ebmRu3Pzc3VqVOnYo7x+/0x6/1+f+TxT/bNV/PbWlpa9Pjjj1+0Pz8/f2ETAQAAcbG2Xbljv/fee7JarZesiSuwmKKxsTFq1SYUCumdd97RqlWrlJaWdtX7CQaDys/P19mzZ6/IW1JYWjxfyYXnK/nwnCWXRD5f4XBY7733nvLy8j6zNq7AkpOTo4yMDAUCgaj9gUBANpst5hibzXbJ+k/+GwgEtHr16qgau90e85hZWVnKysqK2nfdddfFM5UrIjs7m5MzifB8JReer+TDc5ZcEvV8fdbKyifi+pRQZmamSktL5fV6I/tCoZC8Xq/Ky8tjjikvL4+ql6T+/v5I/dq1a2Wz2aJqgsGgjh8/Pu8xAQDA50vcbwl5PB7V1tZq06ZNKisrU1tbm6anp1VXVydJqqmp0Zo1a9TS0iJJ2rlzp7Zu3arW1lZVVlbqyJEjOnHihA4cOCBJSktL03e+8x394Ac/UGFhodauXau9e/cqLy9Pbrd76WYKAACSVtyBpaqqShMTE2pqapLf75fdbldfX1/kotmxsTGlp19YuKmoqNDhw4e1Z88e7d69W4WFherp6dHGjRsjNX/5l3+p6elp/cVf/IXeffdd3XXXXerr65PFYlmCKV55WVlZam5uvuhtKpiJ5yu58HwlH56z5JIsz1fc92EBAAC42vguIQAAYDwCCwAAMB6BBQAAGI/AAgAAjEdguUxPPvmkKioqtHz58nlvXjc2NqbKykotX75cN954o3bt2qVf//rXV7dRxFRQUKC0tLSobd++fYluC5/S0dGhgoICWSwWORwODQ4OJrolzOOxxx676HwqKipKdFv4jf/8z//Ul7/8ZeXl5SktLS3ynX6fCIfDampq0urVq3XttdfK6XTq9ddfT0yzMRBYLtPs7Kzuv/9+PfTQQzEfn5ubU2VlpWZnZzUwMKBDhw7p+eefV1NT01XuFPP5q7/6K50/fz6y7dixI9Et4Te6urrk8XjU3Nys4eFhlZSUyOVyaXx8PNGtYR6333571Pn0yiuvJLol/Mb09LRKSkrU0dER8/Gnn35aP/zhD9XZ2anjx49rxYoVcrlc+vDDD69yp/MIY0n83d/9XdhqtV60v7e3N5yenh72+/2RfT/+8Y/D2dnZ4ZmZmavYIWK5+eabw3/zN3+T6DYwj7KysvC3v/3tyM9zc3PhvLy8cEtLSwK7wnyam5vDJSUliW4DCyAp/NOf/jTycygUCttstvAzzzwT2ffuu++Gs7Kywj/5yU8S0OHFWGG5wnw+n4qLi6O+jdrlcikYDOp//ud/EtgZPrFv3z6tWrVKv//7v69nnnmGt+sMMTs7q6GhITmdzsi+9PR0OZ1O+Xy+BHaGS3n99deVl5enW265Rd/4xjc0NjaW6JawAG+++ab8fn/U+Wa1WuVwOIw535Ly25qTid/vjworkiI/+/3+RLSET3nkkUd055136oYbbtDAwIAaGxt1/vx57d+/P9Gtfe5NTk5qbm4u5vlz6tSpBHWFS3E4HHr++ee1bt06nT9/Xo8//rj+4A/+QKOjo1q5cmWi28MlfPJ6FOt8M+W1ihWWGBoaGi66cOy3N35hmiue58/j8eiLX/yi7rjjDn3rW99Sa2urfvSjH2lmZibBswCSz7333qv7779fd9xxh1wul3p7e/Xuu+/qn/7pnxLdGlIAKywxPProo/rmN795yZpbbrllQcey2WwXfaohEAhEHsPSu5znz+Fw6Ne//rXOnDmjdevWXYHusFA5OTnKyMiInC+fCAQCnDtJ4rrrrtNtt92mN954I9Gt4DN8ck4FAgGtXr06sj8QCMhutyeoq2gElhi+8IUv6Atf+MKSHKu8vFxPPvmkxsfHdeONN0qS+vv7lZ2drQ0bNizJn4Fol/P8nTx5Uunp6ZHnComTmZmp0tJSeb3eyDe3h0Iheb1ePfzww4ltDgvy/vvv65e//KUeeOCBRLeCz7B27VrZbDZ5vd5IQAkGgzp+/Pi8n4K92ggsl2lsbEzvvPOOxsbGNDc3p5MnT0qSbr31Vv3O7/yO7rnnHm3YsEEPPPCAnn76afn9fu3Zs0ff/va3jf9mzFTn8/l0/Phx3X333Vq5cqV8Pp+++93v6s/+7M90/fXXJ7o96OO37Gpra7Vp0yaVlZWpra1N09PTqqurS3RriOF73/uevvzlL+vmm2/WuXPn1NzcrIyMDFVXVye6NejjAPnp1a4333xTJ0+e1A033KCbbrpJ3/nOd/SDH/xAhYWFWrt2rfbu3au8vLzIPxgSLtEfU0p2tbW1YUkXbS+99FKk5syZM+F77703fO2114ZzcnLCjz76aPijjz5KXNMIh8Ph8NDQUNjhcIStVmvYYrGE169fH/7rv/7r8Icffpjo1vApP/rRj8I33XRTODMzM1xWVhZ+9dVXE90S5lFVVRVevXp1ODMzM7xmzZpwVVVV+I033kh0W/iNl156KebrVW1tbTgc/vijzXv37g3n5uaGs7Kywl/60pfCp0+fTmzTn5IWDofDiQpLAAAAC8GnhAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAw3v8Def2Kd/k4UHIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ob_rewards = [10,10,10,0,1,0,-10,-10,10,10]\n", "for i in range(len(ob_rewards)):\n", @@ -158,9 +269,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAeDklEQVR4nO3df0zchf3H8ReHclhbrq3Y48dOsdZfnSsolBMXv7rslLjGrMlmmHHCiGsyVzvn6SJMC9Zfh1Y7NstkmnUajZPNqFvWBuMumsX0JhmsmTpbrROptndAunIVI+jd5/uH7jpWaDmgfffo85F8Evnw+XzufTnPe/q5zx1ZjuM4AgAAMOKyHgAAABzfiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGDqBOsBJiOZTGr37t2aN2+esrKyrMcBAACT4DiO9u/fr6KiIrlcE5//yIgY2b17t3w+n/UYAABgCnbt2qUvfelLE/4+I2Jk3rx5kj6/M3l5ecbTAACAyYjH4/L5fKnX8YlkRIz8562ZvLw8YgQAgAxzuEssuIAVAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAICpE6wHAAAc20oaNk/7GL0tK2ZgEsxWnBkBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgakox0tbWppKSEuXm5srv96urq+uQ2+/bt0+rV69WYWGh3G63zj77bG3ZsmVKAwMAgNkl7b/a29HRoWAwqPb2dvn9frW2tqq6ulo7duzQokWLDtp+dHRUl19+uRYtWqRnn31WxcXFev/99zV//vyZmB8AAGS4tGNkw4YNWrVqlerr6yVJ7e3t2rx5szZt2qSGhoaDtt+0aZP27t2rrVu36sQTT5QklZSUTG9qAAAwa6T1Ns3o6Ki6u7sVCAQOHMDlUiAQUCQSGXefP/7xj6qqqtLq1avl9Xp1/vnn67777lMikZjwdkZGRhSPx8csAABgdkorRgYHB5VIJOT1eses93q9ikaj4+7zr3/9S88++6wSiYS2bNmitWvX6qGHHtI999wz4e2EQiF5PJ7U4vP50hkTAABkkCP+aZpkMqlFixbp0UcfVXl5uWpqanT77bervb19wn0aGxs1NDSUWnbt2nWkxwQAAEbSumYkPz9f2dnZisViY9bHYjEVFBSMu09hYaFOPPFEZWdnp9add955ikajGh0dVU5OzkH7uN1uud3udEYDAAAZKq0zIzk5OSovL1c4HE6tSyaTCofDqqqqGnefr371q9q5c6eSyWRq3dtvv63CwsJxQwQAABxf0n6bJhgM6rHHHtMTTzyht956SzfccIOGh4dTn66pra1VY2NjavsbbrhBe/fu1U033aS3335bmzdv1n333afVq1fP3L0AAAAZK+2P9tbU1GhgYEBNTU2KRqMqKytTZ2dn6qLWvr4+uVwHGsfn8+nFF1/UzTffrGXLlqm4uFg33XSTbrvttpm7FwAAIGNlOY7jWA9xOPF4XB6PR0NDQ8rLy7MeBwCOKyUNm6d9jN6WFTMwCTLNZF+/+ds0AADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMDUlGKkra1NJSUlys3Nld/vV1dX14TbPv7448rKyhqz5ObmTnlgAAAwu6QdIx0dHQoGg2publZPT49KS0tVXV2t/v7+CffJy8vTnj17Usv7778/raEBAMDskXaMbNiwQatWrVJ9fb2WLl2q9vZ2zZkzR5s2bZpwn6ysLBUUFKQWr9c7raEBAMDskVaMjI6Oqru7W4FA4MABXC4FAgFFIpEJ9/voo490+umny+fz6Zvf/KbefPPNQ97OyMiI4vH4mAUAAMxOacXI4OCgEonEQWc2vF6votHouPucc8452rRpk/7whz/oqaeeUjKZ1MUXX6wPPvhgwtsJhULyeDypxefzpTMmAADIIEf80zRVVVWqra1VWVmZLr30Uj333HM69dRT9atf/WrCfRobGzU0NJRadu3adaTHBAAARk5IZ+P8/HxlZ2crFouNWR+LxVRQUDCpY5x44om64IILtHPnzgm3cbvdcrvd6YwGAAAyVFpnRnJyclReXq5wOJxal0wmFQ6HVVVVNaljJBIJvf766yosLExvUgAAMCuldWZEkoLBoOrq6lRRUaHKykq1trZqeHhY9fX1kqTa2loVFxcrFApJku666y5ddNFFWrJkifbt26f169fr/fff1/e///2ZvScAACAjpR0jNTU1GhgYUFNTk6LRqMrKytTZ2Zm6qLWvr08u14ETLv/+97+1atUqRaNRLViwQOXl5dq6dauWLl06c/cCAABkrCzHcRzrIQ4nHo/L4/FoaGhIeXl51uMAwHGlpGHztI/R27JiBiZBppns6zd/mwYAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgKkpxUhbW5tKSkqUm5srv9+vrq6uSe33zDPPKCsrSytXrpzKzQIAgFko7Rjp6OhQMBhUc3Ozenp6VFpaqurqavX39x9yv97eXt1666265JJLpjwsAACYfdKOkQ0bNmjVqlWqr6/X0qVL1d7erjlz5mjTpk0T7pNIJHTttddq3bp1Wrx48bQGBgAAs0taMTI6Oqru7m4FAoEDB3C5FAgEFIlEJtzvrrvu0qJFi3T99ddPfVIAADArnZDOxoODg0okEvJ6vWPWe71ebd++fdx9Xn31Vf3617/Wtm3bJn07IyMjGhkZSf0cj8fTGRMAAGSQI/ppmv379+u6667TY489pvz8/EnvFwqF5PF4UovP5zuCUwIAAEtpnRnJz89Xdna2YrHYmPWxWEwFBQUHbf/uu++qt7dXV111VWpdMpn8/IZPOEE7duzQmWeeedB+jY2NCgaDqZ/j8ThBAgDALJVWjOTk5Ki8vFzhcDj18dxkMqlwOKwbb7zxoO3PPfdcvf7662PW3XHHHdq/f79+/vOfTxgYbrdbbrc7ndEAAECGSitGJCkYDKqurk4VFRWqrKxUa2urhoeHVV9fL0mqra1VcXGxQqGQcnNzdf7554/Zf/78+ZJ00HoAAHB8SjtGampqNDAwoKamJkWjUZWVlamzszN1UWtfX59cLr7YFQAATE6W4ziO9RCHE4/H5fF4NDQ0pLy8POtxAOC4UtKwedrH6G1ZMQOTINNM9vWbUxgAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwNSUYqStrU0lJSXKzc2V3+9XV1fXhNs+99xzqqio0Pz583XyySerrKxMTz755JQHBgAAs0vaMdLR0aFgMKjm5mb19PSotLRU1dXV6u/vH3f7hQsX6vbbb1ckEtE//vEP1dfXq76+Xi+++OK0hwcAAJkvy3EcJ50d/H6/li9fro0bN0qSksmkfD6f1qxZo4aGhkkd48ILL9SKFSt09913T2r7eDwuj8ejoaEh5eXlpTMuAGCaSho2T/sYvS0rZmASZJrJvn6ndWZkdHRU3d3dCgQCBw7gcikQCCgSiRx2f8dxFA6HtWPHDv3f//1fOjcNAABmqRPS2XhwcFCJREJer3fMeq/Xq+3bt0+439DQkIqLizUyMqLs7Gz98pe/1OWXXz7h9iMjIxoZGUn9HI/H0xkTAABkkLRiZKrmzZunbdu26aOPPlI4HFYwGNTixYt12WWXjbt9KBTSunXrjsZoAADAWFoxkp+fr+zsbMVisTHrY7GYCgoKJtzP5XJpyZIlkqSysjK99dZbCoVCE8ZIY2OjgsFg6ud4PC6fz5fOqAAAIEOkdc1ITk6OysvLFQ6HU+uSyaTC4bCqqqomfZxkMjnmbZj/5Xa7lZeXN2YBAACzU9pv0wSDQdXV1amiokKVlZVqbW3V8PCw6uvrJUm1tbUqLi5WKBSS9PlbLhUVFTrzzDM1MjKiLVu26Mknn9Qjjzwys/cEAABkpLRjpKamRgMDA2pqalI0GlVZWZk6OztTF7X29fXJ5TpwwmV4eFg//OEP9cEHH+ikk07Sueeeq6eeeko1NTUzdy8AAEDGSvt7RizwPSMAYIfvGcFUHZHvGQEAAJhpxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFNTipG2tjaVlJQoNzdXfr9fXV1dE2772GOP6ZJLLtGCBQu0YMECBQKBQ24PAACOL2nHSEdHh4LBoJqbm9XT06PS0lJVV1erv79/3O1feeUVXXPNNXr55ZcViUTk8/l0xRVX6MMPP5z28AAAIPNlOY7jpLOD3+/X8uXLtXHjRklSMpmUz+fTmjVr1NDQcNj9E4mEFixYoI0bN6q2tnZStxmPx+XxeDQ0NKS8vLx0xgUATFNJw+ZpH6O3ZcUMTIJMM9nX77TOjIyOjqq7u1uBQODAAVwuBQIBRSKRSR3j448/1qeffqqFCxdOuM3IyIji8fiYBQAAzE5pxcjg4KASiYS8Xu+Y9V6vV9FodFLHuO2221RUVDQmaP5XKBSSx+NJLT6fL50xAQBABjmqn6ZpaWnRM888o+eff165ubkTbtfY2KihoaHUsmvXrqM4JQAAOJpOSGfj/Px8ZWdnKxaLjVkfi8VUUFBwyH0ffPBBtbS06M9//rOWLVt2yG3dbrfcbnc6owEAgAyV1pmRnJwclZeXKxwOp9Ylk0mFw2FVVVVNuN8DDzygu+++W52dnaqoqJj6tAAAYNZJ68yIJAWDQdXV1amiokKVlZVqbW3V8PCw6uvrJUm1tbUqLi5WKBSSJN1///1qamrS008/rZKSktS1JXPnztXcuXNn8K4AAIBMlHaM1NTUaGBgQE1NTYpGoyorK1NnZ2fqota+vj65XAdOuDzyyCMaHR3Vt7/97THHaW5u1p133jm96QEAQMZL+3tGLPA9IwBgh+8ZwVQdke8ZAQAAmGnECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU1OKkba2NpWUlCg3N1d+v19dXV0Tbvvmm2/qW9/6lkpKSpSVlaXW1tapzgoAAGahtGOko6NDwWBQzc3N6unpUWlpqaqrq9Xf3z/u9h9//LEWL16slpYWFRQUTHtgAAAwu6QdIxs2bNCqVatUX1+vpUuXqr29XXPmzNGmTZvG3X758uVav369vvOd78jtdk97YAAAMLukFSOjo6Pq7u5WIBA4cACXS4FAQJFIZMaGGhkZUTweH7MAAIDZKa0YGRwcVCKRkNfrHbPe6/UqGo3O2FChUEgejye1+Hy+GTs2AAA4thyTn6ZpbGzU0NBQatm1a5f1SAAA4Ag5IZ2N8/PzlZ2drVgsNmZ9LBab0YtT3W4315cAAHCcSCtGcnJyVF5ernA4rJUrV0qSksmkwuGwbrzxxiMxHwDgCCpp2HzM3E5vy4qjMAmORWnFiCQFg0HV1dWpoqJClZWVam1t1fDwsOrr6yVJtbW1Ki4uVigUkvT5Ra///Oc/U//84Ycfatu2bZo7d66WLFkyg3cFAABkorRjpKamRgMDA2pqalI0GlVZWZk6OztTF7X29fXJ5TpwKcru3bt1wQUXpH5+8MEH9eCDD+rSSy/VK6+8Mv17AAAAMlqW4ziO9RCHE4/H5fF4NDQ0pLy8POtxAGDWOFpv00wGb9PMPpN9/T4mP00DAACOH8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMHWC9QAAgCOjpGGz9QhpOdy8vS0rjtIkONo4MwIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFF8HDwAZKtO+7n26JnN/+cr4zMSZEQAAYIoYAQAApogRAABgakrXjLS1tWn9+vWKRqMqLS3Vww8/rMrKygm3//3vf6+1a9eqt7dXZ511lu6//3594xvfmPLQADDbHW/Xg8wUrivJTGmfGeno6FAwGFRzc7N6enpUWlqq6upq9ff3j7v91q1bdc011+j666/X3//+d61cuVIrV67UG2+8Me3hAQBA5styHMdJZwe/36/ly5dr48aNkqRkMimfz6c1a9aooaHhoO1ramo0PDysP/3pT6l1F110kcrKytTe3j6p24zH4/J4PBoaGlJeXl464wLAMYezHse2TDtzMhP/Ph2p+zzZ1++03qYZHR1Vd3e3GhsbU+tcLpcCgYAikci4+0QiEQWDwTHrqqur9cILL0x4OyMjIxoZGUn9PDQ0JOnzOzXTzm9+cUaO88a66hk5DjDbzNRzDDhaTrv599YjHHVH4vX1v497uPMeacXI4OCgEomEvF7vmPVer1fbt28fd59oNDru9tFodMLbCYVCWrdu3UHrfT5fOuMeVZ5W6wkAAJiaI/0atn//fnk8ngl/f0x+6VljY+OYsynJZFJ79+7VKaecoqysrKM6Szwel8/n065du3iLKAPweGUeHrPMwuOVeSwfM8dxtH//fhUVFR1yu7RiJD8/X9nZ2YrFYmPWx2IxFRQUjLtPQUFBWttLktvtltvtHrNu/vz56Yw64/Ly8njiZRAer8zDY5ZZeLwyj9VjdqgzIv+R1qdpcnJyVF5ernA4nFqXTCYVDodVVVU17j5VVVVjtpekl156acLtAQDA8SXtt2mCwaDq6upUUVGhyspKtba2anh4WPX19ZKk2tpaFRcXKxQKSZJuuukmXXrppXrooYe0YsUKPfPMM/rb3/6mRx99dGbvCQAAyEhpx0hNTY0GBgbU1NSkaDSqsrIydXZ2pi5S7evrk8t14ITLxRdfrKefflp33HGHfvrTn+qss87SCy+8oPPPP3/m7sUR5Ha71dzcfNDbRjg28XhlHh6zzMLjlXky4TFL+3tGAAAAZhJ/mwYAAJgiRgAAgCliBAAAmCJGAACAKWLkEO69915dfPHFmjNnzoRfutbX16cVK1Zozpw5WrRokX7yk5/os88+O7qDYkIlJSXKysoas7S0tFiPhS+0tbWppKREubm58vv96urqsh4JE7jzzjsPei6de+651mPhC3/5y1901VVXqaioSFlZWQf9/TfHcdTU1KTCwkKddNJJCgQCeuedd2yGHQcxcgijo6O6+uqrdcMNN4z7+0QioRUrVmh0dFRbt27VE088occff1xNTU1HeVIcyl133aU9e/akljVr1liPBEkdHR0KBoNqbm5WT0+PSktLVV1drf7+fuvRMIEvf/nLY55Lr776qvVI+MLw8LBKS0vV1tY27u8feOAB/eIXv1B7e7tee+01nXzyyaqurtYnn3xylCedgIPD+s1vfuN4PJ6D1m/ZssVxuVxONBpNrXvkkUecvLw8Z2Rk5ChOiImcfvrpzs9+9jPrMTCOyspKZ/Xq1amfE4mEU1RU5IRCIcOpMJHm5mantLTUegxMgiTn+eefT/2cTCadgoICZ/369al1+/btc9xut/Pb3/7WYMKDcWZkGiKRiL7yla+M+avE1dXVisfjevPNNw0nw39raWnRKaecogsuuEDr16/nbbRjwOjoqLq7uxUIBFLrXC6XAoGAIpGI4WQ4lHfeeUdFRUVavHixrr32WvX19VmPhEl47733FI1GxzzfPB6P/H7/MfN8Oyb/am+miEajY0JEUurnaDRqMRL+x49+9CNdeOGFWrhwobZu3arGxkbt2bNHGzZssB7tuDY4OKhEIjHu82f79u1GU+FQ/H6/Hn/8cZ1zzjnas2eP1q1bp0suuURvvPGG5s2bZz0eDuE/r0fjPd+Oldeq4+7MSENDw0EXYf3vwn8Mj23pPIbBYFCXXXaZli1bph/84Ad66KGH9PDDD2tkZMT4XgCZ5corr9TVV1+tZcuWqbq6Wlu2bNG+ffv0u9/9zno0zALH3ZmRW265Rd/73vcOuc3ixYsndayCgoKDrv6PxWKp3+HImM5j6Pf79dlnn6m3t1fnnHPOEZgOk5Gfn6/s7OzU8+U/YrEYz50MMX/+fJ199tnauXOn9Sg4jP88p2KxmAoLC1PrY7GYysrKjKYa67iLkVNPPVWnnnrqjByrqqpK9957r/r7+7Vo0SJJ0ksvvaS8vDwtXbp0Rm4DB5vOY7ht2za5XK7U4wUbOTk5Ki8vVzgc1sqVKyVJyWRS4XBYN954o+1wmJSPPvpI7777rq677jrrUXAYZ5xxhgoKChQOh1PxEY/H9dprr034adGj7biLkXT09fVp79696uvrUyKR0LZt2yRJS5Ys0dy5c3XFFVdo6dKluu666/TAAw8oGo3qjjvu0OrVq4/pv454vIhEInrttdf0ta99TfPmzVMkEtHNN9+s7373u1qwYIH1eMe9YDCouro6VVRUqLKyUq2trRoeHlZ9fb31aBjHrbfeqquuukqnn366du/erebmZmVnZ+uaa66xHg36PA7/+yzVe++9p23btmnhwoU67bTT9OMf/1j33HOPzjrrLJ1xxhlau3atioqKUv8zYM764zzHsrq6OkfSQcvLL7+c2qa3t9e58sornZNOOsnJz893brnlFufTTz+1Gxop3d3djt/vdzwej5Obm+ucd955zn333ed88skn1qPhCw8//LBz2mmnOTk5OU5lZaXz17/+1XokTKCmpsYpLCx0cnJynOLiYqempsbZuXOn9Vj4wssvvzzu61VdXZ3jOJ9/vHft2rWO1+t13G638/Wvf93ZsWOH7dD/JctxHMcqhAAAAI67T9MAAIBjCzECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATP0/eUf5MG0IskQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ob_rewards = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]\n", "for i in range(len(ob_rewards)):\n", @@ -178,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -213,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -248,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -270,9 +402,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+uUlEQVR4nO3deXxU9b3/8ffMJJnsCVtWEgLKKvtqUOsWRevFWr0tVa4gVagtVDCtIlXgWhfUuqCVn9xaKe1VC+pVWzcoBlGRyBIWRZAgBoKEbEAy2SeZOb8/KCMjM5MEZjHh9Xw85pHkzPfM+X5nQubN9/s5Z0yGYRgCAAAIEXOoOwAAAM5uhBEAABBShBEAABBShBEAABBShBEAABBShBEAABBShBEAABBShBEAABBSYaHuQFs4nU6VlJQoLi5OJpMp1N0BAABtYBiGampqlJaWJrPZ+/xHhwgjJSUlysjICHU3AADAaTh48KB69uzp9f4OEUbi4uIkHR9MfHx8iHsDAADawmazKSMjw/U+7k2HCCMnlmbi4+MJIwAAdDCtlVhQwAoAAEKKMAIAAEKKMAIAAEKqQ9SMAADQHoZhqKWlRQ6HI9Rd6dQsFovCwsLO+LIbhBEAQKdit9t1+PBh1dfXh7orZ4Xo6GilpqYqIiLitB+DMAIA6DScTqeKiopksViUlpamiIgILpYZIIZhyG63q6KiQkVFRerbt6/PC5v5QhgBAHQadrtdTqdTGRkZio6ODnV3Or2oqCiFh4frwIEDstvtioyMPK3HoYAVANDpnO7/0NF+/niuebUAAEBItTuMfPTRR5o4caLS0tJkMpn05ptvtrrPunXrNHLkSFmtVp177rlavnz5aXQVAAB0Ru0OI3V1dRo2bJiWLFnSpvZFRUW65pprdOmll2r79u2aM2eObrvtNq1evbrdnQUAoLO65JJLNGfOnFB3wyWY/Wl3AevVV1+tq6++us3tly5dqt69e+uJJ56QJA0cOFDr16/XU089pQkTJrT38AAAwAu73X5Gp9iGSsBrRvLz85WTk+O2bcKECcrPz/e6T1NTk2w2m9sNIXTwoPTYY9KxY6HuCQB0Srfccos+/PBDPf300zKZTDKZTNq3b59uvfVW9e7dW1FRUerfv7+efvrpU/a77rrr9NBDDyktLU39+/eXJG3YsEHDhw9XZGSkRo8erTfffFMmk0nbt2937btz505dffXVio2NVXJysm6++WZVVlZ67c/+/fsDNv6An9pbWlqq5ORkt23Jycmy2WxqaGhQVFTUKfssWrRI999/f6C7hrZ6/HHpmWekyEjpjjtC3RsAaB/DkEJ1AbToaKkN1zl5+umnVVhYqMGDB+v3v/+9JKlLly7q2bOnXn31VXXr1k0bNmzQjBkzlJqaqp/+9KeuffPy8hQfH681a9ZIkmw2myZOnKgf/vCHevnll3XgwIFTlluqqqp02WWX6bbbbtNTTz2lhoYGzZ07Vz/96U+1du1aj/3p0aOHn56UU30vrzMyb9485ebmun622WzKyMgIYY/OcidmpmpqQtsPADgd9fVSbGxojl1bK8XEtNosISFBERERio6OVkpKimv7yf8x7927t/Lz8/XKK6+4hZGYmBj9+c9/di3PLF26VCaTSc8//7wiIyM1aNAgHTp0SNOnT3ft8+yzz2rEiBF6+OGHXduWLVumjIwMFRYWql+/fh77EygBDyMpKSkqKytz21ZWVqb4+HiPsyKSZLVaZbVaA901tJXT6f4VABAUS5Ys0bJly1RcXKyGhgbZ7XYNHz7crc2QIUPc6kT27NmjoUOHul2AbOzYsW777NixQx988IFiPYS0ffv2qV+/fv4dSCsCHkays7P17rvvum1bs2aNsrOzA31o+AthBEBHFh19fIYiVMc+TStWrNBvf/tbPfHEE8rOzlZcXJz+8Ic/aOPGjW7tYtow8/JdtbW1mjhxoh599NFT7ktNTT3tPp+udoeR2tpaffXVV66fi4qKtH37dnXt2lWZmZmaN2+eDh06pL/97W+SpNtvv13PPvus7r77bv385z/X2rVr9corr+idd97x3ygQWCc+9ZJPvwTQEZlMbVoqCbWIiAi3Txn+5JNPNH78eP3qV79ybdu3b1+rj9O/f3+9+OKLampqcq0ybN682a3NyJEj9X//93/KyspSWJjnKPDd/gRSu8+m2bJli0aMGKERI0ZIknJzczVixAgtWLBAknT48GEVFxe72vfu3VvvvPOO1qxZo2HDhumJJ57Qn//8Z07r7UiYGQGAgMvKytLGjRu1f/9+VVZWqm/fvtqyZYtWr16twsJCzZ8//5RQ4clNN90kp9OpGTNmaPfu3Vq9erUef/xxSXJ9aODMmTN19OhR3Xjjjdq8ebP27dun1atXa9q0aa4A8t3+OAP4HtDuMHLJJZfIMIxTbieuqrp8+XKtW7fulH22bdumpqYm7du3T7fccosfuo6gIYwAQMD99re/lcVi0aBBg9SjRw9NmDBB119/vSZNmqRx48bpyJEjbrMk3sTHx+utt97S9u3bNXz4cN17772uCYMTdSRpaWn65JNP5HA4dOWVV2rIkCGaM2eOEhMTXZ81893+nDzR4G8mwzCMgD26n9hsNiUkJKi6ulrx8fGh7s7Z54YbpNdfl+6+W/KwvggA3xeNjY0qKipS7969T/sTZDujl156SdOmTVN1dbXXk0dOl6/nvK3v39/LU3vxPcPMCAB0KH/729/Up08fpaena8eOHa5riPg7iPgLYQStI4wAQIdSWlqqBQsWqLS0VKmpqfrJT36ihx56KNTd8oowgtYRRgCgQ7n77rt19913h7obbRbwz6ZBJ8CpvQCAACKMoHXMjAAAAogwgtYRRgAAAUQYQesIIwCAACKMoHXUjAAAAogwgtYxMwIACCDCCFpHGAGATiUrK0uLFy8OdTdcCCNoHWEEABBAhBG0jpoRAPjesdvtoe6C3xBG0DpmRgAg4C655BLNmjVLs2bNUkJCgrp376758+frxOfZZmVl6YEHHtCUKVMUHx+vGTNmSJLWr1+viy66SFFRUcrIyNAdd9yhuro61+OWl5dr4sSJioqKUu/evfXSSy+FZHy+cDl4tI4wAqADMwxD9c31ITl2dHi0TCZTm9v/9a9/1a233qpNmzZpy5YtmjFjhjIzMzV9+nRJ0uOPP64FCxZo4cKFkqR9+/bpqquu0oMPPqhly5apoqLCFWj+8pe/SJJuueUWlZSU6IMPPlB4eLjuuOMOlZeX+3+wZ4AwgtYRRgB0YPXN9YpdFBuSY9fOq1VMREyb22dkZOipp56SyWRS//799fnnn+upp55yhZHLLrtMv/nNb1ztb7vtNk2ePFlz5syRJPXt21fPPPOMLr74Yj333HMqLi7We++9p02bNmnMmDGSpBdeeEEDBw703yD9gGUatI6aEQAIivPPP99tJiU7O1t79+6V499/f0ePHu3WfseOHVq+fLliY2NdtwkTJsjpdKqoqEi7d+9WWFiYRo0a5dpnwIABSkxMDMp42oqZEbSOmREAHVh0eLRq59WG7Nj+FBPjPstSW1urX/ziF7rjjjtOaZuZmanCwkK/Hj9QCCNoHWEEQAdmMpnatVQSShs3bnT7+dNPP1Xfvn1lsVg8th85cqR27dqlc8891+P9AwYMUEtLiwoKClzLNHv27FFVVZVf+32mWKZB604szxBGACCgiouLlZubqz179ujvf/+7/vjHP2r27Nle28+dO1cbNmzQrFmztH37du3du1f/+Mc/NGvWLElS//79ddVVV+kXv/iFNm7cqIKCAt12222KiooK1pDahDCC1p0IIdSMAEBATZkyRQ0NDRo7dqxmzpyp2bNnu07h9WTo0KH68MMPVVhYqIsuukgjRozQggULlJaW5mrzl7/8RWlpabr44ot1/fXXa8aMGUpKSgrGcNqMZRq0jmUaAAiK8PBwLV68WM8999wp9+3fv9/jPmPGjNG//vUvr4+ZkpKit99+223bzTfffEb99DdmRtA6wggAIIAII2gdNSMAgABimQato2YEAAJu3bp1oe5CyDAzgtaxTAMACCDCCFpHGAEABBBhBK3jcvAAOpgTn3SLwPPHc00YQeuYGQHQQYSHh0uS6utD8ym9Z6MTz/WJ5/50UMCK1hFGAHQQFotFiYmJKi8vlyRFR0e7ffAc/McwDNXX16u8vFyJiYleL1nfFoQRtI4wAqADSUlJkSRXIEFgJSYmup7z00UYQeuoGQHQgZhMJqWmpiopKUnNzc2h7k6nFh4efkYzIicQRtA6ZkYAdEAWi8Uvb5QIPApY0TrCCAAggAgjaB1hBAAQQIQRtI6aEQBAABFG0DpmRgAAAUQYgW+GcfwmEUYAAAFBGIFvJwcQwggAIAAII/Dt5ABCzQgAIAAII/CNmREAQIARRuAbYQQAEGCEEfh28tIMYQQAEACEEfhGzQgAIMAII/CNZRoAQIARRuAbYQQAEGCEEfhGzQgAIMAII/CNmhEAQIARRuAbyzQAgAAjjMA3wggAIMAII/Dt5KUZlmkAAAFAGIFvzIwAAAKMMALfCCMAgAAjjMC3kwOIYRy/AQDgR4QR+PbdOhFmRwAAfkYYgW/fDR+EEQCAnxFG4BthBAAQYKcVRpYsWaKsrCxFRkZq3Lhx2rRpk8/2ixcvVv/+/RUVFaWMjAzdeeedamxsPK0OI8hYpgEABFi7w8jKlSuVm5urhQsXauvWrRo2bJgmTJig8vJyj+1ffvll3XPPPVq4cKF2796tF154QStXrtTvfve7M+48guC74YNrjQAA/KzdYeTJJ5/U9OnTNW3aNA0aNEhLly5VdHS0li1b5rH9hg0bdMEFF+imm25SVlaWrrzySt14442tzqbge4JlGgBAgLUrjNjtdhUUFCgnJ+fbBzCblZOTo/z8fI/7jB8/XgUFBa7w8fXXX+vdd9/VD3/4Q6/HaWpqks1mc7shRAgjAIAAC2tP48rKSjkcDiUnJ7ttT05O1pdffulxn5tuukmVlZW68MILZRiGWlpadPvtt/tcplm0aJHuv//+9nQNgULNCAAgwAJ+Ns26dev08MMP6//9v/+nrVu36vXXX9c777yjBx54wOs+8+bNU3V1tet28ODBQHcT3lAzAgAIsHbNjHTv3l0Wi0VlZWVu28vKypSSkuJxn/nz5+vmm2/WbbfdJkkaMmSI6urqNGPGDN17770ym0/NQ1arVVartT1dQ6CwTAMACLB2zYxERERo1KhRysvLc21zOp3Ky8tTdna2x33q6+tPCRwWi0WSZHBp8e8/wggAIMDaNTMiSbm5uZo6dapGjx6tsWPHavHixaqrq9O0adMkSVOmTFF6eroWLVokSZo4caKefPJJjRgxQuPGjdNXX32l+fPna+LEia5Qgu8xakYAAAHW7jAyadIkVVRUaMGCBSotLdXw4cO1atUqV1FrcXGx20zIfffdJ5PJpPvuu0+HDh1Sjx49NHHiRD300EP+GwUCh5oRAECAmYwOsFZis9mUkJCg6upqxcfHh7o7Z5f335euuOLbn4uKpKyskHUHANBxtPX9m8+mgW/UjAAAAowwAt+oGQEABBhhBL5RMwIACDDCCHxjmQYAEGCEEfhGGAEABBhhBL5RMwIACDDCCHyjZgQAEGCEEfjGMg0AIMAII/CNZRoAQIARRuAbyzQAgAAjjMA3lmkAAAFGGIFvhBEAQIARRuAbNSMAgAAjjMA3akYAAAFGGIFvLNMAAAKMMALfCCMAgAAjjMA3akYAAAFGGIFv1IwAAAKMMALfWKYBAAQYYQS+EUYAAAFGGIFv1IwAAAKMMALfqBkBAAQYYQS+sUwDAAgwwgh8I4wAAAKMMALfqBkBAAQYYQS+UTMCAAgwwgh8Y5kGABBghBH4xjINACDACCPwjZkRAECAEUbgGzUjAIAAI4zAN2ZGAAABRhiBb9SMAAACjDAC31imAQAEGGEEvrFMAwAIMMIIfCOMAAACjDAC36gZAQAEGGEEvlEzAgAIMMIIfGOZBgAQYIQR+EYYAQAEGGEEvlEzAgAIMMIIfKNmBAAQYIQR+MYyDQAgwAgj8I0wAgAIMMIIfKNmBAAQYIQR+HYifISFHf9KzQgAwM8II/Dtu2GEmREAgJ8RRuDbiZkQwggAIEAII/DtRPgID3f/GQAAPyGMwLfvhhFqRgAAfkYYgW/UjAAAAowwAt9OzISwTAMACBDCCHyjZgQAEGCEEfjGdUYAAAFGGIFv1IwAAAKMMALfqBkBAAQYYQS+UTMCAAiw0wojS5YsUVZWliIjIzVu3Dht2rTJZ/uqqirNnDlTqampslqt6tevn959993T6jCCjJoRAECAhbV3h5UrVyo3N1dLly7VuHHjtHjxYk2YMEF79uxRUlLSKe3tdruuuOIKJSUl6bXXXlN6eroOHDigxMREf/QfgUbNCAAgwNodRp588klNnz5d06ZNkyQtXbpU77zzjpYtW6Z77rnnlPbLli3T0aNHtWHDBoX/e6o/KyvrzHqN4KFmBAAQYO1aprHb7SooKFBOTs63D2A2KycnR/n5+R73+ec//6ns7GzNnDlTycnJGjx4sB5++GE5fEz3NzU1yWazud0QIlwOHgAQYO0KI5WVlXI4HEpOTnbbnpycrNLSUo/7fP3113rttdfkcDj07rvvav78+XriiSf04IMPej3OokWLlJCQ4LplZGS0p5vwJ5ZpAAABFvCzaZxOp5KSkvSnP/1Jo0aN0qRJk3Tvvfdq6dKlXveZN2+eqqurXbeDBw8GupvwhjACAAiwdtWMdO/eXRaLRWVlZW7by8rKlJKS4nGf1NRUhYeHy2KxuLYNHDhQpaWlstvtioiIOGUfq9Uqq9Xanq4hUKgZAQAEWLtmRiIiIjRq1Cjl5eW5tjmdTuXl5Sk7O9vjPhdccIG++uorOU96EyssLFRqaqrHIILvGWpGAAAB1u5lmtzcXD3//PP661//qt27d+uXv/yl6urqXGfXTJkyRfPmzXO1/+Uvf6mjR49q9uzZKiws1DvvvKOHH35YM2fO9N8oEDgs0wAAAqzdp/ZOmjRJFRUVWrBggUpLSzV8+HCtWrXKVdRaXFwss/nbjJORkaHVq1frzjvv1NChQ5Wenq7Zs2dr7ty5/hsFAufETAhhBAAQICbDMIxQd6I1NptNCQkJqq6uVnx8fKi7c3Y591xp3z7pF7+Q/ud/pKuukt57L9S9AgB0AG19/+azaeAbNSMAgAAjjMA3akYAAAFGGIFvnNoLAAgwwgh8++4yDWEEAOBnhBH49t1lGmpGAAB+RhiBb9SMAAACjDAC36gZAQAEGGEEvlEzAgAIMMIIfKNmBAAQYIQR+EbNCAAgwAgj8I2aEQBAgBFG4Bs1IwCAACOMwDdqRgAAAUYYgW/UjAAAAowwAt+oGQEABBhhBN4ZxvGb9G0YYZkGAOBnhBF4dyKISCzTAAAChjAC706eBSGMAAAChDAC704OHtSMAAAChDAC7zyFEWpGAAB+RhiBdyeHEZZpAAABQhiBd9SMAACCgDAC76gZAQAEAWEE3lEzAgAIAsIIvKNmBAAQBIQReHfyLIjFcvwrYQQA4GeEEXh3InhYLIQRAEDAEEbg3YngYTYfv0nUjAAA/I4wAu88hRFmRgAAfkYYgXcnZkEIIwCAACKMwDtqRgAAQUAYgXfelmkMI3R9AgB0OoQReOcpjEiEEQCAXxFG4J2nmhGJpRoAgF8RRuCdp5qRk7cDAOAHhBF4522ZhmuNAAD8iDAC77yFEWZGAAB+RBiBd9SMAACCgDAC76gZAQAEAWEE3lEzAgAIAsIIvGOZBgAQBIQReHfyzIjJdOp2AAD8gDAC706uGTGZvp0dYZkGAOBHhBF4d/LMyMlfmRkBAPgRYQTenVwzcvJXwggAwI8II/COmREAQBAQRuDdyTUjJ3+lZgQA4EeEEXjHzAgAIAgII/COmhEAQBAQRuCdt2UawggAwI8II/DO2zINNSMAAD8ijMA7akYAAEFAGIF31IwAAIKAMALvqBkBAAQBYQTeUTMCAAgCwgi8o2YEABAEpxVGlixZoqysLEVGRmrcuHHatGlTm/ZbsWKFTCaTrrvuutM5LIKNmhEAQBC0O4ysXLlSubm5WrhwobZu3aphw4ZpwoQJKi8v97nf/v379dvf/lYXXXTRaXcWQUbNCAAgCNodRp588klNnz5d06ZN06BBg7R06VJFR0dr2bJlXvdxOByaPHmy7r//fvXp0+eMOowgomYEABAE7QojdrtdBQUFysnJ+fYBzGbl5OQoPz/f636///3vlZSUpFtvvbVNx2lqapLNZnO7IQRYpgEABEG7wkhlZaUcDoeSk5PdticnJ6u0tNTjPuvXr9cLL7yg559/vs3HWbRokRISEly3jIyM9nQT/kIBKwAgCAJ6Nk1NTY1uvvlmPf/88+revXub95s3b56qq6tdt4MHDwawl/CKmhEAQBCEtadx9+7dZbFYVFZW5ra9rKxMKSkpp7Tft2+f9u/fr4kTJ7q2Of/9RhYWFqY9e/bonHPOOWU/q9Uqq9Xanq4hEKgZAQAEQbtmRiIiIjRq1Cjl5eW5tjmdTuXl5Sk7O/uU9gMGDNDnn3+u7du3u27XXnutLr30Um3fvp3ll+87akYAAEHQrpkRScrNzdXUqVM1evRojR07VosXL1ZdXZ2mTZsmSZoyZYrS09O1aNEiRUZGavDgwW77JyYmStIp2/E9RM0IACAI2h1GJk2apIqKCi1YsEClpaUaPny4Vq1a5SpqLS4ultnMhV07BW81IyzTAAD8qN1hRJJmzZqlWbNmebxv3bp1Pvddvnz56RwSocDMCAAgCJjCgHfUjAAAgoAwAu+YGQEABAFhBN5RMwIACALCCLxjZgQAEASEEXhHzQgAIAgII/COy8EDAIKAMALvuBw8ACAICCPwjpoRAEAQEEbgHTUjAIAgIIzAO2pGAABBQBiBd9SMAACCgDAC71imAQAEAWEE3lHACgAIAsIIvKNmBAAQBIQReEfNCAAgCAgj8I6aEQBAEBBG4B01IwCAICCMwDtqRgAAQUAYgXfUjAAAgoAwAu+oGQEABAFhBN5RMwIACALCCLyjZgQAEASEEXhHzQgAIAgII/COmhEAQBAQRuAdNSMAgCAgjMA7bzUjLNMAAPyIMALvmBkBAAQBYQTeUTMCAAgCwgi849ReAEAQEEbgHaf2AgCCgDAC71imAQAEAWEE3lHACgAIAsIIvKNmBAAQBIQReEfNCAAgCAgj8I6aEQBAEBBG4B01IwCAICCMwDtqRgAAQUAYgXfUjAAAgoAwAu+oGQEABAFhBN5RMwIACALCCLyjZgQAEASEEXhHzQgAIAgII/COmhEAQBAQRuAdNSMAgCAgjMA7akYAAEFAGIF31IwAAIKAMALvqBkBAAQBYQTeUTMCAAgCwgi8o2YEABAEhBF4522ZhpoRAIAfEUbgHcs0AIAgIIzAO5ZpAABBQBiBd5zaCwAIAsIIvOPUXgBAEBBG4B01IwCAICCMwDtqRgAAQXBaYWTJkiXKyspSZGSkxo0bp02bNnlt+/zzz+uiiy5Sly5d1KVLF+Xk5Phsj+8RakYAAEHQ7jCycuVK5ebmauHChdq6dauGDRumCRMmqLy83GP7devW6cYbb9QHH3yg/Px8ZWRk6Morr9ShQ4fOuPMIMGpGAABBYDIMw2jPDuPGjdOYMWP07LPPSpKcTqcyMjL061//Wvfcc0+r+zscDnXp0kXPPvuspkyZ0qZj2mw2JSQkqLq6WvHx8e3pLs6E1SrZ7VJxsZSRIa1dK11+uXTeedLOnaHuHQDge66t79/tmhmx2+0qKChQTk7Otw9gNisnJ0f5+flteoz6+no1Nzera9euXts0NTXJZrO53RAC1IwAAIKgXWGksrJSDodDycnJbtuTk5NVWlrapseYO3eu0tLS3ALNdy1atEgJCQmuW0ZGRnu6CX+hZgQAEARBPZvmkUce0YoVK/TGG28oMjLSa7t58+apurradTt48GAQewlJkmFwai8AICjC2tO4e/fuslgsKisrc9teVlamlJQUn/s+/vjjeuSRR/T+++9r6NChPttarVZZrdb2dA3+dnIpEWEEABBA7ZoZiYiI0KhRo5SXl+fa5nQ6lZeXp+zsbK/7PfbYY3rggQe0atUqjR49+vR7i+A5OXBQMwIACKB2zYxIUm5urqZOnarRo0dr7NixWrx4serq6jRt2jRJ0pQpU5Senq5FixZJkh599FEtWLBAL7/8srKysly1JbGxsYqNjfXjUOBXJwcOakYAAAHU7jAyadIkVVRUaMGCBSotLdXw4cO1atUqV1FrcXGxzOZvJ1yee+452e12/ed//qfb4yxcuFD//d//fWa9R+CcHDhYpgEABFC7rzMSClxnJATq6qQTM1e1tVJMjLR9uzRihJSaKpWUhLR7AIDvv4BcZwRnEWpGAABBQhiBZ76WaagZAQD4EWEEnvkqYGVmBADgR4QReMYyDQAgSAgj8OzkwGEyHf/KzAgAIAAII/DsRF3ISadpUzMCAAgEwgg8++7n0pz8PTMjAAA/IozAsxOB40SdyMnfE0YAAH5EGIFnvmZGWKYBAPgRYQSe+aoZYWYEAOBHhBF4Rs0IACBICCPwzFfNiCR9/z/SCADQQRBG4JmvmRGJuhEAgN8QRuCZr5oRiaUaAIDfEEbgWWszI4QRAICfEEbgWWs1I4QRAICfEEbgGTUjAIAgIYzAM2pGAABBQhiBZ9SMAACChDACz6gZAQAECWEEnnlapjGZTr0fAIAzRBiBZ56WaUymbwMJMyMAAD8hjMAzT2Hk5J8JIwAAPyGMwDNPNSMn/0wYAQD4CWEEnnmqGTn5Z2pGAAB+QhiBZyzTAACChDACz1imAQAECWEEnjEzAgAIEsIIPKNmBAAQJIQReMbMCAAgSAgj8IyaEQBAkBBG4BkzIwCAICGMwDNqRgAAQUIYgWfMjAAAgoQwAs+oGQEABAlhBJ61NjPCMg0AwE8II/CstZoRZkYAAH5CGIFn1IwAAIKEMALPqBkBAAQJYQSecWovACBICCPwjGUaAECQEEbgGWEEABAkhBF4Rs0IACBICCPwjJoRAECQEEbgGcs0AIAgIYzAM8IIACBICCPwjJoRAECQEEbgGTUjAIAgIYzAM5ZpAABBQhiBZyzTAACChDACz5gZAQAECWHEDwzDUENzg6obq1VZXym7wx7wY+49slez35utu/51l/53x/9qe+l2tThb/HcAakbOWobTqZXPz9byZ29TU50t4MezVXwjR3Pg/80AZ4tVKx7U3feOVfGu/Da1N5xO7d74doB75VtYSI8eYk9seEKHag6pd2Jv9e7SW/279de5Xc+VyWRq0/6V9ZVatm2Zlm5ZqqKqItf2BGuCpo+crl+P+7Uy4jNUVFWkLSVbFB0erUuyLlFsRKwMw9BHBz7Sip0rFBUepZ8M+onO73m+TCaTmh3N+vrY17I77IoOj1Z0eLRiImIUHR6tOnudHvzoQT298Wk1O5vd+hMXEacf9PqBftDrB2p2NGt/1X6V1pVqRMoI3TDwBg1NHupzbLsrdmt98XoNThqsMc6W478cZrPsDrsq6iqUGpcq87/DSFnzMT3/0YPaeGijzutxnrJ7ZmtYyjCZTWY1O5rV4mxRi7NFzc6Tvnc0KyYiRkOShijcEu7zua2z1+mro1+ptLZUDS0Nqm+uV0Nzg+v7ow1Hdbj2sA7XHFaEJUL9uvVTv279NDhpsEamjlR0ePQpr9WrX7yqN758Q9Ywqy7pdYkuybpEXaO6qrqpWrYmm7pGddU5Xc5RVHjUKf1pdjRrR9kOfVL8iTZ8s0HbDm9TcmyyhiQN0ZCkIcpMyFRSTJKSYpIUGRapcEu4mspLtPa957Rq73vaYhxSpjNOQ2N6a1jP0Ro2JEcDRl+t8MhoNdZW6YuNb2v/gR3q1jVdaT0HKjlzoGK7pMgSHiFHs12FW/+lbdve06Gj+9U7eYD69x+vCGu01n70N71/6CN9qSMKM0wKl1nxRoQGRWZocNJgRVlj9GnxBuXbv1ZZuF3dW8LVwxmlPuFJunrgtbpi4mzF9+jpGmfxrnxN/9NE/avLEUnSwv9ernvTf6bxY27Qhs3/p08PbZJJ0sjk4Rp5Xo7OGXiBuqT0Vnhk9CnPmaPZriOH9iosIlIJPTJkCY9Qi71R3xRu0b49+crb/oberd2mHYmNSqkz66awEbp5wl0adtFPZPr371lTnU3bPn5Fuwo/0ZiR/6EhF94gSWqsrdLSJdP0Yum/1MWIVF9rqvp366crL/65Bo77D5+/W9917HCRdm/7lwaPucbtuWhNU51Nq19/VCUVRRo7/BoNvfAGWcIi9Pknr2vN+r+qpqlG4wdNUPblUxXXLc1t3/dfe0wPr18km8muaxPH6SdX5arWdkR/ef8PWmHepUiHSbdGjdf0SY8pc1D2KcdubqxXxcEvVXH4K1VWHJDJZFZMTKJiYrsqLNwqSTIMp2qqK3T06CEdrTqsozXlOlp/RDX2GuUMvU5X/mSe63k+2ZFv9mrt6ufUrUu6Bgy5VCl9hqqw4F/6dNPr2nFoq+odDbL/+z8+/RL7aGjvbPU+Z6QK9+Rre1G+vqk7rAFd+2rUgMs0ZPQ1iu+ernBrtGqOlGj9mhe07ot3dKChVGN7DNMlYydp+A9+Kkt4RHteMpeizz7Syn8+rFeOfKQac4uuCOuna4b+py79j1mKTujuaudotmv9u89p11efqrSmRKX15UqPSdXPrpmrfqMneH18p6NFRw7tVfk3haqxVaihwab6epsaGmvU0FSnBnutusYlK6PnIKVlDlZJ8U7t3POx9pTtUmJkorJ69FVmz/Nks1WopOJrHaoqVkldqQ41H1Wl6tTXnKSxKSM1dujVGn3Zza7nwXA69d6KB/SP7SvUv2s/XZZ9k84ZfJHeff1Rrdj1qj43V+g/Igbr15Oe0DnDL3P111bxje587DIti90rRUj/76XxeiDuR/p17go11BzV1vWv6lhVqS687BZ1z+gvp6NFb720QA9ue1qfxdarqGuB0vqOPK3X4kyZDMMwQnLkdrDZbEpISFB1dbXi4+P99rhjnx+rzSWb3balxqbq0t6XalD3QSqrK1NJTYmanc3q27Wv+nfrr8iwSH1R8YU+L/9ceV/nqcnR5PXxLSaLEiMTdaThiGtbhCVCP+j1Ax2oOqC9R/e6te+V0Evx1njtObLH6+yKSSYZOv6STThngvp27avPyz/XjrIdqmqs8jnePl36qE+XPooJj1FsRKx6RPdQUkySJOm13a9p6+GtrrbxhlWji5pU0quL9obZ5DAcSoxM1NiyMMV/U6l/nGdRs05vdiQqLErn9zxfY9LGKCMhQ+lx6Wpxtmjr4a3aWrpVX5R/oUM1h07rsSUpzBymoclDlRaXpsaWRtXaa7WlZEubZ456xvdUZkKm0uLS1CO6h76s/FIbD21UfXP9affJk3CH1LM+TMUxLXJ4maOMapYMSY2+s9sZ9WFETYxSFKculhi9HrFPNVYpsllKtJtVGtO25bgYuxTTYpLVaZbVaZYtrEWVkYac/x6XyZDim6SaCLm2eRPmkHo0mpXYEqZ9MXbZT/ov05iqGE2IH6G/1ufrYKzn37/zqq26OmqIShuP6Atnqb6KapDdIjlNx8ebXddFV/Y4X31SBuqVL17RP2K+kT1MMjulIbZIjQ7LVEJ4nKLCIiVJ5Y1HVNZcpXrDriRLnFKs3VVhP6Z/RHwtm/Xb48Y1SdEOs8qi3Z8zi1MabIvUYHOKBiaeq7VHCrS2y7E2Pa/mf+/bzYhUF3O0qp0N2hdWo+KYllafx9b84FiCHr5ikQYMy1Hl4a+0b+8m/W3LC3oj5qDbc25xyuvvZ1uZ/v0uY3j4v1CYQwp3SmZDim4xKcMeqUwlKik8QU7DkFNO1TgadNCo0sGwelVFOGU2jrevjvR8vHCHNNYWp4vjh6iqyab/065TXpcTRlVFa0RYhpqMZjU5m3XMWacyU73Kw+2qiHKe8djbKr3WrCmR4zS+f44e3/KMPuxS3eo+JkPKqeqqZEuCws1hWmt8rQNxDpkMaYAtQrsTjr+PdG8w6Uik4Xr+TYY0ojpKdpNTOxOOv4dFNUt/7zdPP5rysF/H1db377M6jCzfvlw7y3fq62Nfq6iqSLsrdvsMF56MTB2pmWNm6scDfqzo8GhZzBat+mqVFn+6WHlFeZKkcHO4hqUM05H6I24zKLERsZp03iQ1OZr05pdvqtZe67ovJjxGMRExqm+uV529zhVAJGlA9wF68sondXXfq13bnIZTO0p3aG3RWuV/k684a5yyErLUNaqr8orytOqrVa2OLcwcpvN7nq8vyr/QsUb3P5Ynh6ATzu95vm4YeIP2VO7Rhm82qPBIoSwmi8It4QozhynMHKZw80nfW8JVUVdxymN70y2qm3rG91R0eLSiwqMUFRalqPAoRYdHK8GaoLS4NKXGpqqxpVF7j+7VniN7VFBSoMO1hz0+3oiUEbppyE0ym8z6YP8H+vjAx7I77EqITFBcRJzK68pV3eT9D0BiZKLGZ4zX+J7jNTZ9rCrqK/RZ2WfaWb5Th2sPq7yuXBV1FW7P87BjVl0VO1w/GHS1DpXv047S7fqs8YB2RNvc3si6NZjUtylGx8x2lVjtqrG6HzvaLg2ri1UvS1ftdx7Vnsg61YYbGm9L0BXdxmjsgMslSc3NTao8dkg7S7ZrZ/1+1Rl2jYk5V9nnXKo+fUbqSOVBlVce0JbiT/V20+faG+8+uyZJ44/FadnklcrsP05/WnqbHqv8h6rCnRpXl6jx8efJbDJrq22PtoVXqqSVsGIyTn0DimiRMurDNFbpuqbvD3Xp5bdpc/5r+t/tf9NbMYfc3gglqUe9Sf2aYrUxvkYtJ9VT96y1aF7KfyraGqvCsl3aWluotXFH1Pydmuu26NZg0pGo9v8pTK81a1BzojZGH3W9ntF26eL6HupuidN6Faso7tQQHNEi/bJluIamDtdrRe9oTVyFwpzS9Q29dMv5t6vKVq6lny/3GVrMTql7o0ndmyNkklRndqjO4pDDdPw5NyTFtZjVrSVCXY1IdTVHq1tYvJqNFr0UuVdNPubFB1Vb1Wxy6uvYZjnMx9+oRtfGa3T0ueoSmagIS4RanC3aVbVXO4xS7Y9qUt/6KA2zpCkzJk27ar5WgblM+78z9nNsYbrUfI76JPTShiPb9VFUudu/g/YyO6VLq7voZ70nKrlrpt7d+brece7xGFS7Nph0UVOyUiO6qkdkNxXYvtTq+Io2hY0ujSYlNFsU7bQoyrAoyghTtMJlNYXpiFGv4vB6lUQ7lNxg1mB7ogZE9pStpU5FLZU6GFanBEe40hWntPCuSo9JUXpiprrEJWnXN1u16dhOrY+sUFWk+++ftUWa0jRAh5qP6KPoCtVGSH1qwvSz6LEaljlWf/niRa1KrDylr31qwrT84qd0wQ9v1wt//LnuLnvR9dgZtRbFO8L0RcK3f6PimqRZlmzdOf0F9cgc2M5XoHWEkdPQ2NKo/IP5Wlu0VgdtB5Uam6r0+HSZTWYVHinUniN71NjSqEHdB+m8pPM0Ln2cRqaO9Lr0UXikUNWN1RqaPFTWMKsMw1DhkUKt+XqNEqwJ+vHAHys2IlaS1NDcoLVFa2XI0OCkwcpMyJTZdPxfiWEYanI0qb65Xo0tjUqJTXHd11Y1TTX6uPhjHWs4prrmOtmabKqsr1R5XblsTTZdmnWpJg2epO7R3eVwOrTtd9O041//q8wrbtCge59Wj5ge2lm+Uxvvu0WH9n+u667/nUbPfKjdz7HTcOrLyi/18YGPtbN8p0pqS1RSUyKH06ERKSM0MnWkhqUMU79u/dQ1qmu7H98wDH1j+0YbD22Urckmq8Uqa5hV5/U4TwN7+P6HZhiGjjYc1d6je3XIdkglNSUqrS1Vr8ReuiDjAg3sMbBNz7uxerVafniVnLHRsu7/RurS5dQ2TqcO7Nqg/V9tUd9BFyrt3JFuU+YNtqOqrSpTbVWFnM4WZZ134SlT2U5Hi8yWM1tpLdyyWl/sXKuKqkMqsx1WVve+umn6M27HMpxOGYbT47EczXZVVxzUsfIDqqs5qqbGOjU11Sk2rptSMgaqe89+cjpaVFV2QEfLDyihW5qSswZ77be9oVblxbtVfqhQR44c1Dn9zlfvIT+QyWxW+f4v9NKKe7WubKMuSR6nX85arsjYRLf9jx0u0luvL9KGA+uVGddTg7PGqP+ACxUVkyhLWLiqKg9p7Sf/q3+VfKyvTFW6ynqepl41V8MvnqSSvVv1yUcvatc321TfXK/6lgY5DUPJ0T2UHJ+qaGucyqsP6XDtYZll1rXZt2j81TNktoTJ0WzXzvw3VVtzRKMvmSxrzLd/pw7u3qhtW/6pLw5s0a5je9U1Il65/7VEvc67wNWm9mipzJYwt6UF6fgyROHuj3W0qlRHa8oUG5Wgc3qNUJ/+5yulz9DTfv0P7t6o+5dN0fLoQjnMUkKj1MMerivD+uvWCfdo5GWTXa9Hyb7tSj93pMeluNY01dnUWFelxjqbzBbLKW92jma7Sr7aJoejWU5Hi2ptlSo+8JkOlH6pI3WVspgtMpvMio6IUc/u5ygzY7C6JfWS0+mQ09Gibil91K1nX7fHNJxO7dvxgT76+EV9XLxeEeYwXT/qv3TZj+48ZQwVxbv15uuLVF5zWNYwqyIsViXGdFNSt0wlp5yj5PT+6t6znyKiYlsdq+F0elz2auvz9NaK+7V854vaaK3Qf7Sco9/f+qIyBo6TJLXYG3V43w717D/G7Rh7Nr+nNeuWqbGlQS2OFsVHJWrKtMWK7ZrianPkm736fMs7GjgsR8m9B0uSSr/+TO+vfk61DdWadOND6pLa+7T63RZtfv82TsOzzz5r9OrVy7BarcbYsWONjRs3+mz/yiuvGP379zesVqsxePBg45133mnX8aqrqw1JRnV19el0F6fjN78xDMkw7rrLfft11x3fvnRpaPrVEVx++fHnaM6cUPcE8Km++ojRVF8T6m6gE2vr+3e7Y9zKlSuVm5urhQsXauvWrRo2bJgmTJig8vJyj+03bNigG2+8Ubfeequ2bdum6667Ttddd5127tzZ3kMjmLjOyOnZulXKyzv+PM2ZE+reAD5FxXdt0//6gUBrdxh58sknNX36dE2bNk2DBg3S0qVLFR0drWXLlnls//TTT+uqq67SXXfdpYEDB+qBBx7QyJEj9eyzz55x5xFAnNp7eh5//PjXn/1M6tUrtH0BgA6iXQuOdrtdBQUFmjdvnmub2WxWTk6O8vM9n8+cn5+v3Nxct20TJkzQm2++6fU4TU1Namr6tsDGZgvQtQ4WL5b27w/MY3d0H354/Ku3MPLaa9JXXwW3T993Tqf0yivHv7/rrtD2BQA6kHaFkcrKSjkcDiUnJ7ttT05O1pdffulxn9LSUo/tS0tLvR5n0aJFuv/++9vTtdPzyiuSlxCFf0tM9Pzzhx9+G1jg7oorpGHDQt0LAOgwvpcXPZs3b57bbIrNZlNGRob/DzR1qnTppf5/3M4iIUG69Vb3bffdJ6WnS42NoenT911EhPTzn4e6FwDQobQrjHTv3l0Wi0VlZWVu28vKypSSkuJxn5SUlHa1lySr1Sqr9QxOPm+rX/wi8MfobHr2lObPD3UvAACdSLsKWCMiIjRq1Cjl5eW5tjmdTuXl5Sk7+9RLFktSdna2W3tJWrNmjdf2AADg7NLuZZrc3FxNnTpVo0eP1tixY7V48WLV1dVp2rRpkqQpU6YoPT1dixYtkiTNnj1bF198sZ544gldc801WrFihbZs2aI//elP/h0JAADokNodRiZNmqSKigotWLBApaWlGj58uFatWuUqUi0uLnZ9mJokjR8/Xi+//LLuu+8+/e53v1Pfvn315ptvavDgwf4bBQAA6LC4HDwAAAiItr5/B+nzCAEAADwjjAAAgJAijAAAgJAijAAAgJAijAAAgJAijAAAgJAijAAAgJAijAAAgJAijAAAgJBq9+XgQ+HERWJtNluIewIAANrqxPt2axd77xBhpKamRpKUkZER4p4AAID2qqmpUUJCgtf7O8Rn0zidTpWUlCguLk4mk8lvj2uz2ZSRkaGDBw+eFZ95czaNl7F2XmfTeBlr53W2jNcwDNXU1CgtLc3tQ3S/q0PMjJjNZvXs2TNgjx8fH9+pfxm+62waL2PtvM6m8TLWzutsGK+vGZETKGAFAAAhRRgBAAAhdVaHEavVqoULF8pqtYa6K0FxNo2XsXZeZ9N4GWvndbaNtzUdooAVAAB0Xmf1zAgAAAg9wggAAAgpwggAAAgpwggAAAipszqMLFmyRFlZWYqMjNS4ceO0adOmUHfpjC1atEhjxoxRXFyckpKSdN1112nPnj1ubRobGzVz5kx169ZNsbGxuuGGG1RWVhaiHvvPI488IpPJpDlz5ri2daaxHjp0SP/1X/+lbt26KSoqSkOGDNGWLVtc9xuGoQULFig1NVVRUVHKycnR3r17Q9jj0+dwODR//nz17t1bUVFROuecc/TAAw+4fb5FRx3vRx99pIkTJyotLU0mk0lvvvmm2/1tGdfRo0c1efJkxcfHKzExUbfeeqtqa2uDOIq28zXe5uZmzZ07V0OGDFFMTIzS0tI0ZcoUlZSUuD1GRxlva6/tyW6//XaZTCYtXrzYbXtHGau/nbVhZOXKlcrNzdXChQu1detWDRs2TBMmTFB5eXmou3ZGPvzwQ82cOVOffvqp1qxZo+bmZl155ZWqq6tztbnzzjv11ltv6dVXX9WHH36okpISXX/99SHs9ZnbvHmz/ud//kdDhw51295Zxnrs2DFdcMEFCg8P13vvvaddu3bpiSeeUJcuXVxtHnvsMT3zzDNaunSpNm7cqJiYGE2YMEGNjY0h7PnpefTRR/Xcc8/p2Wef1e7du/Xoo4/qscce0x//+EdXm4463rq6Og0bNkxLlizxeH9bxjV58mR98cUXWrNmjd5++2199NFHmjFjRrCG0C6+xltfX6+tW7dq/vz52rp1q15//XXt2bNH1157rVu7jjLe1l7bE9544w19+umnSktLO+W+jjJWvzPOUmPHjjVmzpzp+tnhcBhpaWnGokWLQtgr/ysvLzckGR9++KFhGIZRVVVlhIeHG6+++qqrze7duw1JRn5+fqi6eUZqamqMvn37GmvWrDEuvvhiY/bs2YZhdK6xzp0717jwwgu93u90Oo2UlBTjD3/4g2tbVVWVYbVajb///e/B6KJfXXPNNcbPf/5zt23XX3+9MXnyZMMwOs94JRlvvPGG6+e2jGvXrl2GJGPz5s2uNu+9955hMpmMQ4cOBa3vp+O74/Vk06ZNhiTjwIEDhmF03PF6G+s333xjpKenGzt37jR69eplPPXUU677OupY/eGsnBmx2+0qKChQTk6Oa5vZbFZOTo7y8/ND2DP/q66uliR17dpVklRQUKDm5ma3sQ8YMECZmZkdduwzZ87UNddc4zYmqXON9Z///KdGjx6tn/zkJ0pKStKIESP0/PPPu+4vKipSaWmp21gTEhI0bty4DjdWSRo/frzy8vJUWFgoSdqxY4fWr1+vq6++WlLnG+8JbRlXfn6+EhMTNXr0aFebnJwcmc1mbdy4Meh99rfq6mqZTCYlJiZK6lzjdTqduvnmm3XXXXfpvPPOO+X+zjTW9uoQH5Tnb5WVlXI4HEpOTnbbnpycrC+//DJEvfI/p9OpOXPm6IILLtDgwYMlSaWlpYqIiHD9Qz8hOTlZpaWlIejlmVmxYoW2bt2qzZs3n3JfZxrr119/reeee065ubn63e9+p82bN+uOO+5QRESEpk6d6hqPp9/pjjZWSbrnnntks9k0YMAAWSwWORwOPfTQQ5o8ebIkdbrxntCWcZWWliopKcnt/rCwMHXt2rVDj106XuM1d+5c3Xjjja4Pj+tM43300UcVFhamO+64w+P9nWms7XVWhpGzxcyZM7Vz506tX78+1F0JiIMHD2r27Nlas2aNIiMjQ92dgHI6nRo9erQefvhhSdKIESO0c+dOLV26VFOnTg1x7/zvlVde0UsvvaSXX35Z5513nrZv3645c+YoLS2tU44Xx4tZf/rTn8owDD333HOh7o7fFRQU6Omnn9bWrVtlMplC3Z3vnbNymaZ79+6yWCynnFVRVlamlJSUEPXKv2bNmqW3335bH3zwgXr27OnanpKSIrvdrqqqKrf2HXHsBQUFKi8v18iRIxUWFqawsDB9+OGHeuaZZxQWFqbk5OROM9bU1FQNGjTIbdvAgQNVXFwsSa7xdJbf6bvuukv33HOPfvazn2nIkCG6+eabdeedd2rRokWSOt94T2jLuFJSUk4ptG9padHRo0c77NhPBJEDBw5ozZo1rlkRqfOM9+OPP1Z5ebkyMzNdf68OHDig3/zmN8rKypLUecZ6Os7KMBIREaFRo0YpLy/Ptc3pdCovL0/Z2dkh7NmZMwxDs2bN0htvvKG1a9eqd+/ebvePGjVK4eHhbmPfs2ePiouLO9zYL7/8cn3++efavn276zZ69GhNnjzZ9X1nGesFF1xwyinahYWF6tWrlySpd+/eSklJcRurzWbTxo0bO9xYpeNnWZjN7n+eLBaLnE6npM433hPaMq7s7GxVVVWpoKDA1Wbt2rVyOp0aN25c0Pt8pk4Ekb179+r9999Xt27d3O7vLOO9+eab9dlnn7n9vUpLS9Ndd92l1atXS+o8Yz0toa6gDZUVK1YYVqvVWL58ubFr1y5jxowZRmJiolFaWhrqrp2RX/7yl0ZCQoKxbt064/Dhw65bfX29q83tt99uZGZmGmvXrjW2bNliZGdnG9nZ2SHstf+cfDaNYXSesW7atMkICwszHnroIWPv3r3GSy+9ZERHRxsvvviiq80jjzxiJCYmGv/4xz+Mzz77zPjRj35k9O7d22hoaAhhz0/P1KlTjfT0dOPtt982ioqKjNdff93o3r27cffdd7vadNTx1tTUGNu2bTO2bdtmSDKefPJJY9u2ba6zR9oyrquuusoYMWKEsXHjRmP9+vVG3759jRtvvDFUQ/LJ13jtdrtx7bXXGj179jS2b9/u9jerqanJ9RgdZbytvbbf9d2zaQyj44zV387aMGIYhvHHP/7RyMzMNCIiIoyxY8can376aai7dMYkebz95S9/cbVpaGgwfvWrXxldunQxoqOjjR//+MfG4cOHQ9dpP/puGOlMY33rrbeMwYMHG1ar1RgwYIDxpz/9ye1+p9NpzJ8/30hOTjasVqtx+eWXG3v27AlRb8+MzWYzZs+ebWRmZhqRkZFGnz59jHvvvdftDaqjjveDDz7w+G906tSphmG0bVxHjhwxbrzxRiM2NtaIj483pk2bZtTU1IRgNK3zNd6ioiKvf7M++OAD12N0lPG29tp+l6cw0lHG6m8mwzjpkoYAAABBdlbWjAAAgO8PwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAgpwggAAAip/w/9Al01x5lE3gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "aspace = 3 #A\n", "tot_params = 128*100 + 25*100 + aspace*25*51 #B\n", @@ -307,9 +460,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABS7UlEQVR4nO3deXxU5b0/8M/MZIVshCUhkAiuqIhVFIyiVaRS6rVa6b3VS1uqtv3ZoleltUptta21cHt7tbVFtF6KXUQqrRu2apFVNGEJi6xhJyEhk4SQTNaZyczz+yNkMmfmzMw5Z86cc2byeb9eeTFz5izPnIR5vvM83+d5bEIIASIiIiKD2M0uABEREQ0uDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUGlmFyCU3+9HfX09cnNzYbPZzC4OERERKSCEQHt7O0pKSmC3R2/bsFzwUV9fj9LSUrOLQURERBrU1tZi7NixUfexXPCRm5sLoK/weXl5JpeGiIiIlHC5XCgtLQ3U49FYLvjo72rJy8tj8EFERJRklKRMqEo4/clPfgKbzSb5mTBhQuD1np4ezJs3D8OHD0dOTg5mz54Np9OpvuRERESUslSPdrn00ktx6tSpwM+mTZsCrz3yyCNYtWoVVq5ciQ0bNqC+vh533nmnrgUmIiKi5Ka62yUtLQ3FxcVh29va2rB06VIsX74c06dPBwAsW7YMF198MSorK3HNNdfEX1oiIiJKeqpbPg4dOoSSkhKce+65mDNnDmpqagAAVVVV8Hq9mDFjRmDfCRMmoKysDBUVFRHP53a74XK5JD9ERESUulQFH1OnTsUrr7yC999/H0uWLMGxY8dw/fXXo729HQ0NDcjIyEBBQYHkmKKiIjQ0NEQ858KFC5Gfnx/44TBbIiKi1Kaq22XWrFmBx5MmTcLUqVNxzjnn4PXXX0d2dramAixYsADz588PPO8fqkNERESpKa7p1QsKCnDhhRfi8OHDKC4uhsfjQWtrq2Qfp9MpmyPSLzMzMzCslsNriYiIUl9cwUdHRweOHDmC0aNHY/LkyUhPT8eaNWsCr1dXV6Ompgbl5eVxF5SIiIhSg6pul+9///u47bbbcM4556C+vh5PPfUUHA4H7r77buTn5+O+++7D/PnzUVhYiLy8PDz44IMoLy/nSBciIiIKUBV8nDx5EnfffTdOnz6NkSNHYtq0aaisrMTIkSMBAM899xzsdjtmz54Nt9uNmTNn4oUXXkhIwYmIiCg52YQQwuxCBHO5XMjPz0dbWxvzP4iIiJKEmvo7rpwPIiIiIrUYfBARESU5n1/gcGM7Xt54FD1en9nFiclyq9oSERGRcv/a24AHlu+Ax+cHAHh8fsy76XyTSxUdgw8iIqIk9u0/V0me76u3/jIl7HYhIiJKIXnZ6WYXISYGH0RERCkkL9v6nRoMPoiIiCzK7xf4xrItePzvnyo+Jp8tH0RERKTVvlMurK9uwoqttYqP+f3Go+g9m3xqVQw+iIiILMrnD58HNNbcoK1dXvx1m/JgxQwMPoiIiJLEJ0ea8ZmfrcaqXfVR96tp6TKoRNow+CAiIkoSc/+wBW3dXjz42g6zixIXBh9ERERJQqYXJikx+CAiIiJDMfggIiIiQzH4ICIiIkMx+CAiIiJDMfggIiIiQzH4ICIiSgKxJhdLJgw+iIiIyFAMPoiIiJJACjV8MPggIiIiYzH4ICIiSgIp1PDB4IOIiIiMxeCDiIgoCXC0CxEREZFGDD6IiIiSQOq0ezD4ICIiIoMx+CAiIkoCKZTyweCDiIgoEd79tB6zl3yC+tZus4tiOQw+iIiIEuCB5TtQdeIMnnx7ry7nEymU9cHgg4iIKIFcPV6zi2A5DD6IiIiSAHM+iIiIiDRi8EFERJQkbGYXQCcMPoiIiMhQDD6IiIiSAHM+iIiIiDRi8EFERJQEOM8HERHRILH/lAu/+qAaHe5es4uSMtLMLgAREZFVbTjYhLl/2AKgb7Kwn90+MaHXe271QWSlO/CdG88Ley2Vcj4YfBAREclo7/EGAg8A2FvvSuj1nK4e/GbNIQDAvdPGITPNkdDrmYndLkRERDI63T5Dr9fjHbieXCtHCjV8MPggIiLq99zqgxj3+D/w1601ZhclpTH4ICIiAnDI2R7o9njs77sTco11BxrxwPLtaOtSv9icSKGkD+Z8EBERAXD1JH40yz2vbAUADBuSgafvSGzyqpWx5YOIiMhgTleP6mNSp92DwQcREREZjMEHERFREkihlA8GH0RERFaTSoGGHAYfREQ0aHS6e3HQ2W52MbRJoYCEwQcREQ0an//NRtzy3EZ8fLjZ7KJElUqLyMlh8EFERINGbUs3AODdT0+ZXBL1UikgYfBBRERkMcz5ICIiItOlUkDC4IOIiAx18kwX5r++E3vr28wuiipGTm+eQnGGLAYfRERkqHnLd+CN7XW49flNZhfFsuQCnVQKSBh8EBGRoQ42JOdQV5vNZnYRUgaDDyIiSqj9p1z45h+3Yv8pl9lFSRpyrRyptKptXMHHokWLYLPZ8PDDDwe29fT0YN68eRg+fDhycnIwe/ZsOJ3OeMtJRERJ6j9eqsCH+xvxHy9WmF0UsgjNwcfWrVvx0ksvYdKkSZLtjzzyCFatWoWVK1diw4YNqK+vx5133hl3QYmIKDm1n12qvt2d+CXrU4VcI0fqtHtoDD46OjowZ84cvPzyyxg2bFhge1tbG5YuXYpnn30W06dPx+TJk7Fs2TJ88sknqKys1K3QRERElLw0BR/z5s3DrbfeihkzZki2V1VVwev1SrZPmDABZWVlqKiQb25zu91wuVySHyIiIuNFb1vQnHOh5TARfmgKpXwgTe0BK1aswPbt27F169aw1xoaGpCRkYGCggLJ9qKiIjQ0NMieb+HChfjpT3+qthhERDSIHWhw4bXNNZh2wUh87pIis4uju1SaSl2OqpaP2tpaPPTQQ3j11VeRlZWlSwEWLFiAtra2wE9tba0u5yUiotT1+V9/hD9WnMC3/rQNVSdadDpr9KG0mofaxjFCN7i1JZUCElXBR1VVFRobG3HllVciLS0NaWlp2LBhA55//nmkpaWhqKgIHo8Hra2tkuOcTieKi4tlz5mZmYm8vDzJDxERkVJ76xPTXW9mZZ9KXSxyVHW73Hzzzdi9e7dk2z333IMJEybgscceQ2lpKdLT07FmzRrMnj0bAFBdXY2amhqUl5frV2oiIqJBQER8ktxUBR+5ubmYOHGiZNvQoUMxfPjwwPb77rsP8+fPR2FhIfLy8vDggw+ivLwc11xzjX6lJiIiw3l9fuyqbcWksQXISEv9OSrNbH1IoThDluqE01iee+452O12zJ49G263GzNnzsQLL7yg92WIiMhgP1u1D3+uPIG7ri7FotmTYh8QQSrlLmgV6w7053oEB0CpdNfiDj7Wr18veZ6VlYXFixdj8eLF8Z6aiIgs5M+VJwAAK7bWxhV8JItUquytJvXbzYiIyFJs8Qz/MFAi11KJdQeE3KMUioYYfBAREZGhGHwQERHJMLqlQZLfIWS2pVBHEIMPIiKyjPf3nMJ/vlwJp6vH7KLoJ3ViBt0w+CAiIkv45HAz7v/Ldnxy5DR+8s5eE0qQoLVdNFy9v5UjVdd2YfBBRESma+v24j//b3Pg+Zkuj4ml6aNbZa8wv1ak6rhaGQw+iIjIdK5ur9lFQMLWdolDqsYjDD6IiIhkGJ3gKSI8TkUMPoiIiCxKsqptCiV9MPggIiICENreYIWhtqmKwQcREZHBlMYWHO1CRESU0qQJpaF1feK7PYInVU+hSEMGgw8iIiIZRq/tEmuG01TC4IOIiEgBM4bapioGH0RERDJ0a3RQeCK5obaCq9oSERGRHlIojtCEwQcREcXN70+96tT46dWDH/cnfQRtS6GQhcEHERHF5S+VJ3DF06vx6clWRfsnTyVqcMJpinaxyGHwQUREcfnRW3vQ1u3F/Nd3mV2UhDJjhlHO80FERBSF0rEgNsV7msvMGU5THYMPIiIiBfQcaqt4hlOuaktERJTKRJRnBlyda7sQERFRoihtQ5EmoaZORMLgg4iISIZudb3iSca4tgsREVlMh7sX7+9pQI/XZ3ZRBgWjA4BYa7ukUjjC4IOIKEl899XtuP8vVXjy7T1mFyUuVv1WH6ulI5W6PczG4IOIKElsPNgEAHh920mTS5KaQkMLM2MNEfIvkFpJqAw+iIgGMVePF0++vQfbjrcYds1kmecjlOahtjKHpVAcoQmDDyKiQexXH1TjTxUn8OUXK8wuiulCWxbMnGSsv4tH2tWTOiELgw8iokHsaFOn2UUAYH7FLyeRuSnJ2fajHwYfRERECE8oDQ+IEhsRSYfaSv+VK08yY/BBRESmC21l0HEmcxVlMBdnOCUiIjKQFSvb0DKZsbZL8I4WvEWaMfggIiJDJcs8H4ZPMhblWaph8EFERLqIp7q0YlWbyOnVta3tok9xrIDBBxERGUpung8rzB4a2tJh/Kq2qRloyGHwQUREutDybX5gW8hzC1S+foMLITejh3RtFwvcFJ0w+CAiGsRSqUKLW4y5RvRsnRnsd53BBxFRkjvd4caa/U74/OZWaUqvLt/tErKPJYba6nQ/Fb6XmKvaplDEwuCDiCjJfeH5j3DfH7fhTxXHVR9rnXVWok/wZYZEDrW1yl03C4MPIqIk53S5AQAf7G0wtRzJXqGGD7U1vARBj0RYGawQkOmFwQcREZnOCt0uoVKpsrcaBh9ERGQ6K9TzYUNtExh9yJ1ZPucjvDUkFTD4ICIiQnhLh9H5u6naxSKHwQcRkUU1tbvR1uU1uxi6k53nw4KVrZEtIZHLEHx9wy+fMGlmF4CIiMJ1uHtx9TMfAgCOL7rV5NIknhW6FMJKkMDp1WV3S9EJxeQw+CAishCfX+C9PacwJMNhdlESRsk8H1b4lh9aBDOG2lrhPiQCgw8iIgv5S+UJPPXOXrOLMSiFdqsYXfFzbRciIjLFxoNNYdussOhaollhqG3oXTZ6bRd5qRmQMPggIrK4VKp0IglP7jSpIMFlCH2utVAygZTsUFttZ09KDD6IiIgAmYXlDF7VNtbaLikUnjD4ICKyuGSpcuIppxW6XUIl8r5b4O2ZisEHEZHBnK4evLD+ME53uBXtH+0beLPCc1iJVb/Bh5XL8EnGBs/aLhztQkRksK8v3YJqZzs+PtyMV795Tcz9o9U5//lypX4Fi1OqfZsPTTjVc6jtYMeWDyIig1U72wEAHx8+rWj/aN94Dzo74iqLGa0QSub5SHgZ5JJAEzXXiMx5ZE8tk/ORqhh8EBFZnFW7KUIpLaXs9OoGv0e5yj0s+DCmKLLX638sTThNHQw+iIgsLpHfguVaIcxgyRlOwyYd069Q1rjr5mHwQUREulBaoVol4AkVNq+H0deXdLv0J5yKsG2pQFXwsWTJEkyaNAl5eXnIy8tDeXk53nvvvcDrPT09mDdvHoYPH46cnBzMnj0bTqdT90ITEQ0mKVTnRBS+joopxZAYDPfdLKqCj7Fjx2LRokWoqqrCtm3bMH36dNx+++3Yu7dvHYJHHnkEq1atwsqVK7FhwwbU19fjzjvvTEjBiYgGiy+98DFe+fiY2cWIKb55Poyd4VQ+4dS4tg/5GU5F2OupmvOhaqjtbbfdJnn+zDPPYMmSJaisrMTYsWOxdOlSLF++HNOnTwcALFu2DBdffDEqKytxzTWxh5MREQ12chXMgYZ2/GTVvgRdz/gqzQoJtLIJpyHP/WETn2lsjrFAK47VaM758Pl8WLFiBTo7O1FeXo6qqip4vV7MmDEjsM+ECRNQVlaGioqKiOdxu91wuVySHyKiZNPU7sau2lazi2GqeOpYdrtEmF49wuvJTnXwsXv3buTk5CAzMxP3338/3nzzTVxyySVoaGhARkYGCgoKJPsXFRWhoaEh4vkWLlyI/Pz8wE9paanqN0FEZLarn/kQty/+OOkCEDOSP5XM86GmotXrHYQPtTV4+G+UZ6lGdfBx0UUXYefOndi8eTO+853vYO7cudi3T3tz4IIFC9DW1hb4qa2t1XwuIiKzVR5VNnFYIpg9iiSeeT6MuK7q8yZwoTmlvynpNVMnIFE9vXpGRgbOP/98AMDkyZOxdetW/OY3v8FXvvIVeDwetLa2Slo/nE4niouLI54vMzMTmZmZ6ktORGQiT68fHx9pxtXjCpGTaY2VKqyQS6Fd6FTm5pchkXdTNuE0KNBIpS4WOXHP8+H3++F2uzF58mSkp6djzZo1gdeqq6tRU1OD8vLyeC9DRGQpz314EPcs24pv/2mb2UWxjHjm+Yinsk1Yt4teEYBep0mhgERVuL5gwQLMmjULZWVlaG9vx/Lly7F+/Xp88MEHyM/Px3333Yf58+ejsLAQeXl5ePDBB1FeXs6RLkSUcl7f2tdF/MkR87pZ9GCV0S5hg1xVFMuobpdES80OFnmqgo/GxkZ8/etfx6lTp5Cfn49Jkybhgw8+wOc+9zkAwHPPPQe73Y7Zs2fD7XZj5syZeOGFFxJScCKiWBpdPXhp41HMmVqGc0fm6HrudEdiJoi2wCCPQUF2no+w5+avast5PgAsXbo06utZWVlYvHgxFi9eHFehiIj08MBrO7DlWAtWbqvFpz+Zqekcf9h0DH+rOom/fHMqCodmBLanp6VGmKBnkmp8k4xJn6up57W8AyWtGoYnnHJVWyKi5LezphUA4Orp1XyOn727D/tOufD8mkOS7Ylq+Ris4pnhVK962uzF7eTWcZFuM7Y8icT/PURECrh7/ZLn6XZtH591rd16FMeSkn9hOWnt7k+l2t5iGHwQEWmgtdvlu69u17kk8bFqwmkiul3UdpvodmcU5JcA8vkdcivdpgIGH0REGmjtdjnsbNe5JNahZ85Hortd5BeWi35iMxJOUxWDDyIiDZQGHw+t2IG7f18Jf+gqZQlg1e6MUGaVU27tlKj7J7BVSO4OyK7twtEuRETUL0Nh8PH2znoAwP4GFy4tyU9kkTRVlnoGAoq7P2S7XbTPcKr8uupeN3eej1QKNcKx5YOISIN0h7pKO4W66xMjjvuTsEnGQp+b8EvkqrZERBbg9wv8c/cp00eNKOl2SaUEQSWUvlvZ6dVDnyfg1sX6fcQz3Df6iRVtkl4/xf90GHwQUVL52/aT+O6r2/HZX64ztRyRgo/V+5yBx8kQe6RC877S+xy8m5JuHSsMtZUsNqfmd2V+0aNi8EFESWVDdRMAoNeABM5oInW7bDtxBseaOwFY/vNfd/Fkj8Qzw6mWFiZlCafGGkxruzD4IKKkEjrZVzSJ/FYf3PIRWvnVn+0SssI3ZytSknCamG4Xla+HbDBlbZeIT1QcZ0EMPogoqXh8yoOPREpPG/j49PrkP+qTIfawytouqq4Tmpuh4RxK4ohEvh+lQ21TFYMPIkoqnl6f4n0TOZ9E8FDbSAFRKuRTJIJswmlc3S4K94vx+zCi9WXgWtG3BsqiMQfV6snODD6IKKlEamUwmsM+UDt6I3QFGf35b/YkY/HN8xHyPMq903pf1Xa7hHabaa7Qk2PuN0Mx+CCipOJRkfORSMH1SaQqyeJfPgEkZ+tMjFnQlZ1DScKp0ZOMyc1wqnFVW6v/7TH4IKIwT7+7Dz9dtdfsYshyq+h2SSTp5E+RGtEtXgPoLK55PsKSO3UokEph68sYX4RBg8EHEUm4erxYuukYln18HC2dHrOLE8Yq3S5K5oMyfnpua9ybWOLvdom/O0RRwmkCf4GyCacyj6V/Z8rLY/W/BAYfRCThC6rcfSbPpSHHKt0uwRVBpCG1srNYJqg8WpmdJxJgwDDSmDkfMY7Xc6it/AynwY+t9peiLwYfRJRU1MzzkUhC7mtqiME2z4dFwpiIYo52Cfl96ZZwGsefgda1Xaz+p8fgg4gkEv2ZtaeuDTtrWzUfr2aorVHUdLtYrYLWs6smnjOpWdU2LDdDw4XNSDiNubaMZKhtamPwQUSG6fX58W+/3YQ7Fn8MV49X0zmC59RobO/Rq2iqBVckEVs4Ur0G0UjJPB9Rcz5C5+NQeKPVdrtY4denda05q+f/MPggIsMEr8fS1qUx+AjqdvnS4k/iLpNWSprDrV4BmMUK90VZwqm+1ww+X6wZTi1wixKKwQcRJZXgHNi6s2uomFOO2C0fFszXTSijFpbT2u0SM2AMG2pr/i9QOs+HitEu5hc9KgYfRCSheQlvRefW9XSmUrIOh9EjFrSMXDFjtItst0vo8wSMflGTc6G2DIqur+J1KwQ+icTgg4gk/Als+k2lD1Ql70TTzJsajrEKxUGABd6llnk+NA+1tYWfT36obfhsplpzPqyOwQcRScT6gIzv3Dqf0ETB7yXiPB9J8H6tEAgA6mY41aPbRct5U33uDSMx+CAiieCPV73nqUiteS/Cv6WG7aFkRIyOzA4k4sr5CH1uwmiXWGWKl6rRKv0tHxpPYPVAicEHEUn4ZZp+9Tu3vuczU/C98SmY4dTidYHpzFzELbBNwT7aLqbTeVIIgw8iklDSnaD95PqezkxKpsJO1f76SJS+x3iTXDVPMqa65SNxCdexhtoKmY1c24WIUlZiWz6s/pGoXPB78UWY8V3rMEkjmTHaRb4SVZHzoUMZ5M6vx8ypA8eGHzyYZjCNhcEHkUY9Xh/+/cVP8Oy/qs0uiq6UDCHVfG59T2cqJbkxwd1MqdTllAh6VvwRrxFrbZewobbG/tLkglWtXXcWjXUDGHwQabRqVz22Hj+D59ceNrsoutK6hLcSiWxVCdXp7pVMxa43ZaNdwsctW61O0PN3rLQNJf5uF21BQrwJp2qG2srmlMS4/mDqpmPwQaSRVVZX1Zt05s5EnjuxH6//80FiW6SCK21/pG6XBLYiyTGjCyVYPPN8hFf0yq+j18JyVhxqq/VvyOyRT7Ew+CAiieCPrLt+X4GXNhxJyMkT/dG462RrYi+gMjG3fw+rrWprFcZ0u6jdX3shYh0ZM+HU2rFD3Bh8KOT3C7gtuJQ3kd6CK1Kny42F7x3Q8dzy10lGynI+gltHrPl+zW4t0SIsUNFwDtmE0xjXiZeWbhWtk/5Z/b/XoAk+hBDw+vyKPgB8foEP9znhdA0s1/3o3z7FlT9bjSNNHbLH9Hh9ktU2rWT/KRfe2VVvdjEoSSSyaVmaUJewyxgi2gRiqT41diTxTTKmfLRL2AJwCm9uzL/tkNfjiRcl11J4Y0SUZ6kmzewCGOX46S7c9Kv1gecOuw0Omw12O87+awtsO93pCex3/qgcZDjs2HfKBQC46/eVuOqcYcjOcCA7ve+np9eHFVtqMWxoBr5/y4UYPjQTOVlpyM1KQ15WOnKz0nD8dBd+t/YQvnfLRbh4dJ6h733Wbz4CAIzIycC1540w9NqxfHy4GQBw3fnWKtdglsigIPjD3KpDT5UKfi+hea39FanWkQpG0jM3IJ4zJUO3i+a1XSKcL+x1ubVdIrwe+1rWNmiCD19ICOvzC/gggBg9KYcbpS0dTe1uvLenQXbfpnY3Hvv77qjn+3B/IyaOycOwIRkoHJox8O/QDBQOycCwIekYNjQDI3IyUTg0Aw67Dcs31+Anq/ZiZE4mHp15EW7/TAle/ugoxhQMwa2TRgMAGl09cNhtGJ6TKble8B/rnro2SwUfne5ezPm/zQCA/T/7PLIzHGH7/OBvu/DpyTa8Ne86ZKWHvx6qtqULW4614PbPlCDNMWga9nSVyN6B4JZHq384xhJc/tDPl/6niVwhWL5MyXtXVXUpaJxeXXKMXMJpzA0qzq/90EFh0AQf40cMxc4nP9cXdAgBv7+vqdTnFyH/9n2QDBuajlNtPXB7/fD4/Oj1+dHh7oWn149urw/dHp/k3+01Z5CZ1tcS0t7jRbu7F+09vWjv8aLHK/1atKfOpajMdhswPCcTTe1uAEBdazce/utO7D/lwksbjwIAriibjux0B2b+eiOGZKSh/Lzh+FvVSeRkpqFiwXRJRWK1vt1Od+/AY0+vbPDx+raTAID11U34/MTimOec/r/r4fUJtHV7ce+08foVdhAxqgJLdM6H3qcP/dIr/ZYqP/RT2tKjb3kGM80Ly8U51FbVsZImi/BtsgmnMo+1dt1Z/e9t0AQfDrsNBUMyVB0zOj9bl2t7evsCF78QqDvTjZYuD850etBy9udM19l/O71o6RrY5hcIBB7B+gMPALh20VrYbX0fcme6vPhbVV9l3eHuxQPLd+Ce68YF9m3r9oady+vz44k3d2PimHx8vXyc5LVujw8ZaXY47IkJWoKDsm5P9CYopRWV19e336bDzYYGHyu21OArV5eqapb1+QW6PL3IzUqH3y/Q3OHGqLysBJZSmUjDRnU5tyQBM3HXSYRoSY6hrUVy7TtWrwz0EM88H2pWtdVKyFbvwWWIXqZ4uwqjX31wGTTBh5ky0uwoTOsLfEaEdItE0uvzo6XTg8Z2N5o73Khr7cb+s3knTpcbq/c5AfT9B43UTL7hYBM2HGwKPH9zRx1Od3pw7oihGDdiKMaPGIpPT7bi9W0n8fq2k7h7ShnSz3ZVHHS2499+uwl3X12Kn94+EUDff7y3dtZhyvjhGFMQf2DW6Rlo+ej2hgcf3qCOdGu12YR7/I3dGJGTiRmXFCk+5q7fV2Dr8TP4+PHp+OX7B/D2znosnXsVbr5Y+TkSIZEtEomcwCxUIiovieCcjwiVlJHvVys9W0QVj+BQsGe0P8OwUSkKrxv7mvKJw5rOpaVUMi1l2vOGrPn31o/Bh0WlOewYlZcV85uwp9cPp6sHzR1u1LR04eSZbnxypBn1rT3wCwGnqyfQwlDX2o3XttREPNcTb+7GZWPyMX5EDpZsOAxPrx9/rDgRCD7+XHkCT769F2MKsvHx49MDxx1ubMfP/7EfD06/AJPPGab4PXYFtXZ0ybR89MgEJEqZEaxUO9tVBR9bj58BALy7qx5v7+wbjfS7dYdNDz4SycgZThNNMslYpNEuMtsofppbIFR2g+md/5TsSdZ6YvCR5DLS7CgtHILSwiG4oqyv4p930/mB14UQaHf3ou5MN/bVu3D8dCeONnfieHMnjjV3Sir9/haQUA+t2IELi3Lxx0+OA+gLYoQQgS6Gh1bsxN56FyqPnsaBp2cpLnu3JPgYaAURQuAX/9yPUbkDgZdFp0hISQlt+Qh+nOS/U+mEUPLBh5YZXeMJnLW0YpjRIiPf7RKyj5q3ouGPSUnCaVyTjGlq+AhPUJaboj9R1zcSg48UZ7PZkJeVjrzR6WFDfIUQaGp341RbDw40uHCkqRNHmzpxtLkDNae70Hu2xu//Vh7stt9twkVFeZhQnIu99X3dQaGJtbEEBxzBgchHh5rx8kfHJPuqbQUJ/uASQuDkmW6MzM1UNGJmsEvkh1a0uTGsLrQyjLaqbbzJgslKabwgP7268i4Prd0uan8H4QFRvENtlV8vyf57qMbgYxCz2WyBrp3LSwskr3l9frT39GLr8RYcbuzA4cYOHGpsD4zU2VPnkh21c8+yLZg4Jj/wU5KfFfE/bKRuF7kk2x6Vs8sG/8d94q09WL65BsOGpGPN925ETmYannx7D264cCTys9PR5fHhcyq6S1JdIoMCI2c4TeTslKHPw4fahud8DIboQ7fRITruG+k42QAoxnnN7jYx4h4ZhcEHyUp32FE4NAMzLy3GzEsHtvv9AjUtXTjQ0I7qhnZUO11nu3O6AADrqpuwrnogybVwaAYuLcnDZWPy+37G5mNMQTZsNpsk4Ahu+ZD7PxNrNEw0u0+2AegbDXTI2Y6Dznas2FqLFVtrA/tseeJmSTePFglPcDRIIru4YrUErD3gxPkjc1E2fEjiCqFCtMpGOtolUs6HTDO6bqVLbWr+P2nq4lBwjN7BhpahtqmKwQepYrfbMO7saJngeTfcvT7srXdhT10b9tS1YXedC4ec7Wjp9OCjQ8346FBzYN+RuZm4sqwA3UHdNMFdMMGPB86vrksn+IMreFRNl9cHpyu8ZaW1y6s6+NAzM95aEtnyEZxwKr3OpkPNuPeVbQCA44tujftaegSDUZv+o7bihLd8WHVosVXm/1Ezd4fWScZizjAa47kakvL332IN3XCa5/mwePjC4IN0kZnmwJVlw3Bl2cBolx6vD9UN7dhT3x+QtOHAqXY0tbvxwV6n5PiXPzqGYUMzMGV8Ic50hs9HoiTnI7jp+8P9jWhqd2Nkbqak1aTb49PU3BrresHe3lmHVbtO4bmvXI7crPTA9tMdbhx0dmDK+MKEzZ0SzO8X2FvvwoTRuYEh1IqOM6rlI+Q62060JO7CGimtqkLv2cAMp+F7J/I3H2+FE5xInkiyCadqTqDD36jcKUIDYqPzkqIlMacaBh+UMFnpDlxeWiDJJ+nx+rC7rg07as5gR01rYKr6utZuPLRiJ4C+ETyhlHS7hC7sd9fvK7DmezdKZlKNdB5vaMagAr4I2fn97+PFDUfw6MwJgdf/8+XNqHa24/7PnofHZ01Aov1u3WE8u/og7vhMCX591xWKj0vs2i6RK2wrCq4Awmc4HXgcumClbLeLRSuT0MX+4ok94kk4jUfCZjiNo5hKkmrVnoc5H0QaZaU7cPW4Qlw9rjCw7ePDzVh7oBFbjrVgb32b7OrAW4634IO9Dbj2vOGS1oRg7pCk1CNNnQCkE5h1RWhBkZvkLBZfjHb0lpAWnGpnOwCg8uhp1dfSYvG6wwCAt3bWqwo+DJtkLAkSTqNNjx4150Om28XidQGA+MsYXzeF8qP1GO2iKOdD4Xllj9WQwGH1rhI9Mfgg0113/ojAqrbtPV5sr2nFql312H/KFRjG++nJNvy/P1chzW7DlWXDcMOFI3DDhSMxsSQf9rNdGHJBi6fXH5hyHQC6ZfJJAG0TmmloLAmI9o3abImd5yPJWj6iVAbRWnH6n8vluFj5bfeV0frdLnr8iWqZZTXuobaxEk5lgl2ts+Ra+e8MYPBBFpOblY7PXjgSn71wJIC+D8MNB5uw7kAjNh5qxrHmTmw53oItx1vwq38dROHQDEw7fwRuvngUzhuZE3a+0G6Wbo9f9oNLy2iaWC0f0Y+V/2iwRByS0G6XoMtYvV0YKhJOw7pdwgONJHi7hjGv2yVGFk/Yy/K/V0XXirFtsP85MPggS7PZbLjxolG48aJRAIDali5sONiEjQeb8MmR02jp9OCdXfV4Z1f4RGhA+GJ6Xd7esIoCAHpijKbpH81z+diCQLKompaP0JYOn+QbsfLzqKH1tIlNOA1634m7DAD9W5TCcj6CHkdqLTI64VTLyJXgY+L9ncT13iLkUMnvKt/NFfMSMWp/NROdJYK0ePEFsFYPdhl8UFIpLRyCr15zDr56zTnw+vzYUdOKddWNWLPfiYPOjrD9+/Me+nV7fLIVRU+Mlo9HV36Kd3bV47HPT8B3bjwPQHjLR7T/7L0hNXqklg8rkLs/WkZBNLb34Nl/HcScqefgsrH5Z88d+TpW/LCMNjonOJAKXVhu4L0lPsjUU7xljCtHQs0Mpwbdy3i6IOVaSZKhtc8oysffEVlMusOOKeML8djnJ+Bfj3wWGx+9CT/+t0tQkj8wX8dft9VKjmnv6UW3J7zJItYMqv0tKy9uOBLYFlrh9IYMfwmuq0NH0wQHI4nK+dB6WrmPR6WxUpenFxsONsHT68fjf9+NFVtrcdvvNg2c24AWHz0prXwijXYxckZXreQmQjOlHPFFLrocomaukYSQ+f/BeT6ILK5s+BDcN2087ps2Hq4eL97f3YD39pzCx0dOB5JR39xRh3RHeLWsNOcjOFAIbc3ojZID4u0NafkIHadrIXKVpF8IOBSEMw8u34E1Bxpx73XjUd3QHva6kq4KveiTlKjs/KHBWbwVh1ksGh+FCS2mlmIraYXQOx6Kdb7BlCPE4INSUl5WOv7j6lL8x9Wl8PsFWro8WPDGbqw70CgZ/dJPy1Db0G+7ocFIMG9QYCKEMTkfmsmUR2mgsOZAIwDgL5UnMDI3M/w8fgu/bxnRp1cP6naJuLZL8PtVmJegpoAWE08jnqpv9Rr/eGIdFhbU6PzLiNaNF/EYrXPFWPwPid0ulPLsdhtG5GTi5a9fhW0/moGFd14W1vrxwvojeGjFDrR1hc+uGiz4qLCWD58/Yi5HcLdLr1+6X2j3jdnkcz7C93O6evC7tYdkFwIE5LuT5BLqou1vtuAShq1qG9TQFT7PR/jxRjC7qT2uloI4DlYe2AV3McUuQ/jfqPI/Utnp1VUcY61PBf2pCj4WLlyIq6++Grm5uRg1ahTuuOMOVFdXS/bp6enBvHnzMHz4cOTk5GD27NlwOp0RzkhkrIIhGbh7ShkOPfMFVC64Gd+58TyU5GfB0+vH2zvr8YXnP8LSTcfQ2uWJeS65lo/gIEMSqAS1tvT6hCRwsVoXjFz8FPxN/sN9TtS2dGHuH7bgV/86iHmvbldx7oGTJ3qtE73XdolWMYXVfYGcj6D3a7Egs59ktItBRYx3PRmjcjOiJRnHPjj8sZDbqLIMWi5vRaqCjw0bNmDevHmorKzE6tWr4fV6ccstt6CzszOwzyOPPIJVq1Zh5cqV2LBhA+rr63HnnXfqXnCieBXnZ+Gxz0/Ax49Pxx/vnYL87HTUtXbj6Xf3Ycov1uCRv+7E1uMtET9wwls+RMQF8DxBQYnH55cEHNG6a+Kh9axy77e/iOuqG/HNP23D9b9chwNnczq2HFexJkuc3+yMHi0Qtdsl6KWIo11kgherVQpmJJzqNfW46uvG6PYIH3Fj3t9bqo+MUZXz8f7770uev/LKKxg1ahSqqqpwww03oK2tDUuXLsXy5csxffp0AMCyZctw8cUXo7KyEtdcc41+JSfSic1mw2cvHIlNj92Et3bWY/nmGuw/5cKbO+rw5o46nDdyqGTffqHfZHv9fknLR/CroS0fPgt9I+5w9yInc+CjQC4W6u8m2nw0vsXf4h39YfQ8B1GHewY9VtLtkgx1SbxljCvnI55ulwQdE1/CqWx0M/BQw8nV/f1b+w8urpyPtrY2AEBhYd86HVVVVfB6vZgxY0ZgnwkTJqCsrAwVFRWy53C73XC5XJIfIjPkZqXja9ecg3/+1zS8Pe86fOWqUmSnOwJrxAB9Q0mPNPXNJxI6tLbXJ+126Q16HLo9eI6QRLV8KKkIPtjbgIlPfYDffHgoaKtczoc+ZZRON67+eONzKJS9GKkbIBkmGQsWb2uUUb8frd0usXZLdHdOrE4X9Z0yyUtz8OH3+/Hwww/juuuuw8SJEwEADQ0NyMjIQEFBgWTfoqIiNDQ0yJ5n4cKFyM/PD/yUlpZqLRKRLmw2Gy4vLcB/f3kStjxxM56+/VKMOjtyo8frx83/uwH3LNuCw03SSc16/UIypDZ4VI2020Wa89EbzyIxcfrhG7sBAM99eDCwTT7n4+yDOGtOaUtAaBN37OONX+J84HrhM5wG5e2EzvNx9rVkyPkIpiXI1OtthZ5GzQyniq+hslsjrpaPeFs2AgGstm4xq/+1aQ4+5s2bhz179mDFihVxFWDBggVoa2sL/NTW1sY+iMgguVnp+Fr5OGx5Ygb+/p1yzLi4CDYbsK66CTtqWiX7en3+sNyOfpJuF79f8lxu6K+ZIs3zofe5tTT4GB58BD+O8q04fKht+PGWrw000u1taQhGB8qQoLwpnf/epDknKfoHoZCmeT4eeOABvPvuu9i4cSPGjh0b2F5cXAyPx4PW1lZJ64fT6URxcbHsuTIzM5GZGT4fAJHVTD6nEP83txDHmjvxx0+O4/VttegKmpysrrUbpzsGhp16e+W7Xby9fkklGilJ1Qiyw2FlWz7UfVBGrAyEgn3QN5Kof7XiWGWLRI/RLnKr0sq9FnZ/5Ob5kFmrwwr0XNslHmqurccIENlujwi5O/FeS8sxgb8XjXkiVo9tVLV8CCHwwAMP4M0338TatWsxfvx4yeuTJ09Geno61qxZE9hWXV2NmpoalJeX61NiIpONHzEUP/nipahYcDP+a/r5ge07alox5/82B557I+R8eP3Sbhd3jKndjRZ1no84P9CUtnwoWajNENHyOoIeJ3PCadQhw0qON+GNhV5RUxEUHKN7y0eMeUYGE1UtH/PmzcPy5cvx9ttvIzc3N5DHkZ+fj+zsbOTn5+O+++7D/PnzUVhYiLy8PDz44IMoLy/nSBdKOfnZ6Zh/y0V45HMX4u2d9Viy/giqnQNTip9o6cLx5k6MGzFU0rUSOhmZJ6jlQ+3ibdHo+eGmX7fLwONoH+yRAhNVfd46FFnum6jc+UPL2z8HjJAJtiw4l9oALcGHhsvIJcYaEcPEnOFUx4RTbfkz4YGg1gDW6sGNquBjyZIlAIAbb7xRsn3ZsmX4xje+AQB47rnnYLfbMXv2bLjdbsycORMvvPCCLoUlsiKbzYY7rhiD2z9TgnXVjXj877vR2O7G0aZOTP/f9bjt8hKcNzInsL9fSLtkPCZ2uyjtYlGbnxFp1IXSheUiBTtGLwYcfZKxAWELy8kdb/nqQFsZtY1akmtdUxNYar2X6pI3dR/torELJRWpCj6U/MKzsrKwePFiLF68WHOhiJKRzWbD9AlF2PJEEapOtOC3aw9jfXUT3t5ZH7Zv8Cq6wYmpejbzav2GLTfzaGjlqlW0eT6CG30id7sYnXAapZk8Ss6H7FBbI77ZxxngJEuFGN7tok/Bw84bx/2UzSmJ8brcvnLDtVMB13YhSoDJ5xTilXum4N0Hp+ELlxWHJT9uP9EaeOz2DtT2Vhj4Ip+Ip//Z1Ywe6Wd0y0e0YElE2C94X7nKxgK/Yl3p1aJjRHJnzBlOde12CXqssIR6BqtWH03DVW2JEmjimHy8MGcyDjd24K0ddfjdusMAEPgXkLZ86NXCAGj/ME/sUFtl54yY86GiHPqs7RL5a6eyYCk42LJmZRDvaBfd5vlQk8+g8Zpq8yf0/o1pW+XY+n9DWrDlg8gA54/KwfdnXoRNj92Eu6eUSlbVPRo0WVmiZjtVRWEeiBaSyjjafhHug9FDDaM1eUcbahut2yVWTBRPBaNlhtNUqNz0m+hM/vcY77mUnkfPdXas/ptk8EFkoLHDhmDhnZOw/tGbcMslRQCAM13ewOvuXp9uFYDmnA8dEk4jfXAqnWQpcsKpeR+p0WZkDZ9kLLyTRfk3XfMkz7VDu8A0dGsoSjjV945oG8oc9Fi/opiOwQeRCcYUZOP3X78KlQtuxj3XjQtsP9rUif94qQJdnt64r6G920XmXAlo+Qi9TvA1QleJDeyjSymUi9ZSEy3nI55kQaPjq3jzDIKPiW9hucg5NdGuqf16sbfFdZkYv/tY14/7PVo8UmHwQWSi4vwsPHXbpdj3s5m4/7PnYUiGA1uPn8FP3tkrmS3VSHLfCBPRGxT64epX8MFr/NouwdcOfS1yq0b/U3+U4yNeU00BdRDvcOCETZyVgC62WO8vLMBUERDpQcg8FpF2SHIMPogsYEhGGh6fNQE/u71vkcbXt53EtP9eh6ff3Qenq0fTObV3u8htS0TLh/Scviiv9TO8VUBy7cgXj9TtoiWfItnyLswobrRWqKjHqWyJiuetyf3tGDnvi9XnlWHwQWQhX548Fi99bTIuG5OPbq8PSzcdw/X/vQ4/fHM3alu6jClEAke7KE3gjDR6RL6pWn5fvUe7hH8rHngceXRO/GVQI96WCzPrq/Auj8iFSdh9jZLXk9Dryp1fJmvZ6gGFGgw+iCxm5qXFeOeB6/DKPVfj6nHD4PH5sXxzDW781XrMf30nDjd2xD4J9M75UHeOSKMuok2vrqS/O+q6Mwq3qxGtyTtaq0bgm66G8ug1t4SWY7RcOvgYpfGe7PTqcYw00XJvlRwTbW4XVdcK/CtkX08EqzegcZ4PIguy2Wy48aJRuPGiUdh89DR+t+4wPjrUjDe21+HNHXX4wsTR+O5N5+HSknzdrx1tno94P8+k815IXwtu7YjY8hHhnPYErZgityrtwHUHHocmyA58aQ3vSop1D/WeVVPNMdqCF/U5H6GBm9o1jcLvUbzvXPtZVF0xRvAjlz8T+vuxeEyhGIMPIoubeu5wTD13OHbVtuJ36w5j9T4n/rH7FP6x+xSuv2AEvnn9ubjhghFhH+Baq2O5D8X+ijbuSdAkXRXyeRJyrwW2y1w/kR/Gkq4Vf+hrweWVvtb/PBlGu0h7XbR02+hUjLCWJeX7Kr5GrITTWN0sKi5sZCuH7PUtHqUw+CBKEpeXFuDlr1+FAw0uvLDuCN79tB4fHWrGR4eaccGoHNw3bTzuuGIMstIdAKQf3n6/gN2uLByJ1vIRaQisUtGG2gYHFmpyTBI5AkbyrTNsbomgMoQtLCck/wIDlUHsScZUFjJSoRQfEl8lGe/tF6IvPye8nldR0Seo2yWuVijZbpfo55YrX7QAVkurkVUw54MoyUwozsPzd1+BDY/ehHuvG4+hGQ4cauzA42/sxrWL1uLZf1WjsV06QibemVP7K9dI3SGhIk4yFvw4rOVD/rF0n+gf2HqLWlkFd7uEBh+yFUd89y7Rx5pFU4dJrBYKjWLlnRh5d+Md9WT1vwUGH0RJqrRwCJ687RJU/PBm/OjWizGmIBstnR48v/Ywrlu0Fp7eoDVj4mxJ6K9b4w5iouV8KBjtokcyrBrR5rCQtHxESDhVMndJ2DVVvJ9oSbvKzxH0WP3hutXIqrpddLiokjPEE+RIdg0MtVXfyhStZcrqXSvRMPggSnJ5Wen45vXnYsOjN2Lxf16JK8sK4A1ZHnfppmNojDFfSH+FH22ej3hzPiSVcdi3zNjdLnLfBhP5DS84zyPSiBYg8qgIuYnIYpVWzbvR45t5tNYoZcfH+Q09cF+0B1LaVo2N3Yqm99+WiPBYrkzxXtnqgQlzPohSRJrDjlsnjcatk0ZjT10blm+pwfLNNQCA//mgGv/7r2p89sKR+PLkUsy4ZBQy0xyS43v9fjjsjggJp+LsPto+0QJ901FyPoJbOyIPtVW2TS9Rv3VGKUOg20Vmm4KLKiaXA6CWlm/j0uPVHyM5PsJ5orZ8GNQCED5tvvIL6RVIROu6s3h8ERWDD6IUNHFMPn7xpcuwYNYE/OPTU1hZdRJVJ85gXXUT1lU3IT87HbMmFqPDPbCGTK9PIDMtel6F1pYPvwActtC8DhG2T7/IuSVyXUJKv/VqGNIZpUsi2ugcv0z00f8wZsKpxgpOroyKzqHhmGQVayr4sG063xzJrytGF6JeQZ1VMfggSmG5Wem4a0oZ7ppShqNNHfj79pN4Y3sdTrX1YMXWWsm+H+534uaLi2TPE2/Lh88v4LDbon7LVjLaJZ6cj/5RFVqpWdW2/5mS4cPxCG/50P0Sqsug+viIcaaKICzOMkS6pF4Tn8Xze4nWetb3N5mco10YfBANEueOzMGjMydg/ucuwuajp7Hq01N4f88pnOnyAgAeWrET6Q4bhg3JCDu2v25VOtoldAbLQM5IlD53RfN8yLbKyO8bVjFHKmwU0Yc5yj8Ofq6l20VrBRd6PS3n0Nbtok/Vb8SqtqqH2uoezAW3vMj8LUd4rOlKFm/6YPBBNMg47DZce/4IXHv+CPz8jonYU9eGt3bWYd2BRhw/3YXG9vDVdAPzfMTR8hF8HkCm5UPIPw4m94Gq9JuzXwg4VH5LjDYvSbDwobYirAgi5N9I1NzhsApMU8JolPOpPF6LuNejgYrALsLjiOcNfV1r0BNHQmzUAFhbcSyBwQfRIOaw23B5aQEuLy3AU7ddiqNNHVh7oBE//8d+yX6nOzwQQkTtdomWDyI3OVlYwqmiobZy51HWRaPpW73kePkAA5CZXj3wr/pmhURMrqX0JKZ02wjpv1rKkqgRT7qt7SLzHhN/r60dmjD4IKKAc0fm4NyROfD5BRa+dyCw/fsrd+EX/9yPXp8/4rHBgUnYOihyLR+ahtrKbItQnvCKQ8M37Cg1hJLARK41J3bCqXaaul3iPT5KV5rWcvQ9j3LvNXe7CNnHkQqhd4CgtuUlbFuUvKNkw+CDiMJ8+4ZzcWlJPt7cUYfDTR3YX+9CS6cn4v7fX7kLYwqyA8/9Qj4hU8hUxqH7AOHrqPSLNgw4fHvsY2ORBhiRzxfaUhN4KhNsxex2UfONX4/3GGfwEGsESSKEXUenC8fq1lDVKhVlmLYRrB6YMPggojA2mw3TLhiBaReMAAC4e33YW+/C9hNn8NqWGrh7/Th5pjuw/9+qTkqO9/kF6loHXv9/f67CiJxMybYdNWfwl8oTyEp3IDvdgQbXQK5JtbMduVlpcNhtOH9UTtB6NcqbPvRIhIw2x0K0fJBoCaexiqWqaT8sR8GMWi7CY6WH69Ltou9+mgqh8nSxJjkLPJb8DYbsb/GulWgYfBBRTJlpDlxZNgxXlg3DN68/FwDQ4/XhdKcHVSfO4ERzJ060dOFoUwe217TCHjKnx7YTZ8LO2b8onpyn390XeHxlWQHe+O51ANRNMhZt1VylJF1BoavaRtiv77Xwlh7ZPBD5i6oon+ZDB44xoeUiVjmA6O9Fa2AZK+dCj3lTZK+l9BjJ4/h+G1YPSxh8EJEmWekOjCnIlnS39PP5BU53uOETAoecHWjt9qKty4PWLi9qWrrg6vEiK92BHq8P3V4/erw+uL0+7DrZhrysNAwbmoFen0B9Wze217Tiv98/gOx0B5wyU8S/vq0W+dnpsNnO5lPY+gb69g8h7vfallqkO2wQoi8Q6f8XCH7e96EvRF9FFNy6E61yDEs4PftUbviwvi0fIc/j7nbRcHyU8ig7Xv6+RDtXPN0hauif86E+0FPa9ZdsGHwQke4cdhtG5WUBAEbnhwcnSs1e8gmqTpzBkvVHIu7z7OqDis4V3JqiRZfHF7IlSquIXKAh0xUjR13OR/zf1KWn0NI6FLk8RlGTiTHwKHq3h9w+WruCZIfNyp1Lx5FHZv0ulGLwQUSW9cyXJuJv207C4/Oj1y/g8wn4hEB+djrWVTfi4tF5fTtKWiz6Nwlsr2mFzy9w9bhhsMEGu71vAjSbrS+vxX62tcR+ttnEhrPbbH3bbDagvrUHGw42YW+9C99YtiVQtrbugZaVE6c7JeX+1z4njjR1oj4ox2XVrnrsOtkqWW0YAO584WMIINDacqixXfH90aMFINo3a2XHx9dtI5cf07c98tn0qFeVjJwK72ozvkKPOUInSTH4ICLLmlCchx/92yWyr/04wvZEuPl/1+NIUyfWVzfJvt4Z0ipyqq0Hp9qkXUT1bT2obwvvNtpe06qpTHWt3ejo6ZVs8/j8qG3pCjwPDsRCK/n+iszdO1D2E6e7AvuIkIBObmi0zWbTr9tG1cHaWiTUli++nI/oLSuyDR86XVuP4xONwQcRUQx/vHcKKo+2hG0vHZaNlk4Pujw+2Gw4u35NX0XdP8W83W4LJODa0Neqkp3ugN1mO1vx97e2DLS65Galo8vjQ3a6A0IIZGc4cOBUO37w908D175u0dqw8hxt6sT1v1yn+X1+80/bFO+76tNT+OLlJZqvpSc98ifktkVbz8co0QKWZG4IYfBBRBTD2GFD8OXJQ0wtw8SSfPxj9ylsONiEDIc9MFuZ1+cPVEJZ6XYAA2vr9C+k1z+xmc0WtOpO0Guunl447DbkZqWdDZBsgUAJ/d1UZ587zw6JfvrdffhzxXFJN1KDqwdfXvIJgMgBwZ0vfIwe78Axd/++Ena7DQ1t3ZL9jjV34rbfbpLpTgO6PdIWHyuSC3RizXgbbytSpHNZEYMPIqIkYLfb8Md7p5hdDBxr7sSMZzegqd2NppB1gDy9ftlh1cFCu5l217XJ7ufu9Ud8LVTFkdP42tLNMfcLztPZW9+GOf9XKXn9WJM0d6e/G6pf7ZkufOWlCgDS4KIkPwvfu+UiZKTZA9uag+6N1+eH09WD0x0DE/W5e/1oCOmG63APBFWuHi9OtXWjMyjQauv2Slpj6lq7kZ3hiPh+rcwmLJbB4nK5kJ+fj7a2NuTl5ZldHCIiCrG3vg01IRVzVoYDbm/k6feHZjrQHZQbk5OZhk6PL6hVBshIs8MGGzLS7Ojsr4gDrS42yb7v7WnA8s01+r2pFJPhsKNgSHrE188ZPgQr779W12uqqb/Z8kFERKpcWpKPS0vyTS3DtPNH4N8mjUZTuzviBHJBnUwD286OZIp0jMNuQ5rdhl6/gF8AjrO5OHa7Dd6gtY36z7295gz+urUW3d7QodgD0+6n2QfK0b8GUrpDfpUfr6/v9QzHQCuK5+x1M9LsgOh73l9OoK+LxROy7pLH55ddobpfTpa51T9bPoiIiJKczy/Q3OFGusOOHq8PrSGT7IXKSLPj/FE5upaBLR9ERESDiMNuQ9HZif0AoERm5mErscfehYiIiEg/DD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQDD6IiIjIUAw+iIiIyFAMPoiIiMhQqoOPjRs34rbbbkNJSQlsNhveeustyetCCDz55JMYPXo0srOzMWPGDBw6dEiv8hIREVGSUx18dHZ24vLLL8fixYtlX//lL3+J559/Hi+++CI2b96MoUOHYubMmejp6Ym7sERERJT80tQeMGvWLMyaNUv2NSEEfv3rX+NHP/oRbr/9dgDAn/70JxQVFeGtt97CXXfdFV9piYiIKOnpmvNx7NgxNDQ0YMaMGYFt+fn5mDp1KioqKmSPcbvdcLlckh8iIiJKXboGHw0NDQCAoqIiyfaioqLAa6EWLlyI/Pz8wE9paameRSIiIiKLMX20y4IFC9DW1hb4qa2tNbtIRERElEC6Bh/FxcUAAKfTKdnudDoDr4XKzMxEXl6e5IeIiIhSl67Bx/jx41FcXIw1a9YEtrlcLmzevBnl5eV6XoqIiIiSlOrRLh0dHTh8+HDg+bFjx7Bz504UFhairKwMDz/8MH7+85/jggsuwPjx4/HjH/8YJSUluOOOO/QsNxERESUp1cHHtm3bcNNNNwWez58/HwAwd+5cvPLKK/jBD36Azs5OfPvb30ZrayumTZuG999/H1lZWfqVmoiIiJKWTQghzC5EMJfLhfz8fLS1tTH/g4iIKEmoqb9NH+1CREREgwuDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIMPIiIiMhSDDyIiIjIUgw8iIiIyFIOPCPZ8/Cb+tvR7ZheDiIgo5aSZXQCruuzDOwEAG94Zhxu++KDJpSEiIkodbPmIYfv+tWYXgYiIKKUw+JDh9/WaXQQiIqKUlbDgY/HixRg3bhyysrIwdepUbNmyJVGX0p2ruc7sIhAREaWshAQff/3rXzF//nw89dRT2L59Oy6//HLMnDkTjY2Nibic7s44TwQed3k6TSwJERFR6klI8PHss8/iW9/6Fu655x5ccsklePHFFzFkyBD84Q9/SMTldNfaMtDycabnjKJj3J0u+LweyTbh9wMAGg7vxL5P3tavgAoJvx9v/OFR7P7o7zH3IyIiMoruo108Hg+qqqqwYMGCwDa73Y4ZM2agoqIibH+32w232x147nK59C4SAKDx+F784qWvKtq3zt0E5Pc9fr97N7wLroi6f2dvN17LqEaWz4YJ7lzkIB3dohf7M11wOwRcmX37fe71QoxOK8CncGKELxMO2AAAY9IK4YeAx9+LVn8njtjbUOrPgQ8CQx1Z6PD3wOEHztjc8Nn8GCNy4UQnzrEVoEd44RJuXJhehE5fD5r9HQAAPwSOpLejJscH1AI3/D0P+bZsDHPkoMXXjm3pzSj1ZKHT7sNPJz6AL9/7K203loiISCXdg4/m5mb4fD4UFRVJthcVFeHAgQNh+y9cuBA//elP9S5GmNbmk/hN1k5lO2cNPNyT78YeKDuuEwIfZ0cOnlYPawHQEth7wOmwfasD+4XbhR4AQBW6Ats2IXrQtnGYC4ALgDOwrWFo3/Er9qzAl8Hgg4iIjGH6PB8LFizA/PnzA89dLhdKS0t1v05h0Tj80Het4v09Pg9c3g6MyCpUtH9ORg5GF5SirasF3Z4uCAh0eDqQk5EDG2zISMtEmj0NXZ5OdHm7UJxXAiH88Pv9aOtpRZo9DZlpWfD6PDjeXovLRk6Eze+DTQCw2ZGemY1OdzvcvT3ISsvGsNyRaO1ohrvXDYfdgU5PJ9JsDjjsDjjsaSgaNhZdPe1obndidEEpYLOhqa0ePb09yE4fglrXSYzJLcGovNH44v/7oca7SkREpJ7uwceIESPgcDjgdDol251OJ4qLi8P2z8zMRGZmpt7FCC9X6UV45mcfJ/w6REREFJ3uCacZGRmYPHky1qxZE9jm9/uxZs0alJeX6305IiIiSjIJ6XaZP38+5s6di6uuugpTpkzBr3/9a3R2duKee+5JxOWIiIgoiSQk+PjKV76CpqYmPPnkk2hoaMBnPvMZvP/++2FJqERERDT42IQQwuxCBHO5XMjPz0dbWxvy8vLMLg4REREpoKb+5touREREZCgGH0RERGQoBh9ERERkKAYfREREZCgGH0RERGQoBh9ERERkKAYfREREZCgGH0RERGQoBh9ERERkqIRMrx6P/glXXS6XySUhIiIipfrrbSUTp1su+GhvbwcAlJaWmlwSIiIiUqu9vR35+flR97Hc2i5+vx/19fXIzc2FzWbT9dwulwulpaWora3lujEJxPtsDN5n4/BeG4P32RiJus9CCLS3t6OkpAR2e/SsDsu1fNjtdowdOzah18jLy+MftgF4n43B+2wc3mtj8D4bIxH3OVaLRz8mnBIREZGhGHwQERGRoQZV8JGZmYmnnnoKmZmZZhclpfE+G4P32Ti818bgfTaGFe6z5RJOiYiIKLUNqpYPIiIiMh+DDyIiIjIUgw8iIiIyFIMPIiIiMtSgCT4WL16McePGISsrC1OnTsWWLVvMLlJSWbhwIa6++mrk5uZi1KhRuOOOO1BdXS3Zp6enB/PmzcPw4cORk5OD2bNnw+l0SvapqanBrbfeiiFDhmDUqFF49NFH0dvba+RbSSqLFi2CzWbDww8/HNjG+6yfuro6fPWrX8Xw4cORnZ2Nyy67DNu2bQu8LoTAk08+idGjRyM7OxszZszAoUOHJOdoaWnBnDlzkJeXh4KCAtx3333o6Ogw+q1Yls/nw49//GOMHz8e2dnZOO+88/D0009L1v/gfVZv48aNuO2221BSUgKbzYa33npL8rpe9/TTTz/F9ddfj6ysLJSWluKXv/ylPm9ADAIrVqwQGRkZ4g9/+IPYu3ev+Na3viUKCgqE0+k0u2hJY+bMmWLZsmViz549YufOneILX/iCKCsrEx0dHYF97r//flFaWirWrFkjtm3bJq655hpx7bXXBl7v7e0VEydOFDNmzBA7duwQ//znP8WIESPEggULzHhLlrdlyxYxbtw4MWnSJPHQQw8FtvM+66OlpUWcc8454hvf+IbYvHmzOHr0qPjggw/E4cOHA/ssWrRI5Ofni7feekvs2rVLfPGLXxTjx48X3d3dgX0+//nPi8svv1xUVlaKjz76SJx//vni7rvvNuMtWdIzzzwjhg8fLt59911x7NgxsXLlSpGTkyN+85vfBPbhfVbvn//8p3jiiSfEG2+8IQCIN998U/K6Hve0ra1NFBUViTlz5og9e/aI1157TWRnZ4uXXnop7vIPiuBjypQpYt68eYHnPp9PlJSUiIULF5pYquTW2NgoAIgNGzYIIYRobW0V6enpYuXKlYF99u/fLwCIiooKIUTffxa73S4aGhoC+yxZskTk5eUJt9tt7BuwuPb2dnHBBReI1atXi89+9rOB4IP3WT+PPfaYmDZtWsTX/X6/KC4uFv/zP/8T2Nba2ioyMzPFa6+9JoQQYt++fQKA2Lp1a2Cf9957T9hsNlFXV5e4wieRW2+9Vdx7772SbXfeeaeYM2eOEIL3WQ+hwYde9/SFF14Qw4YNk3xuPPbYY+Kiiy6Ku8wp3+3i8XhQVVWFGTNmBLbZ7XbMmDEDFRUVJpYsubW1tQEACgsLAQBVVVXwer2S+zxhwgSUlZUF7nNFRQUuu+wyFBUVBfaZOXMmXC4X9u7da2DprW/evHm49dZbJfcT4H3W0zvvvIOrrroK//7v/45Ro0bhiiuuwMsvvxx4/dixY2hoaJDc6/z8fEydOlVyrwsKCnDVVVcF9pkxYwbsdjs2b95s3JuxsGuvvRZr1qzBwYMHAQC7du3Cpk2bMGvWLAC8z4mg1z2tqKjADTfcgIyMjMA+M2fORHV1Nc6cORNXGS23sJzempub4fP5JB/EAFBUVIQDBw6YVKrk5vf78fDDD+O6667DxIkTAQANDQ3IyMhAQUGBZN+ioiI0NDQE9pH7PfS/Rn1WrFiB7du3Y+vWrWGv8T7r5+jRo1iyZAnmz5+PH/7wh9i6dSv+67/+CxkZGZg7d27gXsndy+B7PWrUKMnraWlpKCws5L0+6/HHH4fL5cKECRPgcDjg8/nwzDPPYM6cOQDA+5wAet3ThoYGjB8/Puwc/a8NGzZMcxlTPvgg/c2bNw979uzBpk2bzC5KyqmtrcVDDz2E1atXIysry+zipDS/34+rrroKv/jFLwAAV1xxBfbs2YMXX3wRc+fONbl0qeP111/Hq6++iuXLl+PSSy/Fzp078fDDD6OkpIT3eRBL+W6XESNGwOFwhI0GcDqdKC4uNqlUyeuBBx7Au+++i3Xr1mHs2LGB7cXFxfB4PGhtbZXsH3yfi4uLZX8P/a9RX7dKY2MjrrzySqSlpSEtLQ0bNmzA888/j7S0NBQVFfE+62T06NG45JJLJNsuvvhi1NTUABi4V9E+O4qLi9HY2Ch5vbe3Fy0tLbzXZz366KN4/PHHcdddd+Gyyy7D1772NTzyyCNYuHAhAN7nRNDrnibysyTlg4+MjAxMnjwZa9asCWzz+/1Ys2YNysvLTSxZchFC4IEHHsCbb76JtWvXhjXFTZ48Genp6ZL7XF1djZqamsB9Li8vx+7duyV/8KtXr0ZeXl5YJTBY3Xzzzdi9ezd27twZ+LnqqqswZ86cwGPeZ31cd911YcPFDx48iHPOOQcAMH78eBQXF0vutcvlwubNmyX3urW1FVVVVYF91q5dC7/fj6lTpxrwLqyvq6sLdru0qnE4HPD7/QB4nxNBr3taXl6OjRs3wuv1BvZZvXo1Lrroori6XAAMnqG2mZmZ4pVXXhH79u0T3/72t0VBQYFkNABF953vfEfk5+eL9evXi1OnTgV+urq6Avvcf//9oqysTKxdu1Zs27ZNlJeXi/Ly8sDr/UNAb7nlFrFz507x/vvvi5EjR3IIaAzBo12E4H3Wy5YtW0RaWpp45plnxKFDh8Srr74qhgwZIv7yl78E9lm0aJEoKCgQb7/9tvj000/F7bffLjtc8YorrhCbN28WmzZtEhdccMGgHgIaau7cuWLMmDGBobZvvPGGGDFihPjBD34Q2If3Wb329naxY8cOsWPHDgFAPPvss2LHjh3ixIkTQgh97mlra6soKioSX/va18SePXvEihUrxJAhQzjUVo3f/va3oqysTGRkZIgpU6aIyspKs4uUVADI/ixbtiywT3d3t/jud78rhg0bJoYMGSK+9KUviVOnTknOc/z4cTFr1iyRnZ0tRowYIb73ve8Jr9dr8LtJLqHBB++zflatWiUmTpwoMjMzxYQJE8Tvf/97yet+v1/8+Mc/FkVFRSIzM1PcfPPNorq6WrLP6dOnxd133y1ycnJEXl6euOeee0R7e7uRb8PSXC6XeOihh0RZWZnIysoS5557rnjiiSckwzd5n9Vbt26d7Gfy3LlzhRD63dNdu3aJadOmiczMTDFmzBixaNEiXcpvEyJomjkiIiKiBEv5nA8iIiKyFgYfREREZCgGH0RERGQoBh9ERERkKAYfREREZCgGH0RERGQoBh9ERERkKAYfREREZCgGH0RERGQoBh9ERERkKAYfREREZCgGH0RERGSo/w9xdPQRKs4T3AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for i in range(1000):\n", " reward_batch = torch.Tensor([0,8]) + torch.randn(2)/10.0 #A\n", @@ -342,9 +516,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABaM0lEQVR4nO3de1hU1f4/8PcAMqjJkBKMKIV1VDQRvBJmoT/JsUijCxF5lGMcb0mZY5yERPJYjpl4MKV4tAz7njh47CRZ+GBEYBdQv3L5mabYTVFxRs2foKiAzP794WHLOMPAwFyZ9+t59qOz9tp71oLFzGevvdZeEkEQBBARERHZMRdbF4CIiIioPQxYiIiIyO4xYCEiIiK7x4CFiIiI7B4DFiIiIrJ7DFiIiIjI7jFgISIiIrvHgIWIiIjsnputC2AOWq0WNTU16NOnDyQSia2LQw5KEARcvnwZfn5+cHGxXizP9ktdxbZLjsqUttstApaamhr4+/vbuhjUTZw6dQoDBw602vux/ZK5sO2So+pI2+0WAUufPn0A3Kywp6enjUtDjqqurg7+/v5ie7IWtl/qKrZdclSmtN1uEbC0dEV6enryj4a6zNpd22y/ZC5su+SoOtJ2OeiWiIiI7J7ZA5Zvv/0W06dPh5+fHyQSCXJzc9s9pri4GKNHj4ZUKsWf/vQnZGVlmbtYRERE5MDMHrDU19cjODgYGRkZHcr/+++/IzIyEpMnT0ZlZSVeeeUV/PWvf8WePXvMXTQiIiJyUGYfw/Loo4/i0Ucf7XD+zMxMDBo0CGlpaQCAYcOG4fvvv8c//vEPKBQKcxePiIiIHJDNx7CUlpYiIiJCJ02hUKC0tLTNYxoaGlBXV6ezERERUfdl81lCarUavr6+Omm+vr6oq6vDtWvX0LNnT71jVCoVVq5caa0iOryW3qvWli5daoOSUHfkl+anl1aztMYGJSHqxvz0/85Q41x/ZzbvYemMpKQk1NbWitupU6dsXSQiIiKyIJv3sMjlcmg0Gp00jUYDT09Pg70rACCVSiGVSq1RPCIiIrIDNu9hCQsLQ2FhoU5aQUEBwsLCbFQiIiLrysjIQEBAADw8PBAaGooDBw60mffIkSN4+umnERAQAIlEgvT0dL08KpUK48aNQ58+feDj44OoqChUVVXp5Jk0aRIkEonOtmDBAnNXjchszB6wXLlyBZWVlaisrARwc9pyZWUlqqurAdy8nTN79mwx/4IFC/Dbb7/hb3/7G44dO4b33nsP//73v7FkyRJzF42IyO5s374dSqUSqampKC8vR3BwMBQKBc6dO2cw/9WrV3HvvfdizZo1kMvlBvPs3bsXixYtwr59+1BQUICmpiZMnToV9fX1Ovnmzp2Ls2fPitvatWvNXj8iczH7LaGDBw9i8uTJ4mulUgkAiIuLQ1ZWFs6ePSsGLwAwaNAg5OXlYcmSJdiwYQMGDhyIDz74gFOaicgprF+/HnPnzsWcOXMA3HzUQ15eHrZu3Yply5bp5R83bhzGjRsHAAb3A0B+fr7O66ysLPj4+KCsrAwPP/ywmN6rV682gx4ie2P2gGXSpEkQBKHN/YaeYjtp0iRUVFSYuyhERHatsbERZWVlSEpKEtNcXFwQERFh9NEOpqqtrQUA9O3bVyf9k08+wT//+U/I5XJMnz4dKSkp6NWrV5vnaWhoQENDg/iaj5Qga7L5GBYiazL3WAFTz0nU2oULF9Dc3Gzw0Q5qtdos76HVavHKK6/gwQcfxIgRI8T0559/Hv/85z9RVFSEpKQk/M///A/+/Oc/Gz2XSqWCTCYTN39/f7OUkagjGLCQ07DEWAFTz0lkbYsWLcLhw4eRk5Ojkz5v3jwoFAoEBQVh5syZ+Pjjj7Fz5078+uuvbZ6Lj5QgW2LAQk6j9ViB4cOHIzMzE7169cLWrVsN5h83bhzeeecdPPfcc21Oozf1nESteXt7w9XV1eCjHcwxtiQhIQFffvklioqKMHDgQKN5Q0NDAQC//PJLm3mkUik8PT11NiJrYcBCTqFlrEDrZSC6Olags+fk0hLUwt3dHWPGjNF5tINWq0VhYWGXHu0gCAISEhKwc+dOfPPNNxg0aFC7x7TM7Ozfv3+n35fIkmz+4DgiazA2VuDYsWNWPSeXlqDWlEol4uLiMHbsWIwfPx7p6emor68XZw3Nnj0bAwYMgEqlAnAzUP7pp5/E/585cwaHDh3SOeeiRYuQnZ2Nzz//HH369BHHw8hkMvTs2RO//vorsrOz8dhjj6Ffv344dOgQlixZgocffhgjR460Yu2JOo4BC5GVJSUlidP9gZszLTh40XnFxMTg/PnzWLFiBdRqNUJCQpCfny8GwtXV1XBxudUZXlNTg1GjRomv161bh3Xr1umc8/333wdwcwZmax999BH+8pe/wN3dHV9//bUYHPn7++Ppp5/G8uXLLVRLoq5jwEJOwRJjBTp7Ti4tQbdLSEhAQkKCwX3FxcU6rwMCAvQeHVFXVweZTCa+NvZoCQDw9/fH3r17O1dYIhvhGBZyCpYYK2Cp8QdERKSPPSzkNNobKzB//nyd/IbGClRWVuKOO+7An/70pw6dk4iIzIMBCzmN9sYKnD59Wid/W2MFwsPDxW769s5JRETmwYCFnIqxsQJ5eXk64wAMjRUw9ZxERGQeHMNCREREdo8BCxEREdk9BixERERk9xiwEBERkd1jwEJERER2jwELERER2T0GLERERGT3GLAQERGR3WPAQkRERHaPAQsRERHZPYsFLBkZGQgICICHhwdCQ0Nx4MABo/nT09MxdOhQ9OzZE/7+/liyZAmuX79uqeIRERGRA7FIwLJ9+3YolUqkpqaivLwcwcHBUCgUOHfunMH82dnZWLZsGVJTU3H06FF8+OGH2L59O5KTky1RPCIiInIwFglY1q9fj7lz52LOnDkYPnw4MjMz0atXL2zdutVg/pKSEjz44IN4/vnnERAQgKlTpyI2NrbdXhkiIiJyDmYPWBobG1FWVoaIiIhbb+LigoiICJSWlho8ZsKECSgrKxMDlN9++w27d+/GY489ZjB/Q0MD6urqdDYiIiLqvtzMfcILFy6gubkZvr6+Oum+vr44duyYwWOef/55XLhwARMnToQgCLhx4wYWLFjQ5i0hlUqFlStXmrvoREREZKfsYpZQcXExVq9ejffeew/l5eX47LPPkJeXh1WrVhnMn5SUhNraWnE7deqUlUtMRERE1mT2gMXb2xuurq7QaDQ66RqNBnK53OAxKSkpmDVrFv76178iKCgITz75JFavXg2VSgWtVquXXyqVwtPTU2cjInJUpsyqPHLkCJ5++mkEBARAIpEgPT29U+e8fv06Fi1ahH79+uGOO+7A008/rfe5TWRPzB6wuLu7Y8yYMSgsLBTTtFotCgsLERYWZvCYq1evwsVFtyiurq4AAEEQzF1EIiK7YeqsyqtXr+Lee+/FmjVr2rwI7Mg5lyxZgi+++AI7duzA3r17UVNTg6eeesoidSQyB4vcElIqldiyZQu2bduGo0ePYuHChaivr8ecOXMAALNnz0ZSUpKYf/r06Xj//feRk5OD33//HQUFBUhJScH06dPFwIXIHEx9PtCOHTsQGBgIDw8PBAUFYffu3Tr7r1y5goSEBAwcOBA9e/YUZ8URdZSpsyrHjRuHd955B8899xykUmmnzllbW4sPP/wQ69evx//5P/8HY8aMwUcffYSSkhLs27fPYnUl6gqzD7oFgJiYGJw/fx4rVqyAWq1GSEgI8vPzxYG41dXVOj0qy5cvh0QiwfLly3HmzBncddddmD59Ot566y1LFI+cVMtVZ2ZmJkJDQ5Geng6FQoGqqir4+Pjo5S8pKUFsbCxUKhUef/xxZGdnIyoqCuXl5RgxYgSAm8H5N998g3/+858ICAjAV199hRdffBF+fn6YMWOGtatIDqZlVmXrC7j2ZlWa45xlZWVoamrSmc0ZGBiIu+++G6WlpXjggQcMnruhoQENDQ3ia87QJGuy2KDbhIQEnDx5Eg0NDdi/fz9CQ0PFfcXFxcjKyhJfu7m5ITU1Fb/88guuXbuG6upqZGRkwMvLy1LFIydk6pXshg0bMG3aNCQmJmLYsGFYtWoVRo8ejU2bNol5SkpKEBcXh0mTJiEgIADz5s1DcHAwnyFEHWJsVqVarbbYOdVqNdzd3fU+Y9t7X5VKBZlMJm7+/v6dKiNRZ9jFLCEiS+vM84FKS0t18gOAQqHQyT9hwgTs2rULZ86cgSAIKCoqwvHjxzF16lTLVITIhjhDk2zJIreEiOxNZ54PpFar273y3bhxI+bNm4eBAwfCzc0NLi4u2LJlCx5++OE2y8JudWrRmVmV5jinXC5HY2MjLl26pNPL0t77SqXSNsfNEFkae1iIumDjxo3Yt28fdu3ahbKyMqSlpWHRokX4+uuv2zyG3erUojOzKs1xzjFjxqBHjx46eaqqqlBdXd3p9yWyNPawkFPozJWsXC43mv/atWtITk7Gzp07ERkZCQAYOXIkKisrsW7dOr3bSS2SkpKgVCrF13V1dQxanJhSqURcXBzGjh2L8ePHIz09XW9W5YABA6BSqQDcvL35008/if8/c+YMDh06ZNI5ZTIZ4uPjoVQq0bdvX3h6euKll15CWFhYmwNuiWyNAQs5hdZXnVFRUQBuXXUmJCQYPCYsLAyFhYV45ZVXxLSCggLxCrSpqQlNTU0GnyFk6IGHLUzpVvdL89NLq1la06FjyTGYOquypqYGo0aNEl+vW7cO69atM+mcAPCPf/wDLi4uePrpp9HQ0ACFQoH33nvPwrUl6jwGLOQ02rvqnD9/vk7+xYsXIzw8HGlpaYiMjEROTg4OHjyIzZs3AwA8PT0RHh6OxMRE9OzZE/fccw/27t2Ljz/+GOvXr7d6/chxJSQktBk4FxcX67wOCAjQe6BmXV0dZDJZh88JAB4eHsjIyEBGRkbnCk1kZQxYyGm0d9V5+vRpnfwTJkxAdnY2li9fjuTkZAwePBi5ubniM1gAICcnB0lJSZg5cyYuXryIe+65B2+99RYWLFhg1boREXV3DFjIqRi76szLy9O7So2OjkZ0dHSb55PL5fjoo4/MWkYiItLHWUJERERk9xiwEBERkd1jwEJERER2jwELERER2T0GLERERGT3GLAQERGR3WPAQkRERHaPAQsRERHZPQYsREREZPcYsBAREZHdY8BCREREdo8BCxEREdk9BixERERk9ywWsGRkZCAgIAAeHh4IDQ3FgQMHjOa/dOkSFi1ahP79+0MqlWLIkCHYvXu3pYpHRAb4pfnpbURE9sDNEifdvn07lEolMjMzERoaivT0dCgUClRVVcHHx0cvf2NjIx555BH4+Pjg008/xYABA3Dy5El4eXlZonhERETkYCwSsKxfvx5z587FnDlzAACZmZnIy8vD1q1bsWzZMr38W7duxcWLF1FSUoIePXoAAAICAixRNCIiInJAZr8l1NjYiLKyMkRERNx6ExcXREREoLS01OAxu3btQlhYGBYtWgRfX1+MGDECq1evRnNzs8H8DQ0NqKur09mIiIio+zJ7wHLhwgU0NzfD19dXJ93X1xdqtdrgMb/99hs+/fRTNDc3Y/fu3UhJSUFaWhrefPNNg/lVKhVkMpm4+fv7m7saRERWY+qYvx07diAwMBAeHh4ICgrCV199pbNfIpEY3N555x0xT0BAgN7+NWvWWKR+ROZgF7OEtFotfHx8sHnzZowZMwYxMTF4/fXXkZmZaTB/UlISamtrxe3UqVNWLjERkXm0jPlLTU1FeXk5goODoVAocO7cOYP5S0pKEBsbi/j4eFRUVCAqKgrPP/+8Tp6zZ8/qbFu3boVEIsHTTz+tk+/vf/+7Tr6XXnrJYvUk6iqzByze3t5wdXWFRqPRSddoNJDL5QaP6d+/P4YMGQJXV1cxbdiwYVCr1WhsbNTLL5VK4enpqbMRdURXr2QNzVw7evQoZsyYAZlMht69e2PcuHGorq62VBWom2k95m/48OHIzMxEr169sHXrVoP5N2zYgGnTpiExMRHDhg3DqlWrEBwcrJNHLpfrbJ9//jkmT56Me++9Vydfnz59dPL17t3bYvUk6iqzByzu7u4YM2YMCgsLxTStVovCwkKEhYUZPObBBx/EL7/8Aq1WK6YdP34c/fv3h7u7u7mLSE7KHFeyUVFROHz4sJjn119/xcSJExEYGIji4mIcOnQIKSkp8PDwsFa1yIF1ZsxfaWmpTn4AmDJlSpvvodFokJeXh/j4eL19a9asQb9+/TBq1Ci88847uHHjhtHycvwg2ZJFbgkplUps2bIF27Ztw9GjR7Fw4ULU19eLs4Zmz56NpKQkMf/ChQtx8eJFLF68GMePH0deXh5Wr16NRYsWWaJ45KTMcSU7evRobNq0Sczz+uuv47HHHsPatWsxatQo3HfffZgxY4bB6ftEt+vMmD+1Wq2X/6677mrzPbZt24Y+ffrgqaee0kl/+eWXkZOTg6KiIsyfPx+rV6/G3/72N6Pl5fhBsiWLBCwxMTFYt24dVqxYgZCQEFRWViI/P1/8I6uursbZs2fF/P7+/tizZw/+93//FyNHjsTLL7+MxYsXG5wCTdQZ5rqSVSgUYn6tVou8vDwMGTIECoUCPj4+CA0NRW5urtGy8CqVrGnr1q2YOXOmXq+fUqnEpEmTMHLkSCxYsABpaWnYuHEjGhoa2jwXxw+SLVnkOSwAkJCQgISEBIP7iouL9dLCwsKwb98+SxWHnJyxK9ljx44ZPMbQlWzrK99z587hypUrWLNmDd588028/fbbyM/Px1NPPYWioiKEh4cbPK9KpcLKlSvNUCtydJ0Z8yeXy/Xynz9/3mDe7777DlVVVdi+fXu7ZQkNDcWNGzdw4sQJDB061GAeqVQKqVTa7rmILMEuZgkROaKWMVdPPPEElixZgpCQECxbtgyPP/54mzPcAF6l0i2dGfMXFhamkx8AioqKDOb98MMPMWbMGL1BuYZUVlbCxcWFtzPJblmsh4XInpjrSrZ1fm9vb7i5uWH48OE6eYYNG4bvv/++zbLwKpVaUyqViIuLw9ixYzF+/Hikp6frjfkbMGAAVCoVAGDx4sUIDw9HWloaIiMjkZOTg4qKCr3z1tXVYceOHUhLS9PbV1paiv3792Py5Mno06cPSktLsWTJEvz5z3/GnXfeadkKE3USe1jIKZjrSragoEDM7+7ujnHjxqGqqkonz/Hjx3HPPfeYuQbUXZk65m/ChAnIzs7G5s2bERwcjE8//RTZ2dl6583JyYEgCIiNjdXbJ5VKkZOTg/DwcNx///146623sGTJEmzevNlyFSXqIvawkNNo70p2/vz5OvkNXckePHhQ50M9MTERMTExePjhhzF58mTk5+fjiy++MDhOi6gtpo75i46ORnR0tPja0MDtefPmYd68eQbPOXr0aI4ZJIfDgIWcRkxMDM6fP48VK1ZArVYjJCRE50r29OnTOvlbrmSXL1+O5ORkDB48GLm5uRgxYoSY58knn0RmZiZUKhVefvllDB06FP/5z38wceJEq9aNiKi7Y8BCTsXYlWxeXh5kMplO2u1Xsoa88MILeOGFF8xWRiIi0scxLERERGT3GLAQERGR3WPAQkRERHaPAQsRERHZPQYsREREZPcYsBAREZHdY8BCREREdo8BCxEREdk9BixERERk9/ikWyKiLvBL89NLq1laY4OSEFmBn357R4112jt7WIiIiMjuMWAhIiIiu8eAhYiIiOweAxYiIiKyexx0S+QgNPUaALqDPLvj4E4OYiUiQyzWw5KRkYGAgAB4eHggNDQUBw4c6NBxOTk5kEgkiIqKslTRiIiIyMFYJGDZvn07lEolUlNTUV5ejuDgYCgUCpw7d87ocSdOnMCrr76Khx56yBLFIiIiIgdlkYBl/fr1mDt3LubMmYPhw4cjMzMTvXr1wtatW9s8prm5GTNnzsTKlStx7733WqJYRERE5KDMHrA0NjairKwMERERt97ExQUREREoLS1t87i///3v8PHxQXx8fLvv0dDQgLq6Op2NiMhRmXoLfceOHQgMDISHhweCgoLw1Vdf6ez/y1/+AolEorNNmzZNJ8/Fixcxc+ZMeHp6wsvLC/Hx8bhy5YrZ60ZkLmYPWC5cuIDm5mb4+vrqpPv6+kKtVhs85vvvv8eHH36ILVu2dOg9VCoVZDKZuPn7+3e53OQcuvrFsHv37jbzLliwABKJBOnp6WYuNXVnpt5CLykpQWxsLOLj41FRUYGoqCg8//zzevmmTZuGs2fPitu//vUvnf0zZ87EkSNHUFBQgC+//BLffvst5s2bZ5E6EpmDzac1X758GbNmzcKWLVvg7e3doWOSkpJQW1srbqdOnbJwKak7MMcXQ1RUFA4fPqyXd+fOndi3bx/8DD22msgIU2+hb9iwAdOmTUNiYiKGDRuGVatWITg4WC+fVCqFXC4XtzvvvFPcd/ToUeTn5+ODDz5AaGgoJk6ciI0bNyInJwc1VnrMOpGpzB6weHt7w9XVFRqNRiddo9FALpfr5f/1119x4sQJTJ8+HW5ubnBzc8PHH3+MXbt2wc3NDb/++qveMVKpFJ6enjobUXvM8cUwevRobNq0SSffmTNn8NJLL+GTTz5Bjx49rFEV6iY6cwu9tLRUJz8ATJkyRS9fcXExfHx8MHToUCxcuBB//PGHzjm8vLwwduxYMS0iIgIuLi7Yv39/m+Xl7XiyJbMHLO7u7hgzZgwKCwvFNK1Wi8LCQoSFhenlDwwMxI8//ojKykpxmzFjBiZPnozKykre7iGzMNcXg0Kh0Mmv1Woxa9YsJCYm4v777+9QWfihTy06cwtdrVbr5b/rrrt0Xk+bNg0ff/wxCgsL8fbbb2Pv3r149NFH0dzcLJ7Dx8dH5xg3Nzf07du3zfcFeDuebMsiD45TKpWIi4vD2LFjMX78eKSnp6O+vh5z5swBAMyePRsDBgyASqWCh4cHRowYoXO8l5cXAOilE3WWsS+GY8eOGTzG0BfD7V8kb7/9Ntzc3PDyyy93uCwqlQorV640ofREpnnuuefE/wcFBWHkyJG47777UFxcbLA3pqOSkpKgVCrF13V1deYNWmy4EjDZP4sELDExMTh//jxWrFgBtVqNkJAQ5Ofnix/+1dXVcHGx+fAZoi4pKyvDhg0bUF5eDolE0uHjLP6hTw7D1FvoACCXy/Xynz9/3uj73HvvvfD29sYvv/yCKVOmQC6X643dunHjBi5evNjm+wI3b8dLpVKj70VkKRaLGhISEnDy5Ek0NDRg//79CA0NFfcVFxcjKyurzWOzsrKQm5trqaKREzLXF0Pr/N999x3OnTuHu+++Wxx/dfLkSSxduhQBAQFtloVjsKiFqbfQASAsLEwnPwAUFRUZfZ/Tp0/jjz/+QP/+/cVzXLp0CWVlZWKeb775BlqtVuezmsiesJuDnIK5vhgKCgrE/LNmzcKhQ4d0xl/5+fkhMTERe/bssVxlqFtRKpXYsmULtm3bhqNHj2LhwoV6t9CTkpLE/IsXL0Z+fj7S0tJw7NgxvPHGG6ioqBD3X7lyBYmJidi3bx9OnDiBwsJCPPHEE/jTn/4EhUIBABg2bBimTZuGuXPn4sCBA/jhhx+QkJCA5557jjPdyG5x8UNyGu2NrZo/f75O/sWLFyM8PBxpaWmIjIxETk4ODh48iM2bNwMA+vXrh379+ukc06NHD8jlcgwdOtQ6leoELi5oX0y9hT5hwgRkZ2dj+fLlSE5OxuDBg5GdnY3o6GgAgKurKw4dOoRt27bh0qVL8PPzw9SpU7Fq1Sqd2zmffPIJEhISMGXKFLi4uODpp5/Gu+++a93KE5mAAQs5jfa+GE6fPq2T39AXQ25uLgeDk9klJCQgISHB4L7i4mK9tOjoaDFAAaAz06xnz54d6uHr27cvsrOzTS8skY0wYCGnYuyLIS8vDzKZTCft9i+G9pw4caIrxSMiojZwDAsRERHZPQYsREREZPd4S4iom+GgWiLqjhiwEBGR4+rK03H5ZF2HwltCREREZPfYw0JERLbTupej9ZOlb1vHi4g9LERERGT3GLAQERGR3WPAQkRERHaPY1iIiKzI0LRzgFPPidrDgIWIiMyPU4bJzBiwEBERdQWDM6tgwEJEROSIDAVKQLcNljjoloiIiOwee1iIyGG1NYD1dhzQ2s0YetgcHzTX7TFgISIisiSOcTEL3hIiIiIiu2exgCUjIwMBAQHw8PBAaGgoDhw40GbeLVu24KGHHsKdd96JO++8ExEREUbzExERkXOxSMCyfft2KJVKpKamory8HMHBwVAoFDh37pzB/MXFxYiNjUVRURFKS0vh7++PqVOn4syZM5YoHlG34Zfmp7fZkqZeA029xm7KY2sd/f3U/1Df4Qs8ANixYwcCAwPh4eGBoKAgfPXVV+K+pqYmvPbaawgKCkLv3r3h5+eH2bNno+a2WxABAQGQSCQ625o1a7peaSLg5m2w27cuskjAsn79esydOxdz5szB8OHDkZmZiV69emHr1q0G83/yySd48cUXERISgsDAQHzwwQfQarUoLCy0RPHIiZnS8wfofzHs3r1b3NfRLwYiY65VXkPdrroOX+CVlJQgNjYW8fHxqKioQFRUFJ5//nlx/9WrV1FeXo6UlBSUl5fjs88+Q1VVFWbMmKF3rr///e84e/asuL300ksWqydRV5k9YGlsbERZWRkiIiJuvYmLCyIiIlBaWtqhc1y9ehVNTU3o27evwf0NDQ2oq6vT2YjaY2rPn6EvhqioKBw+fBiAaV8MjszeenG6m/q99egV2qvDF3gbNmzAtGnTkJiYiGHDhmHVqlUIDg4W98tkMhQUFODZZ5/F0KFD8cADD2DTpk0oKytDdXW1zrn69OkDuVwubr1797ZoXYm6wuwBy4ULF9Dc3Azf26aY+fr6Qq1Wd+gcr732Gvz8/HSCntZUKhVkMpm4+fv7d7nc1P2Z2vNn6Ith9OjR2LRpEwDTvhiIDBFuCGg60wTpEKmYNvAfA/H/+v8/vPHPNwwGiKWlpXqfjVOmTDH6PrW1tZBIJPDy8tJJX7NmDfr164dRo0bhnXfewY0bN4yehxeLZEt2N0tozZo1yMnJwc6dO+Hh4WEwT1JSEmpra8Xt1KlTVi4lOZrO9PwZ+mJQKBRGewrb+mJojR/61EJbrwW0gMsduh/FLn1coK3TGjxGrVbrXRDeddddbb7H9evX8dprryE2Nhaenp5i+ssvv4ycnBwUFRVh/vz5WL16Nf72t78ZLS8vFrtIo7m1mWlcR4dZYEyJtZn9OSze3t5wdXWFpuVhPv+l0Wggl8uNHrtu3TqsWbMGX3/9NUaOHNlmPqlUCqlU2uZ+otsZ6/k7duyYwWMMfTEY6yls64vhdiqVCitXrjSxBkSma2pqwrPPPgtBEPD+++/r7FMqleL/R44cCXd3d8yfPx8qlarNz9ekpCSd4+rq6pw3aOHD66zO7D0s7u7uGDNmjM6A2ZYBtGFhYW0et3btWqxatQr5+fkYO3asuYtFZFHGvhhuxx7Cjuvus45cersALoD2im5vivayFi6ehj+e5XK53gXh+fPn9fK1tMmTJ0+ioKDAaBANAKGhobhx4wZOnDjRZh6pVApPT0+djeyELXtvrMQit4SUSiW2bNmCbdu24ejRo1i4cCHq6+sxZ84cAMDs2bORlJQk5n/77beRkpKCrVu3IiAgAGq1Gmq1GleuXLFE8cgJdabnz9AXg6H8pn4x8EOfWkjcJOgxoAcafm4Q0wStgIZfGuB+j7vBY8LCwvRmUBYVFem8bmmTP//8M77++mv069ev3bJUVlbCxcUFPj4+nagJkeVZJGCJiYnBunXrsGLFCoSEhKCyshL5+fli93p1dTXOnj0r5n///ffR2NiIZ555Bv379xe3devWWaJ45IQ60/Nn6IuhoKBAJ39nvhio+2vpDWrpIdLUa9rM2zu8N67uvype4NV9VgehUUDPcT0BAJf+dUnnAm/x4sXIz89HWloajh07hjfeeAMVFRXi/qamJjzzzDM4ePAgPvnkEzQ3N4sXgY2NjQBujs9KT0/H//2//xe//fYbPvnkEyxZsgR//vOfceedd1rop0LUNRZbSyghIQEJCQkG9xUXF+u8NtYFSWQuSqUScXFxGDt2LMaPH4/09HSdnr/58+fr5F+8eDHCw8ORlpaGyMhI5OTk4ODBg9i8eTOAW18M5eXl+PLLL8UvBgDo27cv3N0NXyETtdYzpCe0V7RYsWIF1Go1BF8Bff/aF659XAEAzf+vWecCb8KECcjOzsby5cuRnJyMwYMHIzs7G9HR0QCAM2fOYNeuXQCAkJAQnfcqKirCpEmTIJVKkZOTgzfeeAMNDQ0YNGgQlixZojM+hcjecPFDchoxMTE4f/68+MUQEhKi0/N3+vRpnfyGvhhyc3MxYsQIAB37YiDzaz2OpaXnwre3Yw927D2xN07uPAlAfwXqfi/2Q9bSLJ206OhoMUABoDPTLCAgAIIgGH2/0aNHY9++fV0sNXUbDrI4IwMWcirGev7y8vIgk8l00m7/YmitI18MRERkHgxYiByMofEQ1uphaHnv7jZbh7qB1gPkW3oM7LCXgDrP7h4cR0RERHQ79rAQkdhj0rr3piu9Nq3P03LumqWdv9o1NsuGHEBL70frsRL21vvhCGXsKEN16QYYsBARGWHo9ldXgq/WWgdirn931dvv6IOJbaY7BR+OwEqBEQMWIuqWzN3LQ2ZgaJyJKVqO0Vi5x83eeio6Wn9D+Rx4+QAGLETdFK/eichkdtw7xYCFiMhOGZqVxV4iJ2OrXiU7xICFiMgAcw9EJmqXvd16sjMMWIiIzIAzmYgsi89hISIiIrvHHhYisgpLTg+2lq486Zc9MNSt2GAGEgMWIifl7F+g3SGAcmgcREomYsBCRAZ1x4DG0ErPbe0nIvvCgIWIHF53DK7IzOxtenA3fXy+JTFgISIyEQMkB9GZ4KQrT+Pt6pN8rc3egrh2MGAhIosy9OVu6Hkmhp57QkTUggELUTfgaF/yXZltY0mO9nOkbspBejysjQELEXV7DETIbBhMtM3CU50t9uC4jIwMBAQEwMPDA6GhoThw4IDR/Dt27EBgYCA8PDwQFBSE3bt3W6po5MTM3S4FQcCKFSvQv39/9OzZExEREfj5558tWQXqhoT9ArT/0EK7SgvtZi2E04LR/Le3y6+++kr3fB1olxcvXsTMmTPh6ekJLy8vxMfH48qVK2avm0PTaPQ3R3yPrvLzu7XZsIwWCVi2b98OpVKJ1NRUlJeXIzg4GAqFAufOnTOYv6SkBLGxsYiPj0dFRQWioqIQFRWFw4cPW6J45KQs0S7Xrl2Ld999F5mZmdi/fz969+4NhUKB69evW6taDk1Tr9HbnI1wWICwR4BkkgSS+RJADgj/I0C4YjhoMdQun3/+eZ08HWmXM2fOxJEjR1BQUIAvv/wS3377LebNm2fJqpIjMRRI2TiYkgiCYDyU74TQ0FCMGzcOmzZtAgBotVr4+/vjpZdewrJly/Tyx8TEoL6+Hl9++aWY9sADDyAkJASZmZntvl9dXR1kMhlqa2vh6elpvop0E2lpaXppS5cutUFJbKu9dnl7O2qvXQqCAD8/PyxduhSvvvoqAKC2tha+vr7IysrCc88916FyGWu/7T03xFbaWgTQnsroKLSbtcAAwCXy5vWjoBUgrBcgCZVA8pAEgO7P+6EDD+m1y3HjxuHgwYOora1Fnz592m2XR48exfDhw/G///u/GDt2LAAgPz8fjz32GE6fPg2/Ds5wMfrZ2/ocnfmia7mVUNPqYX4ONqvFLhm6RWPJn2fr96vRfzCjKd/fZu9haWxsRFlZGSIiIm69iYsLIiIiUFpaavCY0tJSnfwAoFAo2sxPZCpLtMvff/8darVaJ49MJkNoaGi3b7uGekYYrJhOuCEAZwHJvRIxTeIiAe4FhFOGryUNtcspU6aI/+9IuywtLYWXl5cYrABAREQEXFxcsH//frPUrctaruhdXW9tdnCVT7Zj9kG3Fy5cQHNzM3xvi+J8fX1x7Ngxg8eo1WqD+dVqtcH8DQ0NaGhoEF/X1tYCuBmpkT5Dtyec7Wd19uxZNDc344477tCpu5eXF44cOYK6ujoxvaXTsb122fKvKW0XMK39aq9rxf8L183eGUo2JlwWAC0g9BCA1n+mHgDO3fqda11vtQO1Wg1PT0+d9tKnT5+b5xOEDrVLtVoNHx8fnf1ubm7o27ev2doutLfKDPN35FNnGfn9WkTrdmCgndz+uWuMQ84SUqlUWLlypV66v7+/DUrjmJYvX27rItjEI488YjBdJpOJ/798+bLOa3Nj+yU9/wMI0P/AFlQ30zTQ7VWIj49HfHy8Xv7Lly9bpnz/xbZLJmvdI2bkc7Ujn7tmD1i8vb3h6uoKzW3ddhqNBnK53OAxcrncpPxJSUlQKpXia61Wi4sXL6Jfv36QSCQGjwFuRnL+/v44deqU0411cea6Azd7/u677z5s2bIFzz77rJi+YMEC1NbW4l//+hcEQcDly5fF+/fttcuWfzUaDfr376+TJyQkpM2ydKb9OvPvrzvXvbGxEXK5HB9//DEef/xxMb11u7y9/vfffz8WLVqEF198Ucz/1ltv4YsvvoCfnx8aGxsBGG+Xcrlcb7D5jRs3cPHixTY/dwG23c5w5vp3pO63f+4aJVjA+PHjhYSEBPF1c3OzMGDAAEGlUhnM/+yzzwqPP/64TlpYWJgwf/58s5artrZWACDU1taa9byOwJnrLgi36j9v3jwxravtUqvVCnK5XFi3bp3O+0ilUuFf//qXRcrvjL+/7l739j4vb6+/OdrlTz/9JAAQDh48KObZs2ePIJFIhDNnzpi1ft3999ceZ66/uetukYAlJydHkEqlQlZWlvDTTz8J8+bNE7y8vAS1Wi0IgiDMmjVLWLZsmZj/hx9+ENzc3IR169YJR48eFVJTU4UePXoIP/74o1nLxYbjnHUXhFv1N3e7XLNmjeDl5SV8/vnnwqFDh4QnnnhCGDRokHDt2jWLlN8Zf3/dve7tfV4+99xzOvU3V7ucNm2aMGrUKGH//v3C999/LwwePFiIjY01e/26+++vPc5cf4cIWARBEDZu3Cjcfffdgru7uzB+/Hhh37594r7w8HAhLi5OJ/+///1vYciQIYK7u7tw//33C3l5eWYvExuOc9ZdEG7V/5133jFru9RqtUJKSorg6+srSKVSYcqUKUJVVZXFyu+Mvz9nqLuxz8uJEyfq1d8c7fKPP/4QYmNjhTvuuEPw9PQU5syZI1y+fNnsdXOG358xzlx/hwlY7NH169eF1NRU4fr167YuitU5c90FwfHr7+jl7wpnrrsgOH79Hb38XeXM9Td33S3y4DgiIiIic7LYWkJERERE5sKAhYiIiOweAxYiIiKyewxYiIiIyO45RcDy1ltvYcKECejVqxe8vLwM5qmurkZkZCR69eoFHx8fJCYm4saNG9YtqAVlZGQgICAAHh4eCA0NxYEDB2xdJIv49ttvMX36dPj5+UEikSA3N1dnvyAIWLFiBfr374+ePXsiIiICP//8s20K20HO3n7Zdm9i23U8bLs3mavtOkXA0tjYiOjoaCxcuNDg/ubmZkRGRqKxsRElJSXYtm0bsrKysGLFCiuX1DK2b98OpVKJ1NRUlJeXIzg4GAqFQu/R3N1BfX09goODkZGRYXD/2rVr8e677yIzMxP79+9H7969oVAoDC4QaS+cuf2y7d7CtutY2HZvMVvbNcvkaAfx0UcfCTKZTC999+7dgouLi/hkSUEQhPfff1/w9PQUGhoarFhCyxg/frywaNEi8XVzc7Pg5+fX5iPpuwsAws6dO8XXLY8sf+edd8S0S5cuWeRR+pbgjO2Xbfcmtl3Hw7Z7kznbrlP0sLSntLQUQUFBOsuxKxQK1NXV4ciRIzYsWdc1NjairKwMERERYpqLiwsiIiJQWlpqw5JZ3++//w61Wq3zs5DJZAgNDXXon0V3bb9su7ew7ToWtt1bzNl2GbAAUKvVOn8wAMTXarXaFkUymwsXLqC5udlg/Ry9bqZqqW93+1l01/bLtnsL265jYdu9xZxt12EDlmXLlkEikRjdjh07ZutiEhnE9kuOim2XbMXN1gXorKVLl+Ivf/mL0Tz33ntvh84ll8v1Rm9rNBpxnyPz9vaGq6urWJ8WGo3G4etmqpb6ajQa9O/fX0zXaDQICQmxalnYftvHtnsL265jYdu9xZxt12F7WO666y4EBgYa3dzd3Tt0rrCwMPz44486o7cLCgrg6emJ4cOHW6oKVuHu7o4xY8agsLBQTNNqtSgsLERYWJgNS2Z9gwYNglwu1/lZ1NXVYf/+/Vb/WbD9to9t9xa2XcfCtnuLWduuuUYG27OTJ08KFRUVwsqVK4U77rhDqKioECoqKsSl1G/cuCGMGDFCmDp1qlBZWSnk5+cLd911l5CUlGTjkptHTk6OIJVKhaysLOGnn34S5s2bJ3h5eemMzO8uLl++LP5+AQjr168XKioqhJMnTwqCIAhr1qwRvLy8hM8//1w4dOiQ8MQTTwiDBg0Srl27ZuOSt82Z2y/bLtuuo2LbNX/bdYqAJS4uTgCgtxUVFYl5Tpw4ITz66KNCz549BW9vb2Hp0qVCU1OT7QptZhs3bhTuvvtuwd3dXRg/frywb98+WxfJIoqKigz+ruPi4gRBuDnFLiUlRfD19RWkUqkwZcoUoaqqyraFboezt1+23ThBENh2HRHbbpwgCOZruxJBEATT+mSIiIiIrMthx7AQERGR82DAQkRERHaPAQsRERHZPQYsREREZPcYsBAREZHdY8BCREREdo8BCxEREdk9BixERERk9xiwEBERkd1jwEJERER2z83WBTAHrVaLmpoa9OnTBxKJxNbFIQclCAIuX74MPz8/uLhYL5Zn+6WuYtslR2VK2+0WAUtNTQ38/f1tXQzqJk6dOoWBAwda7f3Yfslc2HbJUXWk7XaLgKVPnz4AblbY09PTxqUhR1VXVwd/f3+xPVkL2y91FdsuOSpT2m63CFhauiI9PT35R0NdZu2ubbZfMhe2XXJUHWm7HHRLREREdo8BCxGRg/vhhx8AAEOHDoVEIkFubm67xxQXF2P06NGQSqX405/+hKysLMsWkqiLGLAQETm4q1evAgDWrVvXofy///47IiMjMXnyZFRWVuKVV17BX//6V+zZs8eSxSTqkm4xhoWIyJk98sgjAIDp06d3KH9mZiYGDRqEtLQ0AMCwYcPw/fff4x//+AcUCoXFyknUFexhISJyMqWlpYiIiNBJUygUKC0tNXpcQ0MD6urqdDYia2EPC3VJyxVaa0uXLrVBSYgswy/NTy+tZmmNDUpiPmq1Gr6+vjppvr6+qKurw7Vr19CzZ0+Dx6lUKqxcudIaRSR74qf/N4Aa6/8NsIeFiIg6JCkpCbW1teJ26tQpWxeJnAh7WIiInIxcLodGo9FJ02g08PT0bLN3BQCkUimkUqmli0dkEHtYiIicTFhYGAoLC3XSCgoKEBYWZqMSEbWPAQsRkYO7cuUKAODQoUMAbk5brqysRHV1NYCbt3Jmz54t5l+wYAF+++03/O1vf8OxY8fw3nvv4d///jeWLFli/cITdRBvCRFRt9IdB8m2p6KiAgDw0EMPAQCUSiUAIC4uDllZWTh79qwYvADAoEGDkJeXhyVLlmDDhg0YOHAgPvjgA05pJrvGgIWIyMG1BCq1tbUG1/Qx9BTbSZMmiYEOkSPgLSEiIiKyewxYiIiIyO4xYCEiIiK7x4CFiIiI7B4DFiIiIrJ7nQpYMjIyEBAQAA8PD4SGhuLAgQNt5j1y5AiefvppBAQEQCKRID09vcvnJCIiIudicsCyfft2KJVKpKamory8HMHBwVAoFDh37pzB/FevXsW9996LNWvWQC6Xm+WcRERE5FxMDljWr1+PuXPnYs6cORg+fDgyMzPRq1cvbN261WD+cePG4Z133sFzzz3X5hoUpp6TiIiInItJAUtjYyPKysoQERFx6wQuLoiIiEBpaWmnCtCZczY0NKCurk5nIyIiou7LpIDlwoULaG5uhq+vr066r68v1Gp1pwrQmXOqVCrIZDJx8/f379R7ExERkWNwyFlCSUlJqK2tFbdTp07ZukjkIEwd3L1jxw4EBgbCw8MDQUFB2L17t16eo0ePYsaMGZDJZOjduzfGjRuns24LERF1nUkBi7e3N1xdXaHRaHTSNRpNmwNqLXFOqVQKT09PnY2oPaYO7i4pKUFsbCzi4+NRUVGBqKgoREVF4fDhw2KeX3/9FRMnTkRgYCCKi4tx6NAhpKSkwMPDw1rVIiJyCiYFLO7u7hgzZgwKCwvFNK1Wi8LCQoSFhXWqAJY4J5Ehpg7u3rBhA6ZNm4bExEQMGzYMq1atwujRo7Fp0yYxz+uvv47HHnsMa9euxahRo3DfffdhxowZ8PHxsVa1iIicgsm3hJRKJbZs2YJt27bh6NGjWLhwIerr6zFnzhwAwOzZs5GUlCTmb2xsRGVlJSorK9HY2IgzZ86gsrISv/zyS4fPSdRVnRncXVpaqpMfABQKhZhfq9UiLy8PQ4YMgUKhgI+PD0JDQ5Gbm2u0LBw0TkRkOjdTD4iJicH58+exYsUKqNVqhISEID8/Xxw0W11dDReXW3FQTU0NRo0aJb5et24d1q1bh/DwcBQXF3fonERdZWxw97Fjxwweo1arjQ4GP3fuHK5cuYI1a9bgzTffxNtvv438/Hw89dRTKCoqQnh4uMHzqlQqrFy50gy1IiJyHiYHLACQkJCAhIQEg/tagpAWAQEBEAShS+ckskdarRYA8MQTT2DJkiUAgJCQEJSUlCAzM7PNgCUpKQlKpVJ8XVdXx5luRETt6FTAQuRoOjO4Wy6XG83v7e0NNzc3DB8+XCfPsGHD8P3337dZFqlU2uZDFImIyDCHnNZMZKrODO4OCwvTyQ8ABQUFYn53d3eMGzcOVVVVOnmOHz+Oe+65x8w1ICJybuxhIaehVCoRFxeHsWPHYvz48UhPT9cZ3D1//nyd/IsXL0Z4eDjS0tIQGRmJnJwcHDx4EJs3bxbzJCYmIiYmBg8//DAmT56M/Px8fPHFF3q3RomIqGsYsJDTaG9w9+nTp3XyT5gwAdnZ2Vi+fDmSk5MxePBg5ObmYsSIEWKeJ598EpmZmVCpVHj55ZcxdOhQ/Oc//8HEiROtWjd74Zfmp5dWs7TGBiUhou6GAQs5FWODu/Py8iCTyXTSoqOjER0dbfScL7zwAl544QWzlZGIiPRxDAsRUTexZcsWk5aeSE9Px9ChQ9GzZ0/4+/tjyZIluH79upVKS2QaBixERN1EcnJyh5eeyM7OxrJly5CamoqjR4/iww8/xPbt25GcnGzlUhN1DAMWIqJuIi4ursNLT5SUlODBBx/E888/j4CAAEydOhWxsbHt9soQ2QoDFiIiB9fY2AgAmDRpkpjW3tITEyZMQFlZmRig/Pbbb9i9ezcee+yxNt+Hy0qQLXHQLRGRg/vjjz8AQG/RTWNLTzz//PO4cOECJk6cCEEQcOPGDSxYsMDoLSEuK0G2xB4WIiInVFxcjNWrV+O9995DeXk5PvvsM+Tl5WHVqlVtHpOUlITa2lpxO3XqlBVLTM6OPSxERA6uX79+AKA3wNbY0hMpKSmYNWsW/vrXvwIAgoKCUF9fj3nz5uH111/XWcS2BZeVIFtiDwsRkYNzd3cHAOzdu1dMa2/piatXr+oFJa6urgDQoQVriayNPSxERN3Etm3bMGHCBINLT8yePRsDBgyASqUCAEyfPh3r16/HqFGjEBoail9++QUpKSmYPn26GLgQ2RMGLERE3cSbb77Z5tIT1dXVOj0qy5cvh0QiwfLly3HmzBncddddmD59Ot566y1bFZ/IKAYsRETdxLx58/Dqq68a3Hf7gpxubm5ITU1FamqqFUpG1HUcw0JERER2jwELERER2b1OBSwZGRkmLbC1Y8cOBAYGwsPDA0FBQdi9e7fO/itXriAhIQEDBw5Ez549xcdKExEREQGdCFi2b98OpVLZ4QW2SkpKEBsbi/j4eFRUVCAqKgpRUVE4fPiwmEepVCI/Px///Oc/cfToUbzyyitISEjArl27Ol8zIiIi6jZMDljWr1+PuXPndniBrQ0bNmDatGlITEzEsGHDsGrVKowePRqbNm0S85SUlCAuLg6TJk1CQEAA5s2bh+DgYC7CReSE/NL89DYiIpMClsbGRpSVlSEiIuLWCdpZYKu0tFQnPwAoFAqd/BMmTMCuXbtw5swZCIKAoqIiHD9+HFOnTjV4Ti7ARURE5FxMClguXLiA5uZmcV5/C19fX6jVaoPHqNXqdvNv3LgRw4cPx8CBA+Hu7o5p06YhIyMDDz/8sMFzqlQqyGQycfP39zelGkRERORg7GKW0MaNG7Fv3z7s2rULZWVlSEtLw6JFi/D1118bzM8FuIiIiJyLSQ+O8/b2hqurKzQajU66sQW25HK50fzXrl1DcnIydu7cicjISADAyJEjUVlZiXXr1undTgK4ABcREZGzMamHxd3dHWPGjEFhYaGY1t4CW2FhYTr5AaCgoEDM39TUhKamJoOLcGm1WlOKR0RERN2UyY/mVyqViIuLw9ixYzu0wNbixYsRHh6OtLQ0REZGIicnBwcPHsTmzZsBAJ6enggPD0diYiJ69uyJe+65B3v37sXHH3+M9evXm7GqRERE5KhMDlhiYmJw/vz5Di+wNWHCBGRnZ2P58uVITk7G4MGDkZubixEjRoh5cnJykJSUhJkzZ+LixYu455578NZbb2HBggVmqCIRERE5uk4tfpiQkICEhASD+25fYAsAoqOjER0d3eb55HI5Pvroo84UhYiIiJwAV2smIqdh6CF0NUtrbFASIjIVAxYiclh8Ci6R87CL57AQERERGcOAhYiIiOweAxYiIiKyewxYiIiIyO4xYCEiIiK7x4CFiIiI7B4DFiKibmLLli0ICAiAh4cHQkNDceDAAaP5L126hEWLFqF///6QSqUYMmQIdu/ebaXSEpmGz2EhIuomkpOTkZmZidDQUKSnp0OhUKCqqgo+Pj56eRsbG/HII4/Ax8cHn376KQYMGICTJ0/Cy8vL+gUn6gAGLERE3URcXJy4EG1mZiby8vKwdetWLFu2TC/v1q1bcfHiRZSUlKBHjx4AgICAAGsWl8gkvCVETiUjI8OkLvMdO3YgMDAQHh4eCAoKMtpdvmDBAkgkEqSnp5u51ETGNTY2AgAmTZokprm4uCAiIgKlpaUGj9m1axfCwsKwaNEi+Pr6YsSIEVi9ejWam5vbfJ+GhgbU1dXpbETWwoCFnMb27duhVCqRmpqK8vJyBAcHQ6FQ4Ny5cwbzl5SUIDY2FvHx8aioqEBUVBSioqJw+PBhvbw7d+7Evn374OfHR8WT9f3xxx8AoHfrx9fXF2q12uAxv/32Gz799FM0Nzdj9+7dSElJQVpaGt58880230elUkEmk4mbv7+/+SpB1A4GLOQ01q9fj7lz52LOnDkYPnw4MjMz0atXL2zdutVg/g0bNmDatGlITEzEsGHDsGrVKowePRqbNm3SyXfmzBm89NJL+OSTT8SudTIvvzQ/gxt1nlarhY+PDzZv3owxY8YgJiYGr7/+OjIzM9s8JikpCbW1teJ26tQpK5aYnB0DFnIKjY2NKCsrQ0REhJjWXpd5aWmpTn4AUCgUOvm1Wi1mzZqFxMRE3H///R0qC7vVydz69esHAHq9hRqNBnK53OAx/fv3x5AhQ+Dq6iqmDRs2DGq1WrzFdDupVApPT0+djchaGLCQU7hw4QKam5vh6+urk26sy1ytVreb/+2334abmxtefvnlDpeF3epkbu7u7gCAvXv3imlarRaFhYUICwszeMyDDz6IX375BVqtVkw7fvw4+vfvL56PyJ4wYCHqpLKyMmzYsAFZWVmQSCQdPo7d6mQp27Ztw7Zt23D06FEsXLgQ9fX14qyh2bNnIykpScy7cOFCXLx4EYsXL8bx48eRl5eH1atXY9GiRbYqPpFRnNZMTsHb2xuurq7QaDQ66ca6zOVyudH83333Hc6dO4e7775b3N/c3IylS5ciPT0dJ06cMHheqVQKqVTahdoQGfbmm29ixYoVUKvVCAkJQX5+vthLWF1dDReXW9eo/v7+2LNnD5YsWYKRI0diwIABWLx4MV577TVbFZ/IqE71sFhiaujRo0cxY8YMyGQy9O7dG+PGjUN1dXVnikekx93dHWPGjEFhYaGY1l6XeVhYmE5+ACgoKBDzz5o1C4cOHUJlZaW4+fn5ITExEXv27LFcZYjaMG/ePJw8eRINDQ3Yv38/QkNDxX3FxcXIysrSyR8WFoZ9+/bh+vXr+PXXX5GcnKwzpoXInpjcw9IyNbSjT1NsmRqqUqnw+OOPIzs7G1FRUSgvL8eIESMAAL/++ismTpyI+Ph4rFy5Ep6enjhy5Ag8PDy6XkOi/1IqlYiLi8PYsWMxfvx4pKen63SZz58/Xyf/4sWLER4ejrS0NERGRiInJwcHDx7E5s2bAdwc6Ngy2LFFjx49IJfLMXToUOtUiojISZjcw2KJqaGvv/46HnvsMaxduxajRo3CfffdhxkzZhgMgIg6KyYmBuvWrcOKFSsQEhKCyspKnS7z06dP6+SfMGECsrOzsXnzZgQHB+PTTz9Fbm6uGGgTEZH1mBSwWGJqqFarRV5eHoYMGQKFQgEfHx+EhoYiNze3zXJwWih1VkJCQptd5nl5eXr5o6OjUVVVhYaGBhw+fBiPPfaY0fOfOHECr7zyirmLTUTk9EwKWCwxNfTcuXO4cuUK1qxZg2nTpuGrr77Ck08+iaeeekpnil5rnBZKRETkXGw+S6jlGQBPPPEElixZAgAICQlBSUkJMjMzER4erndMUlISlEql+Lqurq7bBC1paWkG05cuXWrlkhAREdkPkwIWS0wN9fb2hpubG4YPH66TZ9iwYfj+++8NnpPTQomIiJyLSbeELDE11N3dHePGjUNVVZVOnuPHj+Oee+4xpXhERETUTZl8S6i9qaGzZ8/GgAEDoFKpALQ/NRQAEhMTERMTg4cffhiTJ09Gfn4+vvjiCxQXF5ulkoZus/AWCxERkeMwOWCJiYnB+fPnO/w0xZapocuXL0dycjIGDx6sNzX0ySefRGZmJlQqFV5++WUMHToU//nPfzBx4kQzVJGIiIgcXacG3SYkJCAhIcHgPkO9ItHR0YiOjjZ6zhdeeAEvvPBCZ4pDRGSUX5ofAEBTf2s8nW9v37ayE5EdsvksISIigEEFERnH1ZqJiIjI7jFgISIiIrvHgIWIiIjsHgMWIiIisnsMWIiIiMjuMWAhIiIiu8eAhYiIiOwen8NCROIzUFqrWVpjg5KYT+vnuRCR42MPCxEREdk9BixERERk9xiwEBF1E1u2bEFAQAA8PDwQGhqKAwcOdOi4nJwcSCQSREVFWbaARF3AMSxE1CWtx7+0jBvhGkC2kZycjMzMTISGhiI9PR0KhQJVVVXw8fFp85gTJ07g1VdfxUMPPWTFkhKZjgGLhaWlpemlLV261AYlIaLuLi4uDnPmzAEAZGZmIi8vD1u3bsWyZcsM5m9ubsbMmTOxcuVKfPfdd7h06ZIVS0tkGt4SIiJycI2NjQCASZMmiWkuLi6IiIhAaWlpm8f9/e9/h4+PD+Lj4zv0Pg0NDairq9PZiKyFAQsRkYP7448/AEDv1o+vry/UarXBY77//nt8+OGH2LJlS4ffR6VSQSaTiZu/v3/nC01kIt4SIodk6FYbwNttRB1x+fJlzJo1C1u2bIG3t3eHj0tKSoJSqRRf19XVMWghq2HA0g1wnAyRc+vXrx8A4Ny5czrpGo0GcrlcL/+vv/6KEydOYPr06WKaVqsFALi5uaGqqgr33Xef3nFSqRRSqdScRSfqsE7dEsrIyDBp6tyOHTsQGBgIDw8PBAUFYffu3W3mXbBgASQSCdLT0ztTNCIis/BL84Nfmh809Rpxs1fu7u4AgL1794ppWq0WhYWFCAsL08sfGBiIH3/8EZWVleI2Y8YMTJ48GZWVlew1Ibtkcg/L9u3boVQqOzx1rqSkBLGxsVCpVHj88ceRnZ2NqKgolJeXY8SIETp5d+7ciX379sHPT/8x4faKvRtE1BHWWP5g27ZtmDBhAsaPH4/09HTU19eLs4Zmz56NAQMGQKVSwcPDQ+/z18vLCwD00onshckBy/r16zF37twOT53bsGEDpk2bhsTERADAqlWrUFBQgE2bNiEzM1PMd+bMGbz00kvYs2cPIiMjO1sfsoLWQVp9fT0AoHfv3rYqDhH915tvvokVK1ZArVYjJCQE+fn58PW9+Uyc6upquLhwngU5LpMClsbGRpSVlSEpKUlMa2/qXGlpqc4gLQBQKBTIzc0VX2u1WsyaNQuJiYm4//772y1HQ0MDGhoaxNecWkdEBMybNw+vvvqqwX3FxcVGj83KyjJ/gYjMyKSA5cKFC2hubhYj9ha+vr44duyYwWPUarXB/K2n2r399ttwc3PDyy+/3KFyqFQqrFy50pSiExEZZOhWTWeOcfTVrYnsnc37B8vKyrBhwwZkZWVBIpF06JikpCTU1taK26lTpyxcSiIiIrIlkwIWb29vuLq6QqPRHS3f1tQ5AJDL5Ubzf/fddzh37hzuvvtuuLm5wc3NDSdPnsTSpUsREBBg8JxSqRSenp46GxEREXVfJgUs7u7uGDNmDAoLC8U0Y1PnACAsLEwnPwAUFBSI+WfNmoVDhw7pTK/z8/NDYmIi9uzZY2p9iIgcWst06tYbEXVilpBSqURcXBzGjh3b7tQ5AFi8eDHCw8ORlpaGyMhI5OTk4ODBg9i8eTOAmw88annoUYsePXpALpdj6NChXa0fEZFFtTyfpXVgwfEsROZncsASExOD8+fPd3jq3IQJE5CdnY3ly5cjOTkZgwcPRm5uLuf6E5mIAz2JyJl16tH8CQkJSEhIMLjP0NS56OhoREdHd/j8J06c6EyxiIiIqJuy+SwhImsy57ISTU1NeO211xAUFITevXvDz88Ps2fPRk0Nez2IiMyNAQs5jZZlJVJTU1FeXo7g4GAoFAq9BeNatCwrER8fj4qKCkRFRSEqKgqHDx8GAFy9ehXl5eVISUlBeXk5PvvsM1RVVWHGjBnWrBYRkVPgas1t4BpB3Y+5l5WQyWQoKCjQOWbTpk0YP348qqurcffdd1u+Unaq9UKBLWNvON6GiLqCPSzkFFqWlYiIiBDTOrKsROv8wM1lJdrKDwC1tbWQSCTiQnKGNDQ0oK6uTmcjIiLj2MNCRhnqaXJEllpWorXr16/jtddeQ2xsrNGHGXJpCSIi07GHhcgMmpqa8Oyzz0IQBLz//vtG83JpCSIi07GHhZyCJZaVaNESrJw8eRLffPNNu0tFSKVSSKXSTtSCiMh5sYelHfX19eKWlpYmbuRYLLGsBHArWPn555/x9ddf6z21mYiIzIM9LOQ02ltWYv78+Tr521tWoqmpCc888wzKy8vx5Zdform5WRzf0rdvX7i7u1u3gkRE3RgDFgfW0tNTX18vpvXu3dtWxbF77S0rcfr0aZ387S0rcebMGezatQsAEBISonNsUVERJk2aZPE6OaPWU6Zb+Pb2NZCTiLoTBixkV7r6/Jv2jje2rEReXh5kMplOmrFlJQICAiAIQofLRkREnccxLERERGT3GLAQERGR3WPAQkRERHbPacewtDc1ufVAViKyjJZ1hgDDg2kdiT2sn7RlyxZs3LgRarUawcHB2LhxI8aPH99m3o8//lhczHPMmDFYvXp1m/mJbM1pAxYi6pjWQUULLmRon5KTk5GZmYnQ0FCkp6dDoVCgqqoKPj4+enmLi4sRGxuLCRMmwMPDA2+//TamTp2KI0eOYMCAATYoPZFxvCVERNRNxMXFYc6cORg+fDgyMzPRq1cvbN261WDeTz75BC+++CJCQkIQGBiIDz74QHyYIpE96lTAkpGRgYCAAHh4eCA0NBQHDhwwmn/Hjh0IDAyEh4cHgoKCsHv3bnFfU1MTXnvtNQQFBaF3797w8/PD7NmzUVPDKzgicmx+aX7ipqnXGL3tdXs+U26RNTY2AoDOs3/aW438dlevXkVTUxP69u3bZh6uNE62ZHLAsn37diiVSqSmpqK8vBzBwcFQKBQ4d+6cwfwlJSWIjY1FfHw8KioqEBUVhaioKPG+6dWrV1FeXo6UlBSUl5fjs88+Q1VVFWbMmNG1mhERObiWwKV14GPIH3/8AQB6t36MrS5+u9deew1+fn6IiIhoM49KpYJMJhM3f3//DtaEqOtMDljWr1+PuXPndrjbccOGDZg2bRoSExMxbNgwrFq1CqNHj8amTZsAADKZDAUFBXj22WcxdOhQPPDAA9i0aRPKyspQXV3dtdoREVG71qxZg5ycHOzcuRMeHh5t5uNK42RLJg26bWxsRFlZGZKSksS09rodS0tLoVQqddIUCgVyc3PbfJ/a2lpIJBJ4eXkZ3N/Q0ICGhgbxNbslO6atmVGmPEmWyJocfeaQtbQsunl7T7ex1chbrFu3DmvWrMHXX3+NkSNHGs3LlcbJlkzqYblw4QKam5vFtVdaGOt2VKvVJuW/fv06XnvtNcTGxsLT09NgHnZLEpGjaj1Gpb1bPR3VstDm3r17xbT2ViMHgLVr12LVqlXIz8/H2LFju1QGIkuzq1lCTU1NePbZZyEIAt5///0287Fbkoi6qnXgYOogV3u1bds2bNu2DUePHsXChQt1ViOfPXu2Tu/422+/jZSUFGzduhUBAQFQq9VQq9W4cuWKrYpPZJRJt4S8vb3h6uoKjUb3D9tYt6NcLu9Q/pZg5eTJk/jmm2/a7F0B2C1pDVwJmsjxvPnmm22uRl5dXQ0Xl1vXqO+//z4aGxvxzDPP6JwjNTUVb7zxhjWLTdQhJgUs7u7uGDNmDAoLCxEVFQXgVrdjWyvghoWFobCwEK+88oqYVlBQoNNN2RKs/PzzzygqKhLvxzqq1mNFWr7w+WVPlsSHuxEAzJs3D6+++qrBfcXFxTqvT5w4YfkCEZmRyU+6VSqViIuLw9ixYzF+/Hikp6frdTsOGDAAKpUKALB48WKEh4cjLS0NkZGRyMnJwcGDB7F582YAN4OVZ555BuXl5fjyyy/R3Nwsjm/p27eveG+WiBxbV8dpEJFzMzlgiYmJwfnz5zvc7ThhwgRkZ2dj+fLlSE5OxuDBg5Gbm4sRI0YAAM6cOYNdu3YBAEJCQnTeq6ioSOdBSGQZ7a2rREREZGudWksoISGhzVtAt3c7AkB0dDSio6MN5g8ICIAgCJ0pBjkoQwESp1Z3nKFF9iyh5dyt38+3t29b2YmILMquZgkRERERGcKAhYiIiOweAxYiIiKye50aw0J8Tok9af07aMHfhS5OeyYiR8eAhTrMUGBAzql1ANQdnhBLRPaPAYuDMfRQOiIiou6OAQus/8Vvr9N6u1MA1LouLT9ve/gZk2Wwl4eo+2PAYkbd6Qu/O2n5vbQOFBm8dA4DAyKyFQYsNmSoF4CoNY4VsS/8HRDZDgMWK2HvC9kbQ8EQn2RLRPaKAYudcMapue31MPFWTte01Ttj7aDEUK8EAyMiMhUDFrKKrsxu4q2ztjEYICJnwYCFiOi/OEaFyH4xYHEQhp6sa+/4zBjb4JcuEXVHDFi6GXsY9+GIwRVZF4MqIjIVAxYT8AuYiDqCARmR+TFgcVIMvsgQftESkb1yuoDFkb6onamsHT3ekX4mRERkPi6dOSgjIwMBAQHw8PBAaGgoDhw4YDT/jh07EBgYCA8PDwQFBWH37t06+wVBwIoVK9C/f3/07NkTERER+PnnnztTNPqv+vp6cUtLS+N04P/64Ycf8NZbbzl129XUa/Q26h62bNli1s9mInticsCyfft2KJVKpKamory8HMHBwVAoFDh37pzB/CUlJYiNjUV8fDwqKioQFRWFqKgoHD58WMyzdu1avPvuu8jMzMT+/fvRu3dvKBQKXL9+vfM1I7pNZWUldu3ahUceeYRtl+yCuYPH5ORks342E9kTiSAIgikHhIaGYty4cdi0aRMAQKvVwt/fHy+99BKWLVumlz8mJgb19fX48ssvxbQHHngAISEhyMzMhCAI8PPzw9KlS/Hqq68CAGpra+Hr64usrCw899xz7Zaprq4OMpkMtbW18PT01Nvv7NNrDT0x1xl/Dh988AH8/f3x1FNPYenSpXpt9/Z2ZI22Cxhvv1xLiADdhwHWLK3R29/ShubOnYvNmzcD6Ppnc0e099lL3YSfn35ajX477AxT2pBJY1gaGxtRVlaGpKQkMc3FxQUREREoLS01eExpaSmUSqVOmkKhQG5uLgDg999/h1qtRkREhLhfJpMhNDQUpaWlBj/0Gxoa0NDQIL6ura0FcLPihrS+2nXGK19XV1e9NGf7OTQ3N+PMmTN46KGHcP36dbGthIeH47vvvsOLL74oprXE8JZou4Bp7Vd7XSv+X7hu0rUFdSNa11vtwFA7uXDhAoCb7blFVz+bDTH1s5e6Ca1WP81Mv/PbP3eNMSlguXDhApqbm+Hrq/vob19fXxw7dszgMWq12mB+tVot7m9JayvP7VQqFVauXKmX7u/v37GKkNPKzs4GACxfvlwnXSaTif+/fPkyZDKZRdouwPZLptPgVu+abLmszXx33HGHzuuufDYbwrZLIlnb7bAzWj53jXHIWUJJSUk6VwZarRYXL15Ev379IJFI2jyurq4O/v7+OHXqlNN1Xzpz3QHg+PHjGDduHHJzczF58mQxPSUlBT/88AO++eYbCIKAy5cvw89Q96cZdab9OvPvz5nrDnSs/jU1NRg2bBi8vb0tWha2XdM5c/07UndTPndNCli8vb3h6uoKjUb3XrpGo4FcLjd4jFwuN5q/5V+NRoP+/fvr5AkJCTF4TqlUCqlUqpPm5eXV4Xp4eno6XcNp4ax1DwgIAHBz7E7r+l+6dAkDBgwQ01pH+JZou0DX2q+z/v4A5647YLz+Hh4ecHV1xfnz53XSu/LZbAjbbuc5c/3bq3t7PSstTJol5O7ujjFjxqCwsFBM02q1KCwsRFhYmMFjwsLCdPIDQEFBgZh/0KBBkMvlOnnq6uqwf//+Ns9JZCp3d3cAwN69e8U0tl3qLizx2UxkdwQT5eTkCFKpVMjKyhJ++uknYd68eYKXl5egVqsFQRCEWbNmCcuWLRPz//DDD4Kbm5uwbt064ejRo0JqaqrQo0cP4ccffxTzrFmzRvDy8hI+//xz4dChQ8ITTzwhDBo0SLh27ZqpxTOqtrZWACDU1taa9byOwJnrLgi36s+263icue6C0PH6W+Kz2Zrl766cuf7mrrvJAYsgCMLGjRuFu+++W3B3dxfGjx8v7Nu3T9wXHh4uxMXF6eT/97//LQwZMkRwd3cX7r//fiEvL09nv1arFVJSUgRfX19BKpUKU6ZMEaqqqjpTNKOuX78upKamCtevXzf7ue2dM9ddEG7V/x//+AfbroNx5roLgmn1N/dnsznw9+e89Td33U1+DgsRERGRtXXq0fxERERE1sSAhYiIiOweAxYiIiKyewxYiIiIyO45RcDy1ltvYcKECejVq1ebDzmqrq5GZGQkevXqBR8fHyQmJuLGjRvWLagFZWRkmLTsvKP69ttvMX36dPj5+UEikeitiyIIAlasWIH+/fujZ8+eiIiIwM8//2ybwnaQs7dftt2b2HYdD9vuTeZqu04RsDQ2NiI6OhoLFy40uL+5uRmRkZFobGxESUkJtm3bhqysLKxYscLKJbWM7du3Q6lUdnjZeUdWX1+P4OBgZGRkGNy/du1avPvuu8jMzMT+/fvRu3dvKBQKu14M0pnbL9vuLWy7joVt9xaztV2zTI52EB999JEgk8n00nfv3i24uLiID1gSBEF4//33BU9PT6GhocGKJbSM8ePHC4sWLRJfNzc3C35+foJKpbJhqSwPgLBz507xtVarFeRyufDOO++IaZcuXRKkUqnwr3/9ywYlNI0ztl+23ZvYdh0P2+5N5my7TtHD0p7S0lIEBQXprFyqUChQV1eHI0eO2LBkXdfY2IiysjJERESIae0tO99d/f7771Cr1To/C5lMhtDQUIf+WXTX9su2ewvbrmNh273FnG2XAQvaXma9ZZ8ju3DhApqbm01eRr47aqlvd/tZdNf2y7Z7C9uuY2HbvcWcbddhA5Zly5ZBIpEY3Y4dO2brYhIZxPZLjoptl2zFzdYF6KylS5fiL3/5i9E89957b4fOJZfL9UZvtyy7bmypdUfg7e0NV1dXk5eR745a6qvRaNC/f38xXaPRICQkxKplYfttH9vuLWy7joVt9xZztl2H7WG56667EBgYaHRzd3fv0LnCwsLw448/6ozeLigogKenJ4YPH26pKlhFZ5ad764GDRoEuVyu87Ooq6vD/v37rf6zYPttH9vuLWy7joVt9xaztl1zjQy2ZydPnhQqKiqElStXCnfccYdQUVEhVFRUCJcvXxYEQRBu3LghjBgxQpg6dapQWVkp5OfnC3fddZeQlJRk45KbR3vLzncnly9fFn+/AIT169cLFRUVwsmTJwVBEIQ1a9YIXl5ewueffy4cOnRIeOKJJ4RBgwYJ165ds3HJ2+bM7Zdtl23XUbHtmr/tOkXAEhcXJwDQ24qKisQ8J06cEB599FGhZ8+egre3t7B06VKhqanJdoU2M2PLzncnRUVFBn/XcXFxgiDcnGKXkpIi+Pr6ClKpVJgyZYpQVVVl20K3w9nbL9tunCAIbLuOiG03ThAE87VdiSAIgml9MkRERETW5bBjWIiIiMh5MGAhIiIiu8eAhYiIiOweAxYiIiKyewxYiIiIyO4xYCEiIiK7x4CFiIiI7B4DFiIiIrJ7DFiIiIjI7jFgISIiIrvHgIWIiIjsHgMWIiIisnv/H3lFJUarfRj5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "tpred = pred_batch\n", "cs = ['gray','green','red']\n", @@ -367,7 +552,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -395,13 +580,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import gym\n", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/registration.py:307: DeprecationWarning: The package name gym_minigrid has been deprecated in favor of minigrid. Please uninstall gym_minigrid and install minigrid with `pip install minigrid`. Future releases will be maintained under the new package name minigrid.\n", + " fn()\n", + "A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)\n", + "[Powered by Stella]\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gymnasium/core.py:311: UserWarning: \u001b[33mWARN: env.get_action_meanings to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do `env.unwrapped.get_action_meanings` for environment variables or `env.get_wrapper_attr('get_action_meanings')` that will search the reminding wrappers.\u001b[0m\n", + " logger.warn(\n" + ] + } + ], + "source": [ + "import gymnasium as gym\n", "from collections import deque\n", - "env = gym.make('Freeway-ram-v0')\n", + "env = gym.make('ALE/Freeway-ram-v5')\n", "aspace = 3\n", "env.env.get_action_meanings()\n", "\n", @@ -430,7 +628,7 @@ "losses = []\n", "cum_rewards = [] #K \n", "renders = []\n", - "state = preproc_state(env.reset())" + "state = preproc_state(env.reset()[0])" ] }, { @@ -453,7 +651,7 @@ " action = np.random.randint(aspace)\n", " else:\n", " action = get_action(pred.unsqueeze(dim=0).detach(),support).item()\n", - " state2, reward, done, info = env.step(action) #B\n", + " state2, reward, done, info, _ = env.step(action) #B\n", " state2 = preproc_state(state2)\n", " if reward == 1: cum_rewards.append(1) \n", " reward = 10 if reward == 1 else reward #C\n", @@ -502,19 +700,47 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUTklEQVR4nO3deXhTZaI/8O/J2jUNLV0olLIJZV+lFEERkK3DdZSfC9NhGGTQcUAFRq5wXQAZB8bB61wV91F0BBF1dJRh0LKLlFVAdlltoZQCpU1L2zTL+/ujJE3SpD1pkjZNv5/nyTPJ2fKecy/N13eVhBACREREREFE0dQFICIiInLFgEJERERBhwGFiIiIgg4DChEREQUdBhQiIiIKOgwoREREFHQYUIiIiCjoMKAQERFR0FE1dQEawmq1Ij8/H9HR0ZAkqamLQ0RERDIIIVBaWork5GQoFHXXkTTLgJKfn4+UlJSmLgYRERE1QF5eHtq1a1fnMc0yoERHRwOovkGdTtfEpSEiIiI5DAYDUlJS7L/jdWmWAcXWrKPT6RhQiIiImhk53TPYSZaIiIiCDgMKERERBR0GFCIiIgo6DChEREQUdBhQiIiIKOgwoBAREVHQYUAhIiKioMOAQkREREGHAYWIiIiCDgMKERERBR0GFCIiIgo6DChEREQUdJrlYoGBcjCvGP85fAkRGhXUKueFjIRookL5QaRGCYVCQpXZCgAwWwVMZiuiwlRQSBKsQsBksSJCo0KkVgmTRUACIABIqF7USSEBCkmCJAEx4WpolAooFBKUCgmKm/tr3ldvVypgf6+QJFisAgpJgoCAhOr/tVgFosPUiI/WNuUjIiKiIMOA4uBofgne2n62qYvRIoWpFRAC0KgUqDRZEK5WosJksYcahUJCTLgaaUnRUCokqJUKKCTAYhXQqpQ3A1F1EFIpJLSPi0D72Aiobm5XKSUIARgqTRACkCRArVSgX4oe7VpFNPXtExGRCwYUB2lJ0ZgxvCPKjBZYrNamLo7fGCrMUCiqf5CFqP5flUKCodIESQIkSNCqFLhRZcYNowVKhXRzezWrqK5NMZoskCSguNwEi1XAIgSEqA4JFquAENXbrAKw3txvvbnPIgRUCgWMZos9SEgAFAoJZUYzKk3Vz9t4s5bHZDHby28VArAKXCk14kqp0e/PJy5SU127JAFalcIeYCqqLNCqlTDfrF2akpGKRF0YbhjNCFMrIEkS9OFqFN2ogkqpwA2jGdFhKozrlYQIDf9pERH5QhKi+TVeGAwGxMTEoKSkBDqdrqmLQ16wWkV1+JFqmtCu36jCpZJKaFQKSBKgUSpQXmVBVJgKaoUEqwDMVisKS404dbkUFitgsVqra0/UShhNFpitN8OSEPj5WjnOXCmDQgKs1upzLVYBgermKZszhWXIL6n0+z0qFRJGd0+4GdqqA6FCAdwwWmCoNCFcrQQAPDqiM4Z1aQ1JkiBuhj2FQqrn6kREzZc3v98MKNRiCSFwoqAUViEQrlbCaLbCZLHe3Ffd3CQEUGGyYO3ePFwsroBVCKiV1c1QAFBeZUF0mAqVJguullUht6i8QWWJ0ChRXmWBLkwFjUqJ6DAVqsxWVFms6J+ixxu/HgglwwsRNXMMKERNZOfpqzhVWFbd70UhocJkgYTqWpVwjQpWIWC2CLy1/Qx+vuZdmEnShaG00oSkmDDERWlhNFnwc1E5VAoFrt0wolPrSPxjejqS9eGBuTkiIh8xoBAFOYtV4KfLpbhWVgVDpQmJujBEaJS4fqMKapUCZotAmFqBv208hW0/XfHq2u1ahaNDXCTC1ArowtUQAjBZrCipMEGrUkKrUmDOXbegS0J0gO6OiMg9BhSiECGEwNmrN1BSYYLVKqALV+Pna+UorzIjQqNCSYUJGpUC3xwtwL9/vOTVtf8yqTcUkoS1+/KQ0SkOJqtAXKQGQzrFwWi2oOiGCXd2i4dKyemSiMg/GFCIWhghBLb+dAVHLpSgwFCJG0YzerWNQWmlGeEaJTRKBcI1Suw7fx2f/3BB9nX/38B2WH5fX5RUmKALUzl1brZaBTv1EpFXGFCIyC0hBBZ/fQwrd55H9zY6GCpMuFhcgV5tdegSH4UfcotrdfSNi9Tg2o0qAEC/FD36pehxpdSI7OOXUWW24qX7+uLeAW2dwos7lSaLfYI/ImqZGFCIqMHKjGaUVJgwZ81B7DlfJOucDx8ajNu7xgNwrll5//tz0KgUGN+rDUa+tBWDUlvh3am3BqzsRBTcvPn95mxSROQkSqtClFaFf/xuML744SJe23IaF65X1HnO2n15UCklfHfqKt7ZfhZ/uLMLJg1oi8VfHwMA5BaVo7jchI3HCxvjFogoBLAGhYjqJIRAhclinx33SqkRZ6+UIT5ai4/35OKd7865PS8tKRonCkoBALckROFUYRkA4Pjz4xCuUXr8PqtV4PSVMnSJj2JzEFGI8eb3m93ziahOkiQ5Td0fH61Feqc4dIqPwtOZPTBjeEe359nCCQB7OAGAq2W1lyvIL67AlhPVtSvLvz2JMS9vx/JvT/rrFoioGWJAISKf/Pe4NPxumPuQ4s6RiyUAgNLK6jWdtpwsxNBlmzFt5V4cyivG61vPAID9f4moZWIfFCLyiVqpwDO/6IFnftHDvq3D/H97PH71nlwYzVbM/uQguiRE4bRD7YpjTQsRtWysQSEiv5t7V1eP+/KKyjH7k4MA4BROAODnazcCWSwiakYYUIjI7x4b2QUfPjQY388fiYGprQAAfxjRGQBwvo41iF7dfLpRykdEwY9NPETkd5Ik2edF+fzRoQCqRwP9fcc5GM1WWdfQqPjfT0QtGf8CEFGjkCQJMeFq2cdruAYQUYvm1V+ARYsWQZIkp1daWpp9f0FBAaZMmYKkpCRERkZiwIAB+Pzzz52uUVRUhKysLOh0Ouj1ekyfPh1lZewYR9QSRIfJr7RVcg4UohbN6yaenj17YuPGjTUXUNVc4je/+Q2Ki4vx1VdfoXXr1li9ejXuv/9+7Nu3D/379wcAZGVl4dKlS8jOzobJZMK0adPw8MMPY/Xq1X64HSIKZpFa+X9yKk2WAJaEiIKd13WoKpUKSUlJ9lfr1q3t+3bu3InHHnsMgwcPRqdOnfDMM89Ar9dj//79AIDjx49jw4YNePfdd5Geno5hw4bh1VdfxZo1a5Cfn++/uyKioGS21J64Oiu9PTI6xeHpCd2dtvdqG1PntYQQWPdjPnLr6HRLRM2X1zUop06dQnJyMsLCwpCRkYGlS5eiffv2AIChQ4fik08+QWZmJvR6PdauXYvKykqMGDECAJCTkwO9Xo9BgwbZrzd69GgoFArs3r0b99xzj3/uioiCUkmFqda2Z3/RA2Hq6qnvZ9zeCd8eLcDD/9gPq4dVOMqMZiz5+hi+P3PVvkbQ+WWZgSs0ETUJrwJKeno6Vq5ciW7duuHSpUtYvHgxhg8fjiNHjiA6Ohpr167FAw88gLi4OKhUKkREROCLL75Aly5dAFT3UUlISHAugEqF2NhYFBQUePxeo9EIo7FmemyDweBNsYkoSFwsrll0sFN8JFpHau3hxEZ9c/SOyeI82qfKbMUrm07h7e/OokrmSCAiar68Cijjx4+3v+/Tpw/S09ORmpqKtWvXYvr06Xj22WdRXFyMjRs3onXr1vjyyy9x//3347vvvkPv3r0bXMilS5di8eLFDT6fiILDA4NS8Mm+PGT2boNXJveHu36w2pujd0xmgZMFpfjiwEU8ekdn/H3HWby2hfOkELUUPs2Dotfr0bVrV5w+fRpnzpzBa6+9hiNHjqBnz54AgL59++K7777DihUr8OabbyIpKQmFhc7LrZvNZhQVFSEpKcnj9yxYsABz5861fzYYDEhJSfGl6ETUBJ75RXcM7RKH0d0TPY7ScaxBGfu37QCAMqMJu88WNVo5iajp+TTRQFlZGc6cOYM2bdqgvLy6o5pC4XxJpVIJq7W6OjYjIwPFxcX2TrMAsHnzZlitVqSnp3v8Hq1WC51O5/QiouYnOkyNu/u1rXM0j/pmDUqVQxPPyYJS3DCaA14+IgoeXgWUJ598Etu2bcP58+exc+dO3HPPPVAqlZg8eTLS0tLQpUsXPPLII9izZw/OnDmDl156CdnZ2fjlL38JAOjevTvGjRuHGTNmYM+ePfj+++8xa9YsPPjgg0hOTg7E/RFRM6NWVtesOPYziQnXoJQBhahF8aqJ58KFC5g8eTKuXbuG+Ph4DBs2DLt27UJ8fPWU1uvXr8f8+fMxceJElJWVoUuXLvjggw8wYcIE+zVWrVqFWbNmYdSoUVAoFJg0aRJeeeUV/94VETVbthlkC0trOsbrI9QorWRAIWpJJCE8jOULYgaDATExMSgpKWFzD1GIOX/1BkYs3+rdORxmTNQsePP7zcUuiCioeDPbLBGFLgYUIgoqsZGapi4CEQUBBhQiCipcJJCIAAYUIiIiCkIMKEQUdMLU1X+a9BFqWcdbrc2urz8R1YO90Ygo6Gx44nZs++kKKkwWLPvPiXqPN1sFNGwaIgoprEEhoqDToXUkpg7tUOeInvG9apbHsLAGhSjkMKAQUdDSKOXVipisXN2YKNQwoBBR0LKty+OO5JBdLBbWoBCFGgYUIgpadQWUzN7J9pBiZhMPUchhJ1kiCloql46vS37ZCxACaW10GJTaCqpPJJgsAmY28RCFHAYUIgpargsEThmS6vRZpVDAZLHAzCYeopDDJh4iClpXbxjr3G+rYWETD1HoYUAhoqA1sU9ynftVN0f5WNjEQxRyGFCIKGilxEbUuV+pqP4TZmITD1HIYUAhoqAWHea5q5ytiefX7+5GXlE5AKDKbEWZ0ezxHCJqHhhQiCioaeoYahyuUQIArt2owrzPDgEA7ly+Ff0Wf4vyKoYUouaMAYWIglpdc6HowmsWE/z5WjnMFisuFlfAbBU4WVDaGMUjogBhQCGioDZ3TFcAwH0D29Xap3cIKFYhYHAYlhx1cx2fM1fKkH3scoBLSUT+xnlQiCio3T8oBekdY5HSqnaHWX2EY0ABisurah0z6qVtAIBIjRJHFo+FJHHVY6LmgDUoRBT0UuMioVDUDhYxDjUoV0qNuOf1nfbPJovAD7nX7Z9vVFlQXG4KbEGJyG9Yg0JEzVak1vlPWElFTQBZ/PVR7D5X5LRfwdoTomaDNShE1Gyld4z1uM81nADV/VSIqHlgQCGiZmtEtwTseOpOfP5ohqzjOSU+UfPBgEJEzVq7VhEYmBqL6cM61nssa1CImg8GFCIKCbZ1eerCGhSi5oMBhYhCgsrNKB9XVgYUomaDAYWIQoJKUf+fMwsDClGzwYBCRCFBzSYeopDCgEJEIUFVx5o9NuwkS9R8MKAQUUiQ0wfFbGFAIWouGFCIKCTUteqxDWtQiJoPBhQiCgkcZkwUWhhQiCgkKGWss8NRPETNBwMKEYUEOesAsomHqPlgQCGiFsNTJ9mKKgvyisobuTREVBcGFCIKCRJkzCTroQblrpe3YfiLW7DlRKG/i0VEDcSAQkQthqdOsheuVwAApq3ci4/35DZmkYjIAwYUIgppT41LQ++2MQAAQ4UJH+w8j+0/XfF4/PJvTjZW0YioDqqmLgARUaB0io/EoyM64/WtpwEAj318wL7v/LJMALUXEIzQKhuvgETkkVc1KIsWLYIkSU6vtLQ0p2NycnIwcuRIREZGQqfT4fbbb0dFRYV9f1FREbKysqDT6aDX6zF9+nSUlZX5526IiByEqarDRmml2eMx5SaL0+dIDf+7jSgYeP0vsWfPnti4cWPNBVQ1l8jJycG4ceOwYMECvPrqq1CpVDh06BAUDquMZmVl4dKlS8jOzobJZMK0adPw8MMPY/Xq1T7eChG1aG76yIap6/9vsDKX8BKuYQ0KUTDwOqCoVCokJSW53Tdnzhw8/vjjmD9/vn1bt27d7O+PHz+ODRs2YO/evRg0aBAA4NVXX8WECROwfPlyJCcne1scIiKP5ISNMqPJ6TNrUIiCg9edZE+dOoXk5GR06tQJWVlZyM2t7vFeWFiI3bt3IyEhAUOHDkViYiLuuOMO7Nixw35uTk4O9Hq9PZwAwOjRo6FQKLB7926P32k0GmEwGJxeRESOBrTX29/bFg6cMbyTx+OvlhkhhKjV/MMaFKLg4NV/KqSnp2PlypXo1q0bLl26hMWLF2P48OE4cuQIzp49C6C6n8ry5cvRr18/fPjhhxg1ahSOHDmCW265BQUFBUhISHAugEqF2NhYFBQUePzepUuXYvHixQ24PSJqKbokROOrWbchPlqL+CgtLpVUIiU2wuPxg/60EVFaFbokRDltD1czoBAFA68Cyvjx4+3v+/Tpg/T0dKSmpmLt2rXo3r07AOCRRx7BtGnTAAD9+/fHpk2b8N5772Hp0qUNLuSCBQswd+5c+2eDwYCUlJQGX4+IQlOfdnr7+7rCiU2Z0YyDecVO2+QsOkhEgedTY6ter0fXrl1x+vRpjBw5EgDQo0cPp2O6d+9ubwZKSkpCYaHzTI1msxlFRUUe+7UAgFarhVar9aWoRESyyJmRlogCz6eJ2srKynDmzBm0adMGHTp0QHJyMk6edJ7k6KeffkJqaioAICMjA8XFxdi/f799/+bNm2G1WpGenu5LUYiI/IILChIFB69qUJ588klMnDgRqampyM/Px8KFC6FUKjF58mRIkoR58+Zh4cKF6Nu3L/r164cPPvgAJ06cwGeffQagujZl3LhxmDFjBt58802YTCbMmjULDz74IEfwEFFQ8DQdPhE1Lq8CyoULFzB58mRcu3YN8fHxGDZsGHbt2oX4+HgAwOzZs1FZWYk5c+agqKgIffv2RXZ2Njp37my/xqpVqzBr1iyMGjUKCoUCkyZNwiuvvOLfuyIiaqBvjhRACAFJYlMPUVOShGh+9ZkGgwExMTEoKSmBTqdr6uIQUZDrtfAblBk9zybr6s1fD8C4Xm0CWCKilsmb328uFkhEIe9fs27z6vjd54oCVBIikosBhYhCXuf4qPoPcqBW8k8jUVPjv0IiahG2PDlC9rFqzoVC1OQYUIioRejYOlL2saxBIWp6/FdIRC3GrDu7yDqOAYWo6fFfIRG1GH8c01XWcRoGFKImx3+FRNRiSJKEwR1jAQB/vqe3x+M2nbjcWEUiIg98WouHiKi5+Wh6Oi4bKtGuVTj+54vDbo/ZdbYIeUXlshYcJKLAYA0KEbUoGpUCKbERkCTJqSnnwVudV0i/cL0CQghsOVmISyUVjV1MohaPAYWIWizH4cSuc2obzRZsPF6Iae/vxfC/bGnkkhERAwoRtVgqhxoUtcp57pMqsxUzPtwHgAsIEjUFBhQiarEchxPf3a+t077TV8o8ntcMlzAjanYYUIioxQrX1PwJjNSoMKZHov3zixtOuj3ndGEZBv5pI97adibg5SNqyRhQiKjFitKq7e9VSgly6kX+suEEim5UYel/TgSuYETEYcZE1HJFa2v+BCoVUq2Oso6EEDBZBFQKrtND1BgYUIioxYoOq/kTqFJIdfYt6bhgPQDgti5xAS8XEbGJh4hasKgwlxoUGed8f/pa4ApERHYMKETUYkVpHWtQFF6PzrFy+DFRwDCgEFGL1ZAaFEdlVWb/FoiI7BhQiKjFita69kHx7vzSSgYUokBhQCGiFksfobG/V8ocZuzIaLL4t0BEZMeAQkQtVlxkTUDxNIrnloQoDOvS2u35nAKfKHAYUIioxWrlEFCUHuY3uXdAO3z0u3T0aKOrta/KbA1Y2YhaOgYUImqx2urD7e9VCgWsbmpQwtSe/0yyBoUocDhRGxG1WCmxEZg3thvC1EqPM8naVjx2F0VMFtagEAUKAwoRtWgz7+xif+8uoKhvNv24659iYhMPUcCwiYeI6Cbhpp7EVoPijolNPEQBw4BCRHST2xoUpeRxH2tQiAKHAYWI6CZ39SFhaiUA51lnbcxWBhSiQGFAISKycZNQ7uyWAAD4y6Te6JIQ5bSvysImHqJAYUAhIrppXK8kp88Hnr0LGlX1n8kuCdHYOPcOp/1mjuIhChgGFCKim6YO7YDXftUf4WolRqYlOE3k5g6HGRMFDocZExHdpFRI+EWfZIzv1QYeJpZFhEaJ8qrqNXjYxEMUOKxBISJyoVRIkCT3CWXrvBGICVcDYBMPUSAxoBAReSEhOgyj0qo7zrKJhyhwGFCIiLykvjl523+OFDRxSYhCFwMKEZGXfrxYAgA4kFuM705daeLSEIUmBhQiIi8dv2Swv5/y9z04fKGkCUtDFJoYUIiIvDS6e4LT5+2sRSHyOwYUIiIvPfeLnk6fL1yvaKKSEIUurwLKokWLIEmS0ystLa3WcUIIjB8/HpIk4csvv3Tal5ubi8zMTERERCAhIQHz5s2D2Wz26SaIiBpTTITa6fNlQyUqTZYmKg1RaPJ6oraePXti48aNNRdQ1b7E3/72N7dzCFgsFmRmZiIpKQk7d+7EpUuX8Jvf/AZqtRp//vOfvS0KEVGTsK1wbLP5RCF6LvwGOQtGIiE6rIlKRRRavG7iUalUSEpKsr9at27ttP/gwYN46aWX8N5779U699tvv8WxY8fw0UcfoV+/fhg/fjyWLFmCFStWoKqqquF3QUTUiFSK2n86LVaBL3642ASlIQpNXgeUU6dOITk5GZ06dUJWVhZyc3Pt+8rLy/GrX/0KK1asQFJSUq1zc3Jy0Lt3byQmJtq3jR07FgaDAUePHvX4nUajEQaDwelFRNRUXGtQbGwVx8XlVXjkH/uQfexyI5aKKLR4FVDS09OxcuVKbNiwAW+88QbOnTuH4cOHo7S0FAAwZ84cDB06FHfffbfb8wsKCpzCCQD754ICzxMeLV26FDExMfZXSkqKN8UmIvIrT9PgS6jevnT9CXxz9DJmfLivMYtFFFK86oMyfvx4+/s+ffogPT0dqampWLt2LeLj47F582YcOHDA74VcsGAB5s6da/9sMBgYUogo6Nhyy6nC0qYtCFEI8GmYsV6vR9euXXH69Gls3rwZZ86cgV6vh0qlsneenTRpEkaMGAEASEpKwuXLzlWets/umoRstFotdDqd04uIKFgZKjkykchXPgWUsrIynDlzBm3atMH8+fPx448/4uDBg/YXALz88st4//33AQAZGRk4fPgwCgsL7dfIzs6GTqdDjx49fCkKEVHQKK00NXURiJo9r5p4nnzySUycOBGpqanIz8/HwoULoVQqMXnyZMTHx7utBWnfvj06duwIABgzZgx69OiBKVOm4MUXX0RBQQGeeeYZzJw5E1qt1j93RETURGx9U0pZg0LkM68CyoULFzB58mRcu3YN8fHxGDZsGHbt2oX4+HhZ5yuVSqxbtw6PPvooMjIyEBkZialTp+L5559vUOGJiIKJretseRUnbSPylVcBZc2aNV5dXAhRa1tqairWr1/v1XWIiJoDq5u/eUTUMFyLh4jIT/707+OwWltWSLFaBf518CLyisqbuigUYhhQiIj86GJxzcKBniZ087ddZ6/hapmxUb7L1dp9eXhizUEMf3FLk3w/hS4GFCIiP3KsSQhXKwP+fRuPXcaDb+/Cva/vDPh3ubP91JUm+V4KfQwoRER+9Kt3d9vfe2rt+eLABTz56SG/NIus3ZcHAMhtoiaWKrO1Sb6XQh8DChFRgJgs7n+853xyCJ/tv4D3vz/v83cUlgauaefc1RtYvTsXJeUmTF+5F5/tvwAAqDRZUHFzpJKRAYUCxKtRPEREJJ/ZTRWK4+jGkgrfJ3S7diNwAeXO5VsBAMv+cxyGSjM2nSjEpAFtkf7nTTBUmnBiyTgGFAoY1qAQEQWIxSpqjeoxWWo+qxQN70RrNFtw9koZFB4WLmyo3Gvl+N/sn3D9RpV9m+PU/RarQEmFCUIAXx+6hD3nivz6/UQ2rEEhImqASQPa4fMfLtR7nMlqhVZR01m2yqHZR+nDKJ8H3tqFg3nFTtuEEB5XWpbr3jd24mqZEScuGdzud4xbT356qNb+q2VGxEVqfC4HEWtQiIga4LmJPbDqd+m4b2C7Oo8zO9SYPPrRfvzqnV32z77UoLiGE8A5/DSUbbjyzjPX3O631DHPy9eH8jHoTxvx8sZTPpeDiAGFiKgBYsLVuK1La0Rq666IfvqLw9j20xVUmiz4z5EC/HihJGBlqqzyLaA49olxNxM4ALy+5bTH85/6/EcAwCubGFDIdwwoREQ+qK8W5MuD+Zj63h4YTbXDg7+nxi83+bZI4fNfH7O/91RR8spmzwGFaxCRPzGgEBH5QG4/EqO59o/36t25WPTVUVRUWXCppMLNWc7qm0a/QkZAEELgWL7BbXkO5F6vOQ4ta8p+Cj4MKEREPpgyJFXWcZVua1CAlTvPo/tzG5CxdDPOXinzeP6Cfx7G4D9vwpU65j2RU4Px2f4LmPDKd/j9P/bX2qdR1fwkcN1DamoMKEREPmjXKgIJ0dp6j3NXY+HqP0cKALivKfl4Ty6ulhmxYstpvLP9rNvzX9/qufnF5r2bk8NtOVl7inqngFLvlTxLiQ334WyiagwoREQ+Uivr/1MqZ0KzG0Yz/nXwInov+gbbfnK/xs3xSwa8sP64233rDxfgWL4BK7acRnF5ldtjXDu/lleZMeeTg/j2aIHTffiyKnNshKbB5xLZcB4UIiIfhanrDygVpvprUEorzXhizUEAwNT39uD8ssxax5woKK3zGhNe+Q4A8Oa2M4gJV+M3GamYMbyT23lJ1uzJxfx/HgYAfHHgotM+d7PgylVlYfsQ+Y41KEREPvq/B/sjNS4Cr07u7/GYkvL6p7UvM9Y/Ckfu9PillWZcuF6BP68/4bE2xhZO/K1KRnMWUX0YUIiIfNSrbQy2zbsTE/smezzmuocmF0ellc4BZe2+PGw5Wehz+b45WuDzNbzhjwnjiNjEQ0TUCIpl1KBsPH7Z6fN/f1Y98Zm7ph5vJMfUdFptjNE5VVxAkPyANShERI2guKL+GhRPPM3qKtdPhWX4x66fZY0k8ofLBiP2ng/MIoIVVRZcuF4ekGtTcGFAISLyoy/+MBS3d41H//Z6p+3XZdSgeCJnBFBdvj6Uj2e/PIJFXx3Dyct1d7L1l/vezMHO01f9ft07l2/FsL9swenCxrkPajoMKEREftS/fSt8+NBg9E9p5bTd07BfOf518GL9B8nw8Z5cv1xHru/PyAsoQgiYZPZbKTBUAgA2n/C9bw4FNwYUIqIAiNIqnT7nF1c2+FpPfR6Y0TaBFqZS1n8QgCl/34MBS7JljWKykdDwlaCpeWBAISIKgAiXVY7zi+tfayfY/d+D/bw6PlwjL6DsOH0VpZVmfOdhOLQ7bqZ1oRDDgEJEFACRLj/OhTfX0OmWGN2o5ejYOrLWtqkZ8tYPctW3nR6tItSyj9eq5QUUG0+h48L1cny2/4JTM5CCCSXkcZgxEVEARGrd/3l95I5OUCok+4yxgdY+NgLnrt5w2tZG37C1cpQKye2MtJ6Eqbz9b2D31x750jZUma24WlazUKKC+STksQaFiCgAIjTuA0qrSI1XP/K+ig6rXY4oD+GpPiqld+X2Vw2KbV6V705dcTiWCSXUMaAQEQWA1sP6PLowNZR++HGNlhky3AUUtZdBw0alUHjVNdXb+Vvqu7bJYY2fb44W4ESBwavrU/PCgEJEFABqhfs/r1FalV+aJ8JkdkB1V1uidCnbhN5Jsq6lUkhedU7196y1jjPU7jxzDeP+9p1/v4CCCgMKEVEAeMgniNQqofBDQpFbCxOlrd2p1bUG5dYOsbKu5W0Tj0XGisiOtSz1Ndv4OmEdNS8MKEREARAfpXW7PVKj8ssIFLkZJ8pNE4/S4eRorQoamZ1ZVQoF6m+IqWGRUYXimGHqu7LRxFWSWxIGFCKiALglMRpPT+iOJXf3dNoeqVVB6fCXV25fElepcbWHD7vjrg+KSqHAvf3bAgD+el8faJTOPwXhaiWSdGGYMbyj03allzU/cvqgONay1JfbKhlQWhQGFCKiAJlxeydMyeiACIf+IhqVwqkpo1WkRvb1VA4BoWeyDg/emoIhnWLxr5m3oVtiNH47tEOtc8LdjKRRKSQs+WUvbPrjHRjXq02tGpQ/jumKnAUjcUtCdK3zvKn8kTN7vdWLjirumnjMMqfIp+aHAYWIKMDMFucfYcf+I3PuugWxMkLKxzOG4Pv5I+2frQJYNqkP1jycgb4penwz53aM6ZlY67wwdwFFKSFSq0Ln+CgAgNZNE48kSbX6ynjbd0ZOE483NSjuAkol+6WELAYUIqIAM1udf0Qd+6C0axWBfU+PrvcaGZ3jkKgLQ2pcBABgvJuRN2pl7T/p7kbxqFx68Gpd1syx5QqVm0Di72HGjiGmvvV1jObaTTxs9gldnEmWiCjAXAezOOYDtVLhVc3Evx8fjovXK9AtqfaU+e76iHRNjKq1zXU0jqdOso7lWn5fXwD113Jk9m6DveeLUFhqlDWKx+pFL1mTpfb1GFBCF2tQiIgamWMNimsH1fpEaVVuwwngvsYjLkqLDbOH2wOGu+M8BRTHph+dm8627lisAkM6xQGoHcw8He8LBpTQxYBCRNRIerTRAXCu6dCo/Ddlu2vTjU1akg6d42tG/ahcQpFrSBKoDg2O/VdstS6uzTCuNSo3qsz2+7PKCB9O/VQakFXW/XgJM1f/gJIKk/cnU1BjQCEiCrC/Tx2EgamtsCJrAADnOUzc9RsBgB1P3YnPH80AANzWJU7W99Q1kZpjeJFbg+I4Asg2+6xrINnyxxFOn8urLPZj6uokW2my4PzVG3DsnuPNiB6bv208hX//eAmvbDrl9bmOhBDYe74I129U+XQd8h+vAsqiRYsgSZLTKy0tDQBQVFSExx57DN26dUN4eDjat2+Pxx9/HCUlJU7XyM3NRWZmJiIiIpCQkIB58+bBbDb7746IiILMqO6J+PzRoejYuroWw6mJ52Y4WPtIBobf0tq+vcpsxcDUWOycPxIrpw2W9T3umnjs+xzCS319UGw5IcxhPSHbyCPXb0iJjXD6nN4x1n5sXYFj4qs7MGL5Vuw+d82+zbXCxZu1fK6UGus/qA6bjhfivjdzMOp/t/l0HfIfr2tQevbsiUuXLtlfO3bsAADk5+cjPz8fy5cvx5EjR7By5Ups2LAB06dPt59rsViQmZmJqqoq7Ny5Ex988AFWrlyJ5557zn93REQU5BznQbHVoAzuGIsPHxpsbx5J1ofb/9dTLYsrT0081fskt+8Bz31TnWtQ3B/luD0tKRqPjbxFVhPPqcIyAMCXBy7atzkGmn//eAkDlmQj58y1WufWV46G2HTiMgCgiDUoQcPrUTwqlQpJSbWHt/Xq1Quff/65/XPnzp3xwgsv4Ne//jXMZjNUKhW+/fZbHDt2DBs3bkRiYiL69euHJUuW4KmnnsKiRYug0cifsIiIqLly/CF2rL2QJAmHF42B2Srczl9SH6VLzYjjLLKO/U5cg4xrjLB9dtsHpY5hPL/J6IBwjdJ+jLyJ2hzeO3yYufoHAMDU9/fUfxHA5+UDfA045H9e16CcOnUKycnJ6NSpE7KyspCbm+vx2JKSEuh0OqhU1f9IcnJy0Lt3byQm1kwmNHbsWBgMBhw9erQBxScian4cR664dlCN0KigC6u9wJ8caocf2cdGdsGG2bfbPzvWmrj+GKfGRqC9Q1NNTRNPTUCR8/ttywi2W5LTp8TxCHcVLnI62gJ1N2/JIXfxRWo8XgWU9PR0e9PNG2+8gXPnzmH48OEoLS2tdezVq1exZMkSPPzww/ZtBQUFTuEEgP1zQUGBx+81Go0wGAxOLyKi5spxZlm5zTdyOAaP+wamoO3NZiLAud+J63eqlAps/uMd9s81o3hqjnOdDdcd29fL6YNi/y6HY9wdLzc3+LpCtD9WmCb/8qqJZ/z48fb3ffr0QXp6OlJTU7F27VqnviYGgwGZmZno0aMHFi1a5HMhly5disWLF/t8HSKiYOBYg+LPpgXX4cOOlHXUoHg617EGxXyzzHUFBtsQ5JomHu+mum/IKB4bX3OerzUw5H8+/Z9Ur9eja9euOH36tH1baWkpxo0bh+joaHzxxRdQq2uqKpOSknD58mWna9g+u+vXYrNgwQKUlJTYX3l5eb4Um4ioSblOfe8vjj+ywqVnieP8JfX9FttygmNNS5WcDiX2Jh5bDUr9pziGEtvbLw5cqP9EF7420bAGJfj4FFDKyspw5swZtGnTBkB1zcmYMWOg0Wjw1VdfISwszOn4jIwMHD58GIWFhfZt2dnZ0Ol06NGjh8fv0Wq10Ol0Ti8ioubKdWiuvzjWjPgyQau7FZDVHuZBcWTbVRNQZEx173CIrTblza1n7dvcTW/vjq8BgzUowcerJp4nn3wSEydORGpqKvLz87Fw4UIolUpMnjzZHk7Ky8vx0UcfOfUViY+Ph1KpxJgxY9CjRw9MmTIFL774IgoKCvDMM89g5syZ0Gq1AblBIqJg0zk+Cn+fOgjx0f79u+dY4xEX5TwqMjZSg0Rd9ffpI9yPmHx6QndsOnEZkwe3t297ckxXHL9UiozO9U8WZxtJYwsxcjq4uuuD0pDKEJ87ydYxRJuahlcB5cKFC5g8eTKuXbuG+Ph4DBs2DLt27UJ8fDy2bt2K3bt3AwC6dOnidN65c+fQoUMHKJVKrFu3Do8++igyMjIQGRmJqVOn4vnnn/ffHRERNQOjuifWf5CXlAoJ38y+HSaLtdZIIKVCwo6nRtrfuzPj9k6YcXsnp22zRt7i9Nmxqeglh/V9AIdRPLY+KF7WoPjQBUV2DcrfNv6E7T9dwarfDUG4xmGeF47iCTpeBZQ1a9Z43DdixAhZs/6lpqZi/fr13nwtERHJ5GkhQcC/I4YAYNLAdk6fJdc+KHJWM3apQVl/+BJOFNQeGVofuQHjbxurp8T/bH8e/qtvW8REVAc5Pz8a8gP+n4SIiGSrKwfUNPF400m25n1xhQl/WPVDg8rl7WioZ/91FH2f/xanb85oyyae4MP/ixARkWzuYkByTPWACFs/FW+aeBxr3suNjb8u26f7q0eFOo2A8qWtifzG66nuiYio5XI31f2WeSNQbrSgVWR151tFPZ1khZuhxYBvI4/kzLnizse7c7HrzDX7Qo5A9Zwv6jpWhqbGwYBCRESyufvZ1qqU0KocpsWvZ5ix0/o7DseY5My14kFDA4qh0oxDF0pw6EKJfZvZItCApZDIz9jEQ0REfmXrD+IpbzhOVHc0v2bpElmTwXnQ0IDijqmOifSqzFZsOVmIG03QHNXSMKAQEZF8Mlo+bE08nvpyeAoTVeaGB5R3d5zDW9vONPh8R3WtO7T825OY9v5ePPKP/X75LvKMAYWIiPzKNprnnwcuYvfZa7X2mz0EFKMPAQUAlv7nhNvt18qMqKiyyL6OuY6anFW7fgYA7Dh91bvCkdcYUIiISDY5XUcdh/w+8PauWvstHmoofKlBsXHtx1J0owoD/7QRt76wUf41rAJfH8rH0KWbcCD3utM+ju9pPAwoREQkm7tRPK4U9RzjqQbFHwFlzMvbUWmy2JuRDuUVAwDKvOgzYrEIPPbxAeSXVGL+54ed9vmy4jJ5hwGFiIj8ynXa+ee/PgYhBBb+6wiW/eeEx9Wcfekka3Pu6g30XvQNBizJxpVSY4PW9XHsJOt6L37si0v1YEAhIiLZHrw1BQAwKLWVx2MiXMbovvf9OXy2/wI+yPkZb24747E/iD9qUIDqFZBLKkz4aNfPTrU5BSWVss537CTb2mXRRbbxNB7Og0JERLI9dFtH9GmnR6+2Oo/H3JIYVWvbqZtTygOea0r8FVAcOQaUIUs3yTqnwlQToGIjnQMKm3gaDwMKERHJplBIGNwxts5juibWXrDwaqnR/r7S5D6IGP3QxONIoGbIszccyxqpdf6ZZEBpPGziISIivwpzMw3rlbKaH32jqeFNPON6JskviBCyOvW6+t2H++zvXYccM540HgYUIiIKuEsO/T8qPAaU+ucq6RQfWe8xNgJ1r74sh2toYgVK42FAISIiv0tLcm7mOe3QB+W37+91e059o3hm3dkFt9bTvORICN+bZC4WV+CNrWdwzaEGiBoHAwoREfndBw8N9vqc+pp4pmSk1jvHiitf1+jZe/46/rLhBB5fc8Cn65D3GFCIiMjvEnVhiA7zbhzGZUPdtRQSvOv0+tqW035bRPD707Wn7KfAYkAhIqKAUDZkCE0dJEnyugYlr6jcr2WgxsOAQkREAaHyc0BRSLWn0Y+L1OBvD/RD3xS923M8DWmm4Md5UIiIKCC8re2oT3UNSs3nVb9Lx+COsVArFfjmaAEO5dU+x9O6PxT8WINCREQBIbcG5fFRt8g6TiE5r42jVEhQK6t/xjxlIU6s1nwxoBARUUC4LrTniU5mZ1oJzjUojjU0Etx/VyCmz6fGwYBCREQBIbcGxd3Ms+5ICjjNDOt0eQ9fZWRAabbYB4WIiAKivhoUtVLCQ7d1lB1QFC6jeCSnGhT3jDJmp6XgxBoUIiIKiPo6yR5eNBYLJnRHmFreT5HrPCiO7z2tudPQGpSPpqc36DzyHwYUIiIKiPqaeGw1J2GqhtWgyBklZGzgMOO+KTENOo/8hwGFiIgCQu4wY9l9UCTn0TqKADbxRGrYA6KpMaAQEVFAqJRyA4rMJh6XidokCW7fO7I18Xg7q63cEUgUOAwoREQUEP6uQVFIklPQkFeDUh1QwmV+BwUPBhQiIgoIucOMtaqGdZJ1DCseO8maqpt4wjUMKM0NAwoREQVEXc0kLz/Q1/5e7nT0CknyOA+Kp2+qvBlQ5DYj1UVwVtpGxYBCREQBoayjieee/u3s7zvHR9kDxMS+yR7Pqd0Hpf6EcuhCCQBAo/T+527hxB5On/svyfb6GtRw7KZMREQBIbdjqkalwI8Lx0KpkJBfXIGvD+W7Pc51sUDnGpS6v0sjcygzALw9ZSAAoE87vdP24nKT7Gu4c63MiAO5xbgzLcHrTrstEWtQiIgoILz5EdaoFFAqJKf+KMvv64u3boYFG0/zoNTXH1cjc0TR6O6JGNMzCYD8PjRy3b3ie/zuw334R855v143VDGgEBFRQKS1ifb6HI1DQFErpVrNRN7Og+LuunWr6Wfi71qOC9crAAD/PnzJr9cNVWziISKigHhi1C2wWAT2/nwdh/KKZZ3jGCRMFgGFS67wdh4UG3UD+qDUNY+LL+GlysLOtnKwBoWIiAIiQqPCM7/ogf4petnnOHZmNVustfqWODXxOA4zrqcOpVuS97U5dXXy9aX5x2zhCstyMKAQEVFAOQ7P7Zuix7yx3Tweq3IIKCarqFUz4lijovCiBqVVhAYHn7sLkwa0q/tAB3XVkjSkRsbGxIAiC5t4iIgooBwbNP418zbZ55kt1lqz0Xq7WKCNRqWAPkKD6LC6f/YcpzpRubYvOVDL7HTrjolNPLJ4FQEXLVoE6eZEObZXWlqafX9lZSVmzpyJuLg4REVFYdKkSbh8+bLTNXJzc5GZmYmIiAgkJCRg3rx5MJvN/rkbIiIKOg2d38xsEejeRue0zVPH2PpH8ShkHedIWUcIUflQg1JlZg2KHF4/4Z49e+LSpUv2144dO+z75syZg6+//hqffvoptm3bhvz8fNx77732/RaLBZmZmaiqqsLOnTvxwQcfYOXKlXjuuef8czdERBR0BBqWUExWK+Kjtdg+707sf2Y0AOdmHWf1zYNS/XPnTViqq5/JlVIjfvfBPhzMK8aHOedhkTkbLgBcLK7A/p+L5BekhfK6iUelUiEpKanW9pKSEvz973/H6tWrMXLkSADA+++/j+7du2PXrl0YMmQIvv32Wxw7dgwbN25EYmIi+vXrhyVLluCpp57CokWLoNFofL8jIiIKKr7UoABA+7gI+zZPnWHrrUG5GVDcBYnJg1Pw8Z48AM7NUfWN1Nl4/DI2Hq9uJVBIEn49JLXuQjiY9EYOzi/LlH18S+R1DcqpU6eQnJyMTp06ISsrC7m5uQCA/fv3w2QyYfTo0fZj09LS0L59e+Tk5AAAcnJy0Lt3byQmJtqPGTt2LAwGA44ePerxO41GIwwGg9OLiIhCmzedSX/Zr22tbcO6tLa/t00AZ7bWXPOHZ+/CuaUTsPTePm6v6c1InV1nr8k+luTxKqCkp6dj5cqV2LBhA9544w2cO3cOw4cPR2lpKQoKCqDRaKDX653OSUxMREFBAQCgoKDAKZzY9tv2ebJ06VLExMTYXykpKd4Um4iImpC3FSgjusUDAO4bKP9v/eCOsdj8xztwa4dW9m2Oc6rY+qAYTTUBpVWE2uMqyEDdix26qqiyOH3eeeYqdp65Kvt8qs2rJp7x48fb3/fp0wfp6elITU3F2rVrER4e7vfC2SxYsABz5861fzYYDAwpRETNRM9kXf0HOXj/t7fiRpUFUVrveiF0io9CTLja/tmxQ60trBgdamXqCieAdzUo5Q4BpaLKgl+9sxsAcPz5cQjXyF8HiGr4NMxYr9eja9euOH36NO666y5UVVWhuLjYqRbl8uXL9j4rSUlJ2LNnj9M1bKN83PVrsdFqtdBqtb4UlYiImsgDg1JQabJiSKdYWcdLkuQxnESHqZAaFwGzRSAuqvbvgmOtiWPAsAcUU93NRo5ztngzW+y5qzdQUmFCTLgapcaaRQUrTBaEa5TIKyqXfS2q5tNEbWVlZThz5gzatGmDgQMHQq1WY9OmTfb9J0+eRG5uLjIyMgAAGRkZOHz4MAoLC+3HZGdnQ6fToUePHrWuT0REzZ9KqcD0YR3RMznG52spFBI2zb0D2+aNcBsgtA6rFjsOE7Y18VR50a+lrnlQXBUYKjF0afXvn2NH3CFLN+FfBy9i+ItbZF+LqnlVg/Lkk09i4sSJSE1NRX5+PhYuXAilUonJkycjJiYG06dPx9y5cxEbGwudTofHHnsMGRkZGDJkCABgzJgx6NGjB6ZMmYIXX3wRBQUFeOaZZzBz5kzWkBARkSx1zUGiracGpcpsqXWOJ97OZn/jZjOP4zwnVWYrnlhz0LsLEQAvA8qFCxcwefJkXLt2DfHx8Rg2bBh27dqF+PjqDk0vv/wyFAoFJk2aBKPRiLFjx+L111+3n69UKrFu3To8+uijyMjIQGRkJKZOnYrnn3/ev3dFREQtkmNAUbrrg1LPJGmOHXrr66Pi9nwh6v0OksergLJmzZo694eFhWHFihVYsWKFx2NSU1Oxfv16b76WiIhIFq3aoYnHoQpEK7MPiqsHBqXgk3159s+LJvbAoq+PeTzeZBGoNMmvpSHPuFggERGFDKcmHqc+KNXBxZs+KABqTb5W3xT3VRYra1D8hAGFiIhCxt03J2zrmaxzrkFR25p4vKvdcG3l0dQTUIwmC2tQ/ISrGRMRUcjokhCFPU+Pgj5cg+fX1cxQbh/FU18fFJdZ5VxHCqlVdfdL+fuOc3h96xkvSkyesAaFiIhCSkJ0GDQqBRxbc2ydZKfd1hEAMLp7ortTa3Gdbl9dTw0Kw4n/sAaFiIhCktVhPhJbQHl4eCekd4xF9zbyZrfVhamdPtcXUOQKV3N22fqwBoWIiEKSxaG9xjYnikIhoX/7VgjzEBBc1w3q0DoS9w1sZ/9cXx8UuXThrB+oDwMKERGFJMcalIbMaWLz29s62N/7qwbFZPF2CcWWhwGFiIhCktnqnxDQVl+zGK7Z6p8hxK59W6g2BhQiIgpJFtchOQ3kuEKyL31H+raLwdtTBgIAzKxBqRcbwYiIKCRZG1CDItyEGkmS8O5vBuHnonIMTG3V4PLc1qU1+rTTA2ANihwMKEREFJL81cQDAKN7yBuWXBeVQrLPbmu2CgghfOobE+rYxENERCHJ4seA4g9KhQJqRc3Prj8DVChiQCEiopDUWAElUqPE+WWZTtvG90qqdZxKKTnNRMtmnroxoBARUUiy+qmTrKu0pOh6j3GdIh8AFJIElUMNCoca140BhYiIQlKgalA+njEEb2QNsH929y3u5kuxWK1QO6ywbGYNSp0YUIiIKCS1itAE5rqRGozv3abOY1RualBMlupOsbbalbr6oFy4Xo53vzuLMqPZt8I2YxzFQ0REIenZX/TAtRtGTM3o0OjfrXJTg2Kb5E2tlGCxijpXVs58ZQdKKky4UmrEggndA1bOYMaAQkREISkpJgxrHs5oku/WKN3XoACAWqFAJaxONSgWq8CGIwXo316PZH04SipMAIADecWNUt5gxCYeIiKimxrSr9bdOe76oNhG7djmQjmYdx2z1xzAxeIKfLY/DzNX/4ARf93qNMFc+9gI7wsUIliDQkRE5GfumnhsAcUWXuZ8cggAcP5aOVJuBpEqixWGSpP9nNZR2kAXNWixBoWIiFq8qRmpAIA5d3X1y/XUbpp4bOvvuNauHLlYArVDp1rHvinupt5vKViDQkRELd7iu3vhqfFpiND452fRcb4TG1sfFJVLeDFbhVNoMToElKoWPBSZNShERERAg8OJcDMTimMIGdo5DgDwq/SU6n1uhiA7zjDrFFDqGOkT6liDQkRE5GeRGqX9/YcPDca1G1VI1IUBcN+B1rHGxWi22N+35OnwWYNCRETkZ/cNSkGvtjrMvLMzVEqFPZwA7gOKY58VxxqUtfsuOI3qaUlYg0JEROQDd/1YI7UqrHtsuNvjXfugVG+rCS03XGaP/epQPn7Zv61vhWyGWINCRETUiNzXoNRss03SZnO6sMzps8UqWkStCgMKERFRI3I3BNlxS3G5c0CRHHaaLFaMeXkbHng7J0ClCx5s4iEiIvKBVDtv1MndEGTbOj0AUFxe5bTPYhUQonqhwZMFpThz5QbOXLkBi1XYFx4MRaxBISIi8oG3c6m5q0H58UKJ/f3e89ed9r2+9QxmrT4AoGUNQWZAISIiaoBf9GkDAHjk9k4AauY76RBX9/o57vqgfHfqqv393vNFtfb/+/AlAM6hZOp7e7D77DUvS918sImHiIioAV66vy+m3dYR/VL0AIBXJvfHP3J+xv23ptR5XphaWef+8iqLx32VDnOk7DlfhAfe3oXzyzLlF7oZYUAhIiJqAK1KiYGpreyfW0dpZa3lE6GpO6DUxXUIcihjEw8REVEj8iWglFUyoBAREVEAyF3zx7bCss2RiyWY/8/DgShSUGJAISIiakSRWnk1KBFa5yDzi1d3uD1OeDuMqJlgQCEiImpEcmtQwlTygozrxG6hggGFiIioEcntgxKmlvcTfe7aDV+KE7QYUIiIiBrRjTqGETtSuZkvxZ3zVxlQiIiIyEfezE4fE66u95hLJZU+lCZ4+RRQli1bBkmSMHv2bPu2goICTJkyBUlJSYiMjMSAAQPw+eefO51XVFSErKws6HQ66PV6TJ8+HWVlZSAiIgp19/RvixHd4rHk7p51HicB+PzRofVer7wqNIceNzig7N27F2+99Rb69OnjtP03v/kNTp48ia+++gqHDx/Gvffei/vvvx8HDhywH5OVlYWjR48iOzsb69atw/bt2/Hwww83/C6IiIiaiQiNCiunDcaUjA51HidJQJeEKMRGauo8bsWWM7haZoTJYkVZCE3k1qCAUlZWhqysLLzzzjto1aqV076dO3fisccew+DBg9GpUyc888wz0Ov12L9/PwDg+PHj2LBhA959912kp6dj2LBhePXVV7FmzRrk5+f7fkdERETN0NpHMpw+21qC3C0u6GrQnzai7+Jv0WvhNzBUhsaongYFlJkzZyIzMxOjR4+utW/o0KH45JNPUFRUBKvVijVr1qCyshIjRowAAOTk5ECv12PQoEH2c0aPHg2FQoHdu3e7/T6j0QiDweD0IiIiau6UDh1SXIOI8mYnWXeLC7pjW8PnUF6xfwrXxLxei2fNmjX44YcfsHfvXrf7165diwceeABxcXFQqVSIiIjAF198gS5dugCo7qOSkJDgXAiVCrGxsSgoKHB7zaVLl2Lx4sXeFpWIiCioRYep7POYOAYRjUqBe/q3rX4vM6DYhDssRmi1CuRdL0f72AhIkhe9c4OAV3edl5eHJ554AqtWrUJYWJjbY5599lkUFxdj48aN2LdvH+bOnYv7778fhw83fHreBQsWoKSkxP7Ky8tr8LWIiIiCRXRYTT2ByqEGJWf+SETdnElWbg2KjeNqyYu/Poo7/roVs1YfwNeHmlc3Cq9qUPbv34/CwkIMGDDAvs1isWD79u147bXXcPLkSbz22ms4cuQIevas7p3ct29ffPfdd1ixYgXefPNNJCUlobCw0Om6ZrMZRUVFSEpKcvu9Wq0WWq3W23sjIiIKatFaNYAKAIDVWrPdMWScvuLdKFfHme8/yPkZAPDvw5fw78OX0LedHu3jIhpc3sbkVSwbNWoUDh8+jIMHD9pfgwYNQlZWFg4ePIjy8vLqiyqcL6tUKmG9+eQzMjJQXFxs7zQLAJs3b4bVakV6erqv90NERNRs/OmeXlAqJMy9qyss1ppk4RhQHLfbLLu3Nx66raPba5odk46LSyUVPpS2cXlVgxIdHY1evXo5bYuMjERcXBx69eoFk8mELl264JFHHsHy5csRFxeHL7/80j6cGAC6d++OcePGYcaMGXjzzTdhMpkwa9YsPPjgg0hOTvbfnREREQW5Ae1b4ejisQhTK1F0o8q+3bHz7Kw7u+C1LaedzntwcHtUmiz4bH8eDJXOQ4vdBRr7vma0sKBfZ5JVq9VYv3494uPjMXHiRPTp0wcffvghPvjgA0yYMMF+3KpVq5CWloZRo0ZhwoQJGDZsGN5++21/FoWIiKhZsNWWxEZqsGH2cGyfd6fT/sw+bTye9+Oisfh4xhCn7eY6AorJ0nwCitejeFxt3brV6fMtt9xSa+ZYV7GxsVi9erWvX01ERBRS0pJ0tbbVN1GbY0dboLoGJfdaOdYfuVTr2BvNaCI3nwMKERERBY4+ou71eBz7qwDA3vNFyHrX/bxizWmmWS4WSEREFMS0KmWd+10nePvbxlMejy2rZEAhIiIiP3nuFz087vNmnpTm1MTDgEJERBTkBqTWrHs3pFOs0z6VjLV6bIorms86PeyDQkREFOT6tovBYyO7QK1U4A8jOjvtUyvk1zVcKTX6u2gBw4BCREQU5CRJwh/HdHO7T62SH1AKSyv9VaSAYxMPERFRM6ZSyG/iOXvlBkQzmayNAYWIiKgZ86aTbGGpEXM+ORi4wvgRAwoREVEzpvSiBgUAvjzYPFY1ZkAhIiKioMOAQkREFML+9Mte+Mf0wU1dDK8xoBAREYWwtvpwDHSYR6W54DBjIiKiEHVH13gM7RIHpeRdP5VgwBoUIiKiEPX+b2+FVqWEymWkT0FJ8M+HwoBCREQUgt7/7a1QeBjhM2TpJnxztKCRS+QdBhQiIqIQFBOhrnP/61vPNFJJGoYBhYiIKARp65kCP9h7pTCgEBERhaAITd3jYGytPzM+3If/98ZOWK3BNQU+R/EQERGFoEiNss79kiTBYhXIPnYZAHD6Shm6JkY3RtFkYQ0KERFRCAqvL6AAMFmsjVOYBmBAISIiauY+/X0G7unf1mlbfU08kgRYHJp1gm2RYzbxEBERNXO3dojFrR1ioZAkfP7DBQD1LyIoQYLZEmSpxAFrUIiIiEKEVwsbS4DJWtPEs+d8Ee746xbc/uIWbDp+2f+F8xIDChERUYioa0b7N7IGOH1WuDTxPPvlEfx8rRy5ReWY/sG+QBVRNgYUIiKiECHVMbvJXT0Sax3LTrJEREQUcL3bxXjc59onRZIQ1H1Q2EmWiIgoRDx4awoqTRYM6RRXa58kSVArJZhuhhJJAsxBNjmbIwYUIiKiEKFSKvC74Z0871coYLJYAADfn76GT/fnNVbRvMYmHiIiohZC5dLM89a2s01UkvoxoBAREbUQwdugUxsDChERUQshgm262DowoBAREbUQ3sSTpg4zDChERERUS25ReZN+PwMKERFRC+FNpciLG04GriAyMKAQERG1EMKLRp4obdPORMKAQkRE1EJ4U4MSHcaAQkRERI3Am26v0WHqgJVDDgYUIiKilsKLhBLFGhQiIiJqDN70QWmrDwtgSernU0BZtmwZJEnC7Nmznbbn5ORg5MiRiIyMhE6nw+23346Kigr7/qKiImRlZUGn00Gv12P69OkoKyvzpShERERUD2/6oIzpkRS4gsjQ4ICyd+9evPXWW+jTp4/T9pycHIwbNw5jxozBnj17sHfvXsyaNQsKRc1XZWVl4ejRo8jOzsa6deuwfft2PPzwww2/CyIiIqqX3Hzy1Lg0KFzW7WlsDWpgKisrQ1ZWFt555x386U9/cto3Z84cPP7445g/f759W7du3ezvjx8/jg0bNmDv3r0YNGgQAODVV1/FhAkTsHz5ciQnJzekSERERFQPubPDVlSZA1yS+jWoBmXmzJnIzMzE6NGjnbYXFhZi9+7dSEhIwNChQ5GYmIg77rgDO3bssB+Tk5MDvV5vDycAMHr0aCgUCuzevdvt9xmNRhgMBqcXEREReUduDUqZ0RLQcsjhdUBZs2YNfvjhByxdurTWvrNnq5dtXrRoEWbMmIENGzZgwIABGDVqFE6dOgUAKCgoQEJCgtN5KpUKsbGxKCgocPudS5cuRUxMjP2VkpLibbGJiIhIptJKU1MXwbuAkpeXhyeeeAKrVq1CWFjt3r1WqxUA8Mgjj2DatGno378/Xn75ZXTr1g3vvfdegwu5YMEClJSU2F95eXkNvhYREVFLJbeTbJmx6Zt4vOqDsn//fhQWFmLAgAH2bRaLBdu3b8drr72Gkyer5+3v0aOH03ndu3dHbm4uACApKQmFhYVO+81mM4qKipCU5L7HsFarhVar9aaoRERE1EAD2rdq6iJ4F1BGjRqFw4cPO22bNm0a0tLS8NRTT6FTp05ITk62BxWbn376CePHjwcAZGRkoLi4GPv378fAgQMBAJs3b4bVakV6erov90JEREQ+eGpcGnThKtw3sOm7UngVUKKjo9GrVy+nbZGRkYiLi7NvnzdvHhYuXIi+ffuiX79++OCDD3DixAl89tlnAKprU8aNG4cZM2bgzTffhMlkwqxZs/Dggw9yBA8REVETSmsTjTu7JdR/YCPw+zy2s2fPRmVlJebMmYOioiL07dsX2dnZ6Ny5s/2YVatWYdasWRg1ahQUCgUmTZqEV155xd9FISIiIi+0itA0dRHsJCF3UHQQMRgMiImJQUlJCXQ6XVMXh4iIqFnoMP/f9vf/b2A7fLb/AkZ0i8fWk1cAANvn3Yn2cREB+35vfr+bdiUgIiIiajQRGiXKq6rnOHnhnl6YMiQVRTeq7AFFH9m0Kxg74mKBRERELcQ/pqejc3wkPnxoMLQqJfqm6FFpqpmULVobPPUWwVMSIiIiCqiBqa2w6Y8jnLa1a1XTpCNJTbv+jiMGFCIiohasd7sY/N+D/dA+NnB9TxqCAYWIiKiFu7tf26YuQi3sg0JERERBhwGFiIiIgg4DChEREQUdBhQiIiIKOgwoREREFHQYUIiIiCjoMKAQERFR0GFAISIioqDDgEJERERBhwGFiIiIgg4DChEREQUdBhQiIiIKOgwoREREFHSa5WrGQggAgMFgaOKSEBERkVy2323b73hdmmVAKS0tBQCkpKQ0cUmIiIjIW6WlpYiJianzGEnIiTFBxmq1Ij8/H9HR0ZAkya/XNhgMSElJQV5eHnQ6nV+v3ZLwOfoHn6N/8Dn6B5+jf7Tk5yiEQGlpKZKTk6FQ1N3LpFnWoCgUCrRr1y6g36HT6Vrc/+MEAp+jf/A5+gefo3/wOfpHS32O9dWc2LCTLBEREQUdBhQiIiIKOgwoLrRaLRYuXAitVtvURWnW+Bz9g8/RP/gc/YPP0T/4HOVplp1kiYiIKLSxBoWIiIiCDgMKERERBR0GFCIiIgo6DChEREQUdBhQHKxYsQIdOnRAWFgY0tPTsWfPnqYuUlBZunQpbr31VkRHRyMhIQG//OUvcfLkSadjKisrMXPmTMTFxSEqKgqTJk3C5cuXnY7Jzc1FZmYmIiIikJCQgHnz5sFsNjfmrQSNZcuWQZIkzJ49276Nz1Ceixcv4te//jXi4uIQHh6O3r17Y9++ffb9Qgg899xzaNOmDcLDwzF69GicOnXK6RpFRUXIysqCTqeDXq/H9OnTUVZW1ti30mQsFgueffZZdOzYEeHh4ejcuTOWLFnitE4Kn6N727dvx8SJE5GcnAxJkvDll1867ffXc/vxxx8xfPhwhIWFISUlBS+++GKgby14CBJCCLFmzRqh0WjEe++9J44ePSpmzJgh9Hq9uHz5clMXLWiMHTtWvP/+++LIkSPi4MGDYsKECaJ9+/airKzMfszvf/97kZKSIjZt2iT27dsnhgwZIoYOHWrfbzabRa9evcTo0aPFgQMHxPr160Xr1q3FggULmuKWmtSePXtEhw4dRJ8+fcQTTzxh385nWL+ioiKRmpoqfvvb34rdu3eLs2fPim+++UacPn3afsyyZctETEyM+PLLL8WhQ4fEf/3Xf4mOHTuKiooK+zHjxo0Tffv2Fbt27RLfffed6NKli5g8eXJT3FKTeOGFF0RcXJxYt26dOHfunPj0009FVFSU+L//+z/7MXyO7q1fv148/fTT4p///KcAIL744gun/f54biUlJSIxMVFkZWWJI0eOiI8//liEh4eLt956q7Fus0kxoNw0ePBgMXPmTPtni8UikpOTxdKlS5uwVMGtsLBQABDbtm0TQghRXFws1Gq1+PTTT+3HHD9+XAAQOTk5Qojqf9QKhUIUFBTYj3njjTeETqcTRqOxcW+gCZWWlopbbrlFZGdnizvuuMMeUPgM5XnqqafEsGHDPO63Wq0iKSlJ/PWvf7VvKy4uFlqtVnz88cdCCCGOHTsmAIi9e/faj/nPf/4jJEkSFy9eDFzhg0hmZqZ46KGHnLbde++9IisrSwjB5yiXa0Dx13N7/fXXRatWrZz+XT/11FOiW7duAb6j4MAmHgBVVVXYv38/Ro8ebd+mUCgwevRo5OTkNGHJgltJSQkAIDY2FgCwf/9+mEwmp+eYlpaG9u3b259jTk4OevfujcTERPsxY8eOhcFgwNGjRxux9E1r5syZyMzMdHpWAJ+hXF999RUGDRqE++67DwkJCejfvz/eeecd+/5z586hoKDA6TnGxMQgPT3d6Tnq9XoMGjTIfszo0aOhUCiwe/fuxruZJjR06FBs2rQJP/30EwDg0KFD2LFjB8aPHw+Az7Gh/PXccnJycPvtt0Oj0diPGTt2LE6ePInr16830t00nWa5WKC/Xb16FRaLxekPPgAkJibixIkTTVSq4Ga1WjF79mzcdttt6NWrFwCgoKAAGo0Ger3e6djExEQUFBTYj3H3nG37WoI1a9bghx9+wN69e2vt4zOU5+zZs3jjjTcwd+5c/M///A/27t2Lxx9/HBqNBlOnTrU/B3fPyfE5JiQkOO1XqVSIjY1tMc9x/vz5MBgMSEtLg1KphMViwQsvvICsrCwA4HNsIH89t4KCAnTs2LHWNWz7WrVqFZDyBwsGFGqQmTNn4siRI9ixY0dTF6VZycvLwxNPPIHs7GyEhYU1dXGaLavVikGDBuHPf/4zAKB///44cuQI3nzzTUydOrWJS9d8rF27FqtWrcLq1avRs2dPHDx4ELNnz0ZycjKfIzU5NvEAaN26NZRKZa2REpcvX0ZSUlITlSp4zZo1C+vWrcOWLVvQrl07+/akpCRUVVWhuLjY6XjH55iUlOT2Odv2hbr9+/ejsLAQAwYMgEqlgkqlwrZt2/DKK69ApVIhMTGRz1CGNm3aoEePHk7bunfvjtzcXAA1z6Guf9NJSUkoLCx02m82m1FUVNRinuO8efMwf/58PPjgg+jduzemTJmCOXPmYOnSpQD4HBvKX8+tpf9bZ0ABoNFoMHDgQGzatMm+zWq1YtOmTcjIyGjCkgUXIQRmzZqFL774Aps3b65V9Thw4ECo1Wqn53jy5Enk5uban2NGRgYOHz7s9A8zOzsbOp2u1g9OKBo1ahQOHz6MgwcP2l+DBg1CVlaW/T2fYf1uu+22WkPcf/rpJ6SmpgIAOnbsiKSkJKfnaDAYsHv3bqfnWFxcjP3799uP2bx5M6xWK9LT0xvhLppeeXk5FArnnwGlUgmr1QqAz7Gh/PXcMjIysH37dphMJvsx2dnZ6NatW8g37wDgMGObNWvWCK1WK1auXCmOHTsmHn74YaHX651GSrR0jz76qIiJiRFbt24Vly5dsr/Ky8vtx/z+978X7du3F5s3bxb79u0TGRkZIiMjw77fNkR2zJgx4uDBg2LDhg0iPj6+RQ2RdeU4ikcIPkM59uzZI1QqlXjhhRfEqVOnxKpVq0RERIT46KOP7McsW7ZM6PV68a9//Uv8+OOP4u6773Y7zLN///5i9+7dYseOHeKWW24J+eGxjqZOnSratm1rH2b8z3/+U7Ru3Vr893//t/0YPkf3SktLxYEDB8SBAwcEAPG///u/4sCBA+Lnn38WQvjnuRUXF4vExEQxZcoUceTIEbFmzRoRERHBYcYt0auvvirat28vNBqNGDx4sNi1a1dTFymoAHD7ev/99+3HVFRUiD/84Q+iVatWIiIiQtxzzz3i0qVLTtc5f/68GD9+vAgPDxetW7cWf/zjH4XJZGrkuwkergGFz1Cer7/+WvTq1UtotVqRlpYm3n77baf9VqtVPPvssyIxMVFotVoxatQocfLkSadjrl27JiZPniyioqKETqcT06ZNE6WlpY15G03KYDCIJ554QrRv316EhYWJTp06iaefftppWCufo3tbtmxx+/dw6tSpQgj/PbdDhw6JYcOGCa1WK9q2bSuWLVvWWLfY5CQhHKYMJCIiIgoC7INCREREQYcBhYiIiIIOAwoREREFHQYUIiIiCjoMKERERBR0GFCIiIgo6DCgEBERUdBhQCEiIqKgw4BCREREQYcBhYiIiIIOAwoREREFHQYUIiIiCjr/HySV3sa6ScFDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.plot(losses)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -526,9 +752,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 8/Ch8_book.ipynb b/Chapter 8/Ch8_book.ipynb index 12e5321..17c65ad 100644 --- a/Chapter 8/Ch8_book.ipynb +++ b/Chapter 8/Ch8_book.ipynb @@ -17,31 +17,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/registration.py:307: DeprecationWarning: The package name gym_minigrid has been deprecated in favor of minigrid. Please uninstall gym_minigrid and install minigrid with `pip install minigrid`. Future releases will be maintained under the new package name minigrid.\n", + " fn()\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/envs/registration.py:627: UserWarning: \u001b[33mWARN: The environment creator metadata doesn't include `render_modes`, contains: ['render.modes', 'video.frames_per_second']\u001b[0m\n", + " logger.warn(\n" + ] + } + ], "source": [ - "import gym\n", "from nes_py.wrappers import JoypadSpace #A\n", "import gym_super_mario_bros\n", "from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT #B\n", - "env = gym_super_mario_bros.make('SuperMarioBros-v0')\n", + "env = gym_super_mario_bros.make('SuperMarioBros-v3', apply_api_compatibility=True, render_mode=\"rgb_array\")\n", "env = JoypadSpace(env, COMPLEX_MOVEMENT) #C" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)\n", + " if not isinstance(terminated, (bool, np.bool8)):\n", + "/home/don/git/DeepReinforcementLearningInAction/venv/lib/python3.10/site-packages/gym/utils/passive_env_checker.py:272: UserWarning: \u001b[33mWARN: No render modes was declared in the environment (env.metadata['render_modes'] is None or not defined), you may have trouble when calling `.render()`.\u001b[0m\n", + " logger.warn(\n" + ] + } + ], "source": [ "done = True\n", "for step in range(2500): #D\n", " if done:\n", " state = env.reset()\n", - " state, reward, done, info = env.step(env.action_space.sample())\n", + " state, reward, done, trunc, info = env.step(env.action_space.sample())\n", " env.render()\n", - "env.close()" + "#env.close()" ] }, { @@ -53,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -70,12 +91,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGeCAYAAADSRtWEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgj0lEQVR4nO3df3TU1f3n8deEJMOPZAYSIEM2EwqiINLQNUKc1VqESEAPC5LuWrXHaDl6oIEjZLtq9vij9FtP0H4XkYrRbTmg3zXGg2tw8SxQDDKs24RCJF9QaxRkSzwhQV0zE4KZpJnP/tHj1CkkwyQz3kx4Ps655zife+fOO1fOvM5n5nPnY7MsyxIAAN+xJNMFAAAuTwQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEcmmC/hHwWBQLS0tSk9Pl81mM10OACBKlmWpo6ND2dnZSkrq5zzHipPnnnvOmjx5smW32625c+dahw4duqTnNTc3W5JoNBqNluCtubm53/f7uJwBvfbaayorK9MLL7yggoICbdq0SUVFRWpqatLEiRP7fW56erok6S/vfU+OND4hBIBE4z8X1ORr/2/o/bwvNsuK/Y+RFhQUaM6cOXruueck/e1jNbfbrTVr1uiRRx7p97l+v19Op1NffTxVjnQCCAASjb8jqHFXfSqfzyeHw9HnuJi/w3d3d6uhoUGFhYV/f5GkJBUWFqquru6C8YFAQH6/P6wBAIa/mAfQF198od7eXmVlZYUdz8rKUmtr6wXjKyoq5HQ6Q83tdse6JADAEGT8M67y8nL5fL5Qa25uNl0SAOA7EPOLEMaPH68RI0aora0t7HhbW5tcLtcF4+12u+x2e6zLAAAMcTE/A0pNTVV+fr5qa2tDx4LBoGpra+XxeGL9cgCABBWXy7DLyspUUlKi6667TnPnztWmTZvU2dmp++67Lx4vBwBIQHEJoDvuuEOff/65Hn/8cbW2tuoHP/iB9uzZc8GFCQCAy1dc9gENBvuAACCxGdsHBADApSCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYERc7gcEXKozfz0XcUzXJdwwZEpKWgyqAfBd4gwIAGAEAQQAMIIAAgAYQQABAIwggAAARhBAAAAjCCAAgBEEEADACDaiIq4CVk+//Ut+9Z8jzpF+R0vEMf8y/ZWIY3KS2awKDCWcAQEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABjBRlQY1ZVpizjGdzQ74piRMyLPA2BoifkZ0C9/+UvZbLawNmPGjFi/DAAgwcXlDOiaa67R22+//fcXSeZECwAQLi7JkJycLJfLFY+pAQDDRFwuQvjkk0+UnZ2tqVOn6u6779bp06f7HBsIBOT3+8MaAGD4i3kAFRQUaPv27dqzZ48qKyt16tQp/fCHP1RHR8dFx1dUVMjpdIaa2+2OdUkAgCHIZlmWFc8XaG9v1+TJk7Vx40atWLHigv5AIKBAIBB67Pf75Xa79dXHU+VI5yrxRBfpdgz5mx+MPEdm5H+idXf+c8Qx40eMiTgGwOD5O4Iad9Wn8vl8cjgcfY6L+9UBY8eO1VVXXaUTJ05ctN9ut8tut8e7DADAEBP3U4xz587p5MmTmjRpUrxfCgCQQGJ+BvSLX/xCS5Ys0eTJk9XS0qInnnhCI0aM0J133hnrl0ICsNtS+u3/P2v+a8Q5gpfwKfE4Pl4DEk7MA+izzz7TnXfeqS+//FITJkzQjTfeqPr6ek2YMCHWLwUASGAxD6Dq6upYTwkAGIa4zAwAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACO4UQ+MciaNMl0CAEM4AwIAGEEAAQCMIIAAAEYQQAAAIwggAIARBBAAwAgCCABgBAEEADCCAAIAGEEAAQCMIIAAAEYQQAAAIwggAIARBBAAwAgCCABgBAEEADCCAAIAGEEAAQCMIIAAAEYQQAAAIwggAIARBBAAwAgCCABgBAEEADCCAAIAGEEAAQCMiDqADh48qCVLlig7O1s2m007d+4M67csS48//rgmTZqkUaNGqbCwUJ988kms6gUADBNRB1BnZ6dmz56tLVu2XLT/6aef1ubNm/XCCy/o0KFDGjNmjIqKitTV1TXoYgEAw0dytE9YvHixFi9efNE+y7K0adMmPfroo1q6dKkk6eWXX1ZWVpZ27typn/zkJ4OrFgAwbMT0O6BTp06ptbVVhYWFoWNOp1MFBQWqq6u76HMCgYD8fn9YAwAMfzENoNbWVklSVlZW2PGsrKxQ3z+qqKiQ0+kMNbfbHcuSAABDlPGr4MrLy+Xz+UKtubnZdEkAgO9ATAPI5XJJktra2sKOt7W1hfr+kd1ul8PhCGsAgOEvpgE0ZcoUuVwu1dbWho75/X4dOnRIHo8nli8FAEhwUV8Fd+7cOZ04cSL0+NSpU2psbFRGRoZyc3O1du1a/frXv9aVV16pKVOm6LHHHlN2draWLVsWy7oBAAku6gA6cuSIbr755tDjsrIySVJJSYm2b9+uhx56SJ2dnXrggQfU3t6uG2+8UXv27NHIkSNjVzUAIOHZLMuyTBfxbX6/X06nU199PFWOdOPXSAAAouTvCGrcVZ/K5/P1+70+7/AAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACOiDqCDBw9qyZIlys7Ols1m086dO8P67733XtlstrC2aNGiWNULABgmog6gzs5OzZ49W1u2bOlzzKJFi3TmzJlQe/XVVwdVJABg+EmO9gmLFy/W4sWL+x1jt9vlcrkGXBQAYPiLy3dABw4c0MSJEzV9+nStWrVKX375ZZ9jA4GA/H5/WAMADH8xD6BFixbp5ZdfVm1trZ566il5vV4tXrxYvb29Fx1fUVEhp9MZam63O9YlAQCGIJtlWdaAn2yzqaamRsuWLetzzKeffqorrrhCb7/9thYsWHBBfyAQUCAQCD32+/1yu9366uOpcqRzkR4AJBp/R1DjrvpUPp9PDoejz3Fxf4efOnWqxo8frxMnTly03263y+FwhDUAwPAX9wD67LPP9OWXX2rSpEnxfikAQAKJ+iq4c+fOhZ3NnDp1So2NjcrIyFBGRobWr1+v4uJiuVwunTx5Ug899JCmTZumoqKimBYOAEhsUQfQkSNHdPPNN4cel5WVSZJKSkpUWVmpY8eO6aWXXlJ7e7uys7O1cOFC/dM//ZPsdnvsqgYAJLyoA2jevHnq77qFvXv3DqogAMDlgcvMAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGRBVAFRUVmjNnjtLT0zVx4kQtW7ZMTU1NYWO6urpUWlqqzMxMpaWlqbi4WG1tbTEtGgCQ+KIKIK/Xq9LSUtXX12vfvn3q6enRwoUL1dnZGRqzbt067dq1Szt27JDX61VLS4uWL18e88IBAInNZlmWNdAnf/7555o4caK8Xq9uuukm+Xw+TZgwQVVVVfrxj38sSfroo4909dVXq66uTtdff33EOf1+v5xOp776eKoc6XxCCACJxt8R1LirPpXP55PD4ehz3KDe4X0+nyQpIyNDktTQ0KCenh4VFhaGxsyYMUO5ubmqq6u76ByBQEB+vz+sAQCGvwEHUDAY1Nq1a3XDDTdo1qxZkqTW1lalpqZq7NixYWOzsrLU2tp60XkqKirkdDpDze12D7QkAEACGXAAlZaW6v3331d1dfWgCigvL5fP5wu15ubmQc0HAEgMyQN50urVq/XWW2/p4MGDysnJCR13uVzq7u5We3t72FlQW1ubXC7XReey2+2y2+0DKQMAkMCiOgOyLEurV69WTU2N9u/frylTpoT15+fnKyUlRbW1taFjTU1NOn36tDweT2wqBgAMC1GdAZWWlqqqqkpvvvmm0tPTQ9/rOJ1OjRo1Sk6nUytWrFBZWZkyMjLkcDi0Zs0aeTyeS7oCDgBw+YgqgCorKyVJ8+bNCzu+bds23XvvvZKkZ555RklJSSouLlYgEFBRUZGef/75mBQLABg+BrUPKB7YBwQAie072QcEAMBAEUAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGRBVAFRUVmjNnjtLT0zVx4kQtW7ZMTU1NYWPmzZsnm80W1lauXBnTogEAiS+qAPJ6vSotLVV9fb327dunnp4eLVy4UJ2dnWHj7r//fp05cybUnn766ZgWDQBIfMnRDN6zZ0/Y4+3bt2vixIlqaGjQTTfdFDo+evRouVyu2FQIABiWBvUdkM/nkyRlZGSEHX/llVc0fvx4zZo1S+Xl5Tp//nyfcwQCAfn9/rAGABj+ojoD+rZgMKi1a9fqhhtu0KxZs0LH77rrLk2ePFnZ2dk6duyYHn74YTU1NemNN9646DwVFRVav379QMsAACQom2VZ1kCeuGrVKu3evVvvvvuucnJy+hy3f/9+LViwQCdOnNAVV1xxQX8gEFAgEAg99vv9crvd+urjqXKkc5EeACQaf0dQ4676VD6fTw6Ho89xAzoDWr16td566y0dPHiw3/CRpIKCAknqM4DsdrvsdvtAygAAJLCoAsiyLK1Zs0Y1NTU6cOCApkyZEvE5jY2NkqRJkyYNqEAAwPAUVQCVlpaqqqpKb775ptLT09Xa2ipJcjqdGjVqlE6ePKmqqirdeuutyszM1LFjx7Ru3TrddNNNysvLi8sfAABITFF9B2Sz2S56fNu2bbr33nvV3Nysn/70p3r//ffV2dkpt9ut22+/XY8++mi/nwN+m9/vl9Pp5DsgAEhQcfkOKFJWud1ueb3eaKYEAFymOMUAABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMCIAf8YqWln/nou4ph/7c4c9OtcZ/9/EceMHzFm0K8DAJcbzoAAAEYQQAAAIwggAIARBBAAwAgCCABgBAEEADCCAAIAGEEAAQCMGLIbUXutoHr7uf3Qoo0PRZwjbVFrv/09vSMizvHFyYyIYz798YsRxwAAwnEGBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMCIIbsPKJIJ/9oVcczz6/6l3/7zwch/fsnb6yKO6bWCEceMsJH1APBtvCsCAIwggAAARhBAAAAjCCAAgBEEEADACAIIAGAEAQQAMIIAAgAYkbAbUTty7BHH/O7LG/vt/6I7LeIc2b8/HnHM9OzSiGNk6+fuepcoaI88x6ZF/W++laR/P+b8oGsBgMGK6gyosrJSeXl5cjgccjgc8ng82r17d6i/q6tLpaWlyszMVFpamoqLi9XW1hbzogEAiS+qAMrJydGGDRvU0NCgI0eOaP78+Vq6dKk++OADSdK6deu0a9cu7dixQ16vVy0tLVq+fHlcCgcAJLaoPoJbsmRJ2OMnn3xSlZWVqq+vV05OjrZu3aqqqirNnz9fkrRt2zZdffXVqq+v1/XXXx+7qgEACW/AFyH09vaqurpanZ2d8ng8amhoUE9PjwoLC0NjZsyYodzcXNXV1fU5TyAQkN/vD2sAgOEv6gA6fvy40tLSZLfbtXLlStXU1GjmzJlqbW1Vamqqxo4dGzY+KytLra2tfc5XUVEhp9MZam63O+o/AgCQeKIOoOnTp6uxsVGHDh3SqlWrVFJSog8//HDABZSXl8vn84Vac3PzgOcCACSOqC/DTk1N1bRp0yRJ+fn5Onz4sJ599lndcccd6u7uVnt7e9hZUFtbm1wuV5/z2e122e2RL6kGAAwvg96IGgwGFQgElJ+fr5SUFNXW1ob6mpqadPr0aXk8nsG+DABgmInqDKi8vFyLFy9Wbm6uOjo6VFVVpQMHDmjv3r1yOp1asWKFysrKlJGRIYfDoTVr1sjj8QzoCrgRtqR+7yL6219tjjjHxpaifvvf/58zIs4x4d91RxzjOhT5jqixYOuNPOahr0oijvl+yW8ijpmSEnmTLgAMRlQBdPbsWd1zzz06c+aMnE6n8vLytHfvXt1yyy2SpGeeeUZJSUkqLi5WIBBQUVGRnn/++bgUDgBIbFEF0NatW/vtHzlypLZs2aItW7YMqigAwPDHj5ECAIwggAAARhBAAAAjCCAAgBEEEADACAIIAGBEwt4RdXZq5DFNr/a/0XTCJ5E3mXY7Iy+RZYtcS0yMiDzEVffXiGNW/q+fRxzzP17/bxHHpCWNjFwQYECvFXlzeFCDv0txIkqxXcIbyXeEMyAAgBEEEADACAIIAGAEAQQAMIIAAgAYQQABAIwggAAARhBAAAAjhuxGVF/wa1nBvvPxhuf+U8Q5st/r7Lf/nHtU1HUNdd2OyJvMkr+O/L/95sfWRRxTsz7ynVVzkrmzKmLrUjaZXn3wvohj7A1jIr/Yd7XJPEZsl3Bz5qxbm/vt33f1rhhVExlnQAAAIwggAIARBBAAwAgCCABgBAEEADCCAAIAGEEAAQCMIIAAAEYM2Y2o93xyu5LH2Pvsd9V3RZxjOG40jYXzWZFvJ5vW0hNxzH/4oCTimB3XvNRvPxtV8W0BK/K/u998+f2IY3ra+37v+MbuNU9HHJOSYBtRO/vZvP+N5dt+0W//C5P+TcQ57nf2v5n1UjYLS5wBAQAMIYAAAEYQQAAAIwggAIARBBAAwAgCCABgBAEEADBiyO4D6t7iUjBlZJ/9wYzIF+jbglYsS7qs9KRFvrHdyGczIo4p/Nmqfvvf9bxwyTVh+Ptj14SIY3Z8+m8jjqm8pf/9Z5eqJ8HeQlIv4Y50v777v/fb/4uD/zHiHHMWPN9v/7nuOOwDqqysVF5enhwOhxwOhzwej3bv3h3qnzdvnmw2W1hbuXJlNC8BALhMRHUGlJOTow0bNujKK6+UZVl66aWXtHTpUh09elTXXHONJOn+++/Xr371q9BzRo8eHduKAQDDQlQBtGTJkrDHTz75pCorK1VfXx8KoNGjR8vlcsWuQgDAsDTgixB6e3tVXV2tzs5OeTye0PFXXnlF48eP16xZs1ReXq7z58/3O08gEJDf7w9rAIDhL+qLEI4fPy6Px6Ouri6lpaWppqZGM2fOlCTdddddmjx5srKzs3Xs2DE9/PDDampq0htvvNHnfBUVFVq/fv3A/wIAQEKKOoCmT5+uxsZG+Xw+vf766yopKZHX69XMmTP1wAMPhMZ9//vf16RJk7RgwQKdPHlSV1xxxUXnKy8vV1lZWeix3++X2+0ewJ8CAEgkUQdQamqqpk2bJknKz8/X4cOH9eyzz+rFF1+8YGxBQYEk6cSJE30GkN1ul90e+afTAQDDy6A3ogaDQQUCgYv2NTY2SpImTZo02JcBAAwzNsuyLnmrVXl5uRYvXqzc3Fx1dHSoqqpKTz31lPbu3aupU6eqqqpKt956qzIzM3Xs2DGtW7dOOTk58nq9l1yQ3++X0+nUPC1Vsi1lQH8UvhtJI/veKPyNr378g377u8bxYxz4O+sSPpPp+EHkm1GmOb+OQTWXp46zkW8S6fig//fm3kCX/lz5X+Tz+eRwOPocF9VHcGfPntU999yjM2fOyOl0Ki8vT3v37tUtt9yi5uZmvf3229q0aZM6OzvldrtVXFysRx99NJqXAABcJqIKoK1bt/bZ53a7ozrTAQBc3vj8AwBgBAEEADCCAAIAGEEAAQCMIIAAAEYQQAAAI4bsHVGv+d822dMi3/UUJl38FzDCHYp7FRg+kmwJdgvS4WjyJYyZ03934FyP/lwZeRrOgAAARhBAAAAjCCAAgBEEEADACAIIAGAEAQQAMIIAAgAYQQABAIwYshtRU2y9SrGRjwCQaEYoeEnjeIcHABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABhBAAEAjCCAAABGEEAAACMIIACAEQQQAMAIAggAYAQBBAAwggACABgxqADasGGDbDab1q5dGzrW1dWl0tJSZWZmKi0tTcXFxWpraxtsnQCAYWbAAXT48GG9+OKLysvLCzu+bt067dq1Szt27JDX61VLS4uWL18+6EIBAMPLgALo3Llzuvvuu/W73/1O48aNCx33+XzaunWrNm7cqPnz5ys/P1/btm3TH//4R9XX18esaABA4htQAJWWluq2225TYWFh2PGGhgb19PSEHZ8xY4Zyc3NVV1d30bkCgYD8fn9YAwAMf8nRPqG6ulrvvfeeDh8+fEFfa2urUlNTNXbs2LDjWVlZam1tveh8FRUVWr9+fbRlAAASXFRnQM3NzXrwwQf1yiuvaOTIkTEpoLy8XD6fL9Sam5tjMi8AYGiLKoAaGhp09uxZXXvttUpOTlZycrK8Xq82b96s5ORkZWVlqbu7W+3t7WHPa2trk8vluuicdrtdDocjrAEAhr+oPoJbsGCBjh8/Hnbsvvvu04wZM/Twww/L7XYrJSVFtbW1Ki4uliQ1NTXp9OnT8ng8sasaAJDwogqg9PR0zZo1K+zYmDFjlJmZGTq+YsUKlZWVKSMjQw6HQ2vWrJHH49H1118fu6oBAAkv6osQInnmmWeUlJSk4uJiBQIBFRUV6fnnn4/1ywAAEpzNsizLdBHf5vf75XQ6tfbdJbKnpZguBwAQpcC5Hm26cZd8Pl+/3+vzW3AAACMIIACAEQQQAMAIAggAYAQBBAAwIuaXYQ/WNxflBTp7DFcCABiIb96/I11kPeQuw/7ss8/kdrtNlwEAGKTm5mbl5OT02T/kAigYDKqlpUXp6emy2WyS/rY3yO12q7m5md+KiwPWN75Y3/hifeNrIOtrWZY6OjqUnZ2tpKS+v+kZch/BJSUl9ZmY/FhpfLG+8cX6xhfrG1/Rrq/T6Yw4hosQAABGEEAAACMSIoDsdrueeOIJ2e1206UMS6xvfLG+8cX6xlc813fIXYQAALg8JMQZEABg+CGAAABGEEAAACMIIACAEUM+gLZs2aLvfe97GjlypAoKCvSnP/3JdEkJ6eDBg1qyZImys7Nls9m0c+fOsH7LsvT4449r0qRJGjVqlAoLC/XJJ5+YKTYBVVRUaM6cOUpPT9fEiRO1bNkyNTU1hY3p6upSaWmpMjMzlZaWpuLiYrW1tRmqOLFUVlYqLy8vtBnS4/Fo9+7doX7WNrY2bNggm82mtWvXho7FY42HdAC99tprKisr0xNPPKH33ntPs2fPVlFRkc6ePWu6tITT2dmp2bNna8uWLRftf/rpp7V582a98MILOnTokMaMGaOioiJ1dXV9x5UmJq/Xq9LSUtXX12vfvn3q6enRwoUL1dnZGRqzbt067dq1Szt27JDX61VLS4uWL19usOrEkZOTow0bNqihoUFHjhzR/PnztXTpUn3wwQeSWNtYOnz4sF588UXl5eWFHY/LGltD2Ny5c63S0tLQ497eXis7O9uqqKgwWFXik2TV1NSEHgeDQcvlclm/+c1vQsfa29stu91uvfrqqwYqTHxnz561JFler9eyrL+tZ0pKirVjx47QmD//+c+WJKuurs5UmQlt3Lhx1u9//3vWNoY6OjqsK6+80tq3b5/1ox/9yHrwwQcty4rfv98hewbU3d2thoYGFRYWho4lJSWpsLBQdXV1Bisbfk6dOqXW1tawtXY6nSooKGCtB8jn80mSMjIyJEkNDQ3q6ekJW+MZM2YoNzeXNY5Sb2+vqqur1dnZKY/Hw9rGUGlpqW677bawtZTi9+93yP0Y6Te++OIL9fb2KisrK+x4VlaWPvroI0NVDU+tra2SdNG1/qYPly4YDGrt2rW64YYbNGvWLEl/W+PU1FSNHTs2bCxrfOmOHz8uj8ejrq4upaWlqaamRjNnzlRjYyNrGwPV1dV67733dPjw4Qv64vXvd8gGEJCoSktL9f777+vdd981XcqwMn36dDU2Nsrn8+n1119XSUmJvF6v6bKGhebmZj344IPat2+fRo4c+Z297pD9CG78+PEaMWLEBVdZtLW1yeVyGapqePpmPVnrwVu9erXeeustvfPOO2G3FXG5XOru7lZ7e3vYeNb40qWmpmratGnKz89XRUWFZs+erWeffZa1jYGGhgadPXtW1157rZKTk5WcnCyv16vNmzcrOTlZWVlZcVnjIRtAqampys/PV21tbehYMBhUbW2tPB6PwcqGnylTpsjlcoWttd/v16FDh1jrS2RZllavXq2amhrt379fU6ZMCevPz89XSkpK2Bo3NTXp9OnTrPEABYNBBQIB1jYGFixYoOPHj6uxsTHUrrvuOt19992h/47LGg/yoom4qq6utux2u7V9+3brww8/tB544AFr7NixVmtrq+nSEk5HR4d19OhR6+jRo5Yka+PGjdbRo0etv/zlL5ZlWdaGDRussWPHWm+++aZ17Ngxa+nSpdaUKVOsr7/+2nDliWHVqlWW0+m0Dhw4YJ05cybUzp8/HxqzcuVKKzc319q/f7915MgRy+PxWB6Px2DVieORRx6xvF6vderUKevYsWPWI488YtlsNusPf/iDZVmsbTx8+yo4y4rPGg/pALIsy/rtb39r5ebmWqmpqdbcuXOt+vp60yUlpHfeeceSdEErKSmxLOtvl2I/9thjVlZWlmW3260FCxZYTU1NZotOIBdbW0nWtm3bQmO+/vpr6+c//7k1btw4a/To0dbtt99unTlzxlzRCeRnP/uZNXnyZCs1NdWaMGGCtWDBglD4WBZrGw//GEDxWGNuxwAAMGLIfgcEABjeCCAAgBEEEADACAIIAGAEAQQAMIIAAgAYQQABAIwggAAARhBAAAAjCCAAgBEEEADACAIIAGDE/we+y0bYt47onwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "plt.imshow(env.render(\"rgb_array\"))\n", - "plt.imshow(downscale_obs(env.render(\"rgb_array\")))" + "plt.imshow(env.render())\n", + "plt.imshow(downscale_obs(env.render()))" ] }, { @@ -87,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -125,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -148,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -206,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -266,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -304,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -342,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -358,7 +400,7 @@ " Reset the environment and return a new initial state\n", " \"\"\"\n", " env.reset()\n", - " state1 = prepare_initial_state(env.render('rgb_array'))\n", + " state1 = prepare_initial_state(env.render())\n", " return state1" ] }, @@ -371,7 +413,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -396,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -433,19 +475,28 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_6414/227893001.py:8: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return torch.multinomial(F.softmax(F.normalize(qvalues)), num_samples=1) #B\n" + ] + } + ], "source": [ "epochs = 5000\n", "env.reset()\n", - "state1 = prepare_initial_state(env.render('rgb_array'))\n", + "state1 = prepare_initial_state(env.render())\n", "eps=0.15\n", "losses = []\n", "episode_length = 0\n", "switch_to_eps_greedy = 1000\n", "state_deque = deque(maxlen=params['frames_per_state'])\n", "e_reward = 0.\n", - "last_x_pos = env.env.env._x_position #A\n", - "ep_lengths = []\n", + "last_x_pos = 0 #A\n", + "#ep_lengths = []\n", "use_explicit = False\n", "for i in range(epochs):\n", " opt.zero_grad()\n", @@ -456,7 +507,7 @@ " else:\n", " action = int(policy(q_val_pred))\n", " for j in range(params['action_repeats']): #D\n", - " state2, e_reward_, done, info = env.step(action)\n", + " state2, e_reward_, done, trunc, info = env.step(action)\n", " last_x_pos = info['x_pos']\n", " if done:\n", " state1 = reset_env()\n", @@ -471,10 +522,10 @@ " done = True\n", " else:\n", " last_x_pos = info['x_pos']\n", - " if done:\n", - " ep_lengths.append(info['x_pos'])\n", + " if done or trunc:\n", + " #ep_lengths.append(info['x_pos'])\n", " state1 = reset_env()\n", - " last_x_pos = env.env.env._x_position\n", + " last_x_pos = 0\n", " episode_length = 0\n", " else:\n", " state1 = state2\n", @@ -489,28 +540,21 @@ " opt.step()" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Test Trained Agent" - ] - }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "done = True\n", "state_deque = deque(maxlen=params['frames_per_state'])\n", - "for step in range(5000):\n", + "for step in range(500):\n", " if done:\n", " env.reset()\n", - " state1 = prepare_initial_state(env.render('rgb_array'))\n", + " state1 = prepare_initial_state(env.render())\n", " q_val_pred = Qmodel(state1)\n", " action = int(policy(q_val_pred,eps))\n", - " state2, reward, done, info = env.step(action)\n", + " state2, reward, done, trunc, info = env.step(action)\n", " state2 = prepare_multi_state(state1,state2)\n", " state1=state2\n", " env.render()" @@ -526,9 +570,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:deeprl]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-deeprl-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -540,9 +584,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter 8/script_8.py b/Chapter 8/script_8.py new file mode 100644 index 0000000..17e5ed5 --- /dev/null +++ b/Chapter 8/script_8.py @@ -0,0 +1,324 @@ +from nes_py.wrappers import JoypadSpace #A +import gym_super_mario_bros +from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT #B +env = gym_super_mario_bros.make('SuperMarioBros-v3', apply_api_compatibility=True, render_mode="rgb_array") +env = JoypadSpace(env, COMPLEX_MOVEMENT) #C + + +done = True +for step in range(2500): #D + if done: + state = env.reset() + state, reward, done, _, info = env.step(env.action_space.sample()) + env.render() +env.close() + + +import matplotlib.pyplot as plt +from skimage.transform import resize #A +import numpy as np + +def downscale_obs(obs, new_size=(42,42), to_gray=True): + if to_gray: + return resize(obs, new_size, anti_aliasing=True).max(axis=2) #B + else: + return resize(obs, new_size, anti_aliasing=True) + + +plt.imshow(env.render()) +plt.imshow(downscale_obs(env.render())) + + +import torch +from torch import nn +from torch import optim +import torch.nn.functional as F +from collections import deque + +def prepare_state(state): #A + return torch.from_numpy(downscale_obs(state, to_gray=True)).float().unsqueeze(dim=0) + + +def prepare_multi_state(state1, state2): #B + state1 = state1.clone() + tmp = torch.from_numpy(downscale_obs(state2, to_gray=True)).float() + state1[0][0] = state1[0][1] + state1[0][1] = state1[0][2] + state1[0][2] = tmp + return state1 + + +def prepare_initial_state(state,N=3): #C + state_ = torch.from_numpy(downscale_obs(state, to_gray=True)).float() + tmp = state_.repeat((N,1,1)) + return tmp.unsqueeze(dim=0) + + +def policy(qvalues, eps=None): #A + if eps is not None: + if torch.rand(1) < eps: + return torch.randint(low=0,high=7,size=(1,)) + else: + return torch.argmax(qvalues) + else: + return torch.multinomial(F.softmax(F.normalize(qvalues)), num_samples=1) #B + + +from random import shuffle +import torch +from torch import nn +from torch import optim +import torch.nn.functional as F + +class ExperienceReplay: + def __init__(self, N=500, batch_size=100): + self.N = N #A + self.batch_size = batch_size #B + self.memory = [] + self.counter = 0 + + def add_memory(self, state1, action, reward, state2): + self.counter +=1 + if self.counter % 500 == 0: #C + self.shuffle_memory() + + if len(self.memory) < self.N: #D + self.memory.append( (state1, action, reward, state2) ) + else: + rand_index = np.random.randint(0,self.N-1) + self.memory[rand_index] = (state1, action, reward, state2) + + def shuffle_memory(self): #E + shuffle(self.memory) + + def get_batch(self): #F + if len(self.memory) < self.batch_size: + batch_size = len(self.memory) + else: + batch_size = self.batch_size + if len(self.memory) < 1: + print("Error: No data in memory.") + return None + #G + ind = np.random.choice(np.arange(len(self.memory)),batch_size,replace=False) + batch = [self.memory[i] for i in ind] #batch is a list of tuples + state1_batch = torch.stack([x[0].squeeze(dim=0) for x in batch],dim=0) + action_batch = torch.Tensor([x[1] for x in batch]).long() + reward_batch = torch.Tensor([x[2] for x in batch]) + state2_batch = torch.stack([x[3].squeeze(dim=0) for x in batch],dim=0) + return state1_batch, action_batch, reward_batch, state2_batch + + +class Phi(nn.Module): #A + def __init__(self): + super(Phi, self).__init__() + self.conv1 = nn.Conv2d(3, 32, kernel_size=(3,3), stride=2, padding=1) + self.conv2 = nn.Conv2d(32, 32, kernel_size=(3,3), stride=2, padding=1) + self.conv3 = nn.Conv2d(32, 32, kernel_size=(3,3), stride=2, padding=1) + self.conv4 = nn.Conv2d(32, 32, kernel_size=(3,3), stride=2, padding=1) + + def forward(self,x): + x = F.normalize(x) + y = F.elu(self.conv1(x)) + y = F.elu(self.conv2(y)) + y = F.elu(self.conv3(y)) + y = F.elu(self.conv4(y)) #size [1, 32, 3, 3] batch, channels, 3 x 3 + y = y.flatten(start_dim=1) #size N, 288 + return y + +class Gnet(nn.Module): #B + def __init__(self): + super(Gnet, self).__init__() + self.linear1 = nn.Linear(576,256) + self.linear2 = nn.Linear(256,12) + + def forward(self, state1,state2): + x = torch.cat( (state1, state2) ,dim=1) + y = F.relu(self.linear1(x)) + y = self.linear2(y) + y = F.softmax(y,dim=1) + return y + +class Fnet(nn.Module): #C + def __init__(self): + super(Fnet, self).__init__() + self.linear1 = nn.Linear(300,256) + self.linear2 = nn.Linear(256,288) + + def forward(self,state,action): + action_ = torch.zeros(action.shape[0],12) #D + indices = torch.stack( (torch.arange(action.shape[0]), action.squeeze()), dim=0) + indices = indices.tolist() + action_[indices] = 1. + x = torch.cat( (state,action_) ,dim=1) + y = F.relu(self.linear1(x)) + y = self.linear2(y) + return y + + +class Qnetwork(nn.Module): + def __init__(self): + super(Qnetwork, self).__init__() + #in_channels, out_channels, kernel_size, stride=1, padding=0 + self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3,3), stride=2, padding=1) + self.conv2 = nn.Conv2d(32, 32, kernel_size=(3,3), stride=2, padding=1) + self.conv3 = nn.Conv2d(32, 32, kernel_size=(3,3), stride=2, padding=1) + self.conv4 = nn.Conv2d(32, 32, kernel_size=(3,3), stride=2, padding=1) + self.linear1 = nn.Linear(288,100) + self.linear2 = nn.Linear(100,12) + + def forward(self,x): + x = F.normalize(x) + y = F.elu(self.conv1(x)) + y = F.elu(self.conv2(y)) + y = F.elu(self.conv3(y)) + y = F.elu(self.conv4(y)) + y = y.flatten(start_dim=2) + y = y.view(y.shape[0], -1, 32) + y = y.flatten(start_dim=1) + y = F.elu(self.linear1(y)) + y = self.linear2(y) #size N, 12 + return y + + +params = { + 'batch_size':150, + 'beta':0.2, + 'lambda':0.1, + 'eta': 1.0, + 'gamma':0.2, + 'max_episode_len':100, + 'min_progress':15, + 'action_repeats':6, + 'frames_per_state':3 +} + +replay = ExperienceReplay(N=1000, batch_size=params['batch_size']) +Qmodel = Qnetwork() +encoder = Phi() +forward_model = Fnet() +inverse_model = Gnet() +forward_loss = nn.MSELoss(reduction='none') +inverse_loss = nn.CrossEntropyLoss(reduction='none') +qloss = nn.MSELoss() +all_model_params = list(Qmodel.parameters()) + list(encoder.parameters()) #A +all_model_params += list(forward_model.parameters()) + list(inverse_model.parameters()) +opt = optim.Adam(lr=0.001, params=all_model_params) + + +def loss_fn(q_loss, inverse_loss, forward_loss): + loss_ = (1 - params['beta']) * inverse_loss + loss_ += params['beta'] * forward_loss + loss_ = loss_.sum() / loss_.flatten().shape[0] + loss = loss_ + params['lambda'] * q_loss + return loss + +def reset_env(): + """ + Reset the environment and return a new initial state + """ + env.reset() + state1 = prepare_initial_state(env.render('rgb_array')) + return state1 + + +def ICM(state1, action, state2, forward_scale=1., inverse_scale=1e4): + state1_hat = encoder(state1) #A + state2_hat = encoder(state2) + state2_hat_pred = forward_model(state1_hat.detach(), action.detach()) #B + forward_pred_err = forward_scale * forward_loss(state2_hat_pred, \ + state2_hat.detach()).sum(dim=1).unsqueeze(dim=1) + pred_action = inverse_model(state1_hat, state2_hat) #C + inverse_pred_err = inverse_scale * inverse_loss(pred_action, \ + action.detach().flatten()).unsqueeze(dim=1) + return forward_pred_err, inverse_pred_err + + +def minibatch_train(use_extrinsic=True): + state1_batch, action_batch, reward_batch, state2_batch = replay.get_batch() + action_batch = action_batch.view(action_batch.shape[0],1) #A + reward_batch = reward_batch.view(reward_batch.shape[0],1) + + forward_pred_err, inverse_pred_err = ICM(state1_batch, action_batch, state2_batch) #B + i_reward = (1. / params['eta']) * forward_pred_err #C + reward = i_reward.detach() #D + if use_explicit: #E + reward += reward_batch + qvals = Qmodel(state2_batch) #F + reward += params['gamma'] * torch.max(qvals) + reward_pred = Qmodel(state1_batch) + reward_target = reward_pred.clone() + indices = torch.stack( (torch.arange(action_batch.shape[0]), \ + action_batch.squeeze()), dim=0) + indices = indices.tolist() + reward_target[indices] = reward.squeeze() + q_loss = 1e5 * qloss(F.normalize(reward_pred), F.normalize(reward_target.detach())) + return forward_pred_err, inverse_pred_err, q_loss + + +epochs = 5000 +env.reset() +state1 = prepare_initial_state(env.render()) +eps=0.15 +losses = [] +episode_length = 0 +switch_to_eps_greedy = 1000 +state_deque = deque(maxlen=params['frames_per_state']) +e_reward = 0. +last_x_pos = env.env.env._x_position #A +ep_lengths = [] +use_explicit = False +for i in range(epochs): + opt.zero_grad() + episode_length += 1 + q_val_pred = Qmodel(state1) #B + if i > switch_to_eps_greedy: #C + action = int(policy(q_val_pred,eps)) + else: + action = int(policy(q_val_pred)) + for j in range(params['action_repeats']): #D + state2, e_reward_, done, info = env.step(action) + last_x_pos = info['x_pos'] + if done: + state1 = reset_env() + break + e_reward += e_reward_ + state_deque.append(prepare_state(state2)) + state2 = torch.stack(list(state_deque),dim=1) #E + replay.add_memory(state1, action, e_reward, state2) #F + e_reward = 0 + if episode_length > params['max_episode_len']: #G + if (info['x_pos'] - last_x_pos) < params['min_progress']: + done = True + else: + last_x_pos = info['x_pos'] + if done: + ep_lengths.append(info['x_pos']) + state1 = reset_env() + last_x_pos = env.env.env._x_position + episode_length = 0 + else: + state1 = state2 + if len(replay.memory) < params['batch_size']: + continue + forward_pred_err, inverse_pred_err, q_loss = minibatch_train(use_extrinsic=False) #H + loss = loss_fn(q_loss, forward_pred_err, inverse_pred_err) #I + loss_list = (q_loss.mean(), forward_pred_err.flatten().mean(),\ + inverse_pred_err.flatten().mean()) + losses.append(loss_list) + loss.backward() + opt.step() + + +done = True +state_deque = deque(maxlen=params['frames_per_state']) +for step in range(5000): + if done: + env.reset() + state1 = prepare_initial_state(env.render('rgb_array')) + q_val_pred = Qmodel(state1) + action = int(policy(q_val_pred,eps)) + state2, reward, done, info = env.step(action) + state2 = prepare_multi_state(state1,state2) + state1=state2 + env.render() diff --git a/Chapter 9/Ch9_book.ipynb b/Chapter 9/Ch9_book.ipynb index dc8cdfa..e5903ac 100644 --- a/Chapter 9/Ch9_book.ipynb +++ b/Chapter 9/Ch9_book.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -98,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -126,37 +126,35 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor([0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0],\n", + "tensor([1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " dtype=torch.uint8)\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 15, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAA5CAYAAAAfmaNLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACSRJREFUeJzt3X+MHGUdx/H3x7aU8PtKCZRKxPqDiFGhXAAVSWP50RLTqkEDMVoEgkQbxcQoCUlD+McWoyYaoqlAREKgEQWqKYEiEP8wVAq5FsqvFoKBWlootYUQ0eLXP+Y5btjO3u3d7O3us/d5JZOd2Xl25/vNM7Pf25nZ5xQRmJmZWT7e1+0AzMzMbHxcvM3MzDLj4m1mZpYZF28zM7PMuHibmZllxsXbzMwsM7WKt6RZktZL2poeB5q0e0fSUJrW1tmmmZnZVKc6v/OWdD3wekSslHQ1MBARP6po92ZEHFYjTjMzM0vqFu9ngQURsUPSHODhiDipop2Lt5mZWZvULd7/ioij0ryAPcPLDe32A0PAfmBlRNzd5P2uAK4AmMa00w7hiAnH1sxHP/lW299z2HObD5mU952smCcr3hx5vxgxmftFbjFP5n5hI/xZNOIN9rwWEceM1W7M4i3pAeC4ilXXALeUi7WkPRFxwHVvSXMjYrukecCDwMKIeH607R6hWXGGFo4V/7jd98+htr/nsPOPP2VS3neyYp6seHPk/WLEZO4XucU8mfuFjfBn0YgH4s7HImJwrHbTx2oQEec0Wydpp6Q5pdPmu5q8x/b0+IKkh4FTgVGLt5mZmVWr+1OxtcCyNL8MuKexgaQBSTPT/Gzgs8BTNbdrZmY2ZdUt3iuBcyVtBc5Jy0galHRjavMxYKOkTcBDFNe8XbzNzMwmaMzT5qOJiN3AARemI2IjcHma/xvwiTrbMTMzsxEeYc3MzCwzLt5mZmaZaUvxlrRI0rOStqWR1hrXz5S0Jq3fIOnEdmzXzMxsKqpdvCVNA24AFgMnAxdLOrmh2WUUA7h8GPg5sKruds3MzKaqdnzzPh3YFhEvRMR/gDuApQ1tlgK3pPk7gYVpRDYzMzMbp3YU77nAS6Xll9NzlW0iYj+wFzi6Dds2MzObcmr9VKzdymObH4zHujUzM6vSjm/e24ETSsvvT89VtpE0HTgS2N34RhGxOiIGI2JwBjPbEJqZmVn/aUfxfhT4iKQPSjoIuIhi2NSy8jCqFwIPRp1/Z2ZmZjaF1T5tHhH7JS0H7gOmATdHxBZJ1wEbI2ItcBNwq6RtwOsUBd7MzMwmoC3XvCNiHbCu4bkVpfl/A19px7bMzMymOo+wZmZmlhkXbzMzs8y4eJuZmWWmU2ObXyLpVUlDabq8Hds1MzObimrfsFYa2/xcitHVHpW0NiKeami6JiKW192emZnZVNepsc3NzMysTVR3rBRJFwKLIuLytPx14Izyt2xJlwA/Bl4FngO+HxEvVbzXu8OjAicBz44jlNnAaxPJIQP9nBs4v9w5v3z1c26QZ34fiIhjxmrUqbHN/wTcHhFvS/oWxX8Y+3xjo4hYDayeyAYkbYyIwXph9qZ+zg2cX+6cX776OTfo7/w6MrZ5ROyOiLfT4o3AaW3YrpmZ2ZTUkbHNJc0pLS4Bnm7Dds3MzKakTo1t/l1JS4D9FGObX1J3uxUmdLo9E/2cGzi/3Dm/fPVzbtDH+dW+Yc3MzMw6yyOsmZmZZcbF28zMLDNZFe8WhmGdKWlNWr9B0omdj3JiJJ0g6SFJT0naIul7FW0WSNpbGmZ2RdV79SpJL0p6IsW+sWK9JP0i9d9mSfO7EedESDqp1C9DkvZJuqqhTVb9J+lmSbskPVl6bpak9ZK2pseBJq9dltpslbSsc1G3rkl+P5H0TNr/7pJ0VJPXjrovd1uT3K6VtL20/13Q5LWjfs72gib5rSnl9qKkoSav7em+a1lEZDFR3Az3PDAPOAjYBJzc0ObbwK/T/EUUQ7J2PfYW85sDzE/zh1MMZtOY3wLgz92OtUaOLwKzR1l/AXAvIOBMYEO3Y55gntOAVygGW8i2/4CzgfnAk6XnrgeuTvNXA6sqXjcLeCE9DqT5gW7n02J+5wHT0/yqqvzSulH35W5PTXK7FvjBGK8b83O2F6aq/BrW/xRYkWPftTrl9M27lWFYl1IMAANwJ7BQkjoY44RFxI6IeDzNv0Hxc7q53Y2q45YCv4vCI8BRDT8zzMVC4PmI+Ee3A6kjIv5K8euQsvIxdgvwxYqXng+sj4jXI2IPsB5YNGmBTlBVfhFxf0TsT4uPUIxbkZ0mfdeKLIa7Hi2/9Jn/VeD2jgbVYTkV77lAeUjVlzmwuL3bJh2Ae4GjOxJdG6XT/acCGypWf1rSJkn3Svp4RwOrL4D7JT2WhsJt1Eof5+Aimn9w5Nx/AMdGxI40/wpwbEWbfunHSynOBFUZa1/uVcvTJYGbm1zy6Ie++xywMyK2Nlmfa9+9R07Fe0qQdBjwB+CqiNjXsPpxilOxnwJ+Cdzd6fhqOisi5gOLge9IOrvbAbVbGqhoCfD7itW59997RHEOsi9/ayrpGopxKW5r0iTHfflXwIeAU4AdFKeW+9HFjP6tO8e+O0BOxXvMYVjLbSRNB44EdnckujaQNIOicN8WEX9sXB8R+yLizTS/DpghaXaHw5ywiNieHncBd1GcoitrpY973WLg8YjY2bgi9/5Ldg5fykiPuyraZN2PKv6R0heAr6U/UA7Qwr7ccyJiZ0S8ExH/A35Ddcy599104MvAmmZtcuy7KjkV7zGHYU3Lw3e2Xgg82Ozg6zXpOs1NwNMR8bMmbY4bvoYv6XSK/svijxNJh0o6fHie4sagJxuarQW+ke46PxPYWzpFm4umf/Xn3H8l5WNsGXBPRZv7gPMkDaRTs+el53qepEXAD4ElEfFWkzat7Ms9p+H+kS9RHXMrn7O97BzgmYh4uWplrn1Xqdt3zI1norgb+TmKuyGvSc9dR3GgARxMcbpyG/B3YF63Yx5HbmdRnILcDAyl6QLgSuDK1GY5sIXiDtBHgM90O+5x5Dcvxb0p5TDcf+X8BNyQ+vcJYLDbcY8zx0MpivGRpeey7T+KP0J2AP+luPZ5GcU9JH8BtgIPALNS20HgxtJrL03H4Tbgm93OZRz5baO45jt8DA7/euV4YF2ar9yXe2lqktut6bjaTFGQ5zTmlpYP+Jzttakqv/T8b4ePt1LbrPqu1cnDo5qZmWUmp9PmZmZmhou3mZlZdly8zczMMuPibWZmlhkXbzMzs8y4eJuZmWXGxdvMzCwz/wekU9gc6gHF4gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAABQCAYAAAA+0TwCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAASTElEQVR4nO3de0xTdxsH8G9RKOJrYYpQ6gXUqaACKkoHu2ikEdSobGaiM1MZ4mYw0eAWdJkyNRnbdMbNES+J6BbvJl62aTSAl22K4gDjZY5XeBnqRkFl3Ccw+nv/WKzraIslHnrgfD9JE3r6/H7n16fPOXk89qISQggQEREREcmQi7MXQERERERkC5tVIiIiIpItNqtEREREJFtsVomIiIhIttisEhEREZFssVklIiIiItlis0pEREREssVmlYiIiIhki80qEREREckWm1UiIiIiki3JmtXKykrMmzcPGo0GXl5eSEhIQF1dnd0xEydOhEqlsri98847Ui2RiIiIiGROJYQQUkw8ZcoUlJWVYfv27WhubkZ8fDzGjx+Pffv22RwzceJEDBs2DOvWrTNv8/DwgEajkWKJRERERCRz3aWY9NatWzh16hSuXLmCcePGAQC2bNmCqVOnYuPGjdDpdDbHenh4QKvVSrEsIiIiIupkJGlWc3Jy4OXlZW5UAcBgMMDFxQWXL1/Gq6++anPs3r17sWfPHmi1WkyfPh2rV6+Gh4eHzfjGxkY0Njaa75tMJlRWVqJPnz5QqVTP5gkRERER0TMjhEBtbS10Oh1cXOy/K1WSZtVoNMLHx8dyR927o3fv3jAajTbHvfHGG/D394dOp8O1a9eQkpKCwsJCHDlyxOaYtLQ0rF279pmtnYiIiIg6xt27d9G/f3+7MQ41qytXrsQnn3xiN+bWrVuOTGlh8eLF5r+Dg4Ph5+eHqKgoFBcXY8iQIVbHrFq1CsnJyeb71dXVGDhwIErzA6D5j7K+7ODVYcFO2/fR/1532r6d+byVypmvtzMptdaU+noTkXRq6kzwH/srevXq1WasQ83qihUrsHDhQrsxgwcPhlarRUVFhcX2v/76C5WVlQ69H1Wv1wMAioqKbDararUaarW61XbNf1yg6aWsZrW7ytVp+3Zmrp35vJVKacfWY0qtNaW+3kQkvad5y6ZDzWrfvn3Rt2/fNuMiIiJQVVWFvLw8hIWFAQDOnDkDk8lkbkCfxtWrVwEAfn5+jiyTiIiIiLoISf65HBQUhJiYGCQmJiI3NxcXLlzA0qVLMWfOHPM3Afz2228IDAxEbm4uAKC4uBjr169HXl4efv31V3zzzTeYP38+XnnlFYSEhEixTCIiIiKSOcn+b2fv3r0IDAxEVFQUpk6dipdeegk7duwwP97c3IzCwkI0NDQAANzc3JCVlYXJkycjMDAQK1aswKxZs/Dtt99KtUQiIiIikjlJvg0AAHr37m33BwACAgLwz98jGDBgAM6fPy/VcoiIiIioE+K75omIiIhIttisEhEREZFssVklIiIiItlis0pEREREssVmlYiIiIhkq0Oa1fT0dAQEBMDd3R16vd783aq2HD58GIGBgXB3d0dwcDBOnjzZEcskIiIiIpmRvFk9ePAgkpOTkZqaivz8fISGhiI6OrrVz7E+dvHiRcydOxcJCQkoKChAbGwsYmNjcePGDamXSkREREQyI3mzumnTJiQmJiI+Ph4jRozAtm3b4OHhgYyMDKvxn3/+OWJiYvDee+8hKCgI69evx9ixY/Hll19KvVQiIiIikhlJm9Wmpibk5eXBYDA82aGLCwwGA3JycqyOycnJsYgHgOjoaJvxjY2NqKmpsbgRERERUdcgabP64MEDtLS0wNfX12K7r68vjEaj1TFGo9Gh+LS0NHh6eppvAwYMeDaLJyIiIiKn6/TfBrBq1SpUV1ebb3fv3nX2koiIiIjoGeku5eTe3t7o1q0bysvLLbaXl5dDq9VaHaPVah2KV6vVUKvVz2bBRERERCQrkl5ZdXNzQ1hYGLKzs83bTCYTsrOzERERYXVMRESERTwAZGZm2ownIiIioq5L0iurAJCcnIwFCxZg3LhxCA8Px+bNm1FfX4/4+HgAwPz589GvXz+kpaUBAJYtW4YJEybgs88+w7Rp03DgwAH89NNP2LFjh9RLJSIiIiKZkbxZjYuLw/3797FmzRoYjUaMHj0ap06dMn+I6s6dO3BxeXKBNzIyEvv27cMHH3yA999/H0OHDsWxY8cwatQoqZdKRERERDKjEkIIZy/iWaqpqYGnpyf++O9gaHp1+s+POSRaN9pp+z79+1Wn7duZz1upnPl6O5NSa02przcRSaem1oTnhv0P1dXV0Gg0dmOV1c0RERERUafCZpWIiIiIZIvNKhERERHJFptVIiIiIpKtDmlW09PTERAQAHd3d+j1euTm5tqM3b17N1QqlcXN3d29I5ZJRERERDIjebN68OBBJCcnIzU1Ffn5+QgNDUV0dDQqKipsjtFoNCgrKzPfSktLpV4mEREREcmQ5M3qpk2bkJiYiPj4eIwYMQLbtm2Dh4cHMjIybI5RqVTQarXm2+PvZCUiIiIiZZH0RwGampqQl5eHVatWmbe5uLjAYDAgJyfH5ri6ujr4+/vDZDJh7Nix+OijjzBy5EirsY2NjWhsbDTfr66uBgDU1Jme0bPoPP4SzU7bd02t8/LtzOetVM58vZ1JqbWm1NebiKTzuE97mq/7l7RZffDgAVpaWlpdGfX19cUvv/xidczw4cORkZGBkJAQVFdXY+PGjYiMjMTNmzfRv3//VvFpaWlYu3Ztq+3+Y399Js+hc/mf0/b83DCn7RrOfN5K5dzX25mUWWvKfb2JSGq1tbXw9PS0GyP5z606KiIiAhEREeb7kZGRCAoKwvbt27F+/fpW8atWrUJycrL5vslkQmVlJfr06QOVSuXw/mtqajBgwADcvXu3zV9UoL8xZ+3DvDmOOWsf5s1xzFn7MG+OU2rOhBCora2FTqdrM1bSZtXb2xvdunVDeXm5xfby8nJotdqnmsPV1RVjxoxBUVGR1cfVajXUarXFNi8vr3at9580Go2iiuZZYM7ah3lzHHPWPsyb45iz9mHeHKfEnLV1RfUxST9g5ebmhrCwMGRnZ5u3mUwmZGdnW1w9taelpQXXr1+Hn5+fVMskIiIiIpmS/G0AycnJWLBgAcaNG4fw8HBs3rwZ9fX1iI+PBwDMnz8f/fr1Q1paGgBg3bp1eOGFF/D888+jqqoKGzZsQGlpKRYtWiT1UomIiIhIZiRvVuPi4nD//n2sWbMGRqMRo0ePxqlTp8wfurpz5w5cXJ5c4P3jjz+QmJgIo9GI5557DmFhYbh48SJGjBgh9VIB/P22gtTU1FZvLSDbmLP2Yd4cx5y1D/PmOOasfZg3xzFnbVOJp/nOACIiIiIiJ+iQn1slIiIiImoPNqtEREREJFtsVomIiIhIttisEhEREZFsKbJZTU9PR0BAANzd3aHX65Gbm2s3/vDhwwgMDIS7uzuCg4Nx8uTJDlqp86WlpWH8+PHo1asXfHx8EBsbi8LCQrtjdu/eDZVKZXFzd3fvoBXLw4cfftgqB4GBgXbHKLnOACAgIKBVzlQqFZKSkqzGK7XOvv/+e0yfPh06nQ4qlQrHjh2zeFwIgTVr1sDPzw89evSAwWDA7du325zX0fNiZ2IvZ83NzUhJSUFwcDB69uwJnU6H+fPn4/fff7c7Z3uO8c6mrVpbuHBhqxzExMS0Oa9Saw2A1XOcSqXChg0bbM6phFpri+Ka1YMHDyI5ORmpqanIz89HaGgooqOjUVFRYTX+4sWLmDt3LhISElBQUIDY2FjExsbixo0bHbxy5zh//jySkpJw6dIlZGZmorm5GZMnT0Z9fb3dcRqNBmVlZeZbaWlpB61YPkaOHGmRgx9//NFmrNLrDACuXLlika/MzEwAwOuvv25zjBLrrL6+HqGhoUhPT7f6+KeffoovvvgC27Ztw+XLl9GzZ09ER0fj0aNHNud09LzY2djLWUNDA/Lz87F69Wrk5+fjyJEjKCwsxIwZM9qc15FjvDNqq9YAICYmxiIH+/fvtzunkmsNgEWuysrKkJGRAZVKhVmzZtmdt6vXWpuEwoSHh4ukpCTz/ZaWFqHT6URaWprV+NmzZ4tp06ZZbNPr9eLtt9+WdJ1yVVFRIQCI8+fP24zZtWuX8PT07LhFyVBqaqoIDQ196njWWWvLli0TQ4YMESaTyerjrDMhAIijR4+a75tMJqHVasWGDRvM26qqqoRarRb79++3OY+j58XO7N85syY3N1cAEKWlpTZjHD3GOztreVuwYIGYOXOmQ/Ow1izNnDlTTJo0yW6M0mrNGkVdWW1qakJeXh4MBoN5m4uLCwwGA3JycqyOycnJsYgHgOjoaJvxXV11dTUAoHfv3nbj6urq4O/vjwEDBmDmzJm4efNmRyxPVm7fvg2dTofBgwdj3rx5uHPnjs1Y1pmlpqYm7NmzB2+99RZUKpXNONaZpZKSEhiNRota8vT0hF6vt1lL7TkvdnXV1dVQqVTw8vKyG+fIMd5VnTt3Dj4+Phg+fDiWLFmChw8f2oxlrVkqLy/HiRMnkJCQ0Gas0mtNUc3qgwcP0NLSYv71rMd8fX1hNBqtjjEajQ7Fd2UmkwnLly/Hiy++iFGjRtmMGz58ODIyMnD8+HHs2bMHJpMJkZGRuHfvXgeu1rn0ej12796NU6dOYevWrSgpKcHLL7+M2tpaq/GsM0vHjh1DVVUVFi5caDOGddba43pxpJbac17syh49eoSUlBTMnTsXGo3GZpyjx3hXFBMTg6+//hrZ2dn45JNPcP78eUyZMgUtLS1W41lrlr766iv06tULr732mt041loH/NwqdR1JSUm4ceNGm++ViYiIQEREhPl+ZGQkgoKCsH37dqxfv17qZcrClClTzH+HhIRAr9fD398fhw4deqp/RSvdzp07MWXKFOh0OpsxrDN61pqbmzF79mwIIbB161a7sTzGgTlz5pj/Dg4ORkhICIYMGYJz584hKirKiSvrHDIyMjBv3rw2PxjKWlPYlVVvb29069YN5eXlFtvLy8uh1WqtjtFqtQ7Fd1VLly7Fd999h7Nnz6J///4OjXV1dcWYMWNQVFQk0erkz8vLC8OGDbOZA9bZE6WlpcjKysKiRYscGsc6g7leHKml9pwXu6LHjWppaSkyMzPtXlW1pq1jXAkGDx4Mb29vmzlgrT3xww8/oLCw0OHzHKDMWlNUs+rm5oawsDBkZ2ebt5lMJmRnZ1tcofmniIgIi3gAyMzMtBnf1QghsHTpUhw9ehRnzpzBoEGDHJ6jpaUF169fh5+fnwQr7Bzq6upQXFxsMwdKr7N/2rVrF3x8fDBt2jSHxrHOgEGDBkGr1VrUUk1NDS5fvmyzltpzXuxqHjeqt2/fRlZWFvr06ePwHG0d40pw7949PHz40GYOWGtP7Ny5E2FhYQgNDXV4rCJrzdmf8OpoBw4cEGq1WuzevVv8/PPPYvHixcLLy0sYjUYhhBBvvvmmWLlypTn+woULonv37mLjxo3i1q1bIjU1Vbi6uorr16876yl0qCVLlghPT09x7tw5UVZWZr41NDSYY/6ds7Vr14rTp0+L4uJikZeXJ+bMmSPc3d3FzZs3nfEUnGLFihXi3LlzoqSkRFy4cEEYDAbh7e0tKioqhBCsM1taWlrEwIEDRUpKSqvHWGd/q62tFQUFBaKgoEAAEJs2bRIFBQXmT65//PHHwsvLSxw/flxcu3ZNzJw5UwwaNEj8+eef5jkmTZoktmzZYr7f1nmxs7OXs6amJjFjxgzRv39/cfXqVYvzXGNjo3mOf+esrWO8K7CXt9raWvHuu++KnJwcUVJSIrKyssTYsWPF0KFDxaNHj8xzsNYsj08hhKiurhYeHh5i69atVudQYq21RXHNqhBCbNmyRQwcOFC4ubmJ8PBwcenSJfNjEyZMEAsWLLCIP3TokBg2bJhwc3MTI0eOFCdOnOjgFTsPAKu3Xbt2mWP+nbPly5eb8+vr6yumTp0q8vPzO37xThQXFyf8/PyEm5ub6Nevn4iLixNFRUXmx1ln1p0+fVoAEIWFha0eY5397ezZs1aPyce5MZlMYvXq1cLX11eo1WoRFRXVKp/+/v4iNTXVYpu982JnZy9nJSUlNs9zZ8+eNc/x75y1dYx3Bfby1tDQICZPniz69u0rXF1dhb+/v0hMTGzVdLLWLI9PIYTYvn276NGjh6iqqrI6hxJrrS0qIYSQ9NItEREREVE7Keo9q0RERETUubBZJSIiIiLZYrNKRERERLLFZpWIiIiIZIvNKhERERHJFptVIiIiIpItNqtEREREJFtsVomIiIhIttisEhEREZFssVklIiIiItlis0pEREREssVmlYiIiIhk6//urIeJUPjEXQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -180,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -220,37 +218,35 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " dtype=torch.uint8) tensor(1)\n" + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0],\n", + " dtype=torch.uint8) tensor(5)\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAADTCAYAAABp7RNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt4VfWd7/H3NxcSSCBcBbwiKCo9cgSp4gXH1rst2rEzlnaOWrXH6XPq0+pM6+j0HA+nz/QZbWt77LGnHaZ61I4ttg4qVlu1SlusgoIgKBcJiB1jgHBPIAm5fM8fawV3wt7JTvbea+/s9Xk9T56srPVb+/fltxff31q/dTN3R0RE4qUk3wGIiEj0lPxFRGJIyV9EJIaU/EVEYkjJX0QkhpT8RURiSMlfRCSGlPxFRGJIyV9EJIbK8h1AKmPHjvVJkyblOwwRkUFl5cqVO919XF/lCjb5T5o0iRUrVuQ7DBGRQcXM3k+nnIZ9RERiSMlfRCSGCnbYJxvWL13C0oWP0rhrJ8PHjGXOvOs5bc4n8h2WiEjeFW3yX790CS8seID2Q60ANO5s4IUFDwCoAxCR2CvaYZ+lCx89nPi7tB9qZenCR/MUkYhI4Sja5N+4a2e/5ouIxEnRJv/hY8b2a76ISJwUbfKfM+96yoZUdJtXNqSCOfOuz1NEIiKFo2hP+Had1NXVPiIiRyra5A9BB6BkLyJypKId9hERkdSU/EVEYkjJX0QkhpT8RURiSMlfRCSGlPxFRGJIyV9EJIaU/EVEYkjJX0QkhpT8RURiSMlfRCSGlPxFRGJIyV9EJIaU/EVEYkjJX0Qkhor6ef4AT62q47vPb+TDvc0cPXIo37jsFD4z45h8hyUikldFnfyfWlXHXYvW0tzWAUDd3mbuWrQWQB2AiMRaUQ/7fPf5jYcTf5fmtg6++/zGPEUkIlIYijr5f7i3Oen8ur3NPLWqLuJoREQKR1En/6NHDk257K5Fa9UBiEhsFXXy/8ZlpzC0vDTpMg3/iEicFfUJ366Turc9vjrp8lTDQiIixa6ok/+zW57l/26+n+Gn1tPZNpLWhsto3z/j8PLehoVERIpZ0Sb/Z7c8y92v/A8OeRsYlAzZS+XERbQA7ftnMLS8lG9cdkq+wxQRyYuiHfP/3mv3Bok/gZW0UTHueUZVwz9fc7qu9ReR2Cra5L+zbU/S+SXlexl36v1K/CISa0Wb/Ktakl/lU9VcyrYD2yKORkSksESa/M1sq5mtNbPVZrYil3WdV3c8pe3WbV5pu/Gx94ZjZjy75dlcVi8iUtDyccL3E+6+M9eVfOnS22l5+p8YOn4Sn983l3Hto9nve1k07Dle9z8x/9X5AHxq8qdyHYqISMEp2qt9TpvzCW6rM8pXdVJm5QCMtFF8ofWvaNjXyu9rVnD/m/cr+YtILEWd/B14wcwc+Bd3X5DLyoZuBsLE36XSK/j6hzcA8AdW5rJ6EZGCFXXyP9/d68zsKOBFM9vg7n/sWmhmtwC3ABx//PEZVVS/7Wm8cRSWZFkppXzjwxs589B/yqgOEZHBKtITvu5eF/7eATwJnNVj+QJ3n+Xus8aNG5dRXVs2f4/2yl0pl5dgXLTz4xxYtSOjekREBqPI9vzNrAoocffGcPpS4Fu5qq+ltZ6Gk55gwrobKemsSB4Txp5fBg93q5pxVK5C6Zf1S5ewdOGjNO7ayfAxY5kz73pOm/OJfIclIkUmymGf8cCTZtZV78/d/be5qqyyYiKNRy8DYOLb/xUj+XX/OOxdtAnIfwewfukSXljwAO2HWgFo3NnAcw/cx3MP3MfwsePUEYhI1pi75zuGpGbNmuUrVgz8VoD6bU+zYe3tdJYawz+czcS3/xZLegYgYENLOeZ/njvg+rJhwVdupHFnQ5/lKqqHYwYtTU06OhCRbsxspbvP6qtc0d7hO3HC1UzeWkplSweNE1+jccKLBBcbJefNHXkf/2/cld7tD61NjbQ0NoL74aOD+z73aRZ85UbWL12S4yhFpBgUbfIH+H/bv8CM5Qe4aOkupu39IaPKvgd0pCy/e+E6Gh7M2UhUn4aPGZvR+uoIRCRdRTvsA3Dinc8yt+QV7ij7JUfbLj70MTxz6Gt8mjNSDgF5+yEqT2tj3M2XZ1T3QPQc888WDROJxEe6wz5FnfzPu+dl6pK8res5G84ITz3+33moieO/f0VGdQ/U4at90hj7z5Q6BZHio+QPPLWqjrsWraW57aOhnqHlpfzLmZOYsnIX3taZdD13p3Lqwbzs/SeKsiNIpE5BZPBS8g89tPgPbHzzVSq9lRar4JSZ53LTVX/BgVU72L1wHWbJLwF172D0vGl5v/yzS+L1/xVV1UFybmyMNIbETuFwDOogRAqKkj+wZs0annnmGdraPnqjV3l5OXPnzmX69Ok0PPhbWt4dRnjvwZFKnFF/fWrBdADJ5OvoIBV1ECL5peQP/OAHP2Dfvn1HzK+pqeH2228H4P2vv0hpWWXqDynt5Nhv/0VGcUSl0DqCVFJ1EKmm1XGIpE/JH5g/f37KZddccw2VzUex4efrmV5ZSlmKvX93Z/S8wt77T6YQholyob8dhzoUiZvYJ/93l29j4TMP0Vl2KOny8vJyappPwXaO5phyY+awUkpSDf/gjPrc4OsAkinWTiET2epQ1BlJIYh98n/kH//EzoN/pnHEJihJflUPHaWMazgPgGPKjTOHlaYc/7fyEkZec3JRdADJqFPIv7IhFVx6y63qACQj6Sb/on2TV9PuVioZD0BjzUaS3tNV0kFL5XYqW8ZT1+ac7lCRYuff2zrZ//zWok3+p835RNKkk7RTSNxrVQeRNe2HWlm68FElf4lE0Sb/6uoOmppKqWwZz4HqrXSWJblr1uBA9VYqW4JOYm1zB2cMSz3+37G3JZchF6RUnUKi9UuX8NLDC2htUkeQqUI/WS/Fo2iT/znV/8aSps/RTiVVTZNS7v13lrZ22/vnYEfK8X93OLBqR9Hu/Sfqc49fe/85s37pEu39S84VbfKfytMwYhevNf0XaD6KA8Nr6SxN8lA3IzgvAN06gGTj/2bGnsc3APl/9n8m+juUk7hHn2paskdDPxKFok3+1BzLVJYyddhS9m0dymvLp/PGWWfRUZbkn1zSSePw2sPDP3VtzpkpP9jY86vC7QCyldglf9J9tLdIJoo3+V90NzzzVWhrpmZSM5Pf3AqvG8vOmQ3JxvQTTv4CNHfCsBQv/6LT2PPE+gEl/2y9pjGdq3OU2AenTB/tLZKO4k3+068Nfr/0LXzfB4yd2UjnG1tZc3A6B6uqjixv4VVBBMM/61p6P/nr7dbv8f+BvKaxv0k+DgrhuvwBT/dxfqRsSAVz5l0fUUtKnBVv8gfqj6pgy1mjaG5ppvnjw5g6aS/TX3uLZbPPSb73nzD+X9cyvteTv2b9f/n70oWPpnxWf+POBl5Y8EC3sj2v/BgsST4XybmYboJKNTRXTP9GKXxFe5NX/ban2bDuH+jko4e60emc8Eorv2y5jkOVvTzPpx83f4EzbPZERn/m5D5jum/e3OCSoUEmnWSuxCVSGGJ/k9eWDd/qnvgBSoz3zx/Cmd9fyeszz05+8hf6dfMXGAeX1VNxQk2fRwDDx4wtuOu49RROkXgq2uTf0rE3xV29JUyevQ5/1Vh+1my8JMlrjHuM//d18xekNwQ0Z971KV/TeGjEaA6NOwYvH4K1HWJIQx1D9u/u65/ZKyV2EUmlaJN/ZWsHLZXJL9f583kVnOTvULKik1dnnpfx+D8ADnse30jr+/tSDgF1Jdue4/mHRoymdeIJUBLE60MqaD36RFqPPjGtjkBv3hKR/iraMf/f/OxUyo9uS5rXAXBnQn0z/7bli1R0VqT+oH6N/wdKhpVRM3dKn8NAXSf+6msm4EN6iSH8jko62qna1wAN9UryIpJU7J/qeddds7h4zh7o5bwuQHN7CVtqz2b3jpOSF3CwzjKqG6dQ2TKe0ytLOLGipM8OoD9PAe3tvQOpDB06FIDm5mZqamq46KKLmD59er8/R0SKS+xP+F7x0gFeL7+Ahy/8PDsZSzWNgNFENWPZybU8xnm8wtCyTqad8hp1w3fy3ubZR36QgZe201izkUPl+1jbOJXdHd7H8/+Dp4DuXVybVvKvqalJ+sax3jQ3Nx+e3rdvH4sWLWLRokXqCEQkLUW75//D627mO9d9mfby8uQFvJOL+S038mDwp0NbWwVbNs+ioWFyinU+OgqY0jEhjSEgB6zPYaBk7xrOBh0diMRP7Id9pv76FfZXVfdeyJ1qGrmeBzmPV7pm8eGHJ7Ml2VHA4fWg4uAEzms7Na0hoC69dQJr1qzhpZde6vcRwEAkdgrqIESKS+yT/4SXVyW/iieZsA3G0sC1PMa5/grtbRVs7uMoAKDUy5jdNpVTOyek3QkAlI6sYMRlk/LeEaSSqoNQZyFS2JT8l6we2IoJw0FdTdPaWsXW987otSOooIxz2qZyUufEfldZ6B1BOtLpLNRxiORe7JP/SU+/QVNVKZQmuYmrL2GbGI5jjKWBv/bgBHGvHUHYlNVeyaz2yTntCBIT6WDX345DnYtIarFP/jO+/SINVaW0Tx0BlaXQ4VBq6Q8F9ZTQTtU0cp0H5wlSDg8lNGv/jwqCE8WQ3j0Dg+XoIF9y0bnkelqdlwxU7JP/iXc+S89/WfuEobSfVgPlJQPvBLocbrePEnWvnUKSZk63U/AkdXVNe+te2rb8hkOb/kDZxInsuv46Xtuzp+iODuKsEDojTQ+eTj/2yf/0f3yKxs4jL/McXtLG2AsmsX6IZ94BJNNLooaPhpLG0MC1iUNJW5IPJaXTQXT/DpPX29HezPLS9awfuofy1lYMOFRR0W06CDAHbSIiaSsvL2fu3LkD7gBin/yv++8/5NX2SXTw0fN9Sung3LKt/OyfvspdyzbzyJ69dFaE5wTykfTSSNqppruOMma1rkq740j7u7bktTbRwio2sJUP1VmI5FBNTQ233377gNaN/R2+M8d0wK6tvNl+LAcYQhWHmFn2AVPKdjN//nxGDh3Kb6+4gi0dY7jjtVr2T6nOznBQf3Srq3/TTYzgx9wWPL5iWurO4v5+dCh9Tw8HxnLEUYzvYk7dciZsPvImtQqCS2FP6phwxLK+OB81UarO6I2yzWwp297vzxYpZFGcvyvaPf81a9bw1FNPUbKngYoddVj7oT7XWXfSdF4670paKxNe86g92/RkcBSj6cE1XdPm/P36Fq6obyd7POE+meT1erfp4t4ZGNbSwh333DOgdWM/7APwnTv+npI/b8K8c0DrrztpOkvPvoT91SOD5Na1capDkLjr49yWpgc2XU0jV7+3lEt++Ucuf/55BiL2wz4Ak/YMYcfHv8ZPTxvF9kpj5IEDnLvsOabVrklr/Wm1a44o23V00HL46CDhS1SnIHFxeFsf+NClpo+cbmIEj594KVwLl5NbRZv8dz+1id3TPsX3Tq+ipTRo3D3V1bxw4TUAaXcAPSXrEKCPTqHbNOokRCSldivnt5PO5r4c1xNp8jezy4H7gVLgp+4+sEGtNDQt28ZPLvgo8XdpKytj6dmXDDj5p5KqU+gp5VBSfw8V1YGIFK1dNjrndUSW/M2sFPgRcAnwAfCGmS1293U5qc+d7ZXJE+T+6pG5qDIt6XYSvVl30nRevuBKmsv7OsrI9TTqhERyYIxn9v7udES5538WUOvuWwDMbCFwNZCT5F9rH1DVOommymFHLBvRtDfpOg7hxYvQfUyOFHPyIxsdSDZsPe8kXv7Yp9hlY8I5hXPiTNM5nFaHn1Nl3sblW5cDF+e2npx+enfHAP+R8PcHwNm5quwNW8/ZWw7wh1Nm0F760T+zrKOdT75dTuWovztincYhu3nszP8FDp9977PdlpXt20VFQ3qXjMbFpD/VctOf7s93GLGWy2tuRk7ZxzFn76C8uv3wCOWfOJ9HuYkDjMhhzfGdDq72eYVb1s8g1wrqhK+Z3QLcAnD88cdn9FkHh5RwckMdAMsnf4ymiqFUtzZz9pZ3OP3PU5KuU31oFABHtY3mS60XdV9YCRwHtSX1vFb2Lq2W4hrnfOwUhRmgwsvAoJX2lNOZPHFUYqYTeK37rFOBmwFoijyceDBgDl7qfZbMVJTJvw44LuHvY8N5h7n7AmABBNf5Z1LZsNZWDlZWcnJD3eFOAKCkvQJInvybhuyhorOcG3bMxd3DIaAgm3dNT+mYwOSO8YfnJ77ApbaknhVlW2iylvQDTdZZKJmLxNrBjtx3rlEm/zeAk83sRIKkPw/4Qq4qu+DUU3lh8xY6E5/n31lCVdOkpOU7rJ23Ji7hnA0X0PDnlfyy8/d91nF81WnMGH0xFaXBU/kmd4xnSvgYg2QdR8/p2tKgszhgwcPVHKjyCma1T+nX4xD68wYxESlsHd7O/uP6LpepSO/wNbMrgf9NcKnnQ+7+7VRls3GH77KHH2bJxlpah5RR0lFBVeMJVLaOT4wIgMqqMuZcO5WpZ6eXcN9dvo3Xnt5M0+7WjOLLhmPKjdOHljJE+X/QS2eHQdPFPd3a2cKeY9v5+NeuZKD0eAcRkRhKN/kP4B2HIiIy2Cn5i4jEUMEO+5hZA/B+lj5uLLAzS5+VLYUYExRmXIUYExRmXIUYExRmXIUYE2Qe1wnuPq6vQgWb/LPJzFakMwYWpUKMCQozrkKMCQozrkKMCQozrkKMCaKLS8M+IiIxpOQvIhJDcUn+C/IdQBKFGBMUZlyFGBMUZlyFGBMUZlyFGBNEFFcsxvxFRKS7uOz5i4hIAiV/EZEYKurkb2aXm9lGM6s1szvzGMdxZrbEzNaZ2Ttm9rVw/nwzqzOz1eHPwB/oMbC4tprZ2rDuFeG80Wb2opltCn+PijimUxLaY7WZ7Tez26JuKzN7yMx2mNnbCfOSto0FfhhuZ2vMbGbEcX3XzDaEdT9pZiPD+ZPMrDmhzX4SYUwpvy8zuytsq41mdlkuYuolrscTYtpqZqvD+VG1VapcEP225e5F+UPw8LjNwGRgCPAWMC1PsUwEZobTw4F3gWnAfODreWyjrcDYHvO+A9wZTt8J3Jvn73AbcELUbQVcAMwE3u6rbYArgd8QPClwNrA84rguBcrC6XsT4pqUWC7imJJ+X+F2/xZQAZwY/h8tjSquHsvvA+6OuK1S5YLIt61i3vM//NpIdz8EdL02MnLuXu/ub4bTjcB6gjebFaKrgUfC6UeAz+QxlouAze6erTu90+bufwR6vkg1VdtcDTzqgWXASDPLyQsWksXl7i+4e9fbhZYRvCsjMinaKpWrgYXu3uru7wG1BP9XI43LguegXwv8Ihd19xJTqlwQ+bZVzMk/2Wsj855wzWwSMANYHs66NTyceyjqIRaCVwi8YGYrLXiLGsB4d68Pp7cB45OvGol5dP/Pmc+2gtRtU0jb2k0Ee4pdTjSzVWb2BzObE3Esyb6vQmmrOcB2d9+UMC/StuqRCyLftoo5+RccM6sG/h24zd33Az8meK3YGUA9wWFolM5395nAFcBXzOyCxIUeHHfm5VpgMxsCXAX8KpyV77bqJp9tk4qZfRNoBx4LZ9UDx7v7DODvgJ+b2YhU62dZQX1fSXye7jsWkbZVklxwWFTbVjEn/z5fGxklMysn+LIfc/dFAO6+3d073L0T+FdydPibirvXhb93AE+G9W/vOqwMf++IMqYEVwBvuvv2MMa8tlUoVdvkfVszsy8Cnwb+JkwehEMru8LplQTj61OjiKeX76sQ2qoMuAZ4vGtelG2VLBeQh22rmJP/4ddGhnuR84DF+QgkHF98EFjv7t9PmJ84dveXwNs9181hTFVmNrxrmuCk4dsEbXRDWOwG4OmoYuqh255ZPtsqQaq2WQxcH16ZMRvYl3AIn3NmdjlwB3CVux9MmD/OzErD6cnAycCWiGJK9X0tBuaZWYUFr3Q9GXg9ipgSXAxscPcPumZE1VapcgH52LZyfXY7nz8EZ8rfJejFv5nHOM4nOIxbA6wOf64EfgasDecvBiZGGNNkgqsu3gLe6WofYAzwErAJ+B0wOg/tVQXsAmoS5kXaVgQdTz3QRjDOenOqtiG4EuNH4Xa2FpgVcVy1BOPCXdvWT8Kynw2/29XAm8DcCGNK+X0B3wzbaiNwRZRtFc5/GPhyj7JRtVWqXBD5tqXHO4iIxFAxD/uIiEgKSv4iIjGk5C8iEkNK/iIiMaTkLyISQ0r+IiIxpOQvIhJDSv4iIjGk5C8iEkNK/iIiMaTkLyISQ0r+IiIxpOQvIhJDSv4iIjGk5C8iEkNK/iIiMaTkLyISQ0r+IiIxpOQvIhJDSv4iIjGk5C8iEkNK/iIiMaTkLyISQ0r+IiIxpOQvIhJDSv4iIjGk5C8iEkNK/iIiMaTkLyISQ0r+IiIxpOQvIhJDSv4iIjGk5C8iEkNK/iIiMaTkLyISQ0r+IiIxpOQvIhJDSv4iIjGk5C8iEkNK/iIiMZRR8jez0Wb2opltCn+PSlGuw8xWhz+LM6lTREQyZ+4+8JXNvgPsdvd7zOxOYJS7/0OSck3uXp1BnCIikkWZJv+NwIXuXm9mE4Hfu/spScop+YuIFJBMx/zHu3t9OL0NGJ+iXKWZrTCzZWb2mQzrFBGRDJX1VcDMfgdMSLLom4l/uLubWarDiBPcvc7MJgMvm9lad9+cpK5bgFsASik9cxgj+vwHSHqmTj+Y0frvrhmWpUhEJJca2bPT3cf1VS6SYZ8e6zwM/Nrdn+it3Agb7WfbRQOOTbp7/sPVGa1/2dFnZCkSEcml3/kTK919Vl/lMh32WQzcEE7fADzds4CZjTKzinB6LHAesC7DekVEJAOZJv97gEvMbBNwcfg3ZjbLzH4aljkNWGFmbwFLgHvcXclfRCSP+hzz74277wKOGJtx9xXAl8LpV4HTM6lHRESyKyt3+JrZ5Wa20cxqw+v9ey6vMLPHw+XLzWxSNuoVEZGByTj5m1kp8CPgCmAa8Hkzm9aj2M3AHnc/CfgBcG+m9YqIyMBlY8//LKDW3be4+yFgIXB1jzJXA4+E008AF5mZZaFuEREZgGwk/2OA/0j4+4NwXtIy7t4O7APG9PwgM7slvBlsRRutWQhNRESSKainerr7Anef5e6zyqnIdzgiIkUrG8m/Djgu4e9jw3lJy5hZGVAD7MpC3SIiMgDZSP5vACeb2YlmNgSYR3DzV6LEm8H+CnjZM7m1WEREMpLRdf4QjOGb2a3A80Ap8JC7v2Nm3wJWuPti4EHgZ2ZWC+wm6CBERCRPMk7+oU7Aw58OAHe/O2H5POBCguGfIcAngS1ZqltERPop4+SfcJ3/JQRX+rxhZouTPMLhcXe/NdP6REQkc1Fd5y8iIgUkquv8AT5rZmvM7AkzOy7JchERiUi2xvz78gzwC3dvNbO/Jbjb95M9CyW+zAVo+p0/sbGPzx0L7MxqpLmR9zhLJ6ZVrJc4a7MXTGby3pZpUpzZpTjTd0I6hTJ6mQuAmZ0DzHf3y8K/7wJw939OUb6U4KXvNRlVHHzWinReWpBvijN7BkOMoDizTXFmXyTX+Ydv+epyFbA+C/WKiMgARXWd/1fN7CqgneA6/y9mWq+IiAxcVsb83f054Lke8+5OmL4LuCsbdfWwIAefmQuKM3sGQ4ygOLNNcWZZxmP+IiIy+BTUUz1FRCQagyL5F/prIs3sODNbYmbrzOwdM/takjIXmtk+M1sd/tyd7LMiiHWrma0NY1iRZLmZ2Q/DtlxjZjPzEOMpCe202sz2m9ltPcrkpT3N7CEz22FmbyfMG21mL5rZpvD3qBTr3hCW2WRmNyQrk+M4v2tmG8Lv9UkzG5li3V63kQjinG9mdQnf7ZUp1u01L0QQ5+MJMW41s9Up1o2sPfvF3Qv6h+Ak8mZgMsFzgd4CpvUo89+An4TT8wgeJRFljBOBmeH0cODdJDFeCPy6ANpzKzC2l+VXAr8BDJgNLC+A738bcEIhtCdwATATeDth3neAO8PpO4F7k6w3muB5VqOBUeH0qIjjvBQoC6fvTRZnOttIBHHOB76exnbRa17IdZw9lt8H3J3v9uzPz2DY8y/410S6e727vxlONxJcyprsLufB4GrgUQ8sA0b2uFQ3ahcBm939/TzGcJi7/5HgirVEidvfI8Bnkqx6GfCiu+929z3Ai8DlUcbp7i948CY9gGUE797IqxTtmY5IHyvTW5xhrrkW+EWu6s+FwZD8s/aayCiEQ04zgOVJFp9jZm+Z2W/M7GORBvYRB14ws5XhHdU9pfu4jqjMI/V/qkJoT4Dx7l4fTm8DxicpU2jtehPBEV4yfW0jUbg1HJ56KMUwWiG15xxgu7tvSrG8ENrzCIMh+Q8aZlYN/Dtwm7vv77H4TYKhi/8M/B/gqajjC53v7jOBK4CvmNkFeYqjT+FNg1cBv0qyuFDasxsPjvML+hI6M/smwT03j6Uoku9t5MfAFOAMoJ5gSKWQfZ7e9/rz3Z5JDYbkPyheE2lm5QSJ/zF3X9Rzubvvd/emcPo5oNzMxkYZY1h3Xfh7B/AkweFzonTaOypXAG+6+/aeCwqlPUPbu4bGwt87kpQpiHY1sy8Cnwb+JuyojpDGNpJT7r7d3TvcvRP41xT1F0p7lgHXAI+nKpPv9kxlMCT/gn9NZDjm9yCw3t2/n6LMhK7zEGZ2FkHbR91BVZnZ8K5pghOAb/cothi4PrzqZzawL2FII2op96gKoT0TJG5/NwBPJynzPHCpmY0KhzEuDedFxswuB+4ArnL3gynKpLON5FSPc0x/maL+dPJCFC4GNrj7B8kWFkJ7ppTvM87p/BBcgfIuwdn9b4bzvkWwEQNUEgwN1AKvA5Mjju98gkP9NcDq8OdK4MvAl8MytwLvEFyVsAw4Nw/tODms/60wlq62TIzTCF7OsxlYC8zK03deRZDMaxLm5b09CTqjeqCNYJz5ZoLzSy8Bm4DfAaPDsrOAnyase1O4jdYCN+YhzlqCcfKubbTrCrmjged620YijvNn4ba3hiChT+wZZ/j3EXkhyjjD+Q93bZMJZfPWnv350R2+IiIxNBiGfUREJMuU/EVEYkjJX0QkhpT8RURiSMlfRCSGlPxFRGJIyV9EJIaU/EVEYuiM4t1pAAAABklEQVT/AxTiHuCSxNF9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAFVCAYAAAAnhQ9+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdIElEQVR4nO3dd3xUVeI3/s+dnjrpDUIISA+gtAjuqrtEilj46q4N14a6q1hxXcTfKpZ9RGXX5bEs6q5tH/t+115AugqhSJFqKIbQ0pOZTNq0e35/JDNkkil3kkkyk3zevvLCuffcO+fmksyHc0+RhBACRERERBFC1dsVICIiIgoGwwsRERFFFIYXIiIiiigML0RERBRRGF6IiIgoojC8EBERUURheCEiIqKIountCoSaLMs4ffo04uLiIElSb1eHiIiIFBBCwGKxICsrCyqV/7aVPhdeTp8+jezs7N6uBhEREXXCiRMnMHDgQL9l+lx4iYuLA9By8fHx8b1cGyIiIlKirq4O2dnZ7s9xf/pceHE9KoqPj2d4ISIiijBKunz0ufDS3YQsYC02Q7bYoIrTQZ9rhKRi3xoiIqKewvAShKZ9VTB9fhROs829TW3UIeHSoYjKS+nFmhEREfUfHCqtUNO+KlS/fdAjuACA02xD9dsH0bSvqpdqRkRE1L8wvCggZAHT50f9lqn97CiELHqoRkRERP0Xw4sC1mJzhxaX9uQ6G+rWHe+hGhEREfVfDC8KyBb/wcXFsuY4Hx8RERF1M4YXBVRxOsVlaz8+Atkhd2NtiIiI+jeGFwX0uUaojcoCjNxgR9nSbWyBISIi6iYMLwpIKgkJlw5VXF5usHMEEhERUTdheFEoKi8F8QWDgjrG9PnPHIFEREQUYgwvCsmyE+Z0E2SDgNI44jRbYS02d2u9iIiI+hvOsKvA4a2bse7NV1FfU4UB0cNxXtpcCChbf0HpSCUiIiJShuElgMNbN+Oz555yvz7ZdAjr1e8j05iBKGcasutGQg21z+ODGalEREREgTG8+CHLTqx781X365ihBlwesxOZ9u+AppZtZfGp+En9e5xVe26H49VGPfS5xp6qLhERUb/APi9+nDq4H/U1LSOGYoYacLtuNdLt1R5l0myVOL/pLziSuKXD8QmXDuGK00RERCHG8OJHvakWACAk4PKYnQA6fsNcr0c4X4ETTgAtLS7J14/iStNERETdgI+N/IhNSAQA6AdGIcNeDZNRC6tOgt4mkGC2w9WmogKQaavEzgurMXrYdOhzjWxxISIi6iYML34MGDUGsUkpiM0+iU3DE2HVn+mYq7c6MfxIA9Kqz4wmim34DoahV/ZGVYmIiPoNPjbyQ6VS49zrz0F6XjGsOs9vlVWnwt7RcahIPjOaaNjeN4ADn/V0NYmIiPoVhhc/hHDCgg9bHg+1n9Ol9fWhoTGek9atfAiQnT1UQyIiov6H4cUPk2k7rNYywFf3FUmC1aCGyahteQkAdaeAks09VUUiIqJ+h+HFD6u1Qlk5nWe6ketOdUd1iIiICAwvfun1acrK2TxXOxJfLmLfFyIiom7C8OJHQsJk6PUZaPvcSIYKBzAGm/ELHBCjoWluGTbdlspmAj68gQGGiIioG3CotB+SpMbwYY9i774FACRsxxT8G7egRmqdfE4C0tWVeCrl/2JO1XdnjnP9z8qHgJFzAJXvtY+IiIgoOGx5CSAtbSbG5r2EXdoZWI4HUYNkj/0V2mTcOvpJfJnyy3ZHCnbeJSIi6gYMLwokp87AO+oFLU0q7YZMC0kFQOCRoXfD6e3bWV/eI3UkIiLqLxheFNhiqkep1Q5fY6aFpMJpQzq2GMd12CdXHe7m2hEREfUvDC8KVNgcysrpPB8pCQFIG59mx10iIqIQYnhRwH60SFG5NFu1x2v3EybOuktERBQyDC8BHN66GSXP/x/E1ptbmlJ8UAknarTGDts56y4REVFohWV4OXXqFK6//nokJycjKioKY8eOxQ8//NDj9ZBlJ9a9+SpUQmD6pi9bNvoIMDJUuH30415GHbVix10iIqKQCLvwUltbi/POOw9arRZff/01Dhw4gL/97W9ITEzs8bqcOrgf9TVVAIDhxQdw2TfvQ/LV+iJJ8DfqSI5J7caaEhER9R9hN0ndM888g+zsbLzxxhvubbm5ub1Sl3pTrcfrKGsjhMp33ms76ug88+6WbQKwOPQwN8YjuzsrS0RE1E+EXcvLZ599hkmTJuG3v/0t0tLScM455+Cf//ynz/JWqxV1dXUeX6ESm+DZ2tMQHafoONeoI1cjzfryIag3h65eRERE/VnYhZeff/4ZK1aswLBhw7Bq1SrccccduOeee/DWW295Lb906VIYjUb3V3Z26No3Bowag9ikFPfrmEaLouOSbTUAWlpcPjs1CkcsKR2CEBEREXWOJISfITS9QKfTYdKkSdi8+czonHvuuQfbt29HYWFhh/JWqxVWq9X9uq6uDtnZ2TCbzYiPj+9yfQ5v3YzPnnsKACBLEl6Z90fUx8R3mGm3rcSGGvzP9v8i5adjEJAQm5SM2156HSqucURERORVXV0djEajos/vsGt5yczMxOjRoz22jRo1CsePH/daXq/XIz4+3uMrlIblT8NlCx9GbFKKolFHAFAbnYjXL7gVRbljAAAOmw1Ht28Nab2IiIj6q7ALL+eddx6KijwnhTt06BBycnJ6qUYtAea2l17DhTfciuHFB3D5N+8hpsFPH5bWVpl10y6GLElorrfgs+eewuGtnOuFiIioq8IuvNx///3YsmULnnrqKRw5cgTvvvsuXn31VSxYsKBX6yUJQF3V0pdlePEBzFn3vwEOkGCJS8DJzMHuTevfehUyZ9olIiLqkrALL5MnT8bHH3+M9957D3l5eXjyySexfPlyzJs3r9fqVPfNNzgyvQD1z7/g3taocORR2xFKluoqnDq4P+T1IyIi6k/Cbp4XALjkkktwySWX9HY1ALQEl1P33gcIgSQABpsDzVq14pFH7cu1nzuGiIiIghN2LS/hRDidKH9qqbtzrgRg9OmWGXcHni72v96REIi1mDCw9JjHZg6ZJiIi6hqGFz8af9gBR1mZx7YMcwMmlJQj2ubwP/JIkuDQanFk8Kgzm1QqNFo4WR0REVFXMLz44ais9Lo9w9yAXx0swe9Wr8Z976xAlLXJa7lmfTQ+nXEtDuW2DP0Wsowv/v40Rx0RERF1AcOLH5pU34spSgCSG5pxyebvoZFln60vwJkh0y4cdURERNR5DC9+RE+aCE1Ghs/9AsC2vPGwRMf6nnHXy5DpcB915BQCm2ot+Li8FptqLXCG1yTMRETUz4XlaKNwIanVSH94MU7dex+EEGgbT1wf57vGna3oXO0XdQzXUUdfVprw58OnUGq1u7dl6rX4y7ABmJOa0HsVIyIiasWWlwDiZ8zAgP+7HEhO9tjeGB2FTeedh+bYGEXnaT9kOhxHHX1ZacKt+455BBcAKLPaceu+Y/iy0tQ7FSMiImqDLS8KxM+YgVHTp+Pgf/+LHzdsQI0AqlJTIFQqjBA2bFEBVfKZ1hgPQiC23uwxZDouOQUDRo3pqeor4hQCfz58yus1uLY98NMJxKvVmJYYC7WfhSmJiIi6E8OLQpJajdFXXYWRv/kNSkpKUF9fj9jYWOTk5GBUdR1u3XcMErwEmDZDpocXHwAA/OrG28NuhektpvoOLS7tmRxO/PbHo3yMREREvYqPjYKkUqmQm5uLsWPHIjc3FyqVCnNSE/CvvMEwarwHEteQ6RPj8nHZwocxLH9aD9c6sAqbQ3HZUqsd8/cdw+cV4dlvh4iI+jaGlxCZlWJElNrHt1OSAEnCt7+6AkOmTO3ZiimUpgu+Ee73+0sYYIiIqMcxvISIkscup612bDHV91CNgnNuQiwy9VoE05NFBnDb/hJ25CUioh7F8BIiSh+7BPN4piepJQl/GTYAAIIKMADwp6ITsMly6CtFRETkBcNLiCh97NKZxzM9xdV3J0OvDeq4arsT52zezxYYIiLqEQwvCsmyjOLiYvy4Zw++3PQjPtl1AoVHq+GUW8YXKXnskqnT4NyE2J6pcCfNSU3AV0NPYrF4DDHC4nvV7Haq7U7OBUNERD0ifJsBwsiBAwewcuVK1NWdWRG6QWix1T4I9rgsLLl0NGblZeIvwwb4HjINoFkWWFllDushxkI4cfTIE8hDGW7DCizHg0Ed/8jhU5iVYuQ8MERE1G3Y8hLAgQMH8OGHH3oEFwCIhh2/0h6FznIad7y9Eyv3lQYcMm1yhH/rhMm0HVZrGQBgMrbiHvwVklC2iKRAeHdKJiKivoHhxQ9ZlrFy5Uqv+1wNC5O1JyBB4PHPD8ApC79Dpl2tMY8cPhW2ix1arRUer/OxBXfjuZbHRwrrvKqqLnAhIiKiTmJ48aOkpKRDi0tbkgTESjakqSwoNTdjW3FNwCHT4d46odenddiWjy24D8sQB2Wh5NWTlWHdukRERJGN4cWP+nplASMKLWGlwtIc8UOmExImQ6/PQPsB05OxFS/idsQJM3ys4uThz4dOhm3rEhERRTaGFz9iY5WNDGpCy9DitDhDxA+ZliQ1hg971PXKY58GTszHq4rOU2pzYPmxshDXjoiIiOHFr5ycHMTHx/vcLwRQL3SokOOQaTRgSm5SwCHTEoAsvTash0ynpc3E2LyXoNene2zX6zNwS94NuH1gqqLzLDtWzsdHREQUcuH5z/8woVKpMGvWLHz44Ycd9rmeiGyzZ0OGhEfmjIJa1RJZ/A2ZFgDmZSZ1a71DIS1tJlJTC1pHH1VAr09DQsJkSJIaM7UWvHqyStF5OHSaiIhCjS0vAYwePRpXXXVVhxaYBuiw3j4Ux+WWIPLklwexcl8pgMAz1S47Vo5JhQfCvlVCktRITDwXGRmXITHxXEhSyxBwV+uSEqetdmyqtXRnNYmIqJ+RhOhbvSrr6upgNBphNpv9PvIJltPhxNcrP8F3+w7iVN0wFMrRcLbJfq52hRXXT8CsvMyWY4TA8mNlWHasvMP5XOX/lTc4rCet8+XLShPm7zumqGyCRo2/jcyOyOskIqKeEcznN1teFGjaV4XjSzfh7O/TcLfpAjwtZ+E/iMf5bZ66uRKga74Xl7dLa7yeMxLmfPFnTmoCHhycHrggImNyPiIiihwMLwE07atC9dsHoWnw3J4CCf8HUTgfZ2bTFYB7vhcAET/nSyD3Dc5Q/PgIiNygRkRE4YXhxQ8hC5g+PwoBQGo3fkgFCQLAfRo7dLH7PPZVWJpb/ozwOV8CUUsS/jJsgN/FKF0iPagREVH4YHjxw1pshtNs8/nhrIKENEcCJiVuhSbuTIBJizO0/Bnhc74o4eqcnOBjPaf2IjWoERFR+GB48UO22BSVS3IaoU//HIATsQZgYk4iAASc8wVouQE19sj+QJ+TmoB/jhmsqOzPjc3dWxkiIurzwjq8PP3005AkCffdd1+vvL8qTqeoXI3GDJXWDHX0MdQ3A+c/uw4r95W6H6v4IwO4fX9JxHdmnZYYOKgBwF85cR0REXVR2IaX7du345VXXsG4ceN6rQ76XCPURh2Ej7V8ZAhUaGqwP/oIAEDStMxnUlZnxR1v78TKfaWYk5qAV8fkBPxGR3pnVldQU3IFkX6tRETUu8IyvNTX12PevHn45z//icTExF6rh6SSkHDpUAAS5HYfyzIEJACvpP8vZKlln3DEeZRxDZtO0mog+3mfvtKZVcnw6b5yrURE1HvCMrwsWLAAc+bMQUFBQcCyVqsVdXV1Hl+hFJWXgsTrRsCk9TxvlaYWfxnwT2yO3w0hANluhLMx172/7bDpvj7qqK0h0QZF5VZVhfY+ERFR/xF2w1zef/997Ny5E9u3b1dUfunSpXj88ce7tU6x49JQEWfAM18vR6IjHjUaM/ZHH4EsCfcaR9byS+EtC1ZYmpGWpGym30gedeSi9BpePVmJ/IQYzrpLRERBC6uWlxMnTuDee+/FO++8A4NB2b/gFy9eDLPZ7P46ceJEt9TtVznTMW3i9diWVIS9MYfbPCoyovnU9XBY8rwelxKrVTTqKFOnCeuVppVSuu6RBPZ9ISKizgmr8LJjxw5UVFRgwoQJ0Gg00Gg02LhxI55//nloNBo4nc4Ox+j1esTHx3t8hdrKfaX4xTPrsOxjHSr2LYa1sgDCqUfTyWvRcORPPoMLIGPH6SKPUUe+AkyzLLCyyhzyuvc0JSOsAPZ9ISKizgur8DJ9+nTs3bsXu3fvdn9NmjQJ8+bNw+7du6FWK5sILZRW7ivFHW/vRKnZNT+JCraqAljL5kITvwct30JfrQcSnvvK7B519K+8wTD6mMytL63/Myc1AbcPTFFUti/08yEiop4VVuElLi4OeXl5Hl8xMTFITk5GXp6v1o3u45QFHv/8gNdoIjvioY3fD33WO/AXXgBg8Sc74ZQFZqUYEaX2/i2P9IUa25uZYlRUjpPWERFRsMIqvISbbcU1bVpcPDkbcyHbjZDUjfD/bZRQWw9s+bmyzy/U2JaSfj4AJ60jIqLghX142bBhA5YvX94r7+1aYNE7Fazll0I44/yUOWPbyaJ+NWSak9YREVF3Cfvw0ptcCyz64rDkQW7MUXQuSVPXLxZqbIuT1hERUXdgePFjSm4SMo0Gn48+JABGTTYkjQm++70ISBoTdDEn+s1CjW0pnbSuzM/jNCIiorYYXvxQqyQsuXQ0gI5DnF2vn5h5CdIHfdf6qn2AaXmtT/8cL+/5B9YfX9tvFmp0UdqK9OiRU33mmomIqHsxvAQwKy8TK66fgAyjZwtChtGAFddPwMVjB+IvM38Dw4C3IWk852mRNGYYBrwNbfx+AMAz257BrOS4iFmo0SkLFB6txqe7T6HwaDWccvD1Udpxt8bed4aKExFR9+obnSu62ay8TBSMSMWuL9bDcroMcVkZOOeSC6DRtnz7CnIKcN8vj+DF3c/A2ZgL4YiDpLFAHV0MyTUTLwTKGsuws2InkvQjFS/UeF6isg7BobZyXyke//yAx2irTKMBSy4djVl5mYrP4+q4e+u+Y37LCZyZdXdWihFqKVDcISKi/ootLwrUffMNii+6CLGL70HmC08hdvE9KL7oItR98427zKD4QZAkAU3Mz9Aaf4Qm5md3cGmrsrFS8Wii3uoH0nFivtb6mJtxx9s7sXJfaVDnc03Ql6T1P8kgO+8SEZESDC8B1H3zDU7dex8cZWUe2x3l5Th1733uAJManarofMctx8O6H4i/iflc2x7//EDQj5DmpCbgybMCLxsAnBkq7pSd2F62HV/9/BW2l22HU+64PAQREfU/DC9+CKcT5U8tBbz1PWndVv7UUginExPSJiA9Oh1SgN4d/9j9DzSYt4ZtPxB/E/MBLQGm1NyMbcU1QZ87Q8GCjUDLrLtrStZg5n9n4pZVt2DRd4twy6pbMPO/M7GmZE3Q70tERH0Lw4sfjT/s6NDi4kEIOMrK0PjDDqhVajw05SEIBdOyLdv+DJ4YGrjfSG8sGeB/Yr7gy7WltPPusmNluHPruyhvLPd8z8YKLNywkAGGiKifY3jxw1FZqaicZd06AC0ddxeMX+C3rKvjboY4Gpb9QAJNzOdyrKox6HMrnnVXAPWJ8yDaxRxXMHxm2zN8hERE1I8xvPihSVXWj6X2rbfcfV8GxQ9SdEx5Q3lQ/UBWVdUpKtdVgSbmc1m+5lDQHXcBZbPuQpIga5Jh14/osKvtqC0iIuqfGF78iJ40EZqMDACALAH7B0n4frSE/YMkyG0/3SXJ3fclNToVQkhwNAyB3TwejoYhEKJjFHh2+7NYU7JGcT+QV09W9kjfF9fEfEoeUnWm4y6gfNZda9QEn/u2nN7C1hcion6K4cUPSa1G+sOLsXW4hAV3qvH4PDWev7zlzwV3qrF1eGsoadP3pbIiC01HH0bT8dvRfPpaNB2/HQ1HFsFeN8bj3CarCQs3LHR33g1YF/Rc35dZeZm4v2CY3zJd6birdLRVc9wsWKMmed336t5X2YGXiKifYngJYNsIFf52hRrV7eaKq44D/naF6kyAAbDyYCUWvLsbTrtnYeEwovnU9R4BxtV/I5jOuz3Z92VwSoyicl3puBuYQH3i9R36vrjfmx14iYj6JYYXP5yyE09ve7ql2aP9jK+tr98sUEGWACckPHPY4eNxS0tZa/mlHo+Q2nbevX1giqI69VTfl57ouBuQpPLZ9wVgB14iov6K4cWPnRU7OwzX9SBJqDZKOJgtYX/KEFQ4/T0OkSAcCXA25nbYs/74esxMMSqqU0/1femJjrtKA5usTvC5zxUA//HjPziRHRFRP8Hw4kdlo7Kh0rWxQI1e4RpEjnhkmc/CWVUTkGU+C5KQ8P8O/r+w6/vSEx13lQY2pybA6CQAr+55lRPZERH1Ewwvfiid8j+xHkiyWhSVHXPsSlx24G4UHL4Rlx24G/N2LsGQ6vFh2fclmI67W45WB31+ZZPWCTQar/TZcbc99oMhIur7GF78CDjlvxBINguMOiEwpupnpDSZvC8l4C4P/KDV4pD2zKONGFsCLjp0M6JOpIVl3xelHXcXvBv8go3KJq1r+d7767jbFvvBEBH1fQwvfrim/AfQIcCoZGBswzAs2jYR2uThUAP4w55PWnb6CjCtp1gXZYPc+iHrOu+0Y1egor4y7Pq+KO24a2qyd3rFaeWT1o1SdE5XP5h3f3qXAYaIqA9ieAmgIKcAz134HNKi09zbptWdjX8f/j949sRCjB14K6J/8UfEzFyKC6DF9QdXdRyZ1JYEWFTAcY2zzSYJcbZEHD9UGcQwYuBPRSdgk+VOX5sSSjvuunSm/4vSSevqU+9R/PgIaJkIkH1giIj6HoYXBQpyCrDqylV4febr+L/Ou/Hnk7chwWnEaVUtjqrKcFpVC2FIgGHKHzBRF6/onJ9H2z0eHwHANwfXY/3xtcqGEQOotjtxzub93doC4+q4q0RnJ65TOmmdUxWDutR7cP7IxYrPzT4wRER9D8OLQmqVGpPSJmFU+XgcU1fgQ8NmfKXbifW6/fhKtxMfGjbjmKoC4wZOU/RNbZaAT6NtHgHG2JSCZ7Y9g1nJcYr7vlTbnZi/7xg+r6jt5JUFNisvEyuun4CEKGUtQsFOXKd0tWmgpZWq0DkeadEZvvsitcE+MEREfQ/DSxCsxWYcsZzEWu0+NMDqsa8BVqzV7cPp6Gacb23y33EX6ND/RUBg0snZiDqRhp0VOxX3fXH5/f6Sbg8wL83zvdZQW8FOXKd40jqcGW11+dg/A+jYF8n7MZwLhoioL2F4CYKjrhlbtIdaXrT/zGx9vUn7E6al70SGqg6SCNAfpbX/y0mN7NFxd/2x9UG1RgCADOC2bg4w5w5J7raJ6+akJuBfeYORoFErKl+lPqtDX6RAOBcMEVHfwPCikFN2Ykv5DjRI1o7BxUUCmiU7TjfrMEt/CL/V/4hBqsD9P460dt51ddxdu60wqL4vbXVnC4zSiesEgMc+2x90x905qQn455jBisq+erIS1uhJWHXlKvxp8p+Ceh/2gyEiimwMLwqsKVmDmf+dib8feSmo46JVdvxKexSTNSUtLTE+PvZ36J0efV9yavPwROETuCgxGv/KG4wkrbLWCOBMC8zfiktDNguvEE7U1m5BWdlnyB9QgvsLhgQ8pqzOihfXHQn6vaYlKh9t9edDJwFJhetGXud/Pp52ROt/j21+DFtOb+FjJCKiCMPwEsCakjVYuGEhyhvL0ahpCvJoCZIEjNFUYJauCL/x0xKzts3cL+NKL0TC6WwU/G8B9I0/YPe0MUgOIsAAwLJj5ZhUeKDLI5EqKlZh0+bzsXPXPOw/cD927pqH0eqbMSHtx4DH/r0Tj4+C6f9SanNg+bEyv/Px+GO2mXHb6tv4GImIKMIwvPjhWlVaQEASEnTWBNgkh3sES7Ci0dIS0yHASEC9Ctiid7g3TTt2BUzNJizcsBDfnliHZ0dkB/1+pVZ7l0YiVVSswt59C2C1lnlsV4lK3Dn+NUUBpjPzvgSzaOOyY+X4stLkdT4epSoaK3D/hvvx8u6X8dXPX7FTLxFRmJOE6OYV/npYXV0djEYjzGYz4uOVzbniy/ay7bhl1S3IrR6H845dgVhbIqz6KtQlHGgpoPwf+W5CAM3QYLs9G43QoVyOOzPtvQAub9RhuL2lleWzUS/idMJhpEelY9VvVuGrqjr8fn8Jgp2WTgLwwOB03D84A2p/E+h51NOJTZvP7xBc2l5HTbMRi757HCJABn5nfj7OG6YsjLhsqrXgyt1HFZXN0muxfepoqCUJTtmJnRU7seX0Fry699Wg3rOt9Oh0PDTlIRTkFHT6HEREpFwwn99h1/KydOlSTJ48GXFxcUhLS8PcuXNRVFTUK3WpbKxEbvU4zDh0C2JsCQAAvTUF8abRUMm6Tp1TkoAoyYHzdcVeHyW1fXw04/DNyK0eh/Kmcvxz7z9xaVoiXhmTE/R7CgB/PVaOvO/3KX6MZDJt9xlcXNeRHGXGnCGrAp6rM+seBTPTcNuFKtUqNSZnTMadZ98ZVD+Y9tipl4gofIVdeNm4cSMWLFiALVu2YPXq1bDb7ZgxYwYaGhp6vC4phhScd+wKAJ59KfTWFCRV5iO+ZiziLDnQqO1AFx8lTdaUIENdhwaVcD8+0juiMeNQS8vPS7tfwpqSNbg0LRH/HJPTqRtX61A+oZ3VWqHonHOHfh3w8VFn1j0Kpu8L0HGhys72g3Fhp14iovAV9o+NKisrkZaWho0bN+L8888PWD6Uj42O/1SNz5cH7tfhfpQkCXTqWVIbDUKLrbZsTG6ORpZwQJK1sAqB9yY+gbToNKz6zSqoVWp8XlGL2/aXdOo9JADzB6ZgdooR5ybEen2UVFu7BTt3zQt4LiGAOlsM/rjxScjwP81/Rrwemx6aDrVK+ffob8WlWHasXFHZ1/IGY05qgse2NSVr8PS2p1HeqOwcvvAxEhFR94rox0btmc1mAEBSUpLX/VarFXV1dR5fodJssSsq1/IoaSRUTn2X3zMadvxK9zPijPtgSfgJdUl7YU84hF8cn+1+fAQAl6Yl4rW8wchQuC5QWwLAv05W4crdRzHm+31eh1UnJEyGXp8R8FySBBj1DfjbBY8GbIHpzPDp+wZndGmhSte6VP+a8S8YdcHNWtwWO/USEYWPsG55kWUZl112GUwmE77//nuvZR577DE8/vjjHbaHouXlVFEtPvn7LsXlBWTYdXWw6qvRHH2qZWMnO/V6NIa03qFyXS1+St6Dh2c+jItyLwIAOIXA8mNlilsnfIlRSbhzUBrua9Opt2W00Z2K6wwA//hxPnZWjPdb9uXrJ2BWXqbiun1ZacL8fccUlU3WqvHsiOwOLTDAmWHvADo9YqyttKg0/Hb4bzEofhBSo1MxIW0C1KrghrQTEVGLYFpewjq83HHHHfj666/x/fffY+DAgV7LWK1WWK1n1hmqq6tDdnZ2SMKLLAv8++HNaDBZAxduXy99Ferjj0BW27pUB6/n1lhx3dzrEBsTi/r6esTGxmJvlBF/OHg86JFI7bUPMT///AKKjy1XdKwsgFoFI5A68/jo0cMn8erJKsXl/zkmB5emJXbYHqrHSN7w0RIRUef1ifBy11134dNPP8W3336L3NxcxceFss8LABzdVYGVr+zr1LECAnadGU5VE5qSDsIpq9HVPjGu87bvhBofHw/9+QV40tLV+NIiUaPGX0dm4+KUOL9Dpr35+MhsfPHzbL9l7i8YjnsLhik+ZzBDp4GW56Gv+AgwruHUlY2VOG45jn/s/geArrfGSJAgILBg/AK2xhARBSmiw4sQAnfffTc+/vhjbNiwAcOGKf+AA0IfXoCWAPPtv/eisanzwcOqr0RdYuv8MN0UYADg55RMbBx2Nqy6rve/kQD8K28wJout2LtvAZSOqBJC2eOjf1x3Di4el6XonE4hMKnwAMqs9qAihq8WmLa6uzXmT5P/hERDIiobKxloiIh8iOjwcuedd+Ldd9/Fp59+ihEjRri3G41GREVFBTy+O8KLcDpxePpFqGyOw74x8+HQxLTrlNJaTsiQHacA0QBIMVBpBkCSXI9PBOxxx9CY+BNstpiQ1MsXGcCOQSOwY/BIr/UMhmsCuOrKb/BT0f8Huz3wMGulE9ipJODFayfg4nHK+r98WWnCrfuOBRVe/LXAtOWUnfih/Ac8sOEBmG3mIN4heHy8RETUUUSHF8nHh+0bb7yBm266KeDx3RFeGrZuQ/FNN2HvWSNRPHA8alMuxKBKB1RtWj6ctsOwN64HRH2bI2OgNoyDSp3oDjPJYz6DbuAPqK4eiNOnRkEIySNfdOis2wVHUzKxevSUlhddOOl/zx6K8xLjIMs2fL/pPNjtgVfKBpQ9PgKA+wuG4a5fD1PUB+bLShMeLDqBGntwI30eHJzu0RnZl1B36vXnd6N+h18N+hVbYoiIEOHhpau6I7z85+u1eKIJqExMdm+Lb3Bgxq4mjDplbwkuDZ8HPpEUC03UBUgYshPRqT+gAWk4XTPOoyXGdTdCFWB+TsnEpqHj0GAI3Grly0ujsnFlRsu1BzsC6ZOjF+PLn2cEXEIgI96Axy4brWgUkk2Wcc7m/agOMsBk6rX4y7ABXkcitdWdj5G84aMlIiKGl5CGl5ZHFcUtocKjiUQGIOG+Dz5FVM1uOFQOX6fwSx1tR9OgZOyxjIdFika9Lh6TtScRo1I2x4wSMoBSYwqOJWfgp4wc2LXK5k1xuebwTtz+i3MxevRoHDhwAIWFf8bg3MCT97k02gzYdHwaPvz5Usjw/4GstB9MMMOn21PSD6a7OvUq5W0YNgB3nRhwiKivYXgJUXhxdRIttfoIEkJGsqkWN324HKoQfRubVHoIADqDDo5YI+xJ6S072gSnrjxakgHsHDQCu7PPgkMTIMQIgRhrE+Zt/QYqAL/5zW/wzTffoK7OhCn5H0OnawyqHja7Ht8cnI3dFePRBC3K5TgAQLrKgijY0QQtKuQ43DN9OO6eHvgx0ucVtT22UGVPt8a0Z9QZAQkwW8/0x+E8M0TUlzC8hCi8KB2ee/Vnr2HQ6eIuvZeL62a4PlLtcQmwpg+C0LZZCFK0jjXqQl+ZgCGm9a/FjAPbMKSqZU2i6OhoNDY2AgCSk49j1OiNQb2n62/awQPno7o6B82i5YPWIJ15/NMgNChypMGpi8ENvxyJ3154DgCgpKTEPadNTk4OVKqWx1BdWSbBNRw80GMkl/atMf976H97Lcx4w8dPRBTJGF5CFF4+Lq/FHQcCfzBesuZDjDqyp0vv5Y8A4IyOg9BoITnskNVq2LwEGgBBN8m4QszegUNg1Z4ZXh3T3Ijzju51BxdvsrP3BPX4qG1VS46NxfHj4wCo/IYwjU4PrVqFpqYm97a4uDhMnDgRycnJIZmgT8ljJG96+9GSEnz8RESRguGlh1tefvffV5FRURK6XrYKyADkQIEmyPOVGlPQqNMj2mZFprlKwcJXcqceH7nY7TocPjQV1dWDfJZR0qIUFRWFQ4lp+PKss1s2BFkZCcDleuCihBhcNmIItOrOfZD39qMlJZQ+fgIYcIioZzG8hLjPS5nVBuFtYjkhI7W2BsuXLcbuQWkt23owwHSoDlpaaHz1lQnFOGyDTodm25klD1yPj9q/laL6tv7NKzk2HidO5KGr64T+nJKJ74eOQ2MXRlbpHTZcpnFifnIMjHFxyMnJaaljm8dW2dnZOHHihNfHWG1bY1KjU1HbXItntz8b1oGmvc4GnPEp4/Fj1Y8MPETUKQwv3TDaCEJASGc+XKXW0UaPvfoczt/9A8qMMTiQlYLmTqzy3B189ZUB4D/Q+Ao4QkBy2KAvP4HmAUM9zpOcfBxDz9oGvb6p43FK62vX4dTJUV0OMa7HYD90cYI+jcOOs08cxnmVJ6ACPB5bSZKEtj828fHxmDFjBmJiYrwGnOiYaFQbqrH+xHqs3LUSUc4oNKmbUKWvQoo1BQanAc3qZlQZqkIx+XKP8BZwVJIKsjjz8M5bHxxvAQdgKw8RMbyEfJ6XL/cV4s8nLCg1pLm3ZTWX48mjL+AXO7fj9OZEABIEgJoYA6xaDRp0GhxPNsLai2GmfV8ZoVZ7DzTtwwvgdZvh1FFoLSYfwciJ7Jx9yMnZ0+HwYDgcKlRV5sJkyoDNFg2zOQ2dCTNHUzKxZvRkj8DZGa4QM+H4oaBq0T7guGaHbhuCZMhQtTlro7oRPyb9CJvadibQeAs4AFKaU4Ir42tbD4el9gHHWwjqbOhhMCKKbAwvIQ4vkJ1wLh+LLVIqKnTJSLNV41zzHqhbu4jWHTfgVGuAacsVZiqShqA06yI4VICjaUO7WXh7VvtAo2q0ePSd8RZwJLsV+vIT0FpMXs8ja/WwJ6ZCaHVITj6OYcMLodWGZjVtm02PivIhqKkZGHSQCdUMwwCgddgwovQ44qxNiLI1I0ZxvyDlXB19265Z1T7gWFUtK5zrZX1QZbxta1Q1oji+GPXa+q4FI38tSCI0QavGUIOk5iT3a3u8HZAArVnrv4wqNI+/lJRhKCLqGoaXUIcXADjwGfDh73zuNh83uFtgvBGQUJwzE8U5syE7SwHRANlZC6d1b7swY2g5hWgOXd2D1D7gqBstAf+B7nGM04aMsacxYNypkHYB6syjpVAuVNme3mbD2FNHgm6VCUb7BTi9BRylZQId19lg5K0FaU/SjzDWazG0aQx0iArqfKGsR6CWLMUhKEAZdZIaD056EKJWoNJUidSEVJw/5nx8u/9b9+vp46cDANb+uDaoMtPHT4dKpWLAoj6P4aU7wgvQEmA+vwdo8r444ZkWGMBXiKlIORv7xtzaWkTyupgjAPc27wHHO+HzXXtHfG4dci86BSC0/ZiDfbQUyoUqvdE47Bh/4jAyzTVoCmq0VphR2idKaRkXKfRBq7NlQtWS1bkyNkgAdLIuqDJN6mb8lFqEOpjcYalaX4Nk65nw1BBjhUqSEFWv81mmOwNWT5YJ5bnVKnXAzviA8g771DUML90VXgBAdgLf/hXY8g+g2dTx/U8YULrdCNnm+184FSnj8dPw6+DQxSp6y/YBR8hNXh4/dWyxaR9m2k+A1xOMuXUY+MtSaKM6OwtLYC2PlgbDao2F3W5oCTSmVEDyvAehfIwUiM5mw+Dq0xhYW4loW8sHW0QHm2CFepGurtQjVGEsBGWEFJpWs3ALWD1ZJlTntqls0KujIDzWSJNw5jcloNbqoJIk2Ft/hr2V0RqiMXLSeXA2HEJNVSUcujikDrsQlYc3QGOzICklFZkjZqKivhmlB1dBY7P0eJnMUTORFmtAadEqr3VsX6a2qgrJqamY8eu5+GbdJ6iurERyaiounXUNAODzle97bNPrDAgFhpfuDC8urhCz4akOu4QMVB2IRc2hWMg27x9TAhKO5czE8YG/glOrLMR4HN+JFhsBAxwSoO3pgCMJpJ9ThdSx1dAYeuavm92mw6lTI1BXlw6drglabTPsNj32RudhdeYv0WCI7pF6eNM22HRH3xnqg8IshPV6md5+/2DLOFoePUKt7Z0y3XpuK7JHpGP+7+5DVzG8dEN4EQ4H7FtXQ9SehpSYBW3+RZA0Go9HSUKoYJXHQEYiVKiFDvvRVKVB7clcWIptgMPa8bytIaZ48CUtG0L4L9XOBBybZICAgF6cqauSgKMoBLWGmIxJLR0ye+sf5Va7DtvrLsAOTMTuhHGwaULfHyYYepsNeaeOINNcg0adHk06Awy2ZjTrDN3WOZiIQigSwmU3nzv7rMQuBxiGlxCHF+uqd6ApfBRqVLm3OZECx9QnoJ85D5CdaPrwdZh+TIFTpLStDaJVW6BX7YEkqlF9MBb1RaWAs+NInGAfJYWKsoCzp2V/K28BR4YEVZum1CaVAYBAlNwxBPXEoySlZKjwCa7AF5gLq9T5ye26m7+Aw6BDRL1KCMBpw+JHl3TpERLDSwjDi3XVO9BtvhOA9wBqm/YPyANmovrtgwHPpUYl4tWvouYgvIYYVytMSXYBZE34fJAGCjiQYuCUUtDcfBANMKFGHY1GTQoSHU6oVY2o1mkQ7zAjrXE/DHJrCJIEkiaYkDWuAhodQ0woGWzNOKv8JOKsTR7BJtrWDEDqmdadcOnzQkQ9Jm/CYPzmsps6fTzDS4jCi3A4IP9lBFSo8toHRABwIhUV2n9Dtji9lPB2BJCsfQp6bMWp/fmoP1wJ2BvblQrPENNV7UOQQ52GWkcZckd9gawxB6A1hGZumK5whZiVuAQNUlxvV6dHKW3dcXVADhiCGGCI+pWM7Gj8Yf6fOn08w0uIwott09fQrb7GY5sAYDJq0ayTYNeqoLXLOCxuw6CTM6FR9O9WGWpUI0M/H5IkQ3aqYK4YjobTEuqLzRCOtu/VEmJODPwVHJ3o1BtRJBnRKYehNtRAY6iHJroaCbmboNb1znw3MlT4CaOwA5OxCefDIhl7pR6RKBQhyNc+b2X61SguojCWMjQdd/3ujk4fz/ASovDS9PlriNqx0P26IlmHQ2fFwKrvOAzaIuJRUTcN2uYU6K1xiGtMxNjjZ/kMNCnRj8Mgb/fY5muUkoAEU8JZsOriobNZYDIOxfHs6WHRKqPkkZKkzoRonZhPaRkhN8HRvB7pZx9D2vhqqHW999fUFWRqkIT9GIutmBbxj5b6Ir2jCaMaipBjOd0SNs1aRLcuItoTISpUZRjGKOK09nkZO/c2XDlpSKdPw/ASovCya/0nOGfjjQBagsve0a2PERQ2g9tkHdS1mRh8OhsaWwbs8mA49fXQWI0YcNEcxNS9DWxd0WHSOyEDjZU62Bs1qCtLQ2OpA8Lm2S8kmFaZbg0YCuabaT8vAmCAkABnlLbNMgX1kKNjPWb1BVpn7dVqkDWyBOkjS6ExhE//mP74aIl6jiuMDbachr7ZDkCC1aBGs14HvdUGa5s/DVZ7t5cJ7Xs40FCfgEZdVMSESgZPH1ojxEGbFffd+iCmDk3u9KkYXkIUXj46XYlz35yKdFslCvMTYdWpQvb8XiX0SFMPRVLUGBjsQELc2ZBiM4DjhcC2VzwCjSvMOJrVgE7g56rBqCkX0DfZkdBgxYn0oWjURyHK2gzZMBQnB1wAm2T2ORza+4R2Epwe4aFlPH/bgKFurG9dftK/zqyf5HU+AQDQtJ1zwAljQiV0ukZotc3Q6+uRln4MOl3HIeg9wdUiY0Ii4mFCEUZhFeYw0BD1c307eLaUsRk0MDQ7EFfSjCKnjOPxF+H7Rb+GWtX5z0iGlxCFl021Fry2+g0sO/UEdo/v3j4PGrvAAM0EOMRYNFhOIhZaDMk+F2U71qP+552IlWvR6NRgQ/lQ1DvOzEsitc7R6aK1OwEJsGvOPNrytlYR4H1hRTdv4cHhgLq+FpoGC1ReztPllas7U0YSMBoroNM1IiGhFMkpJ0O2KGRntH3EZEE84lEHI2oZbIioT0qUqzF1/15c9eurMSsvs0vnYngJUXhxCoFJhQcwt+Il/CJ+VYhqqJyjWYL5WBwsp2KgNThhb9bA0aBBfVk0IFo+xAUEnNHxbYJJXUvdW7cpDiZKwkOHCvo4T/vjAk3gFFJya5hpgs3WMt+ATtcUdsFmP8ZiB6YwzBBRZBMyAAk3HPkaz97+cJdOxfASwnleXt65Dx+YduHPeKzrlQsRe5MG1SWpaG6OQbMmqSXYuNb0qU4EoOp6MEHLgoalxhQ0+nqOqySohBXZ3Uqj1Ta3fs+iEG+swIABP/V4sGn/2EkCUItEWBCPWFhwAHkMOEQU/oSMJFGLtaNGIDNrYKdPw/ASovAiyzKWL1uKH2OSMHfYK4jTWML3c7mV5yKFemi11jPBJsDqy239nJKJTUPHocFwZlRNTHMTzju6B0OqSrup9r2pfbBp+70L34BTjzj3n5VIxWYO6yaiXnL7gc/wxIJHO318MJ/fmk6/Sz9QcqwYdU125DaWoep0EuKmW8K7YQGATmfFwOwir/vsdh1OnRyJurq0M4sVegk4P6cMwDeu1ZfbaNAb8M3oKZhxYFvfCzBCgtmc0ea15402mzJwoiTPo8Ow3aaDVmdzBxwI0fJ91Vnd39eudipWQcZo7Fdc/nr8Gz+JM31uXMHG1feGrTtE1F3q9brAhUKE4cWP+uKdAICqeiDuZDSOyQMwYFo5dLGOAEeGJ63WhsG5e/yWsdr1eFe1ouVF+5QmSYAQ2DR0LAZXlYbHUMBQLojmj9MBwH/AkZwaQAKEyuGx7djRcxGfePpM6LFGI1oIOBv10OlkiKbBcDTFw6EuhTqqBjqdE3LTQKiiTsJmU0Gnk6GPAhJytkNjaDtqrKNgw84v8S1kvIyfhLLWHYYgIvIl1tpzLdMML37ESg0ocSbipFVGLgBzcTxMx+IQPRjQxDqh1TZDF2dH0pDaXhuuG2pHtWehzt9jB0lCgyEapcYUDDBX+S4XiJLQ0aGJy8va1R3KSO1eSYBw92/2ygk7nPU1iGqW4FA7EN+gwVnHLDAlx8GhcSCmoQExzek4OeB8NBrKIasaoZKjoXUOgVNfD1llg0rWQWtr+b7ZdeaO20xmNKtssLVua2ytp+ffmjw4OmxreW0BULXnGo9ZiB3WGGj0DW3+jIOzyQhIgFpvalfG374YJOsbYGwtE5V6GCOGrYNG3wClQhWCAu1rX4ajuIjCQGuflzv+55Yee0uGFz8GZudiu70KCaqWD2l7XAKs6YNQr9UBDrR8NQqgXHY/TgiHUS1dYUKionKNOr3vnUpbQ9qQJM8ZZAwaDSBJaHa0beXyTCA6PTAmLxF5SYNQX1uJUmsJHIkqaGplVDu1+MiyA4fUxwAAKc0piHZGoVHdhCp9FVKsKTA4DWhWN6PKUNX+1JB+ITDqhEBiPWCKbql/ouUbpDaeBZsqHjHOODToNyPGHot6XT1M0XVADJDYGI8YWywatPUt+/T1MEXVAVLrPnssGnQt+9xldO3KtDm+QxkHkFjhKnOqtcyp1jKnzpzHHI/s6lgMLj0FjRSLZr0a5eljYNcF/pBvrByF6oOX+AhKykMQJCDBXSattYzrzww/Zfzt8ywzWQKm6L/F8ZQoVCMBjkQTkoyH0KTVBRWCuhqiQlWGYYwiTutoo0uObkXm9Ok99rYML378II1CPbYjUTMQ9rgMNA8YgA6fcpAASe1+nFBZOQSHD4fXqJZgJKA2cCGgZUZJV9po1xjirfWjbTCJgQH59mEwQIcmWBEFPdJkIypUZvfrDDkBAFCmMvksE23T4POfNuBLwwYkOozQinhYTtYjzhmLOrUFBrUW46XhSHQYYXTGwqKqR5w1FhbrmTLVqMOAhqQzZdQt+yzqesTFxqIuwQK1ug4SAE2CEbIzFk3qemicGjSpNS1/atSoV6shAdA5NMr3daqMgM6h9tyn0kAjdyxTmqPBIUmDYTVq6JpPoEK7H2p5ANJsqUhwGmGWzDAKI8wqM4yyEU2SGQPFSeiFDLucAX11EqJFAxqlFFhVJujlFMSKaujUh1Gu1sEiBkEnsiHQBAlJaJAsiBHZkKRmOLS1gFBBY4qCVk6GXWqAVqSc+VPVCLu2FrIA9KYoaOUk2KRG6EQy7KomWDU1AKQO+3yVGVoaBZtUC52Ihk0aCk1yDRxRNtgdWQAkaDVOqHQNkG2adn/qO5Rx2jRQt+6z2bMgSR33+SvT8T10sFvTW95DL9z7oHOg2TYYGoMV9uZMWJviMRASZkV9h5+To1ApEtAYBcQ0SYiqV0OChIZYOxqjgKgmoKnNnz1RJlTvEauqQnLyDqi0TRETKhk8fUsStbjk6NYuD5MOVtiONnrppZewbNkylJWVYfz48XjhhRcwZUrHTqTthXK00ae7TuDeD/ZgpE2FX8TsgEPl6JhdgiaH1aRq7clQ4V6sQA2SAMlLrxYhEGNtwryt3yBKaABIsEp29+4YoVcUTFRd/0YSUYQSkNGUWAS7vhZOnQUqWwxkXYP7T7UtDhqrEYAEh97kUcbfvt4uY9Wb8GOCAdUwwqQHEq0SUhtbpq2ojLajVi8QbwXq9HD/2RNluuM9qqOdSGvUYOoJA1LPNyBq9uwu/72I+NFGH3zwARYuXIiXX34Z+fn5WL58OWbOnImioiKkpaX1WD0MKAYA6DR1cKhD1UlX5aOVpmVStd5unVFBxg14HcvxYEtzYNsA09o8eHuRCb+yTfDaOuIrmGTJyh5HEVHfJ0GF6NpRvV2NkIsB8Kuy3q5FT5NRvVFCMr4OSYBRKixbXvLz8zF58mS8+OKLAFrmW8nOzsbdd9+Nhx56yO+xoWx52bfjPfzuMyfOtgvk6I526VyKuPujtgYabSO0ujPDmaP1jUhJL4ZW1xzgRF23Hfn4N25BjZTi3pYkqnD/kVrM/jnDz5FERNS/yFCrTMh4Yg4kTefbRCK65cVms2HHjh1YvHixe5tKpUJBQQEKCws7lLdarbBaz4zPqKurC1ldZJsR1478J0r2Xtv1k3kZKNOxr4hLS+tMtNBhpGMAjCLa3aohDso4lbwTzbpKaHU2JFhTIHQNsBuqYMncAqfe0vW6ApiMrZiI7e7RIwmiFnnNZTjr52UhOT8REfUVKjjlJFi3FsJw3i975B3DLrxUVVXB6XQiPT3dY3t6ejp++umnDuWXLl2Kxx9/vFvqkpQ4BeOqH0VKzneoPp2FBli993kJKpi0kNptjkHHviLeH8GoMah6stf6ph26tsNz5Kakn1CftguyTvmwVxf3nCGtFc0ougtSeMzuQkREYUauMffYe4VdeAnW4sWLsXDhQvfruro6ZGdnh+TcWcOTsemr6zFo3IsYcvoRbEBxyIJJd3Ri9fYcOaHsFxAHWjrHOfRmqK1xaN/5LFDA0TQnIa3oOsRVTOpS/YiIqO9SJfXc0iRhF15SUlKgVqtRXl7usb28vBwZGR37Wuj1euj1fuYc6QKVSsKkX12H779wYFjuBkw/NAeF2sNobDONWEswOQsG6IMOJj3ViTVQ5zhfAcepr4PGakRU7Qi2uBARkQ8tfV70+XN67B3DLrzodDpMnDgRa9euxdy5cwG0dNhdu3Yt7rrrrh6vz9Bz0gDcgNXvHEC2/hQusZ+NetjPzDUCNSSoYJRjPY6LtNE1fbX3PxERdaeWUagJv9R1qbNusMIuvADAwoULceONN2LSpEmYMmUKli9fjoaGBtx88829Up+h56Qhd3wqPv3mKP7ybQmS1cchJe5BlaEU+6OPAADGNJ6FZHtCx4nOnLGo01hQ3TrRmdfJ0EJQpifeozfqkaSLxbyYcxHXrIJZ70ByVSJiq7MgbOpe+btARERnqFUmJPxS16PDpIEwHSoNAC+++KJ7krqzzz4bzz//PPLz8wMeF8qh0t44ZYFtxTU4barH3urdkDQWDIhLgyQJnDCXo7KxGslRiahuqnX/mRqTjIFxGd1apjve42RdOVTqRozNyoTFXgejzgizzYxEfSJSo1MhhEBVUxVqrbWK9gVbJj0mHRPSJkCt8gwqQhawFpshW2yQYrSQJMBZZ4OzwQ5VtBZyox3qWB1Usd739WSZPlmPGDWk8gNw1tTCaWmEKiYKckOT+091XDRUifGQIMFZaw66TFePZz1Yj3Ap05frIZstUCUZoc+fGrIWl2A+v8M2vHSW2WxGQkICTpw40S3hhYiIiELPNeDGZDLBaPTf+TcsHxt1hcXSMs9JqEYcERERUc+xWCwBw0ufa3mRZRmnT59GXFwcJKlrQ4/bc6XCvtqq09evD+A19gV9/foAXmNf0NevDwj9NQohYLFYkJWVBZXK/wjXPtfyolKpMHDgwG59j/j4+D77lxHo+9cH8Br7gr5+fQCvsS/o69cHhPYaA7W4uHDyDiIiIoooDC9EREQUURhegqDX67FkyZJum9G3t/X16wN4jX1BX78+gNfYF/T16wN69xr7XIddIiIi6tvY8kJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXhR66aWXMHjwYBgMBuTn52Pbtm29XaVOW7p0KSZPnoy4uDikpaVh7ty5KCoq8ihz4YUXQpIkj68//OEPvVTj4Dz22GMd6j5y5Ej3/ubmZixYsADJycmIjY3FlVdeifLy8l6scfAGDx7c4RolScKCBQsAROb9+/bbb3HppZciKysLkiThk08+8dgvhMCjjz6KzMxMREVFoaCgAIcPH/YoU1NTg3nz5iE+Ph4JCQmYP38+6uvre/AqfPN3fXa7HYsWLcLYsWMRExODrKws3HDDDTh9+rTHObzd96effrqHr8S3QPfwpptu6lD/WbNmeZQJ53sIBL5Gbz+XkiRh2bJl7jLhfB+VfD4o+R16/PhxzJkzB9HR0UhLS8ODDz4Ih8MRsnoyvCjwwQcfYOHChViyZAl27tyJ8ePHY+bMmaioqOjtqnXKxo0bsWDBAmzZsgWrV6+G3W7HjBkz0NDQ4FHutttuQ2lpqfvr2Wef7aUaB2/MmDEedf/+++/d++6//358/vnn+M9//oONGzfi9OnTuOKKK3qxtsHbvn27x/WtXr0aAPDb3/7WXSbS7l9DQwPGjx+Pl156yev+Z599Fs8//zxefvllbN26FTExMZg5cyaam5vdZebNm4f9+/dj9erV+OKLL/Dtt9/i9ttv76lL8Mvf9TU2NmLnzp145JFHsHPnTnz00UcoKirCZZdd1qHsE0884XFf77777p6oviKB7iEAzJo1y6P+7733nsf+cL6HQOBrbHttpaWleP311yFJEq688kqPcuF6H5V8PgT6Hep0OjFnzhzYbDZs3rwZb731Ft588008+uijoauooICmTJkiFixY4H7tdDpFVlaWWLp0aS/WKnQqKioEALFx40b3tgsuuEDce++9vVepLliyZIkYP368130mk0lotVrxn//8x73t4MGDAoAoLCzsoRqG3r333iuGDh0qZFkWQkT2/RNCCADi448/dr+WZVlkZGSIZcuWubeZTCah1+vFe++9J4QQ4sCBAwKA2L59u7vM119/LSRJEqdOneqxuivR/vq82bZtmwAgSkpK3NtycnLE3//+9+6tXIh4u8Ybb7xRXH755T6PiaR7KISy+3j55ZeLX//61x7bIuk+tv98UPI79KuvvhIqlUqUlZW5y6xYsULEx8cLq9Uaknqx5SUAm82GHTt2oKCgwL1NpVKhoKAAhYWFvViz0DGbzQCApKQkj+3vvPMOUlJSkJeXh8WLF6OxsbE3qtcphw8fRlZWFoYMGYJ58+bh+PHjAIAdO3bAbrd73M+RI0di0KBBEXs/bTYb3n77bdxyyy0eK6lH8v1rr7i4GGVlZR73zWg0Ij8/333fCgsLkZCQgEmTJrnLFBQUQKVSYevWrT1e564ym82QJAkJCQke259++mkkJyfjnHPOwbJly0LaFN8TNmzYgLS0NIwYMQJ33HEHqqur3fv62j0sLy/Hl19+ifnz53fYFyn3sf3ng5LfoYWFhRg7dizS09PdZWbOnIm6ujrs378/JPXqc6tKh1pVVRWcTqfHTQCA9PR0/PTTT71Uq9CRZRn33XcfzjvvPOTl5bm3X3fddcjJyUFWVhb27NmDRYsWoaioCB999FEv1laZ/Px8vPnmmxgxYgRKS0vx+OOP45e//CX27duHsrIy6HS6Dh8I6enpKCsr650Kd9Enn3wCk8mEm266yb0tku+fN6574+3n0LWvrKwMaWlpHvs1Gg2SkpIi7t42Nzdj0aJFuPbaaz1W673nnnswYcIEJCUlYfPmzVi8eDFKS0vx3HPP9WJtlZs1axauuOIK5Obm4ujRo3j44Ycxe/ZsFBYWQq1W96l7CABvvfUW4uLiOjyWjpT76O3zQcnv0LKyMq8/q659ocDw0s8tWLAA+/bt8+gTAsDjGfPYsWORmZmJ6dOn4+jRoxg6dGhPVzMos2fPdv//uHHjkJ+fj5ycHHz44YeIiorqxZp1j9deew2zZ89GVlaWe1sk37/+zm6346qrroIQAitWrPDYt3DhQvf/jxs3DjqdDr///e+xdOnSiFhD55prrnH//9ixYzFu3DgMHToUGzZswPTp03uxZt3j9ddfx7x582AwGDy2R8p99PX5EA742CiAlJQUqNXqDj2py8vLkZGR0Uu1Co277roLX3zxBdavX4+BAwf6LZufnw8AOHLkSE9ULaQSEhIwfPhwHDlyBBkZGbDZbDCZTB5lIvV+lpSUYM2aNbj11lv9lovk+wfAfW/8/RxmZGR06ETvcDhQU1MTMffWFVxKSkqwevVqj1YXb/Lz8+FwOHDs2LGeqWCIDRkyBCkpKe6/l33hHrp89913KCoqCvizCYTnffT1+aDkd2hGRobXn1XXvlBgeAlAp9Nh4sSJWLt2rXubLMtYu3Ytpk6d2os16zwhBO666y58/PHHWLduHXJzcwMes3v3bgBAZmZmN9cu9Orr63H06FFkZmZi4sSJ0Gq1HvezqKgIx48fj8j7+cYbbyAtLQ1z5szxWy6S7x8A5ObmIiMjw+O+1dXVYevWre77NnXqVJhMJuzYscNdZt26dZBl2R3ewpkruBw+fBhr1qxBcnJywGN2794NlUrV4VFLpDh58iSqq6vdfy8j/R629dprr2HixIkYP358wLLhdB8DfT4o+R06depU7N271yOIusL46NGjQ1ZRCuD9998Xer1evPnmm+LAgQPi9ttvFwkJCR49qSPJHXfcIYxGo9iwYYMoLS11fzU2NgohhDhy5Ih44oknxA8//CCKi4vFp59+KoYMGSLOP//8Xq65Mg888IDYsGGDKC4uFps2bRIFBQUiJSVFVFRUCCGE+MMf/iAGDRok1q1bJ3744QcxdepUMXXq1F6udfCcTqcYNGiQWLRokcf2SL1/FotF7Nq1S+zatUsAEM8995zYtWuXe7TN008/LRISEsSnn34q9uzZIy6//HKRm5srmpqa3OeYNWuWOOecc8TWrVvF999/L4YNGyauvfba3rokD/6uz2azicsuu0wMHDhQ7N692+Pn0jU6Y/PmzeLvf/+72L17tzh69Kh4++23RWpqqrjhhht6+crO8HeNFotF/PGPfxSFhYWiuLhYrFmzRkyYMEEMGzZMNDc3u88RzvdQiMB/T4UQwmw2i+joaLFixYoOx4f7fQz0+SBE4N+hDodD5OXliRkzZojdu3eLlStXitTUVLF48eKQ1ZPhRaEXXnhBDBo0SOh0OjFlyhSxZcuW3q5SpwHw+vXGG28IIYQ4fvy4OP/880VSUpLQ6/XirLPOEg8++KAwm829W3GFrr76apGZmSl0Op0YMGCAuPrqq8WRI0fc+5uamsSdd94pEhMTRXR0tPif//kfUVpa2os17pxVq1YJAKKoqMhje6Tev/Xr13v9e3njjTcKIVqGSz/yyCMiPT1d6PV6MX369A7XXl1dLa699loRGxsr4uPjxc033ywsFksvXE1H/q6vuLjY58/l+vXrhRBC7NixQ+Tn5wuj0SgMBoMYNWqUeOqppzw++Hubv2tsbGwUM2bMEKmpqUKr1YqcnBxx2223dfhHYDjfQyEC/z0VQohXXnlFREVFCZPJ1OH4cL+PgT4fhFD2O/TYsWNi9uzZIioqSqSkpIgHHnhA2O32kNVTaq0sERERUURgnxciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIkq3hZeamhrMmzcP8fHxSEhIwPz581FfX+/3mAsvvBCSJHl8/eEPf+iuKhIREVEEkoQQojtOPHv2bJSWluKVV16B3W7HzTffjMmTJ+Pdd9/1ecyFF16I4cOH44knnnBvi46ORnx8fHdUkYiIiCKQpjtOevDgQaxcuRLbt2/HpEmTAAAvvPACLr74Yvz1r39FVlaWz2Ojo6ORkZGh+L2sViusVqv7tSzLqKmpQXJyMiRJ6vxFEBERUY8RQsBisSArKwsqVYAHQ6IbvPbaayIhIcFjm91uF2q1Wnz00Uc+j7vgggtESkqKSE5OFmPGjBEPPfSQaGho8PteS5YsEQD4xS9+8Ytf/OJXH/g6ceJEwJzRLS0vZWVlSEtL89im0WiQlJSEsrIyn8ddd911yMnJQVZWFvbs2YNFixahqKgIH330kc9jFi9ejIULF7pfm81mDBo0CL/AxdBA2/WLIaJ+5+NDe3u7CtTD/mf42N6uQr/ngB3f4yvExcUFLBtUeHnooYfwzDPP+C1z8ODBYE7p4fbbb3f//9ixY5GZmYnp06fj6NGjGDp0qNdj9Ho99Hp9h+0aaKGRGF6IKHjxcRyI2d/w8yIMiJY/lHT5CCq8PPDAA7jpppv8lhkyZAgyMjJQUVHhsd3hcKCmpiao/iz5+fkAgCNHjvgML0RERNS/BBVeUlNTkZqaGrDc1KlTYTKZsGPHDkycOBEAsG7dOsiy7A4kSuzevRsAkJmZGUw1iYiIqA/rlrbRUaNGYdasWbjtttuwbds2bNq0CXfddReuueYa90ijU6dOYeTIkdi2bRsA4OjRo3jyySexY8cOHDt2DJ999hluuOEGnH/++Rg3blx3VJOIiIgiULc92H3nnXcwcuRITJ8+HRdffDF+8Ytf4NVXX3Xvt9vtKCoqQmNjIwBAp9NhzZo1mDFjBkaOHIkHHngAV155JT7//PPuqiIRERFFoG4ZbQQASUlJfiekGzx4MESb+fGys7OxcePG7qoOERER9RHsUk9EREQRpUfCy0svvYTBgwfDYDAgPz/f3c/Fl//85z8YOXIkDAYDxo4di6+++qonqklEREQRoNvDywcffICFCxdiyZIl2LlzJ8aPH4+ZM2d2GErtsnnzZlx77bWYP38+du3ahblz52Lu3LnYt29fd1eViIiIIkC3Lczokp+fj8mTJ+PFF18E0LL2UHZ2Nu6++2489NBDHcpfffXVaGhowBdffOHedu655+Lss8/Gyy+/HPD96urqYDQacSEu56RDRNQpq07v7u0qUA+bmXV2b1eh33MIOzbgU5jN5oALMndry4vNZsOOHTtQUFBw5g1VKhQUFKCwsNDrMYWFhR7lAWDmzJk+y1utVtTV1Xl8ERERUd/VreGlqqoKTqcT6enpHtvT09N9rnFUVlYWVPmlS5fCaDS6v7Kzs0NTeSIiIgpLET/aaPHixTCbze6vEydO9HaViIiIqBt12zwvAJCSkgK1Wo3y8nKP7eXl5T7XOMrIyAiqvK+FGYmIiKhv6taWF51Oh4kTJ2Lt2rXubbIsY+3atZg6darXY6ZOnepRHgBWr17tszwRERH1L93a8gIACxcuxI033ohJkyZhypQpWL58ORoaGnDzzTcDAG644QYMGDAAS5cuBQDce++9uOCCC/C3v/0Nc+bMwfvvv48ffvjBY2kBIiIi6r+6PbxcffXVqKysxKOPPoqysjKcffbZWLlypbtT7vHjx6FSnWkAmjZtGt599138+c9/xsMPP4xhw4bhk08+QV5eXndXlYiIiCJAt8/z0tM4zwsRdRXneel/OM9L7wubeV6IiIiIQo3hhYiIiCJK2C3M+Oabb0KSJI8vg8HQE9UkIiKiCBB2CzMCQHx8PEpLS91fJSUl3V1NIiIiihDdPtroueeew2233eYeGv3yyy/jyy+/xOuvv+51YUYAkCTJ56R07VmtVlitVvdrs9kMAHDADvSprshE1FPqLHJvV4F6mEPYe7sK/Z4DLfdAyTiibg0vroUZFy9e7N4WaGFGAKivr0dOTg5kWcaECRPw1FNPYcyYMV7LLl26FI8//niH7d/jq65fABH1S4nDe7sG1PN+7u0KUCuLxQKj0ei3TLeGF38LM/70009ejxkxYgRef/11jBs3DmazGX/9618xbdo07N+/HwMHDuxQfvHixVi4cKH7tSzLqKmpQXJyMiRJUlTPuro6ZGdn48SJEwGHZ/UlvG5ed3/A6+Z19wd94bqFELBYLMjKygpYttsfGwVr6tSpHksBTJs2DaNGjcIrr7yCJ598skN5b2sbJSQkdOq94+PjI/amdwWvu3/hdfcvvO7+JdKvO1CLi0u3dtjtzMKM7Wm1Wpxzzjk4cuRId1SRiIiIIkzYLczYntPpxN69e5GZmdld1SQiIqIIEnYLMz7xxBM499xzcdZZZ8FkMmHZsmUoKSnBrbfe2m111Ov1WLJkSYfHT30dr5vX3R/wunnd/UF/u+4eWdvoxRdfxLJly9wLMz7//PPIz88HAFx44YUYPHgw3nzzTQDA/fffj48++ghlZWVITEzExIkT8Ze//AXnnHNOd1eTiIiIIkCfW5iRiIiI+jaubUREREQRheGFiIiIIgrDCxEREUUUhhciIiKKKP0mvLz00ksYPHgwDAYD8vPzsW3bNr/l//Of/2DkyJEwGAwYO3YsvvoqstZKWrp0KSZPnoy4uDikpaVh7ty5KCoq8nvMm2++CUmSPL4MBkMP1Tg0HnvssQ7XMHLkSL/HRPq9BoDBgwd3uG5JkrBgwQKv5SP1Xn/77be49NJLkZWVBUmS8Mknn3jsF0Lg0UcfRWZmJqKiolBQUIDDhw8HPG+wvx96mr/rttvtWLRoEcaOHYuYmBhkZWXhhhtuwOnTp/2eszM/Kz0t0P2+6aabOlzDrFmzAp43ku83AK8/65IkYdmyZT7PGQn3Oxj9Irx88MEHWLhwIZYsWYKdO3di/PjxmDlzJioqKryW37x5M6699lrMnz8fu3btwty5czF37lzs27evh2veeRs3bsSCBQuwZcsWrF69Gna7HTNmzEBDQ4Pf4+Lj41FaWur+Kikp6aEah86YMWM8ruH777/3WbYv3GsA2L59u8c1r169GgDw29/+1ucxkXivGxoaMH78eLz00kte9z/77LN4/vnn8fLLL2Pr1q2IiYnBzJkz0dzc7POcwf5+6A3+rruxsRE7d+7EI488gp07d+Kjjz5CUVERLrvssoDnDeZnpTcEut8AMGvWLI9reO+99/yeM9LvNwCP6y0tLcXrr78OSZJw5ZVX+j1vuN/voIh+YMqUKWLBggXu106nU2RlZYmlS5d6LX/VVVeJOXPmeGzLz88Xv//977u1nt2poqJCABAbN270WeaNN94QRqOx5yrVDZYsWSLGjx+vuHxfvNdCCHHvvfeKoUOHClmWve7vC/cagPj444/dr2VZFhkZGWLZsmXubSaTSej1evHee+/5PE+wvx96W/vr9mbbtm0CgCgpKfFZJtifld7m7bpvvPFGcfnllwd1nr54vy+//HLx61//2m+ZSLvfgfT5lhebzYYdO3agoKDAvU2lUqGgoACFhYVejyksLPQoDwAzZ870WT4SmM1mAEBSUpLfcvX19cjJyUF2djYuv/xy7N+/vyeqF1KHDx9GVlYWhgwZgnnz5uH48eM+y/bFe22z2fD222/jlltu8buyel+4120VFxejrKzM434ajUbk5+f7vJ+d+f0QCcxmMyRJCrhIbTA/K+Fqw4YNSEtLw4gRI3DHHXegurraZ9m+eL/Ly8vx5ZdfYv78+QHL9oX77dLnw0tVVRWcTifS09M9tqenp6OsrMzrMWVlZUGVD3eyLOO+++7Deeedh7y8PJ/lRowYgddffx2ffvop3n77bciyjGnTpuHkyZM9WNuuyc/Px5tvvomVK1dixYoVKC4uxi9/+UtYLBav5fvavQaATz75BCaTCTfddJPPMn3hXrfnumfB3M/O/H4Id83NzVi0aBGuvfZav6sLB/uzEo5mzZqFf//731i7di2eeeYZbNy4EbNnz4bT6fRavi/e77feegtxcXG44oor/JbrC/e7rW5f24h634IFC7Bv376AzzenTp3qsWDmtGnTMGrUKLzyyit48sknu7uaITF79mz3/48bNw75+fnIycnBhx9+qOhfJn3Ba6+9htmzZyMrK8tnmb5wr6kju92Oq666CkIIrFixwm/ZvvCzcs0117j/f+zYsRg3bhyGDh2KDRs2YPr06b1Ys57z+uuvY968eQE73PeF+91Wn295SUlJgVqtRnl5ucf28vJyZGRkeD0mIyMjqPLh7K677sIXX3yB9evXY+DAgUEdq9Vqcc455+DIkSPdVLvul5CQgOHDh/u8hr50rwGgpKQEa9asCXoh075wr133LJj72ZnfD+HKFVxKSkqwevVqv60u3gT6WYkEQ4YMQUpKis9r6Ev3GwC+++47FBUVdWrh4ki/330+vOh0OkycOBFr1651b5NlGWvXrvX4l2dbU6dO9SgPAKtXr/ZZPhwJIXDXXXfh448/xrp165Cbmxv0OZxOJ/bu3YvMzMxuqGHPqK+vx9GjR31eQ1+412298cYbSEtLw5w5c4I6ri/c69zcXGRkZHjcz7q6OmzdutXn/ezM74dw5Aouhw8fxpo1a5CcnBz0OQL9rESCkydPorq62uc19JX77fLaa69h4sSJGD9+fNDHRvz97u0ewz3h/fffF3q9Xrz55pviwIED4vbbbxcJCQmirKxMCCHE7373O/HQQw+5y2/atEloNBrx17/+VRw8eFAsWbJEaLVasXfv3t66hKDdcccdwmg0ig0bNojS0lL3V2Njo7tM++t+/PHHxapVq8TRo0fFjh07xDXXXCMMBoPYv39/b1xCpzzwwANiw4YNori4WGzatEkUFBSIlJQUUVFRIYTom/faxel0ikGDBolFixZ12NdX7rXFYhG7du0Su3btEgDEc889J3bt2uUeVfP000+LhIQE8emnn4o9e/aIyy+/XOTm5oqmpib3OX7961+LF154wf060O+HcODvum02m7jsssvEwIEDxe7duz1+3q1Wq/sc7a870M9KOPB33RaLRfzxj38UhYWFori4WKxZs0ZMmDBBDBs2TDQ3N7vP0dfut4vZbBbR0dFixYoVXs8Rifc7GP0ivAghxAsvvCAGDRokdDqdmDJlitiyZYt73wUXXCBuvPFGj/IffvihGD58uNDpdGLMmDHiyy+/7OEadw0Ar19vvPGGu0z7677vvvvc36P09HRx8cUXi507d/Z85bvg6quvFpmZmUKn04kBAwaIq6++Whw5csS9vy/ea5dVq1YJAKKoqKjDvr5yr9evX+/177Xr2mRZFo888ohIT08Xer1eTJ8+vcP3IycnRyxZssRjm7/fD+HA33UXFxf7/Hlfv369+xztrzvQz0o48HfdjY2NYsaMGSI1NVVotVqRk5Mjbrvttg4hpK/db5dXXnlFREVFCZPJ5PUckXi/gyEJIUS3Nu0QERERhVCf7/NCREREfQvDCxEREUUUhhciIiKKKAwvREREFFEYXoiIiCiiMLwQERFRRGF4ISIioojC8EJEREQRheGFiIiIIgrDCxEREUUUhhciIiKKKP8/khc/FlCZoesAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -271,7 +267,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -293,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -309,7 +305,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -335,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -360,26 +356,24 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor(45)\n" + "tensor(42)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACkBJREFUeJzt3M+LXfUdxvHn6SRWR0u1mo1JaLJQSxBbZQj+ABdGiFbRTRcKCnWTTdUogmg3/gMiuhAh+GOj6CJmISKOBXXRTeoYg5pEg6g1MRHHlKqYRUx8upgpRDFzTzLn65n74f0CwYzH68Mwb8+dO3e+TiIANf1q6AEA2iFwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwpb1uJBz/vdRNasXt774+59d7L3x0RbF15yeOgJJX2673t99Z9jHnVdk8DXrF6uf02v7v1xN57/p94fE21NT+8cekJJ6zfu63QdT9GBwggcKIzAgcIIHCiMwIHCCBworFPgtq+z/aHtj2w/0HoUgH6MDNz2hKTHJV0vaZ2kW22vaz0MwOJ1uYOvl/RRko+THJH0gqSb284C0Icuga+UdPzbZvbPf+xHbG+yPWN7ZvbQsb72AViE3l5kS7IlyVSSqRXnTvT1sAAWoUvgn0s6/o3lq+Y/BmCJ6xL4W5IusL3W9mmSbpH0UttZAPow8rfJkhy1faekaUkTkp5Osqv5MgCL1unXRZO8IumVxlsA9Ix3sgGFEThQGIEDhRE4UBiBA4U1OXQR0vSBNocNtjp4stXeVsbpAM4hP7fcwYHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwpqcqrr33cmxOvUSaKlFC3tzqNN13MGBwggcKIzAgcIIHCiMwIHCCBwobGTgtlfbfsP2btu7bG/+JYYBWLwuPwc/Kum+JDts/0bS27b/kWR3420AFmnkHTzJwSQ75v/+W0l7JK1sPQzA4p3U9+C210i6VNL2FmMA9KvzW1VtnyXpRUn3JPnmZ/75JkmbJOl0TfY2EMCp63QHt71cc3E/l2Tbz12TZEuSqSRTy/XrPjcCOEVdXkW3pKck7UnySPtJAPrS5Q5+laTbJV1je+f8X39uvAtAD0Z+D57kn5L8C2wB0DPeyQYURuBAYQQOFEbgQGEEDhTW5NDFCy85rOnpnS0eemy0OnRy+sB4fV7H6fDNcfrcrt94uNN13MGBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcKanKraCieVjtcppeOm4tcXd3CgMAIHCiNwoDACBwojcKAwAgcKI3CgsM6B256w/Y7tl1sOAtCfk7mDb5a0p9UQAP3rFLjtVZJukPRk2zkA+tT1Dv6opPsl/XCiC2xvsj1je2b20LFexgFYnJGB275R0pdJ3l7ouiRbkkwlmVpx7kRvAwGcui538Ksk3WT7U0kvSLrG9rNNVwHoxcjAkzyYZFWSNZJukfR6ktuaLwOwaPwcHCjspH4fPMmbkt5ssgRA77iDA4UROFAYgQOFEThQGIEDhY3VqaqtTqfkpFK01OLra28OdbqOOzhQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UNhYnarK6aftTpYdN3wtdMMdHCiMwIHCCBwojMCBwggcKIzAgcI6BW77bNtbbX9ge4/tK1oPA7B4XX8O/pikV5P8xfZpkiYbbgLQk5GB2/6tpKsl/VWSkhyRdKTtLAB96PIUfa2kWUnP2H7H9pO2z2y8C0APugS+TNJlkp5Icqmk7yQ98NOLbG+yPWN7ZvbQsZ5nAjgVXQLfL2l/ku3zf96queB/JMmWJFNJplacO9HnRgCnaGTgSb6QtM/2RfMf2iBpd9NVAHrR9VX0uyQ9N/8K+seS7mg3CUBfOgWeZKekqcZbAPSMd7IBhRE4UBiBA4UROFAYgQOFEThQ2FidqsqJou1OEx23z+247e3b+o2HO13HHRwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwsbq0MVWWh1kOE7G7XPQ4tDFcfoc7M2hTtdxBwcKI3CgMAIHCiNwoDACBwojcKAwAgcK6xS47Xtt77L9vu3nbZ/eehiAxRsZuO2Vku6WNJXkYkkTkm5pPQzA4nV9ir5M0hm2l0malHSg3SQAfRkZeJLPJT0s6TNJByV9neS1n15ne5PtGdszs4eO9b8UwEnr8hT9HEk3S1or6XxJZ9q+7afXJdmSZCrJ1IpzJ/pfCuCkdXmKfq2kT5LMJvle0jZJV7adBaAPXQL/TNLltidtW9IGSXvazgLQhy7fg2+XtFXSDknvzf87WxrvAtCDTr8PnuQhSQ813gKgZ7yTDSiMwIHCCBwojMCBwggcKKzJqap7350cqxMqW2hx6qc0Xid/SuP1eWi1tYX1Gw93uo47OFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQmJP0/6D2rKR/d7j0PElf9T6gnXHaO05bpfHauxS2/j7JilEXNQm8K9szSaYGG3CSxmnvOG2VxmvvOG3lKTpQGIEDhQ0d+JaB//sna5z2jtNWabz2js3WQb8HB9DW0HdwAA0NFrjt62x/aPsj2w8MtWMU26ttv2F7t+1dtjcPvakL2xO237H98tBbFmL7bNtbbX9ge4/tK4betBDb985/Hbxv+3nbpw+9aSGDBG57QtLjkq6XtE7SrbbXDbGlg6OS7kuyTtLlkv62hLceb7OkPUOP6OAxSa8m+YOkP2oJb7a9UtLdkqaSXCxpQtItw65a2FB38PWSPkrycZIjkl6QdPNAWxaU5GCSHfN//63mvgBXDrtqYbZXSbpB0pNDb1mI7d9KulrSU5KU5EiS/w67aqRlks6wvUzSpKQDA+9Z0FCBr5S077g/79cSj0aSbK+RdKmk7cMuGelRSfdL+mHoISOslTQr6Zn5byeetH3m0KNOJMnnkh6W9Jmkg5K+TvLasKsWxotsHdk+S9KLku5J8s3Qe07E9o2Svkzy9tBbOlgm6TJJTyS5VNJ3kpby6zHnaO6Z5lpJ50s60/Ztw65a2FCBfy5p9XF/XjX/sSXJ9nLNxf1ckm1D7xnhKkk32f5Uc9/6XGP72WEnndB+SfuT/P8Z0VbNBb9UXSvpkySzSb6XtE3SlQNvWtBQgb8l6QLba22fprkXKl4aaMuCbFtz3yPuSfLI0HtGSfJgklVJ1mju8/p6kiV5l0nyhaR9ti+a/9AGSbsHnDTKZ5Iutz05/3WxQUv4RUFp7inSLy7JUdt3SprW3CuRTyfZNcSWDq6SdLuk92zvnP/Y35O8MuCmSu6S9Nz8/+g/lnTHwHtOKMl221sl7dDcT1fe0RJ/VxvvZAMK40U2oDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwr7H1tiS3kfJfL7AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAGdCAYAAAAv9mXmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAUTklEQVR4nO3df2xWhbnA8acUKZ23NIgDaSzCzBbkhwLyI0ritkgkRs1cFjcTTAgmbtmKgCRmsAWJYVBZNkMiDsVsjmSimCxEZ6KEsAhjk/BLDGabbDHXdRJAE9MqJhXb9/6xu97LrXD7lj6c962fT3L+4OQczpPznvSb8572fWtKpVIpAGCADSl6AAAGJ4EBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFEMv9gG7u7vj+PHj0dDQEDU1NRf78ABcgFKpFB9++GE0NTXFkCHnv0e56IE5fvx4NDc3X+zDAjCA2tra4sorrzzvNhc9MA0NDRER8c7h8THiP7xDdz7f/MrUokegn7YfO1r0CL24nqpXJV1PHR91x1Uz/rPnZ/n5XPTA/PttsRH/MSRGNAjM+QytuaToEeinSry2XU/VqxKvp7484qi8qQEYFAQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNAin4F5vHHH4/x48fH8OHDY86cObF///6BnguAKld2YLZt2xbLly+P1atXx+HDh+O6666L+fPnx6lTpzLmA6BKlR2YRx99NO67775YtGhRTJo0KZ544on4whe+EL/61a8y5gOgSpUVmE8++SQOHToU8+bN+5//YMiQmDdvXrz22mufuU9nZ2d0dHSctQAw+JUVmPfffz+6urpizJgxZ60fM2ZMnDhx4jP3aW1tjcbGxp7Ft1kCfD6k/xbZypUro729vWdpa2vLPiQAFaCsb7S8/PLLo7a2Nk6ePHnW+pMnT8YVV1zxmfvU1dVFXV1d/ycEoCqVdQczbNiwuP7662PXrl0967q7u2PXrl1xww03DPhwAFSvsu5gIiKWL18eCxcujJkzZ8bs2bNjw4YNcfr06Vi0aFHGfABUqbID853vfCfee++9eOihh+LEiRMxbdq0eOWVV3o9+Afg863swERELF68OBYvXjzQswAwiPgsMgBSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAU/fossoHwza9MjaE1lxR1+F52HD9S9Ai9VOJMlWh+07SiR+ilEmeCi80dDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEgxdCiB+Dc5jdNK3qEXnYcP1L0CL1U4kz0jWt8cHMHA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFKUFZjW1taYNWtWNDQ0xOjRo+POO++Mt956K2s2AKpYWYHZvXt3tLS0xL59+2Lnzp1x5syZuOWWW+L06dNZ8wFQpcr6wrFXXnnlrH//+te/jtGjR8ehQ4fipptuGtDBAKhuF/SNlu3t7RERcdlll51zm87Ozujs7Oz5d0dHx4UcEoAq0e+H/N3d3bFs2bKYO3duTJky5Zzbtba2RmNjY8/S3Nzc30MCUEX6HZiWlpZ4880347nnnjvvditXroz29vaepa2trb+HBKCK9OstssWLF8dLL70Ue/bsiSuvvPK829bV1UVdXV2/hgOgepUVmFKpFPfff39s3749Xn311ZgwYULWXABUubIC09LSElu3bo0XXnghGhoa4sSJExER0djYGPX19SkDAlCdynoGs2nTpmhvb4+vfe1rMXbs2J5l27ZtWfMBUKXKfosMAPrCZ5EBkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApLigr0y+ENuPHY0RDfpWbeY3TSt6hF52HD9S9AhVoRJfu0pUieepWq9xP+EBSCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMAClqSqVS6WIesKOjIxobG+Nr8Y0YWnPJxTx01dlx/EjRI/Qyv2la0SPQT5V4PVUi1/j5fVo6E6/GC9He3h4jRow477buYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0CKCwrMI488EjU1NbFs2bIBGgeAwaLfgTlw4EA8+eSTce211w7kPAAMEv0KzEcffRQLFiyIp556KkaOHDnQMwEwCPQrMC0tLXHbbbfFvHnz/t9tOzs7o6Oj46wFgMFvaLk7PPfcc3H48OE4cOBAn7ZvbW2Nhx9+uOzBAKhuZd3BtLW1xdKlS+OZZ56J4cOH92mflStXRnt7e8/S1tbWr0EBqC5l3cEcOnQoTp06FTNmzOhZ19XVFXv27ImNGzdGZ2dn1NbWnrVPXV1d1NXVDcy0AFSNsgJz8803x9GjR89at2jRopg4cWL88Ic/7BUXAD6/ygpMQ0NDTJky5ax1l156aYwaNarXegA+3/wlPwApyv4tsv/r1VdfHYAxABhs3MEAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApLjgzyLrr+3HjsaIBn07n/lN04oegX7acfxI0SP04nriYvMTHoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQYmhRB/7mV6bG0JpLijo8/bTj+JGiR+hlftO0okfopRJnqsTXrhJ57c6v48PuGPmVvm3rDgaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkKDsw7777btxzzz0xatSoqK+vj6lTp8bBgwczZgOgipX1fTAffPBBzJ07N77+9a/Hyy+/HF/84hfjb3/7W4wcOTJrPgCqVFmBWb9+fTQ3N8fTTz/ds27ChAkDPhQA1a+st8hefPHFmDlzZtx1110xevTomD59ejz11FPn3aezszM6OjrOWgAY/MoKzNtvvx2bNm2KL3/5y7Fjx474/ve/H0uWLIktW7acc5/W1tZobGzsWZqbmy94aAAqX1mB6e7ujhkzZsS6deti+vTp8d3vfjfuu+++eOKJJ865z8qVK6O9vb1naWtru+ChAah8ZQVm7NixMWnSpLPWXXPNNfGPf/zjnPvU1dXFiBEjzloAGPzKCszcuXPjrbfeOmvdsWPH4qqrrhrQoQCofmUF5oEHHoh9+/bFunXr4u9//3ts3bo1Nm/eHC0tLVnzAVClygrMrFmzYvv27fHss8/GlClTYs2aNbFhw4ZYsGBB1nwAVKmy/g4mIuL222+P22+/PWMWAAYRn0UGQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkKLszyIbrHYcP1L0CJBqftO0okegnyrptfu0dCYi3u7Ttu5gAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAAphhY9QKWY3zSt6BF62XH8SNEjVIVKPE+uJwZSJV5PfeEOBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQoKzBdXV2xatWqmDBhQtTX18fVV18da9asiVKplDUfAFWqrO+DWb9+fWzatCm2bNkSkydPjoMHD8aiRYuisbExlixZkjUjAFWorMD86U9/im984xtx2223RUTE+PHj49lnn439+/enDAdA9SrrLbIbb7wxdu3aFceOHYuIiDfeeCP27t0bt9566zn36ezsjI6OjrMWAAa/su5gVqxYER0dHTFx4sSora2Nrq6uWLt2bSxYsOCc+7S2tsbDDz98wYMCUF3KuoN5/vnn45lnnomtW7fG4cOHY8uWLfGzn/0stmzZcs59Vq5cGe3t7T1LW1vbBQ8NQOUr6w7mwQcfjBUrVsTdd98dERFTp06Nd955J1pbW2PhwoWfuU9dXV3U1dVd+KQAVJWy7mA+/vjjGDLk7F1qa2uju7t7QIcCoPqVdQdzxx13xNq1a2PcuHExefLkeP311+PRRx+Ne++9N2s+AKpUWYF57LHHYtWqVfGDH/wgTp06FU1NTfG9730vHnrooaz5AKhSZQWmoaEhNmzYEBs2bEgaB4DBwmeRAZBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQo67PIBrMdx48UPUIv85umFT1CVajE164SuZ76xvU0cNzBAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQQGABSCAwAKQQGgBQCA0AKgQEghcAAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApBAYAFIIDAApBAaAFAIDQAqBASCFwACQQmAASCEwAKQYerEPWCqVIiLi0zgTUbrYRz+3jg+7ix6hl09LZ4oeoSp47RhIrqfz+zT+Ncu/f5afT02pL1sNoH/+85/R3Nx8MQ8JwABra2uLK6+88rzbXPTAdHd3x/Hjx6OhoSFqamr6/f90dHREc3NztLW1xYgRIwZwwsHFeeob56lvnKe+GcznqVQqxYcffhhNTU0xZMj5n7Jc9LfIhgwZ8v9WrxwjRowYdC9gBuepb5ynvnGe+mawnqfGxsY+bechPwApBAaAFFUbmLq6uli9enXU1dUVPUpFc576xnnqG+epb5ynf7noD/kB+Hyo2jsYACqbwACQQmAASCEwAKSo2sA8/vjjMX78+Bg+fHjMmTMn9u/fX/RIFaW1tTVmzZoVDQ0NMXr06LjzzjvjrbfeKnqsivbII49ETU1NLFu2rOhRKs67774b99xzT4waNSrq6+tj6tSpcfDgwaLHqihdXV2xatWqmDBhQtTX18fVV18da9as6dNndg1WVRmYbdu2xfLly2P16tVx+PDhuO6662L+/Plx6tSpokerGLt3746WlpbYt29f7Ny5M86cORO33HJLnD59uujRKtKBAwfiySefjGuvvbboUSrOBx98EHPnzo1LLrkkXn755fjzn/8cP//5z2PkyJFFj1ZR1q9fH5s2bYqNGzfGX/7yl1i/fn389Kc/jccee6zo0QpTlb+mPGfOnJg1a1Zs3LgxIv71+WbNzc1x//33x4oVKwqerjK99957MXr06Ni9e3fcdNNNRY9TUT766KOYMWNG/OIXv4if/OQnMW3atNiwYUPRY1WMFStWxB//+Mf4wx/+UPQoFe3222+PMWPGxC9/+cuedd/61reivr4+fvOb3xQ4WXGq7g7mk08+iUOHDsW8efN61g0ZMiTmzZsXr732WoGTVbb29vaIiLjssssKnqTytLS0xG233XbWNcX/ePHFF2PmzJlx1113xejRo2P69Onx1FNPFT1Wxbnxxhtj165dcezYsYiIeOONN2Lv3r1x6623FjxZcS76h11eqPfffz+6urpizJgxZ60fM2ZM/PWvfy1oqsrW3d0dy5Yti7lz58aUKVOKHqeiPPfcc3H48OE4cOBA0aNUrLfffjs2bdoUy5cvjx/96Edx4MCBWLJkSQwbNiwWLlxY9HgVY8WKFdHR0RETJ06M2tra6OrqirVr18aCBQuKHq0wVRcYytfS0hJvvvlm7N27t+hRKkpbW1ssXbo0du7cGcOHDy96nIrV3d0dM2fOjHXr1kVExPTp0+PNN9+MJ554QmD+l+effz6eeeaZ2Lp1a0yePDmOHDkSy5Yti6amps/teaq6wFx++eVRW1sbJ0+ePGv9yZMn44orrihoqsq1ePHieOmll2LPnj0D+jUJg8GhQ4fi1KlTMWPGjJ51XV1dsWfPnti4cWN0dnZGbW1tgRNWhrFjx8akSZPOWnfNNdfEb3/724ImqkwPPvhgrFixIu6+++6IiJg6dWq888470dra+rkNTNU9gxk2bFhcf/31sWvXrp513d3dsWvXrrjhhhsKnKyylEqlWLx4cWzfvj1+//vfx4QJE4oeqeLcfPPNcfTo0Thy5EjPMnPmzFiwYEEcOXJEXP7b3Llze/2K+7Fjx+Kqq64qaKLK9PHHH/f6Aq7a2tro7q68r2C+WKruDiYiYvny5bFw4cKYOXNmzJ49OzZs2BCnT5+ORYsWFT1axWhpaYmtW7fGCy+8EA0NDXHixImI+NcXBdXX1xc8XWVoaGjo9Uzq0ksvjVGjRnlW9b888MADceONN8a6devi29/+duzfvz82b94cmzdvLnq0inLHHXfE2rVrY9y4cTF58uR4/fXX49FHH41777236NGKU6pSjz32WGncuHGlYcOGlWbPnl3at29f0SNVlIj4zOXpp58uerSK9tWvfrW0dOnSoseoOL/73e9KU6ZMKdXV1ZUmTpxY2rx5c9EjVZyOjo7S0qVLS+PGjSsNHz689KUvfan04x//uNTZ2Vn0aIWpyr+DAaDyVd0zGACqg8AAkEJgAEghMACkEBgAUggMACkEBoAUAgNACoEBIIXAAJBCYABIITAApPgv6nGNeg9YcFoAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -405,21 +399,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 13, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'size' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0001\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mnum_iter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m3\u001b[0m \u001b[0;31m#A\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mlosses\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m#B\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mreplay_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m50\u001b[0m \u001b[0;31m#C\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mreplay\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdeque\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmaxlen\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreplay_size\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m#D\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'size' is not defined" - ] - } - ], + "outputs": [], "source": [ "epochs = 75\n", "lr = 0.0001\n", @@ -471,29 +453,27 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 29, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJCCAYAAADdrPONAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXl0JHd57/39dVdX7y21ulsajaRZpbFnPIs3bAM2BC8sttlMEggkueG+gSy8Jtu9SXwuCcm9F8IlBAjknPtewg1JCMtJWAJ4w9gQ8IIN47Fn83hGM54ZrSOpJfW+VVXX+0f1r7sl9VJbd1dJv885HEBqtUo93VVPfZ/v832ILMtgMBgMBoPBYLTG0esDYDAYDAaDwbADrGhiMBgMBoPBUAErmhgMBoPBYDBUwIomBoPBYDAYDBWwoonBYDAYDAZDBaxoYjAYDAaDwVABK5oYDAaDwWAwVMCKJgaDwWAwGAwVsKKJwWAwGAwGQwVcJ540Go3Ku3bt6sRTMxgMBoPBYJjK888/H5dlOdbucR0pmnbt2oWjR4924qkZDAaDwWAwTIUQclnN41h7jsFgMBgMBkMFrGhiMBgMBoPBUAErmhgMBoPBYDBUwIomBoPBYDAYDBWwoonBYDAYDAZDBaxoYjAYDAaDwVABK5oYDAaDwWAwVMCKJgaDwWAwGAwVsKKJwTAJUSrj9Fyy14fBYDAYjA7BiiYGwyQee2kB937+KVxezvb6UBgMBoPRAVjRxGCYxEKqAFkGXr6S7vWhMBgMBqMDsKKJwTCJdEEEAJxfzPT4SBgMBoPRCVjRxGCYRCovAAAuLLGiicFgMDYjrGhiWAZZlvGp75/FMxfivT4UXVCl6cIS8zQxGAzGZoQVTQzL8A9PX8Lf/eg8vvPCXK8PRRfpYkVpWsxAluUeHw2DwWAwzIYVTQxLcHImiU88cgZArfiwG6m8ojRliiIW08UeHw2DwWAwzIYVTYyekymKuP9rxxANuDExGKgWH3YjXRDgcSkfqQvMDM4wkaIooShKvT4MBmPLw4omRs/5838/hamVHP72PddhNOxFqmBPpSldEHF4pB8AcJ6ZwRkm8rv/cgy///UXe30YDMaWhxVNjJ7yzedn8K0XZvHhOyZw0+4BhLyu6hSa3UgVBOwdDCDg5pjSxDANWZZx9PIqnj4fZ145BqPHsKKJ0TNeWcrgz75zCjfvHsD9t08AAIIeDqmCPdtzqYKIkJfD3pifTdAxTCOeKSGZF5AqiLi0nOv14TAYWxpVRRMh5PcIIacIIacJIb/f6YOyO9MrOXZH2IaiKOH+r70AnnPgs++5Fk4HAQCEPIrSZLfXryBIKIllhDwu7B0MsIDLBiymChCkcq8Pw3bUv5eOTyd6eCQMBqNt0UQIOQjgAwBuAnAEwL2EkPFOH5hdmV7J4XV//SM8fX6514diaT7xyMs4PZfCX//iEQz3eatfD3ldEMsy8oK9TK80oynk4bA3FsCVVAGZoj0Vs06QL0m4/W9+jK/9bKrXh2I7zi8qa3kcBDg+w4omBqOXqFGa9gN4TpblnCzLIoAfA7ivs4dlX5YyRcgycIktbW3KE2cW8KWnL+E3XrMLdx0YWvO9kMcFoFaE2IV0xbwe9LiwNxYAoLQfGQpTKzlkiiJeYW1LzZxfzCDg5nDdjjBOzCR7fTgMxpZGTdF0CsBthJAIIcQH4G4AY509LPtSKCkKSTzDcnoacSVZwH/5t+M4MBzCA3dfveH7IS8HAB0xgxcECQ986wRmVs33hVAfVsjLYXzQD4CtU6nncuUmgn0utDO5mMHewQCOjPbj1GyStTgZjB7StmiSZfkMgP8F4DEAjwJ4EcCG3gkh5IOEkKOEkKNLS0umH6hdoG2l5Uypx0diTT7y76dQFMv4/Huvg5tzbvg+VZo6ETvw1GQcX/vZNJ7pQOu0XmnaGfGDcxDma6pjakUpVJdY6Kdmzi9mMDEYwJGxPhTFMs4tpHt9SAzGlkWVEVyW5f8ry/INsiy/DsAqgHMNHvMFWZZvlGX5xlgsZvZx2oaCoNwFsjvqxrw0l8SbD26rtrDWE/JWiqYOBFw+dV7ZaZctmf/ctJ0Y9HBwOR3YEfHhwiJrRVEuV6a+ltjnQhPJnIDFdBHjFaUJAGvRMRg9RO303GDlv3dA8TN9tZMHZWeY0tSadFGsqkmNCHoq7bkOKE1PTioKaK5kvsmcthPp37Y3FmDtuTouM6VJF+eXFFVpYjCAnREf+rwuNkHHYPQQTuXjvkkIiQAQAHxIlmX2qW1CoVI0xbPs4rAeWZaRLYrVwqgR1facyZ6m+WS+mp2U7cBUW73SBADjgwH8x9lFiFIZnJPFoU1VPE3pgoiCIMHj2tiaZWyEtngnBoMghODwaB+OM6WJwegZattzt8myfECW5SOyLD/R6YOyM9Wiid1RbyAvSCjLQMDdvGiqKU3mFjZPTsar/7sjSlNBACGAn1eOf28sAEGSq16erYwolTGzmkc04AbA1CYtTC5k4OYcGAkrsRxHRvtxbiGNfAfewwwGoz3sFthkaNGUKogoiWzKpZ5MpRDytyiaPC4n3JzD9Pbck5NxxIJuDPd5OpKflC6ICLo5OCohnXtjdIKO+ZrmkwWIZRk37FQ8OczXpJ7zSxnsjQWq4a+HR/sglWWcnmNqE4PRC1jRZDL1oYzLrEW3hnRxbQurGcr+OfMKm3JZxtPn47htPAq/m0OuA0bwVEFAsM6rtXdQMbqzCbra5NyNOwcAMKVJC5MLGYwP1oYmrh1TCk/WomMwegMrmkyGTs8BzAy+HuolatWeA5RUbTOVppfmU1jJlnDrRBR+3olssRNG8LVerZDHhcGgm5nBUZucu2FXGAArmtSSK4mYTeQxUVc0DYY82BbyaDaDvzC1ioVUwexD7Ar5koTvn75iu9VKjM0JK5pMpl5pYm2ItdD2XLuiKVjZP2cWNGrg1vEofHxnlKZ0QajGJVDYBJ3C5ZUseKcD12wPgRBWNKmFRlbUK00AcGSsDyc0rFPJFEX8yt8/i49+57Spx9ctHj09j9/68vN4+OSVXh8Kg8GKJrMplCRU7AdMaVoHbc+18jQBlfaciUbwpybjuGooiMGQB353Z5SmdEFEaF3bcbyyuHer3yFPLecwOuCFm3NiwMezDDOVTFZ2zk0MrS2aDo/249JyDomcuvPL4y8toCCU8aOzi7bch0jPo599/Byk8tb+LDF6DyuaTKYgStgW8gAAltnFYQ2ZgkpPk4dD2iSlqSBI+NmlFdw6EQWAjilNqYKwIX9qb8yPdEHc8orj5eUcdg74AACxoJspTSo5v5gB5yDYGfGv+brWkMsHT8yB5xwoimU8cWbB9OPsNKuV4nByMYMHT8z1+GgYWx1WNJlMviRhIMDD43KwO+p10CTutp4mr8s0T9PPL62gJJarRZPf7US2A+Pa6cLG/ClqBt/KyeCyrMQu0At/LOje8kWkWiYXM9gV9cO1Lufr0GgfAKhq0SXzAn58bgnvu3kHhkJuPHRiviPH2kkSOQFhnwtXbwvis49PQmS79xg9hBVNJlMQyvC6nIj43aw9tw4aABloqzSZ1557cjIO3unAzbuVyS0/z5kebinLMtLrpueAmhfl/Bb2Na1kS8gUReyoKE3RAFOa1HKhsnNuPX1eF/ZE/Xhxur3S9NjpKxAkGW87sh13HxrGf5xbqu5JtAuJnICwn8cf3LUPF+NZfPuF2V4fEsMkZFlGMmev9yMrmkwmX0k7jrI76g1kiiJcTtJwUW89IS+HkliuZl4Z4cnJOK7f2Q9fJXTS5+aQK0kom+iNyJaU0M6Qd20xuC3kgY934sIWjh2g61N2Rta257a6z6sdRVHCpeXsBhM45fCoOjP4gyfmMRr24tqxftx7eBglsYwnziyafbgdJZEvod/rwhsPDOHgSAif++EkBKY2bQr+/slXcOsnf4iiaJ+wVlY0mUxBkOB1ORH180xpWkemILZtzQF1q1QM3hEvpYs4M5/CbRO1BdJ+XinY8iYUZBR6575eaSKEbPkJuqnldUVTwI2iWK4OBTAacymeQ1neODlHOTLWj8V0EVeSzWMEVrMlPH0+jnsOD4MQguvGwhju8+BBm7XolPYcD0II/vCufZheyeMbz8+o/vmCIOHUbJKlqFsMWZbx1eemkC6IiNvoWsmKJpOhe7WiATcLt1xHtii2bc0BdatUDAZcPnOhFjVA8VWKtqyJZnB6nI0M7uODga2tNC3nQAgwGq4pTQCLHWhHdXJuMNjw+4crZvAXW+Q1PXr6CsSyjLce3g4AcDgI7j40jJ+cW9J0QyLLMh46MY+VbG8ubImcgD6fckPyhqsGce1YPz7/xKQqdSJbFPHev38W937+KRz6i+/jrZ9/Ch/9zil858VZTC3nmOLZQ56/vIpLlZsqOw1NsaLJZKqepoCiNJnZBrI76aKIgNvV9nE078io0vTkZBx9XhcOjvRVv0aVppyJsQNUaVo/PQcoE3RzyUJHlgTbgcsrWWwLeaoLelnRpI7zixkQAuyJ+Rt+/5rtIXAO0rJF9+CJOeyO+nHN9lD1a3cfGkZJ0jZF98yFZXzoq8fwl9/rTc5TIldC2McDUNTbP3rjPswlC/jXn0+3/LmCIOED/3wUx2eSeOAtV+O3Xr8HATeHf3t+Br/39Rfxur/+EV71scfxgX8+iu+8aJ5PKlMUcfTSCv7pmUv4428cx1s//xT+/ievmPb8m4VvHquphXbqyrS/7WdoQvE0ORAJuCGWZaQKAvorH/itjtKea7/dvtqeMxA7IMsynpqM47XjkereLgBVb5OZSlO6RZTC3pjSXrkYz64p3rYKU8u5qgkcYEWTWiYXM9gx4KsWm+vxuJy4aluwaezAUrqIn15YxofeMA5Cau//68b6sb3Pg4dOzOOd1422PQ5ZlvGZH5wDAHz3+Bx+9xfGcdW2xupXJyiJZWRLEvrrgmNvHY/ipl0D+Lsfnccv3TjW8DUSpDL+368ewzMXlvHpXz6C+66v/a2iVMbZhTSOTSXwwuVVPHk+jmcvLOPt147oOsZL8SwePjWP03MpvDSXwqXlLKiANeDnIUhlPHhyHh943R5dz78ZKQgSHjw+j1ftCuPnl1ZtNWnOlCaTKQgSPLwT0YBSKNnpzdBpMkV1nqa+iqHayATdhaUMrqQKuHU8tubr/krRljPR35Bq4mkC6ibotmiL7vJKrupnAhRPE8CKpnacX8hgPNbYz0Q5PNqP4zOJhmr2I6fmUZaBeyutOUqtRRdHUsVNyVPn4zh6eRV/dNc+BHgOn/7BWW1/iEESeUWB6PfVPluEEPzBXfuwkCriK89NbfgZqSzjD//1OB4/s4j/8Y6DawomAOCcDlyzvQ+/dstOfPrd1+I3XrML6aKoe/Dkz75zCp989CyOTyewbyiAP7hzH7746zfipw/cjuc/cifuOTSM2dWcruferDz20gLSRRG/9bq9AIDlHrV+9cCKJhMpl2UUxTI8nOJpAmArg1unUTxNKtpzlccYGY1+clLxM902EV3zdZpGbmYyMi3u1k/PAcCOiA9OB+mKGXwxXcDFuHUyoXIlEUvp4ppwxj6vCy4nYTcTLRClMi7Gsxgfal00XTvWh3RBxKXljf/mDx6fx8RgoKEqdM9hpUX3+EutW3SyLOPTPziH7X0efPD1e/Cbt+3B908vaFrhYhQ6jr5erX/13gheszeC//0f59eE1cqyjP/27ZP43vE5PPCWq/Frt+xs+zuM3uBeSRbwpmuG8NSf3I7/82s34sN3TODOA0MY7vOCEILRsBfxTIkZ0ev41rEZbO/z4ParB+HjnYjb6CaKFU0mUqgYE718rWiyU6+206RVKk1VT5MBI/iTk3HsivgwVtcaApScJqB7niY358SOAV9XiqY///fT+O0vP9/x36OWqUrcQH17zuEgLKupDVMrOZSksiqlCdiYDH4lWcDPL69sUJko1471Y6Tfi4dOtp6i+/G5JbwwlcCHbh+Hm3PiP9+6C2GfC5967JyGv8YYq9WiaeNn64/euA/xTAlf/ullAErB9D8ePIOv/3wa998+jt96/V5Vv8PoDe5ytlR9jkbQIYjZhD3VpkvxrCpVUi2LqQJ+cm4J77x+BA4HUfy/NlKamKfJRAqCkh3i4RyIsPbcBtR6mtycA7zTodsIXhLLePaVZdx3/UaPgq9iBDd7eo53OuDmGt+D7I0FupIK/uJ0wtS/yyiX18UNUFgqeGtoK3diqLV3aGIwAI/LgRenE3jHdbX3+kMn5yHLwL1Hhhv+HCEE9xwexpeevohk3WRaPbIs4zOPT2Kk34tfumEMgNJ+/u3X78VfPfIyfnZxBTdVAmM7Cd2v1+/d6Au9YecAXr8vhv/vxxfwvlt24gs/voB/ePoi3v/aXfjDu/ap/h2R6g2u9vekKJWxmmtdNI0NeAEA06t5jDeZhrQqp2aTuPfzTwFQisvxQT/2xgIYHwxU/3u4z7PGN9eOf39xFmUZ1bZpxO+21XWSKU0mQrN/vLwTYR8PB7HXKGUnEaUy8oKkanqOEIKgh9NtBH9hahW5krTBzwTU2nM5E9tzSho41/TEsXfQj4vxbEfXPyyli7iSKiBdEC0TFFfNaBpYOwG2FZWmfz06jb/4rrrps8lK0dQso4nCOR04NLIx5PLBE3PYPxyqDiE04u5DwxAkGY+9dKXh9390dhHHpxO4//Zx8HU3A7/+6l2IBd341PfPdmVcP9FCaQKAP7hrH1ZzAt73xefwuR+ex7tvHMOf33tA00XcSHtuJVuCLNeeoxFUaZpZzWt+/l5DW7//z627cfvVMZTEMr53fA5/+b2X8Ov/8DO85hM/xE0ffwKTC2lVzyfLMr75/Cyu29FffX9GA/bKNGRFk4lQI6HH5YTTQTDg57FkozdDJ6H73tTkNAF0/5y+wuap83E4iOJ7WE9NaTKzPbdx71w9e2MBlKRyR0+ap+dqLZpe5ems5/JKFn1e1wYlI7bFiqZ4poj//r2X8I/PXMLZK+0vLhcWMxju86hqZR8e7cfpuVQ1IXtmNYcXphJ4axOViXJktA8j/V483KBFp0zMTWJswIt33bDWRO3lnbj/9nH87NJK1TfYSRoZweu5dqwfd+4fxPHpBO49PIyP33dIU8EEGGvPUcW0ldIUC7jBOx2YWbFfe44WM7/zC3vxyV88gm/97mtx/KNvxM//2534+gdvwf98x0GIUhn/9RsnIKmI1zk9l8LZhTTeVWfOZ0rTFoYa/egIrLJ/zj5vhk5CjddBFRcCAAgZUJqenIzjyFg/+ryNPEYOOB1kjXnUKKmCUPVhNYIqBp30NZ2eS1X/dzxtkaJpObehNQco7bnlbEnVSXYz8PknJpEXJPBOB7763OW2j59czLRVmShHxvpRFMvVYowu5L33UGM/E4UQgnsPD+PJyfiG3V+Pn1nEydkk7n/DxIZlwQDw7leNYaTfi0891nm1KZETwDlIywLyv7/9ID5yz3585t3XrokXUYvH5UTAzem6cNNCKxpsXjQ5HAQjYa8tlaZ4pggHQTUnC1DeO7GgG7fsieBXb9mJv3jbNXhxOoEvPX2x7fN94/kZ8JyjGrgKANEgj5WsfTINWdFkIrQtQoumaJC3VQXdSTIV1civtmjyunR5mpI5ASdmErhtPNrw+4QQ+HgnsqYawdsoTdHOxw6crDMDxy2SRD+1sjajiRILuiGVZazmrFHcdZKL8Sy+8twU3vOqMdx9aBu+dWy2ZdBpuSzjvJaiaVTJ/qJm8AdPzOPIaB92NChW13PP4WGIZRnfr2vRybKMzz5+DjsjPryzgScQUIYbfu+OCZyYSeKxNhN4RlnNCej3uVqqR9v7vfjN2/Y0LPDUEtHZIlpWoTQBwGjYixkbxg7EMyUM+PmWxejbjmzH7VcP4lOPncXlBpOclJJYxnePz+Gu/UNr1OeIv5ZpaAdY0WQi+ZIikXvrlSaLtEp6TaaofCBUt+c8Ll1K009fiaMsA7dObPQzUQJuztSE7lReQLCFV6vP50I04O6o0nRqLolDlfBMK/gDRKmM2dV8U6UJ2BpZTX/9/ZfBcw783p0TeN8tO5Euivje8bmmj59L5pEXpKbrU9azY8CHfp8Lx6cTuBTP4uRssunU3HoOjfRhbMBbVacAJT/n9FwK99/eWGWi3Hf9CPZE/fj0Y+c6qhgm86WGirHZRAP6WkTxatHUOsB4NOyzrdIU8bcuCAkh+Ng7D8LlcOBPv3myqfr4H2cXsZIt4V03rC3Ga0NTvT9vqYEVTSZCPU20aIoG3Ja4gFmBTEXZUePTAJTMo7QOT9NPJuPw805ct6O/6WN8vNPUcMt0QWyY0VTP3pgfF5Y6M0GXyJUws5rH6/cphaIVWsJziQLEsrzBBA5snaLphalVPHzyCj74uj0YDHpw484w9g0FGgYyUtSawCmEkGrI5YMnlGLsnsOt/Uz1P3vPoe14+nwcq5X2yGd+cA67o36849rWhRfndOD379qHswvp6u/tBHRZb6eJ6FywHs+UwHOOtue10bAXy9mSqbaAbrCcKSIabP/6D/d58cDd+/HTV5bx9Sbrbb55bAbRAI/XrbuhrXnK7HE+UFU0EUL+gBBymhByihDyNUKIp9MHZkfyVSO48rJGAjwyBpJmNxOZFqtGGhH06GvPPTUZxy17Ii3vkv1uzuQ1KkLDNPB6xgcDOL+Y6YgHhPqZbto9AI/LYQl18/KKUiA2ahNthVRwWZbxVw+/jGjAjQ/cpqzPIITgV2/ZiZOzyaYBkXS584TKoglQWnSTixl869gsbtgZxvZ+r+qfvbfSonvspSv4/ukrePlKGh++YxycilbXvYeGcfW2ID77+GTHJkNpe67TRIM6laZ0EbGAu635fDSs/JvM2kxtimdKbZUmyq/cNIZX74ng4w+dwXxy7d+5mi3hhy8v4u3Xjmx4b9kt07DtJ4MQMgLgwwBulGX5IAAngPd0+sDsSF5Y52liWU1VaHtOtafJw6EglDWNz69kS5hayeHmPa3zY3y807RwS1FSdmO1Kwb3xgJI5oWOFDSnZhU/y8GRPstMojTLaAJqSpMVjrNTPH5mET+7tILfv3NizXv+HdeNwOty4ivPNlabJhcyiAZ4hP3q1ZXDo/2QyjJeiWdxr0qViXLN9hB2DPjwvePz+Ozjk9gT8+NtR9TtYHM4CP7ojVfhYjy7ZvmqmSRzpa7s7oz6eazktA8nxLOltq05oBY7MG0zX9NyptjWr0UhhOAT7zoEoVzGR759as0N4nePz0GQ5DVTcxTanlu2iBezHWrbcxwALyGEA+AD0Dk91sYUNxRNbJUKhbba1Lfn6CoV9YoQVS7a3Wn7efOUJjoV2CgNvJ69dIKuA2bwU3MpjPR7MeDnLZN5MrWSA885MBTcKEr73Rx8vHPTKk2iVMYnHjmDPTE/3v2qsTXfC3lcePu12/Gd47MNU5bPL2Va5is1gprBCQHuOaStaKJBl0+dj+PsQhq/d8eEpgm0O/cP4shYPz73xPmO5IOt5oQ1y3o7RTTohixD83BCPK2uqBirKE128jXlSxKyJala1KhhZ8SP//LGq/DEy4v4bp1375vHZrB/OIQD20Mbfibs40GIfa6TbYsmWZZnAXwKwBSAeQBJWZYf6/SB2ZH6cEvAWNLsZiOr1dPkoatU1Lfo4ionWXxuzjRPU1pl27G6uLcDZvDTs0kcHFFORpGA2xJ3bJeXs9gx4IOjyQV4M6eC/9vzM7iwlMWfvPnqhm3i9928EwWhjG+vU2dkWcbkQhoTbXbOrWcw5MFo2ItbdkcwGNLunKCF1vhgQLWJnEIIwR/dtQ+ziTwePdU4KFMvBUFCXpC60p6jLSit6mc8U1RVVEQDbvCcw1ZFE30tYiqVJsr7X7sb14714y++exrxTBGTC2mcmEniXU2mMZ0OggGffSbN1bTnwgDeDmA3gO0A/ISQX23wuA8SQo4SQo4uLS2Zf6Q2oH6NClBrz1nhzr/XZIoCfLxT9V0sNVZrCbhUO8ni552mTc9RtaBVThMADIc88Lqcpq9TSRcEvBLP4uB2RW3Qa2g1m8vLOexsEDdA2ayp4LmSiE//4Bxu3BnGGw8MNXzModE+HBntw1eem1rTwljKFJEqiG13zjXiH37jVfibXz6i65iv2R7Cb966Gx97x0FdOUevHY/C63LihSlzF/nSG6autOd0nKvLZbnt3jmKw0FsFztAz6dalCZAKYI++YuHkSmK+IvvnsY3j83C6SB4+7XN277K0JQ9zgdq2nN3Argoy/KSLMsCgG8BeM36B8my/AVZlm+UZfnGWKz5uPdmJi9IcDlJ1ehG71426x21FjJFUbWfCdCnNNGLcLuTmN/EyAG1SpPDQbAn5jc9duClign8YCVuIFKZ2DTbcF4Sy7j380/ik4++3PaxsixjaiW3YVlyPZs1FfyLT17EUrqIB+6+uqU5+H0378TkYgY/v7Ra/dr5BXU75xqxbyioyQBeDyEEH7n3AG7eszFBXw1OB8GB7aGqt84sWi3rNZuIjgmuRF6AVJZVe37sFjtAC0i1f189+4aCuP/2CTx4Yh7/9Mwl/MK+WNXL2Ai9OVm9QE3RNAXgFkKIjyhngTsAnOnsYdmTgiDBw9UW0np5J/y80zZvhk6SLoiq08ABfZ6meKYEl5O0zXXx807kBMmUBFo64dfO0wTUJujM5FSlaLqm0p6LBniUpDLSJuZQAcCXn72MU7MpfPVnUyiJrSel4pkSciWpoQmcshnbc/FMEf/nxxfw5mu24YadrYcR7j0yjKCHw788W0sI1xo3YCUOjfThpfmUqZlNdFlvNyIHYjr8p9VgyxbFQD2jYS+mbbRKhbb5tSpNlN/5hb24elsQeUHasI5nPYqtwB7XSTWepucAfAPAMQAnKz/zhQ4fly0pCBI8vHPN1/SOsm42skVRdbAlUFNutMQO0CC2duO/PjcHWQYKJhhXaVGnqmiKBTCbyOONn/kxPvDPR/Hxh8/gq89N4ZkLccwl8rqKuNOzSQwG3RisGK6rQXEmqjir2RL+9vFz2BbyIJET8KOziy0fP1WJG2hXNCVygmWWC5vB556YREEs44/ffFXbx/p4Du+6fhSPnJrP2/nHAAAgAElEQVSvnh/OL2YQ9HAYVHkRthLXbA8hV5JwMW7eTQFVmroRbhnycnA5iaZz9ZJKOwBlNOzFak6oDo9YnbgBpQkAXE4HPvcr1+F9N+/AHfsHWz424udNPWd1ElVXMVmWPwrgox0+FttTEMrVjCZKxM9bwpjbazJFUbUJHNDXnlMbxOanS3uLEny8+mNqRLpS1KnJn3r3q8aQKYp4JZ7FpXgWPz63tEa18bgcuGl3BP/4G69qaqBez6m5ZLU1B9RawsvZEvaY1CX/2ycmkSmK+PoHX41f/4fn8O1js3jTNduaPp7GDexoEGxJoVL9cqaku61kJV5ZyuCrz03hvTftwB6VnqT33bwD//jMJXzj+Rn89uv3YnIxjYnBgOaFs1bgUGWC7+RsEuMq08zbkWyzrNdMCCGad4VqLSpo7MDsah5XbVP/Gv3Wl4/insPb8bYj2kz6Rolnigi4ueo0uB72DQXxsXceavu4aIBHupJpaOT3dQNjVwzGGvIlqZoGTokG3NWLyFYmXRBbelzWQ03j2pQmdaZMWigp6bzG7upT+UqUgoqiaTDkwQN376/+f6ksYz6Zx+XlHC7Gs3ju4gq+d3wOx6ZWceOu1u0dQHm/nV/M4M0Ha2Pm1cwTk9TN84tpfPnZy/iVm3bgwPYQ3npkO77y7BSSOWHN/qh6Li/nQAgwNtC8GKoPuNwMRdO/Hp0BIcCH75hQ/TMTQ0HctHsAX31uCh+8bQ/OL2Zx+9X29IOOxwLwuBw4OZPCO68z5zkTFaWpG+05QPnsaGnPxVV6KCm12IGc6qIpnini+6cXMODne1A0qcugMgP6Gq5krX8TxdaomEhB3Fg0WWUEvNdkito8TYQQhDxctShRQ1xlEJvfXVOajJIuKFOBepaFOh0Eo2EfXjsexa/eshMff+dB8E4HHj6pbnT7zJUUyjJwsC77xOxssI89dAY+lxN/eNc+AMB9142iJJXx4MnmUW1TKzkMhzxwc83vGDfbKhX63mtldm3E+27egamVHL53Yg7xTFH1zjmrwTkd2D9srhl8NSfA5VQWbHcDrRNcy9kinA6iOkeKKk1azOBn5hXP4mq2+8tslzPFqkG+09Tieazva2JFk4nkSxLc64qmWIDHSlZ70uxmQ6unCVDM4GqVJlmWsaxLaTJGuiCqXg3TjqDHhdfti+KRU/Oq/E31SeCUAb95MRc/ObeEH51dwv13jFdPagdHQhgfDODbx2ab/tzl5WzD9Sn1bLZU8GRe0OW9efPBbYj4efyvR5SpRDuawCmHRvpwei5pyoAFoLTn+n1819qV2pWmEiJ+XnUrPRrg4eYcmmIHqkWTxtBNM1BuBLqn8tHfaXVY0WQiBaGx0lTWkTS7mZBlWbOnCVB8TWo9Tam8iJJUVvUhp0qTGYbMlIq9c1q4+9Aw5pMFvDDdPvPm1GwSA34ew321QEOX04F+n8uwuilKZfzPh17CzogP/+k1u6pfJ4TgndeN4OjlVUw1aTtPreQaLuqth54kN4vSlMwLbbO6GuHmnPilG8cwlywAsHfRdHCkD9mShIvL5mSRrWa7kwZOiQWUoR21cR1xjUoMIaQyQadFaUoDqLUqu8lyptQ1pSmqM1y0F7CiyUQaGsFZwCWKYhmCJGvKaQKUiRa1kQO1SRY17TmqNJkzPRcySWkCgDsPDMHlJHjk5Hzbx56aTeGa7aENd+JmBFx+/efTOLeQwQNvuXpDm+0d1ykhdd9+YaPalC2KiGdKbZUmN+dEv8+1aWIHUnn9F/j33rQDAOB1OTFicT9HKw5VFE+zWnSJfKkrJnBKJMCjKJZV30zpUWJGwz7MJLQrTYl8d68folTGSk6dcm8GdIDHDrEDrGgykXwDpSmqIzRts0FPQlrbWEG3+vac2hUqgLJ7DoApAZdpk5WmkMeF2yZieOTUlZZ3vEVRwrmF9JrWHCUSMBZzkSoI+PQPzuHm3QMNp+RG+r24Zc8Avv3CzIZjnFppvqh3PZspFVxvew4AdkR8uOvAEI6M9alu9ViRicEA3JwDJ2dMKppyQlfSwClRjb6aeKakecXI2IBXtaepKCqDHoQo/i6zA2tbofw+9XEKRvHxHLwupy1SwVnRZCKNxiWjNurVdgpanGhuz3nVG8GrRZOKyAFqLDVDaUoVRF1tmVbcfWgYs4k8XmzRojt3JQOxLFfv7uuJBnhDd2x/98PzWM2V8Gf3HmjqJ7nvulFcWs5taCPSSdF27Tlgc6WCGymaAODv3nsd/vH9N5l4RN2HmsFPmqU0dWlZL0VLKrgsy4rSpNH4Pxr2IZETqlElrTi/qHzGDwyHUBLL1d2m3UDLTahZaPWU9QpWNJlIvmHRZJ+pgE5BW2y6PE1qlSYN47+0PZc1xQgumGYEp9y1v9Kia7EA9dRcxQS+vYHSpDFvpp7Ly1l86emL+MXrRxuqWJS3HNoGN+fYYAinwZbt2nPA5kkFF6QyciXJUNHk5pyWz6dRw8GREE7PpUwxg3e7PVe7wW1/rs4URRRFdR7KekYrsQOzifZqE/UzvWavst6mm74mer2K+Lun9BlVyLsFK5pMpCiUN5z4Qh4XOIe2pNnNRka30uRCriRBkFqv7QCUXriDqMt0cXMOOAiQMyFyIJU3b3qO0udz4bXjUTx0Yr6pJH9qNomgh2uYhRQJ8FjNCRBVvG7r+auHX4bL6cB/fVPrVOugx4W7Dgzheyfm1gR0Xl7Ood/nUlVAxIKbQ2miS5ub5VZtJQ6N9CFTFHHJoBm8IEgoCOWetOfUnKvj1aJCu9IEADMqzOBn5lPwuBy4bkcYQHeHiWrKffeUpphN9s+xoskkpLKMklTe4GlyOAgGLLJ5vldkCuoDIOuhBms1ZvB4pogBv1vVlnZCCPw8Z1hpKggSSlJZ1QoVrdAW3Ykm/pBTs0kc3N7XsH1G2wwrGk+yz76yjEdPX8HvvH4vBkOeto+/7/oRJHIC/qNurYoyOacuxDQWdCNXkkxbntwrEl1c92F1qDpptEWX6OKyXoqWuA69RQVVmqZVxA6cmU/hqm2h6nF1U2mq/n0ai0IjRPz2yDRkRZNJFCr95vXTc4ByB7OVlSZanOhRmgB1q1SW0trSa31up2GlqbZ3zvxg/TceGALnIHi4wRSdIJVx5koaB0dCDX4SiPrp/jltRdPnnpjE9j4PPvC6Paoef9tEDBE/v2aK7vJyDjsi7f1MwNpUcDtDlSazvW12ZN9QEDznwOnKImm90GmxbqWBA7W4DlVKU9UOoO34In4eXpezrRlclmW8NJ/CgeFg9TXortKkLD8Pebu3NCRSUZq6aXjXAyuaTIKa9LwN0msjAR5xG4xSdoq0bqXJtebnWxHPFDWlMfvdHDIGlaZUde+c+RfLfh+P145H8fCpjS2684sZlMRyU89RNV1X413b2StpvP6qmGpvjcvpwFuPbMcTZxaRzAkQpDJmE3lNShMA2/uaaFHPlCblPbF/W9DwBB1NwO6mERxQvyuUns+1Ts/RrKZ2AZdXUgUkcgL2D4eqalt3PU3qlp+bSSTghliWqzchVoUVTSZRU5o2XnBiGuP5Nxt6PU3UK6TGDK52hQrFz3PIGWwLVZWmDt2N3X1oG6ZX8jg1u/auvVESeD16ssHyJQnL2ZLmnKD7rh9BSSrjoZPzmEvkIZVlVSZwoC4VfJMoTd2+wFuVgyN9ODWXNKQY0GW93faJRQNuVQotfc8O6DBKK0VTa6WJ5jOtLZq662mKdClugKLFiN9LWNFkEq2KJmWUUn3S7GYjUxDhINjg92qH2vYcHf/VMunh453IGowcSHdQaQKANx7YBqeD4KF1LbrTcyn4eSd2N2mD6UnXna0E7lGjqloOjfRhb8yPb78wUxc3sLWUpiRTmtZwaKQP6YJoaFF5t5f1UqIBN+JqlKZMEWGfC5yOnZOjYZ+KokmZnLt6WxBuzgkf78RqN5WmbPeCLSm1SXNrnw9Y0WQS+ZIyQdSoMIgE3CgIZVNygewIXaGiVeqtFk1tlKZsSZm00WLK9Ls5w7vnaIaU2dNzlLCfx2v2RvDIuhbdqdkkDmwPNQ1CDHk5uJxEU1YTPYmPhLUpTYQQ3Hf9KH5+aRVPn48DAHaq9DSFfTycDsI8TZsMM8zgqz0wggOK2qFG+dSqbNczGvYimRdantdemk9hbMBbvSHr97q662lKd19pqirkFreysKLJJApiayM4sHUDLjNFUZcaQw3W7QIutWQ0UXy8GUbwysWyQ0oToEzRXV7OVY21UlkxiF7TIJ+JQgjRnNVEi6ZRjUUTALz92u0AgC8/exluzoFBlcWr00EQ8fObomjy8064dKgOm5F9Q0HwToehdSqJfAk859CsThslEnAjVRDXxGg0Qu1y8EaoiR04M5/C/m21QY9+H49kl5QmWZYRz2pPOzdKxCb759in3CTyFRWpsdJkj15tp8gUxOqSXC34eQ4O0l5pqqXXqr8zMiNygHqaOqU0AcCbrlFadHSK7mI8g1xJahk8CdQmUdQym8iDcxAMBttHDaxnNOzDzbsHkCtJ2DHg07QKZDOsUjGaBr7Z4DkHrtoWrAaw6iFRWdbbTSMyUNciatOi05MGTqHZas3M4PmShEvxLPYP14qmsL97SlO6qBSN3Vaawj4XCLH+dZIVTSbRzggOWL+C7hS0PacVh4Mg6HG19TTRD5kmpcmEyIFUQYCD1HbZdYIBP49X74ng4ZNKi46awpvFDVAiAbemic2Z1Ty293tV5Vw14r7rlSW+anbO1bMZUsETOYG15tZxcKQPp2ZTun2c3U4Dp6gdoohnSrrTsqtKUxNf09mFNMoy1hRN/T6+a9NzyzrOp2bAOR0Y8PHM07RVyLcxggNbd5VKpigioLOFFfRwbSMHaDGqJXIg4FaUJiPm/HRBKQY7vWT1LYe24dJyDmfm0zg1m4Sbc2A8Fmj5M1G/tpPP7GpO8+Tc2mMcho93YmIoqOnnNkMqeIopTRs4NNKHZF7AtIrk60Z0e1kvhRYKrQr5giAhUxQ1nW/qCftc8PHNs5ro5NyB+qLJ60KiS6P49Hwa6XLRpPxO6wdBs6LJJIqC0gNv5GmivVqrV9CdIlMUEdShNAHq9s/RD7mW8V8fz6EsAwVB+6oRSiovdGxyrp43XbMNDgI8fHIep+aS2D8caju1o6c9p8fPRAl5XHj4w7fhQ28Y1/RzsaAS/GrGrrJewdpzGzlk0Aze7WW9lKiKG9wlncGWlHZZTWfmUwi4uTWfx7CPRyJX6srnZFmH3cEsIn7rB0GzoskkquGWDZQmnnMg5OEs/2boFHo9TYAyCdbWCF4Z/9VixKXHY8TXlCqIXWnLRANu3FJp0Z2eS7VtzQHKXWJekFRNCBZFCQupoubJufXsivo1t2FjATcEyfqBdq1I5oWetJKszL5tAbicRH/RlC91PW4AUDe0Q6e7jLSvRsM+TLdQmvYPB9co2P0+F8qyuqBfo+ixO5hFJMCz6bmtQitPE0DzP6z9ZugUiqdJ30VFldKU1j7J4qv4kIz4mtIFoaMm8HrecmgYr8SzSBdEHGwxOUeJaFilMp8oAICh9pxeNkNWE1OaNuLmnIoZXEfRJMsyVnO9KUR9vBMel6NlV0DPtO56xpooTeWyjDPz6TV+JgBdXaWiR7k3CzusHGNFk0m08jQBNGnW2m+GTlAuy8iWRM0rVCghrxojuPbMFD9vktLUpaLpzZUWHdA8Cbye6h2ziqC+WtyANhO3Gdg9FbwklpEXJFY0NeDQSB9OzmpPBi8IZZTEctfTwAGldRYNuFu252qeH/1FxWjYh3RB3KCwzqzmkSmKG4qmaip4FxTZ5Yxiwu9FhEY0wCNdEFEUrZtpyIomk8gLEnjO0XT6yA6yYyfICRJkGQY9Te3bc1pPYL7K8RgJuEwXhI5mNNUTC7px0+4BuJwEE0OtTeCAtuGDWho4U5q0wtLAm3PNdsUM3i79ej29WNZbTyTQeqKzFnFipD3XOHbgpbr1KfX0d1lp6kVrDqjbm2lhM3jbookQchUh5MW6/6QIIb/fjYOzE0WhDA/X/OWMbtH9c5lKwePXWzR5OWSKIqQWBsi4jqC5qtJkqD0ndq09BwAPvGU/PvbOQ3Bz7f1htZOPOqXJQYBtfdozmoxSLZpsqjTRHWkscmAj1AyutUXXq2W9lFibIYp4poSgm1O92LoRzWIHzsyn4CDAVeumUMNd3D+3bCBOwSj099q6aJJl+awsy9fKsnwtgBsA5AB8u+NHZjPyJQlevvmHKBLgsVrZBL+VyBSVE6De9hydTss0UZv0jv/SIi6rc2mvLMsVT1P3TuxHxvrxyzeOqXps9eSjQt2cXc1jW8jTEzk+6Obg5hw2LpqY0tSMq7YFwTm0m8Gp0tSLyAGg/QSXkWBLSk1p2lg07Yr6N1xLqkpTtvPtOTP+Pr1ENNgKeoXWs+QdAC7Isny5EwdjZwqi1PLOg74ZVrdYiy5TUXL0t+cqq1SamMH1pIEDtUBKvUt7syUJZVlRwqyIx+VEwK1uYnMmke+JnwmoeUhY0bT58Lic2DcU1Fw0JXu0d44SDfJYyTYf71faV8YKun6fC37eiemVte25M1dSG1pzgPL+IqQ7nqZ4pohoj5Sm2GZoz63jPQC+1ugbhJAPEkKOEkKOLi0tGT8ym5EvSS33JMUqHzK7ejf0QhUiI0ZwAE1H0vWOx/oqkQN6PU3UnN5NpUkrUZVZTbOrecNxA0awcyo4fV/2ShWxOodG+nBKoxm8V8t6KRG/G2K5eQyGkgZuTIkhhGBswLdGaUoXlDDQAw2KJqeDIORxdbw9VxQlpApiDz1NdOWYdc8HqosmQggP4G0A/q3R92VZ/oIsyzfKsnxjLBYz6/hsQ0Esw61CabJyBd0JaHtO76oRarRuqjTpHP+tKk06PU3d2DtnlEjA3XaHliiVcSVV6EncAMXOqeBUFWFKU2MOjvZhNSdgNqHeDN5rIzhtTTX77CjtK+PHtj7g8uUraQDA/uHGqfphn6taUHaKlUonpBdp4IC6yIdeo0VpeguAY7IsL3TqYOxMoSTB2yANnKJ2EeRmw2hxQdtfzQIuq+05jT14j8sBQvQrTelKEdet6Tk9RPztlab5ZAFSWe7J5BzF1kVT5X3ZregJu1Ezg6dU/0wiJ8DNOQwZrY1AW1NLDTLOBKmMRE4wRYkZDfswu5qvqnBnmkzOUfoqqeCdhOa69SINHFAUuIi/deRDr9FSNP0KmrTmGGo8TerDBjcT1GitZ2EvoEJpopkpGnvwhBD4eU630kSPx+pKU7uN4VQB6Gl7LuDGSq5kyyGJZF5AwM21XWuzVbl6WxBOB9E0QZfI9SYNnNJKaVoxIQ2cMhr2Il0UqzeEZ+ZT6Pe5sC3UeIo17HN1fGkvNWD3SmkClNffykHQqj7phBA/gLsAfKuzh2Nf2nmagm4OvNNh6amATpApGo0cqBRNLfwFQY++8V8f7zSgNIlrjs+KRAM8VrKt97r1MtiSEgu6Icu1C5KdYGngrfG4nJgYDGgygyd6lAZOqaXpbzxXG907Vw9Vd6crLbqX5tPYvy0EQhpn/YV9fMdzmujfHOtl0eTnLR12q6pokmU5K8tyRJZlfYuEtgDtlCZlSojfckpTuiiC5xzgW2RYtYIqVM12Li0ZCGILuLlqUaeVlB08TX4eZbl1IN5spWga7kFGE8XOWU3JfMnShbMV0GoGT+R6W4iGfTwcpHFchxnBlpRaVlMOUlnG2SaTc5T+LihNy1VPU++UPiUI2rrnAqYpm0S+VG6rdqgx5m42MgVRd9wAoEyNBN1cSyO43rs+n9uJnM7IAap8WdrTVPXRtSiaEjkMBt09848A9k4FV5Qm6xbOVuDQaB+WsyXMJwuqHt+rZb0Uh4NgoElW07KJy2zH6gIuL8azKAhlHNjeomjy8sgUxY62sePpIrwup+7OgBlEKmtstK7f6RasaDKJgtC6PQcokq6VRyk7Qbaof+8cRdk/11gRWs5qTwOn+HhOd7hluiCCdzrg1qmgdQM147szPY4bAGqtAHsqTaw91w66K/H0nDozeK+W9dajnKtbKE0mhD+GvByCbg4zq/k6E3jjyTkACPtpKnjn1KblbKmnKhOgFKRiWW56zu811j3j24yCIMHTYnoOqFXQW4lMUdRtAqcEPS2UJgPtOT+vX2lS0sC5pv4DKxBVEXMx28NgS4q923MC+r0so6kV+yorQc4tpNs+VpZlJHNCT5b11hMNNFaa4pkiPC5HdQ2TEQghGKnEDpyZT4FzEIwPNt8rSbPAOjlB18u9cxTaObCq/5cVTSYgSGWIZVmF0mRt2bETpAuiYalXUZo2Fk1Gx399bg5ZveGWXd47p4faHqfGJ59yWcZcIt/TjCZAMQsH3Zxti6ZeX+CtTsDNYaTfi0kVRVNekFCSyj1tzwHNg2FpsKVZN0ujYV9VaRofDLTcK0n3z3Uyq0nZ49nb154Gh1rVDM6KJhMoCIpa0c4XEg3wKEnlqol4K5ApGvM0AYpvqNFrVvUX6Aya8/NO5HSHWwqWNwD3tzC0AsBiughBknvengPsmQpeFCUUhDJrz6lgYiiAcwuZto+rpoH3+DWNtFCazNzLpgRc5nFmPt3SBA6gqmhudqWJtgfV7M3sBaxoMoE8LZraSLbVN4PNLg5GMMXT5OEaKk1GJ1l8vAGlKS9YXmlyOggG/I29GQCqacS9DLakRG0YcEnXbFi9eLYC+4aCuLCUgdQi/gKoFQS9XksTDbiRK0kbIknimVJ1JZYZjA34kCmKuJIqtPQzAbW1Mp3yNJXLMlYs4Gmy+nWSFU0mUBSUaQZPG1Mwvbi3CxzcTJjhaQp5XQ09TUsGi6aAWzGC62mXpgsigm7rXyyVdN3GJx8abDna4/YcoChNVpXjm8FWqKhnYjCAoljG1LoFtetJ9HjvHKV24V57rjZbiam/YWmnNIUr7fZOZTUl8gKkstxzpWnAx4MQ614nWdFkAlRp8rZTmvzUmKv/4jC9ksOff+cUnjkft4U3Kl0woWjyKHlK60MajQax+dxOlGWgKGof4U0XxOqKFysTDfJNZW4abGmJ9lzAvkoTK5rao9YMbpWiKVa9wa29JzuhxGgpmvy8E5yDINEk6Nco9LrUyzRwAOCcDoR91p00Z0WTCVQ9TS1MfEDNe2MkIv7RU1fwzz+9jPd+8Tnc9Zmf4J+euVTdg2YGRVEy7fkEqYyiWDZFaZJlINNAKgf0B7HVlvZqb9GlCgKCFs5oorRSmmZW8xjw8/DpXKZsJrGgG+miWP0s2QFWNKmHToW1M4P3elkvpRbXUTtXr+ZKpisxdHI1FnS3fV5CCPo7uH+uptz3fhpUzd7MXsGKJhPIl9QpTQO+5vH8allIFeBxOfA3v3QEft6Jj373NG75+BP4yL+fVDXS245PPPIy3vOFZw0/D1C3d86wp6nxKpV4xlgQm6/y76U1dkCUysiVJEsHW1IiTaaAABo30HuVCbBn7AAtmnptWrYDfjeH0bC3rRk8YZGWZy2uo/Z+XDZx7xylz+tC0MO1VZkoYZ8Lq9lOKU3m/316sXIqeO9vMTcBhUp7p11OkyI7ugy9GRbSRWwLefCuG0bxrhtGcXw6gX/+6WX869EZ/MuzU7h59wA+9IZxvG5fTNfzvzSXwvnFDGRZNjxWS1efGFealJ9P5UUgXPv6cqaoe3IOqO3D02oGp6tXrG4EB5QTIFVw1k93zqzmcNVQa/Npt6hPBR8b6G1ulFqY0qSNfUNBFe25ErwuZ08T6gFgwL8xGDaeNuahbMYfv/lq7I74VT22k/vnzFwRY5RowI2XVIahdhumNJkAVZrUfNCjAbeh/XOLqQIGg7U9YUfG+vE3v3wEzz5wB/7kzVdjeiWH3/yno7qTrmdW8yiKZaR1/nw9tLgw7mmqKE2F9UqT/jRwoKY0ZTXGDtCkWjsUTdWspnUtYVm2RkYTxY6p4Gx6ThsTQwG8spSF2GINSK+X9VJodlh9e462r2IGbtQa8Wu37MStE1FVj+3zuarvO7NZzpTgINZQTqMB60aQsKLJBKgPo124JWBcdlxMFzEY2lgoDPh5/M4v7MWf3r0fJalc3ZytBUEqYz6pmIPNuHhlTGrPBVu054wUTVRpWj9W3A5avNnhYhlp0GYAlCKqIJQt054brChNizYrmoJuDk6HdVPhrcS+wSBKUhmXW0zQrfZ4WW890eDarKaqh9LfOyUm7HN1TGlazhYx4HfDYYH3c8TPI10QURSt53FkRZMJqA23BGqp4HpZrzStZ0eltTG9ktf83FeSBdABtcWUiUWTWe25wnojuMGiSacRnLYdbaE0NRmdrk3OWaMVNuBXxoyXUuqWulqBZN76AadWgk7QtTKDJ3u8rLee9WbkeKYIzkF6WtQp7TmhI5PTS+nep4FT6M3eigUDLlnRZAJ5DUqTEdkxUxSRLUkYaqA0UcYqysF0mzyURtSrU2ZIoxmTigvanquf6pMq479Ggub8bp3tOao02cAIHvVvHJ0GgNlK0WQVpYlzOhDxu+2lNFlIFbED44MBEIKWZnArLOulrN8/t5wpIhLge6rE9Pt4lMRy9ZpjJsvZ3qeBU6JNbvasACuaTKBAwy3VtOcMyI6LlbvwRu05ijJC7mwbItcIqj4A5rbnjO6eo0VX/dbrlWwJZdnYtnE6aq+1PUeVJjsUTc1WEtA0cCtkNFEGgzYrmvKsaNKCl3diLOxraQZXPE1WUTvWZpwZ9VCaQSdTwRXl3iqvfW0wxGqwoskEaNXvbpMIDtQu8noq6IVKy2yoRXuOEIKxsK96UdTCzEoODgK4nMScosmk6TnOqWwVrzeCmzHpUVWaNEYOUG+VHdpzPt4Jj8uxwdM0m8gj5OEsVfgNhtxYTNurPceKJm3sGwpgsonSJMsykvmSpZSm1Vypaly3wl622tJe8xWY5Uyp58GWFKY0bXKKggQ351Al20YajKOoIxkAACAASURBVLKqhV5QWilNgLLPSI+naWY1j+E+LwaDHlMuXlWlyYTwxJDXtcYITl8/+nrqwcM5QQiQ0+lpMmpw7waEkErA5UZPk1X8TJTBoNsUL123SOat00qyCxNDQbwSz0BoMEGXLUkQJNkS01uAcuGWZWClUqDE08We72WjKpzZSlOuJCJXknpeFFKaDbBYAVY0mUBekNoGW1IGQ4pKpOfiQH+GPkczxga8mF7NaTYLKhdSr2nLU+neOTM8ACGPq7HSZKA953AQ+FxOzUpTuiDAxzvhctrj4xMN8BtS6GdXrRNsSRkMehDPFNsudbUKTGnSzr6hAARJxuXl7Ibv0aRrqxjBawGXJciyXFnWuznbc8sGtyuYjZ93ws05mq6A6iX2OOtbnIIgtV2hQtnepxQ8dLRfC4tpJQ082KbdNRb2IVeSNL/hpldzGA17TdsDlimI1RaYUYIebo2nyaz0Wp+b0xU5YIfWHEWZ2Kz9e8qyjFkLZTRRBkNulGVYNgm4noIgoSiW2fScRiYG6Q66jS26ahq4RdQ7qnbEM0WkiyJKUrnnSgwtKM1uz1UzqCyiNBFCKpmG1jsXsKLJBPJCWbXSFA244XISzCa0t78WUkUMhTxtk7rHqrED6n1NJbGMK6kCxsI+DIbcpixLpEqTGYS8a5WmpUwRvNOBkMHixc87kdE4PZcuiJbyArVj/SqVZF5ApihaUGmqZDXZoEWXYmnguhgfDMBBGi/upUWTdZSmmq+mmgZucrClVmpKk7lFk9WUJqCxQm4FWNFkAvmSpMoEDigtoW19Ht1K06CKdlQ1q2lV/e+YT+Yhy6gqTcvZUsvkXjVkiiICJhUXIQ9X9RIBQLySKWJ01YvfzenyNNlJaYoE3FjOFqvt2hmLxQ1QYpUBBzukgrMVKvrwuJzYMeBraAany3qt4hOrV5qsEGwJAG7OCR/vxKrJ7TkrrVChRALNl433ElY0mUBRVO9pAoDhPi/mdShNi6liWz8TULsYalGaahdSH2JBN2R545i6VjJFsW0rUS3rlaZ4pmjIz0Tx85zm3XNKe84aJ3Y1RPw8BEmutjerwZb91jOCA7DFBF2CFU26GR9svIOOFgJWMYKHPBx4pwPxTMlSRUW/19UBT5Py9w0YGKwxm/XholZBVdFECOknhHyDEPIyIeQMIeTVnT4wO5EvSaqCLSnb+zyY06E0LaTUKU1+N4eIn9dUNNHHjg14Tds4b6anKeRRpueoWmLW+K/P7UROsxFctJWXhb5O8YpXaDZhVaXJPu25ZI4VTXrZNxTAxXgWJXGtkp2stJys4mkihCAS4BHPFKtFRa/bc4AyQWd2ey6eKSHo4Xq+KLmeaHCtQm4V1CpNfwvgUVmWrwZwBMCZzh2S/SiIGzfIt2K434uFVEHTlFAtDby90gQAowM+TfvnZlbzcDoItoU81cLMcNFUFBFwm9Se83Ioy7VMJbOC2Pw8p3mNSipvLyP4+lUqM6s5+HinZdogFI/LiT6vqyMBl7Is48JS8yRqrbD2nH72DQUhlmVcWjdBl8gpU6lulUM13YAOUSxlSiAEGLCA3yrsN3//nBUyqNazXiG3Cm2LJkJIH4DXAfi/ACDLckmW5USnD8xO6FGaBEnWZLaupoGrbEnt0JjVNLOaw3CfB5zTYZ7SVDTP+1O/tLdclrFsUjqvj9enNNmqaPKvzTyhcQNG/WCdQEkFN78999hLC7jjb36MM/MpU56PFk1WKzztwMRQAMBGM/hqTrBMa46iKE1Ke27Ax4OzQMyIojSZ72mySho4Zb1CbhXUvAN2A1gC8CVCyAuEkC8SQvwdPi5bURDKcLvUf5i2V0a95xLqixp6961WaRoLezGXyKtWs6brcnvom9XIxUuWZXOn52jRVBCQzAsQy7Ip6bV+tzalqSBIKEllW03P0ZMhnUSxYtwARUkFN/8k+fOLKwCA515ZNuX5ktVUePu8D6zC3hidoFur/Clp4Na7cC9nipYItqT0e11VT51ZLGdKPTe5r6fZsvFeo+ZKzwG4HsD/lmX5OgBZAH+6/kGEkA8SQo4SQo4uLS2ZfJjWpiBoU5qG+5QL1nxSfVGyUFGaWi3rrWdswAexLKue0ptZzWGskhDtcTkR8nCGlKaCUIZUlg3vnaOEvLX9czTHx4w7Ix+vhFuq7ZvXlvXaR2kK++nJR3ndaIipFRkMejriaToxkwQAPD9ljkierLRonT1c3mpXPC4ndkb8mGykNFlMuatXmqzSvgpXPE1lE0NglcEaaxSFlGjd9KKVUFM0zQCYkWX5ucr//waUImoNsix/QZblG2VZvjEWi5l5jJanIGjzNG3vV9QiLUoTLWBiLfbO1UMLIDWLe4uihIVUEaN1azViQbehZYnpolJcmLVqhCo76YKApbRy52FGEJvfzUEqyyiK6uIVaOyBnRQGl9OBfp8Ly5kS0hWlbtRiK1Qog5U0ejPNn1JZxqk5pWg6dnnVlOdMsTRwQ0wMBja05xK5kmUymiixgBslqYyL8axliqZ+nwtlGWsiWIwgSmWs5gQLK002K5pkWb4CYJoQclXlS3cAeKmjR2UjZFlW1qhoKJr6vC54XU7NSpPHpT7MkWY1zajwNc1V4g/qp6kGgx5DSlO2EhhpZuQAoCg9ZqxQofgrURFqfU30REWVL7sQ8fNYzhark3NWbc/FgspFKmli++H8Yga5koRDI32YTeR1ZaStJ8GKJkPsGwri0nIORbH2uUvmBctMzlHohXs1J1ioaDI3FXyl0rY343xqJtR0H7dhew4A7gfwFULICQDXAvh45w7JXgiSjLIMeDR4mgghGO73aPY0DQbbp4FThvs9cBComqCjcQP1RVPM4P65DF1qa5qnqdaeMzMzxVc5PrW+ppRNvSyRgBvxTAmzFg22pFR3M5roazoxo7Tk3v/aXQCAY5eNt+jY3jljTAwFIJVlvLKkTNDJsoyEBY3g9ecYq3iawjQV3KQbC1qURC2U0QQAnNOBsM9lubVKqq70siy/WGm9HZZl+R2yLJujcW8C8oJyp6Q132Kk34s5jUqTWj8ToLRkhvu8qrKaaNghXb8CKEWTkQsXbc+Z5Wmqn56LZ4pwOogpJ1g/rxyfZqXJZkVTrGJorQZbWrVo6kBW04mZJAJuDvccHobH5cDzJrToWNFkjH1DdAed0qLLFEWIZdly7bn6lpVV9rKZrTSZqdybjZIKbk+lidGEgs6iabjPg3kdSpMWxga8qjxNM6s5cA6yZjIvFnQjV5I0ZxhRMlXvjzlFE8854HE5lPZcuoSIn4fDBBOurxK+qTYVPF2gSpPN2nMBHsvZEmYTebg5h2UuAOvpRCr4iZkEDo6E4OacODzaj+enzCmarGZathN7Yn44HaS6TsVqy3op9eZoqxilwybvn6NKTsRiShNQ2T9nN08TozW0aNLiaQKUCbqlTHFDKm4zlBUq2i50OwZ8qvbPTa/msb3fu2YSyGjAJS1CzGrPATQVXDR1kqWqNKlc2puya9HkdyORE3ApnsVIvzUzmgDz23MlsYwz82kcGe0HANywM4zTs8nq51Yvybxgq1R4q+HmnNgZ8VWVJqst66UM+HjQj4rVPE1mZTXF09b0NAFMadqU0Paclt1zgDJBJ8u1KIFWZIsiMkVRu9IU9mEpXWx7gZhZzWFsYG27phpwqbPKr3qaTCwu6P45s/bOAUrkAKC0B9SQLohwkFqxZReoH+PETNKyrTlAKbJ9vNO09tzZK2mUpDIO06JpRxhiWa5GEOihIEgoiWXWnjPIvsEgJhcrSpPFlvVSFF+N8tmxStHU53WBEJi2tDeeLYJ3Okwb2jGTqJ8pTZuOgqAoRVqM4EAtq0mNGbwWbKntQ0s9SjNtzOAzq3mMrlveanQPWLrYCaWJQ7ogIp4pmZZeS48vp7I9l8oLCLg5U1qD3YS+XldSBcuawClmpoIfr5jAD4/2AQCu3xkGAEO+JrZCxRz2DQVweTmLgiBZbllvPbRtZZVltk4HQcjjMq89VzmfWlF9fs14FL9845il9s9Zr7S0GfmSPk8TzWpSEztQW6Gi3dMEANMreYwPBhs+piBIWEoXN1xIqedlSefFK1MQwTkI3Jx5dXnIq2QNmdmeq3ma1BvB7TY5B2BNerpV4wYog0GPae25EzMJhH2u6vt7wM9jT9TPiiYLMDEURFkGLixlqst6rZYIDigK05VUwVLLbMM+l3lKU6ZoynaFTvCma7bhTdds6/VhrIEpTQYpiHqN4BWlSUVmzIJBpamVGZxOU42ua8+FfTw4B9HdnssWRQQ8nKl3LyGPC/PJPIpi2TSlqeZpUqk0FURbelnqTZ5WDbakxELG4i7qOTGTxOHR/jXvw+t3hnFsalX33WvVtGzD94GVoBN0kwuZagFgxdd0V9SP3VFrbQ7rq6SCm8Gyicr9VoAVTQYplPQZwf1uDn1eF+YTnVOaYgE3PC5Hy9gB2robW3chdTgIogH9F6+0iXvnKCEvV8sUMenOiP67qVWaUgXBdiZwYJ3SZIf2nAqvXzvyJQnnFtI4UmnNUW7YGcZKtoSL8ayu52VKkznsjvrBOQjOLaSRyCltb95EZdosPnLPfvzT+2/q9WGsIexzmWcEt7DSZEWs9w61GXqVJqASO6BCaVpMF+HmHJpTqAkhGA37WgZcVpWmBuqDkYDLTMH8oqm+LWZW0eRwEPh4p2qlKV0QbbV3jhLycHA5FbXF+p4mD7IG4i4op+eSKMvAoYoJnHKDQV8TK5rMgecc2BX149xCBol8ybKvp9/NVfc3WoWwjzclp0mW5YrSxIomtbCiySD5kmIE16o0AcD2fi9mVShNC6kCBkNuXa2usbAX0y1WqUyv5uBykmrEQD1GAi4znVCaOlA0AYCP5zR4mgTbBVsCSgEd8bvBOYhmxbLb1LKajLXojlcm5NYrTeOxAIIeDsd05jXRoqnfa60LqR3ZNxTA5KKiNFltcs7K9JukNKUKIkqSeXaHrQArmgxSC7fU/lKqVppSRQzpvNDtGPBheiXX1L8xs5rHSL+34TRYzEB7jnqazKReaTMzaM7vdmqanrNjew5QYgfW53FZEZpHZrRFd2ImgW0hTzX7ieJwEFy/I2xIaSLEflldVmRiMIiplRzmkwXLZTRZmX4vj0xRhCCpy/lrBh3nt8qKGDvAiiaD6F2jAihKUyInVCfwmrGQLmgOtqSMDfiQLopNF6DOrObXrE+pJxZ0YzlbglTWbpjtiKepovAQUlvmaAZ+nlPVCpJlGZmiPY3gAHDz7ghunYj2+jDaQpUwo0rTyZlkNWpgPTfuDOPcQkbXYuBUXkDQhrETVmTfUBCyDJy9krJcGriVCftpKrgxtYnu/tsZsZbR3cqwoskgBUECIdA1Wk9jB9pN0C2ltK9QoVCvUrMW3exqrqnHZTDkhlSWdfXOO+FposXKgI8H5zTvret3O5FVkQieLUkoy/ZVGP78rQfw8Xce6vVhtMWM9lwyL+CVeLZp0UR9TS/oaNEl8wK7wJvEvqEAAKAs19aDMNpTSwU35muiiewTgwHDx7RVYEWTQQqCBA/n1OU3orEDrSbociUR6aJoQGmqZDU1MIPnSkpQZLMRdJrVpCfgsjOeJuX5zDYt+nhOVXsulacrVNjJvZP0+1zgnQ5DAZenZhU/0+F1JnDKkbF+OAhwTEeLji3rNY9dUX91QIF5xNRDQ0ATOpTSeiYX0tje52HnNA2woskgeUHSvEKFsl1FKjgtWPR6mlplNc1WJ+caK016V6lIZRm5kmS6p4l+sM3uv/vdTlVG8HRlNYwdjeB2ghCiTG4aWKWyPgl8PX43h/3DIV3LexM560562Q2X01HNQGJGcPVQ/9dq1qjSlMHEUOPgY0ZjtmTR9KGvHMN3Xpw15bkKQhkendkiQ31KUdKqPUd30w2F9BVNIY8L/T5Xw6ymVnEDQF3RpLFN0ollvUDNCN4RpUmFp8muy3rtiJHJTUDxM+2M+FomTN+wM4wXpxIQNZppmdJkLvSibcU0cKtCC0wjniapLOP8UqbaImWoY8sVTbmSiIdOzuOTj57VfLJsRF6Q4NGpNLk5J2JBd8v2HL1w6G3PAUpw5fTqxsJsuhps2UZp0njxqi7r7ZAR3Oyiyc+rU5roXR27YHYeo/vnTswkcWikscpEuWFnGNmShLMVX4daknkRfayVZBr7KiuerLh3zqrQ3CgjWU2Xl7MoieVqMjtDHVuuaKKtsNlEHo+evmL4+YoVT5Netvd51ClNBrJ1xga8mGmiNPGco2kR4uM5BNyc9qKJLus1WZHxuJz4T6/eibccMncXkc+tztP0SiVBepfFVipsRgZD+pWmeKaI2UQeR5r4mSjX71DM4Fp8TbIsI8WUJlPZP6xctGMNsuIYjfHzTnAOYsjTdG4hAwCsaNLIliuaaJgk73Tg75+8aHh7shFPE6CYwVst7V1KF8HrSAOvZ2zAh5nVPMrrogNmKpNzrUanYzru+KtFk8lKEwD85dsP4lW7Bkx9zoCbgyDJKIqt1abzixnEgm52wewCg0EPEjmh7b9JI0608TNRRsNeDAbdmvKaCkIZJanM3gMmcuf+IXzp/a9q++/FqEEIQb/B/XOTFYV1nE3OaWLLFU1UafrPt+7G8emE7lRgSkEo6wq2pAz3ezCfyDct3hZSBQzpTAOnjIV9KEllLKwrfqZX8m2Xt+oJuKTtObt4f3yVojfXJnbg/GIG4zF2gukGgzpbw4DSmiMEuKZNe44Qght2hjWZwdkKFfNxOAjecNWgqcu9twJhnwurWQNK02IGo2Ev/B24ud3MbLmiaXY1D6eD4HffsBd9Xhe++ORFQ8+XL0m6VqhQtvd5kS1JSOUbt4cWDGQ0UegE3fqsppkWGU2UWNCteXqOKk12+TD6+f+/vTsPjvwu7zz+edSt+5xDx5ye8djYjInPiWNjQ8AG24CDNwnskoQsIcl6d0MSJ8UuBamtpLK72crWphKyGzZVLgNJFWwIMWbDEoJxwOwyJBjG9uBrzFgzPubwSJpD14xaarWe/aMPaTQ6vn3p92v1+1U1ZamnkR79GKk/er7f3/PN1nl+hSU6d9eRkUnt6WNpbi0UpoKXGJqu6O0I6nTedNkGHTs7FTx9nNCEuCj3/LnDpyZ0FUtzRau70HRydEoDXS3qamnUz//ETj36/Cm9dmb5A21Xk0pn1FxOaOrJjR1YZl/T8ES201SO/EbvhXfQTU7P6tyFdFhoislG8Gppa851mlbYDD4yMa2J1CydpjVSmApe5NgBd9czx0eXnc+02I25IZehHef8cgihCVHrbmssaaK9JKUzczp6mnEDpai70HRiNHvWmiR96NZdajDTZ/+x9G5TKl1ep2lLbir4cmfQDVeg07RtQ6vMLh5wmZ/RtGO15bnOZk2kZgtn7IXId5o6m2vjhaXQaVph7MDgcHbT5BV9/JBZC/PLc8Xtpzs5ltLpyRldtyNsf8w1W7vUlGwI3tdEpwlxsaGtseRO06tnziudccYNlKAuQ1P++JKB7hb91HVb9cUfHCvM4CnWVDpT1p6m+QGXl744lDsNPK85mdBAV8tFAy7zXaeQTpNU3N6S+eW50sPkWirsaVqh0zQ4kg9N/JBZC5s6mtVgxS/PPZvbBL7auIG85mRC127rJjSh5mSX59Il3czEnXOlC3q1N7NXzOxZMztoZgeqXVS1ZOZcp8ZShSUxSfqV23fr/ExGf/39YyV9zFR6rqxOU29ns5INtmSnKb80UW6nScp2lI4v2NN0/Fw+NK3eaZKKe/GanJ5VS2NDRc+Hq6b83qvVOk0dzcmyl0oRJtFg2tTRXPTy3A+PjynZYHrjlq7g/81Nl23QcyfGg7qphdDE9GpErLutUTOzc0qli583+KNTEzKT9rDdoGjFvKq93d2vd/d9VaumykYmpjU75xeFpjdt69Ytl2/UZ7/7ctHDLt0912kqPTQlGkz9XS1LdpryQaUSL9TbN7ZetDx3/NyUWhobtHmVI0ny588V02maSM2qo0aW5qQFoWmFjeCDw5Pa09fBHT5rqJQBl88cH9XVWzqL+p688bINmsnM6fmTY6s+d3wqLTOps0b262H9KhylUsIS3UvDE7psY1tZ43LqVW20AirkxGg2NGxbtCT1q7dfrpNjKf39c8UNu5yezYasckKTJG3pblny/Ln8YMtKdJp2bmzTqfFUYe7NsXMXtH1D26ohIL80WMwddOenZ2tm3ICUHRQnSedXGDnAuIG111fkUSpzc65njo8FbwLPuym3GTxkiW5sKq2ulsYVZ5sBa2FDrttZSmjizLnShYYml/QNM3vSzO6vZkHVlB9sua3n4tB0x9V92r25XQ9952hR68P5dn45y3NS9g66pQZcVrLTtGNDm9znN4AfPze16n4mSdrUnt1bMhJ4S7aUXZ6rlTvnpOxEcEnLTgUfT6U1PDHNfqY11tfZUlRoevXsBU2kZnVt4H6mvM0dzdq1qS04NLGfCXGQP6uv2PPnpmczeuX0eTaBlyg0NN3u7jdKepekj5jZWxc/wczuN7MDZnZgZGSkokVWSr6bs3VRaGposOywy+NjRU8HlirQaepp0amx1CUTu4fHU2pKNlTkh3RhVlORoSnRYNrYXtyspsnUbM1sApfmQ+9ynaYjuTvn9vQyo2kt9XU168zktDJzYb/IzE8CL67TJGWX6J58dXTVX5oITYiLUg/tffn0ec3OOZvASxQUmtz9RO6/w5K+LOnmJZ7zoLvvc/d9vb29la2yQk6cm1J3a+OSXZCfvXGbetqKG3Y5le80NZW3yrm1u1UzmTmdOX9xm3V4Ylp9neVNA8/bsXF+VtN4Kq2xqfSq4wbyip3VNDFdW3uaEg2m1sbEsp2m+XED/Ga2lvq6WjTn0pnAwP7DY2NqaWwo6TfofZdt1OnJaR3J3SW5nFFCE2Ki1D1N+TvnrmR8SklWfbU3s3Yz68y/LekuSc9Vu7BqODk6dUmXKa+tKalf+ImdevSFU3r1zPmgj5dfnivnwF4pu6cpX99CQ+OpwryacvV3tqgp0aBj5y4U7qJb7c65vL4iQ1Ot7WmSsuMRzi8zcmBwZFJNiQbt3Bh2vVAZfUXeufnM8VFds7W7pLs233519he9b7wwtOLz6DQhLuY7TcWFppeGJpRoMF1O57wkIT9d+iXtN7MfSvq+pL9z969Xt6zqyA62XH5T9b+8dZeSDabPfveVoI+X7zS1lHkHQj7ILR47MDwxrf6u8jeBS9klyO0bWnX87NSCcQOrL89J+UN7ixs5UEt7mqRsaL6wzMiBI8OT2rW5rWZGKKwX86Fp9f10s5k5PX9yPHg+02Jbult17fZufeP5lUPT+FRaXYQmxEBzMqG2poTOFbk8d3hoQpdtait7W0m9WvVVwN2Puvt1uT/XuPsfrEVh1bBwGvhS+rta9FPXbtUXDxwLGk+fmqlMp6lwlMqisQPZw3orE5okafvGNr129oKOn8t3msJD0+nJ6Uv2XC0nu6eptkJTe3NSk8vsaRocnmRpLgJ9XeFHqQyOTGoqnQmeBL6Uu/b26+Cx0WXPoXN3jU2lC7/hA1HraW0sek/TS0OTegNLcyWrm1+dx1NpTaRml12ey/vl23frwkxGXzl4YtWPmZrN72kqLzRtaGtUc7Lhok7T1ExGE6nZwnDJStixITur6di5C2prSmhj+8ozmvJ6O5qVznhQkJyezWgmM1d7y3NNS+9pSqUzeu3sBcYNRCA/Iyyky/m9I2ckSTft3Fjy57vrmgFJ0mOHlu42TaUzSmec5TnERk9bU1HLc6l0Rq+c4c65ctRNaHo918VZLTRds7VLbU0JvXx69UN8p2byd8+VdxnNTFt7WnVywdiB/JJEJTtNOze2afRCWi++PqHtG1qDN5gXjlIJ2JCbvwOt5pbnmpNL7ml65cx5zbm0h07TmmtKNmhDW2PQ8tz+wdPaubFNOzeVvu/syr4OXbapbdklOo5QQdxsaC/u/LkjI5Oac+kNA3SaSlU3oWm5wZaLmZkGuloKgyVXUqk5TdKlAy6HCkeoVLDTlNvI/ORr54I3gS+sIWQz+GQq262ptdDU3pRYck/TkeHsTQEsz0Wjr7Nl1eW5dGZO3zt6Vrdfubmsz2Vmumtvv/7xyGlNLHEWJaEJcdPT2qTRgBWAvJc4c65sdRSalh5suZT+rhadCghNhY3gFQlNrYVumFSdTlN+xMDM7Jx2BO5nkhaeP7f6NZmYzn4D19qepram5JIH9g4OT8pMunwzoSkKfV2r34Tww2Ojmpye1VuuKC80SdklunTG9X8PXzprbuwCoQnx0tNW3J6mw0MTSjaYdm3izrlS1U1oOjk6pcaEFfZJrGSgOztscjWpCoambT0tGp5IFc6/q06naT4oFdNp6i2h01Rze5qaE0uePTc4MqltPa2c0RSRkBlh+wdPy0y6dc+msj/fjTs3aFN705JLdKN0mhAzG3J7mkJv0jk8NKHdm9vVlKybl/6Kq5srd3J0Slu6W4POjMr+dnvphO7FKro819OqOZeGci8QwxMpNSUaKnqnTndrYyHMhN45J2WX2loaG4JCUz541NryXHbkwNKdJpbmotPX2aKRiekVJ3Xvf+m0rt3WXThWohyJBtOdb+zT4y8Oa2b24gO8WZ5D3PS0NWrOs4ekhzg8NMnSXJnqJjSdODelrSvMaFpooKtF6Yzr7Cob7FLpOTWY1Jgof2J3fsDl67l9TcPj0+qt0DTwPDMrLNEV02kys8KL12ry37wdtdZpakpoJjN30QtlZs51dISDeqPU19msmczcsksQE6m0nj42qtsqsDSXd9feAU1Mz+qJl89c9Ph4PjQxcgAxUTh/bmr1zeBTMxkdO3eB0FSmuglNK00DX2wgt49otSW6qXRGrY2JigSbfG0n8qFpIlWRg3oXyy/RLVyqCxE64HJyujY7Te1LHNp74tyUpmfnJ1StKAAAIABJREFU6DRFqK9r5bEDTxw9q8ycl70JfKHbr9ys1sbEJUt0Y1NpNZjU0VRb/7axfm3IBfiQAZeDw5NyF+MGylQXoWk2M6dT4yltDwxN/bmuz2obn1PpTMWmqhY6TbmgNjQ+rb7Oym0Cz3vT1m5t62kteomhtyPsKJWavXsud8DwwrEDgyMTkrhzLkr574Hlvhf3D55WS2ODbrpsQ8U+Z0tjQm99w2Y99sLQRUv0Y7lp4CFL/MBa6Cni/LnDQ9mfZ1fSaSpLXYSmU+MpzfnqM5ry5jtNK4eEqQqGps6W7H6j+eW56nSa/u3b9ujR335r0d2x3s7mwDlNszKT2mps43RbrnuwcOwAB/VGr3CUyjJjB/YPntbNuzepucyp/IvdtXdAp8ZTevbEWOExzp1D3Gwo4vy5w0MTako0aFcZs8xQJ6HpZOBgy7zsXiKtOnYg22mq3CXc2p0dcJlKZzSemi0cI1FJyURDSV2g3s5mjV5Ia3p26aNG8iZy585Vci/WWliq03Rk+Lw2dzRVZIMxSrPS8typsZQGhyd1+xXl3zW32B1X9ynRYHpswQG+hCbETaHTdH715bnDQxO6vLedMzTLVBdXLz80crXBlnmNiQZt7mjW0Cp7mlLpuYreir6lp0Wvj00Vfquu5LiBcuVrOTO58m80k6naO6xXWqbTNDKpy9kEHqm2pqQ6mpNLLs/tHzwtSbr9it6Kf94N7U368V0b9I0XThUeG71AaEK89LQ2qq+zWf/nmZOr3u3NnXOVURehKb+5emt3+ObngYABl1MzmbIP610oP+ByKPcCUY1OU6nmB1yuvEQ3OV2boak9F5rynSZ3Z9xATPQtcxPC/pdGtKm9SVdX6UiIu/YO6PDQpF4+nZ0KP57b0wTERUOD6WP3XK2nXxvVl59e/rzUyelZnRidYhN4BdRNaNrY3lRUV6g/4CiV1Gymop2mrd0tOnN+Rq+duZCrIT6dptABl5PTszU3bkCS2vLLc7lO0+nJGY1NpRk3EAO9nc0aWbSnyd21f/CMbrtic9U2Zr9zb78k6bFct4nlOcTRz9ywTdft6NEffv3Fwt3Li73EJvCKqYvQdHJ0Kuj4lIUGupuDOk2V3IC6JVfjM8dHJakqd8+VKiQ0Tc9m9NLQpDa1xyfshcp3x/LDOdkEHh99XS2XLM/9aGhCpyendXsF5zMttmNjm/Zu6dJjLwzJ3TU2lVYPoQkx09Bg+v33XqORiWn9j2+9tORzOHOucuoiNBUz2DJvoKtFoxfShanfS5mereyepnyNB4+NqjFhhTsj4iAfhFYKTZ//3ms6NZ7SL7151xpVVTn5u/3yU8EHRwhNcbHU8tz+l7L7mW6r4Hympbxzb78OvHpOx85OaXbO6TQhlq7f0aP337Rdn9n/so7mfnYtdHhoQs3JBu3cyJ1z5Vr3ocndixpsmZc/KHelJbqpmYxaK3z3nCS98Pq4+jpbYnUHWlOyQRvbmzQyufT1mEil9WePD+q2KzZVdNDgWmlrurjTdGR4Uu1NicL8LESnr7NZF2YyFy097B88rcs3txfdQS7WXdf0y1165OnjkjhCBfH17++5Ss3JhP7z3x265O8O5/ZnJpgxVrZ1H5rGp2Z1fiZT9A/X/oCp4KnZys1pkrIHBUtSOuOFW63jpLejedl5OQ9952WdPT+jj9199RpXVRmJBlNLY4Mu5DaCHxmZ1J6+jlgF13pVGDuQ+wVmZnZOTxw9uybhfO+WLm3radXDTxKaEG99nS164M4r9a0Xh/WtFy+eZn/41ARLcxWy7kPT8dHspuri9zTlQtOqnabKhaaWxoQ2tWfnbvTHaD9T3nIDLk9PTuuh7xzVu39sQNft6Imgsspob0oWNoIPDnPmXFzMTwXP/tt76rVzmkpnKnre3HLMTO/c26/j57J34BKaEGcfevMuXd7brv/01UOFczTHptI6NZ7Sldw5VxHrPjQVO9gyL99pWq6zMjfnmp6dU3MFQ5OUndUkKZ6dps6lj1L51OODSs3O6aN3XRVBVZXT1pwoLAO9PpbSHvYzxULfonEX3x08rQaTbt1T+aGWS7nrmv7C24wcQJw1JRv0u/fu1cunz+uz331ZkjQ4nL1z7g19dJoqoQ5CU3GDLfO6WpJqbUws22mazqX4SnaapPl9Tf0xmtGU15cLTe7zQ9SOnb2gz3/vNb3/pu3aU+OdmfampCanZ3Ukd+dcrX8960Wh05T7XvzOS6d13Y4edbWsTYC5edfGQoeJThPi7m1X9ekdb+zTf//mSxoeT+lw7s65q6o0z6zerPvQdGJ0Sk3JhsKyVygz00D38gMup3J31VXyGBVpviPWG6Np4Hm9nc2anp3TeGp+Q+6f/MNhyaQH3nFlhJVVRntzUhdmZhk3EDNdrUk1JRs0MjGtsam0njk+qreswdJcXjLRoDuv7pMkdcfojlZgOf/hPXuVzrj+8Osv6vDQhFobE1W/aaJe1N4UwiKdyM1oKmVDb3/X8kep5EcRVLrTlL9bK46dpoWzmrpbG/WjUxP68tMn9K/ecrm2FDFtPa7amhKaSM1qcGRSyQbTZRxsGQtmVhg78E9HzmjOtSb7mRb6yB1X6Ir+jjXrbgHl2LW5Xb/6lt36n98+oq3dLbqyv6NqQ2DrzbrvNGXHDZQWQFY6SmW+01TZ0JQ/6yyO8zR6Oy6e1fTfHv2ROpqT+rW37YmyrIppb5rvNO3a3K5GDraMjWxoSmn/4IjamhK6YeeGNf38e3o79Gtvu2JNPydQjo+8/Qr1dzXr5FhKV7KfqWKCXxXMLGFmT5vZV6tZUKWdOFf8NPC8/u4WDY9fvIcnL1Wl0HTn1X36+m+9Rbs3t1f041ZCodM0Oa0nXz2rfzg0pH/zk3sKJ23XurbmhM5PZ3SEO+dip68z+7343cEz+ondG9WUJNACK2lvTuoT73qjJOmqAX6eVUoxy3MPSDokqatKtVTc9GxGwxPTRd85lzfQ1aKZzJzOnp/Rpo6L9xilqrSnqaHBdPVAPC/xwg25n/unV7W5o1kfvm1XtEVVUHtTUmNTaU2lM3r3j22Juhws0NfVrG++OKR0xvXBWy6LuhygJtx3/Va5XG+/qi/qUtaNoFd8M9su6T2SHqpuOZU1NJZdRionNElLz2pKpatz91ycdbUm1ZRo0CNPndD3XzmrB+68ojBJez1oa05ocnpWmTlnE3jM9HU2K53JdnzfUoMT54EomJl++obt62Y1IA5C2ySflPQxSXPLPcHM7jezA2Z2YGRkpCLFrSQzd+mS2WL5wZbby1iek5Y+SmUqNzm6kmfPxZ2ZqbezWS+8Pq6dG9v0L358Z9QlVVT7ggDIuIF4yXc5+zqbdSWBFkBEVg1NZnavpGF3f3Kl57n7g+6+z9339fb2VqzAJT6PfvkvfqDf/dvnVn1uqYMt8wqdprFLBzqmZquzpynuNuf2NX30rjesu30l7c0LQlNf/PaU1bPe3LDX26/YzNE2ACIT8qp3m6T3mtkrkr4g6Q4z+1xVq1qBmam7tVFf+eHJwr6i5eQHWw6UeOhqb2ezzFbpNNVZaNq7pVM37OzRT127NepSKq491zXc1tO6rpYd14P83aQ/eVX1fiEDgNWsGprc/RPuvt3dd0n6gKRvufsHq17ZCt5/03ZNpGb16POnVnzeiXNT6u1sLrkb1Jho0Kb25iVDUz6wNVd4I3jc/Zef/jH9zb++dV3O/GjLdZo4PiV+9vR26Ku/cbvee936C+sAakdNvuLfcvkmbd/Qqr85cHzF550cmyp5aS5voLuZjeALmJmS63R+Ub7TxLiBeHrTtm6W5gBEqqhXP3f/trvfW61iQjU0mN5303Z998hpncgtwS0lOw28vMnaA10tOrXEVPBqDbdEdPJLctw5BwBYSs22DH72xu1yl7705NLdJnfXydHSB1vm9Xe1LLs8l2wwpkavI2/o79ANO3t0+xof0QEAqA01+4q/Y2Ob3rxnkx5+8rjmlhg/cPb8jFLpufKX57padO5C+pJN51PpDF2mdWZTR7O+/Gu3aSdnzgEAllCzoUmS3r9vu147e0Hff+XsJX9X7riBvPyspuHxi8cOpNJzhCYAAOpITYeme67Zos7m5JIbwk/kBluWuzy33FTwVDpT8SNUAABAfNX0q35rU0L3XrdFX3v2dU1Oz170dydynaayQ1P38qGp3u6cAwCgntV0aJKk9920Q1PpjP7umZMXPX5ydEqtjQn1tDWW9fH7c52moUV30E2lM3V1hAoAAPWu5kPTjTt7dHlv+yVLdCfOTWnbhtay57p0tSTV2phYenkuSWgCAKBe1HxoMjO9/6YdOvDqOR0dmSw8XonBlvmPP9B96diBqfScWug0AQBQN2o+NEnSz9y4TQ0mPbxgZtPJCgy2zOvvuvQoldRMRi3r7MBaAACwvHXxqt/f1aK3XdWnR546ocycK5XO6PTkTNmbwPMGulouXZ6bZU8TAAD1ZF2EJil7iO+p8ZS+89KITuaOVqnE8pyUnwo+Lff5IZpTM+xpAgCgnqyb0HTnG/u1oa1Rf/Pk8YoNtszr72rRzOyczl1IFx5LcfccAAB1Zd2EpqZkg+67fpsee35IL7w+Jqn8GU15hVlNC8YOpNJzama4JQAAdWNdveq/f992zWTm9Jn9r8hsPuyUqzCrKbevKTPnmsnMMdwSAIA6sq5C0zVbu7V3S5dOjafU39mixkRlvrzFU8Hzh/dy9hwAAPVjXYUmKdttkqRtGyqzNCdJfZ3NMptfnsuHJjpNAADUj3UXmu67fpsaE1axTeCS1Jho0Kb2+VlNU4QmAADqTjLqAiptY3uTPvXzN2rnpraKftyB7vnQlO80sREcAID6se5CkyTddc1AxT/mQFeLTozmQ9OcJDpNAADUE1olgbIDLi9enmMjOAAA9YPQFGigq0Vnz89oejYzvxGc4ZYAANQNQlOg/tzYgeHxaU3N5DpNHKMCAEDdIDQFyg+4PDWeUmo2t6epicsHAEC9WPVV38xazOz7ZvZDM3vezH5/LQqLm4Gu+aNUUrlOUzOdJgAA6kbI3XPTku5w90kza5S038z+3t2/V+XaYmVgwVEqTcls1mRPEwAA9WPVTpNnTebebcz98apWFUNdrUm1NDbo1Fhqfk8Td88BAFA3gjblmFnCzA5KGpb0mLs/scRz7jezA2Z2YGRkpNJ1Rs7MNNDVkt3TlJvT1JJkTxMAAPUi6FXf3TPufr2k7ZJuNrM3LfGcB919n7vv6+3trXSdsZCf1TSVzqgp0aBkhQ4EBgAA8VfUq767j0p6XNI91Skn3ga6WzQ0Pq1UOsMRKgAA1JmQu+d6zawn93arpHdKerHahcVRfnluaibDESoAANSZkLvntkj6SzNLKBuyvujuX61uWfHU39Wimdk5nRpPsQkcAIA6s2pocvdnJN2wBrXE3kBuKvgrZ87TaQIAoM6wMacI+angx89NqYU9TQAA1BVe+YuQ7zRl5pzlOQAA6gyhqQh9nc2FtwlNAADUF0JTERoTDdrc0SRJ7GkCAKDOEJqKlN/XxJ4mAADqC6/8Rcof3MthvQAA1BdCU5H6u/OdJkITAAD1hNBUpIEuQhMAAPWI0FSkwvIcoQkAgLpCaCrS/PIclw4AgHrCK3+R6DQBAFCfCE1F2r25Xfdeu0W3XL4p6lIAAMAaWvXAXlysKdmgP/v5G6MuAwAArDE6TQAAAAEITQAAAAEITQAAAAEITQAAAAEITQAAAAEITQAAAAEITQAAAAEITQAAAAEITQAAAAHM3Sv/Qc1GJL1a8Q98sc2STlf5c6xXXLvSce3Kw/UrHdeudFy78tTD9bvM3XtXe1JVQtNaMLMD7r4v6jpqEdeudFy78nD9Sse1Kx3Xrjxcv3kszwEAAAQgNAEAAASo5dD0YNQF1DCuXem4duXh+pWOa1c6rl15uH45NbunCQAAYC3VcqcJAABgzRCaAAAAAtRcaDKze8zsR2Y2aGYfj7qeuDOzz5jZsJk9t+CxjWb2mJm9lPvvhihrjCsz22Fmj5vZC2b2vJk9kHuc67cKM2sxs++b2Q9z1+73c4/vNrMnct+/f21mTVHXGldmljCzp83sq7n3uXaBzOwVM3vWzA6a2YHcY3zfBjCzHjN72MxeNLNDZnYr125eTYUmM0tI+pSkd0naK+nnzGxvtFXF3l9IumfRYx+X9E13v1LSN3Pv41Kzkj7q7nsl3SLpI7l/b1y/1U1LusPdr5N0vaR7zOwWSf9V0p+4+xWSzkn6lQhrjLsHJB1a8D7Xrjhvd/frF8wX4vs2zJ9K+rq7Xy3pOmX/DXLtcmoqNEm6WdKgux919xlJX5B0X8Q1xZq7/z9JZxc9fJ+kv8y9/ZeS/tmaFlUj3P11d38q9/aEsj88tonrtyrPmsy925j745LukPRw7nGu3TLMbLuk90h6KPe+iWtXLr5vV2Fm3ZLeKunTkuTuM+4+Kq5dQa2Fpm2Sji14/3juMRSn391fz719SlJ/lMXUAjPbJekGSU+I6xckt7x0UNKwpMckHZE06u6zuafw/bu8T0r6mKS53PubxLUrhkv6hpk9aWb35x7j+3Z1uyWNSPpsbmn4ITNrF9euoNZCEyrMszMnmDuxAjPrkPQlSb/l7uML/47rtzx3z7j79ZK2K9slvjrikmqCmd0radjdn4y6lhp2u7vfqOxWjo+Y2VsX/iXft8tKSrpR0p+7+w2SzmvRUly9X7taC00nJO1Y8P723GMozpCZbZGk3H+HI64ntsysUdnA9Hl3fyT3MNevCLn2/uOSbpXUY2bJ3F/x/bu02yS918xeUXYLwh3K7jPh2gVy9xO5/w5L+rKyoZ3v29Udl3Tc3Z/Ivf+wsiGKa5dTa6HpB5KuzN1F0iTpA5K+EnFNtegrkj6Ue/tDkv42wlpiK7eP5NOSDrn7Hy/4K67fKsys18x6cm+3SnqnsnvCHpf0vtzTuHZLcPdPuPt2d9+l7M+4b7n7L4hrF8TM2s2sM/+2pLskPSe+b1fl7qckHTOzq3IP3SnpBXHtCmpuIriZvVvZ9f6EpM+4+x9EXFKsmdlfSXqbpM2ShiT9nqT/LemLknZKelXSP3f3xZvF656Z3S7pO5Ke1fzekt9Rdl8T128FZnatshtGE8r+cvZFd/+PZna5st2TjZKelvRBd5+OrtJ4M7O3Sfp37n4v1y5M7jp9OfduUtL/cvc/MLNN4vt2VWZ2vbI3IDRJOirpw8p9D4trV3uhCQAAIAq1tjwHAAAQCUITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAgGTUBQDl2Lwx4bt2NEZdBoAKe+VYWqfPZizqOoCFCE2oabt2NOr7j+6IugwAFXbz3ceiLgG4BMtzAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNiBUzu8fMfmRmg2b28ajrAQAgj9CE2DCzhKRPSXqXpL2Sfs7M9kZbFQAAWYQmxMnNkgbd/ai7z0j6gqT7Iq4JAABJhCbEyzZJC89OOJ577CJmdr+ZHTCzAyNnMmtWHACgvhGaUHPc/UF33+fu+3o3JaIuBwBQJwhNiJMTkhaevrs99xgAAJEjNCFOfiDpSjPbbWZNkj4g6SsR1wQAgCQpGXUBQJ67z5rZr0t6VFJC0mfc/fmIywIAQBKhCTHj7l+T9LWo6wAAYDGW5wAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIQmgAAAAIkoy4AAFB77t56fVU//mE/U9WPD5SCThMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhNiw8x2mNnjZvaCmT1vZg9EXRMAAHlMBEeczEr6qLs/ZWadkp40s8fc/YWoCwMAgE4TYsPdX3f3p3JvT0g6JGlbtFUBAJBFaEIsmdkuSTdIemKJv7vfzA6Y2YGRM5m1Lg0AUKcITYgdM+uQ9CVJv+Xu44v/3t0fdPd97r6vd1Ni7QsEANQlQhNixcwalQ1Mn3f3R6KuBwCAPEITYsPMTNKnJR1y9z+Ouh4AABYiNCFObpP0i5LuMLODuT/vjrooAAAkRg4gRtx9vySLug4AAJZCpwkAACAAoQkAACAAoQkAACAAoQkAACAAoQkAACAAoQkAACAAIwcAAEV79OTBqn78m+++UNWPD5SCThMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAEAAQhMAAECAZNQFAKi+u7deX/XP8ejJg1X/HAAQJTpNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNAAAAAQhNiB0zS5jZ02b21ahrAQAgj9CEOHpA0qGoiwAAYCFCE2LFzLZLeo+kh6KuBQCAhQhNiJtPSvqYpLmoCwEAYCFCE2LDzO6VNOzuT67yvPvN7ICZHRg5k1mj6gAA9Y7QhDi5TdJ7zewVSV+QdIeZfW7xk9z9QXff5+77ejcl1rpGAECdIjQhNtz9E+6+3d13SfqApG+5+wcjLgsAAEmEJgAAgCDJqAsAluLu35b07YjLAACggE4TAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAOY0AXXg0ZMHoy4BAGoenSYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAhCYAAIAAyagLAADUnru3Xl/Vj3/Yz1T14wOloNMEAAAQgNAEAAAQgNAEAAAQgNAEAAAQgNAEAAAQgNAEAAAQgNAEAAAQgNAEAAAQgNCEWDGzHjN72MxeNLNDZnZr1DUBACAxERzx86eSvu7u7zOzJkltURcEAIBEaEKMmFm3pLdK+iVJcvcZSTNR1gQAQB7Lc4iT3ZJGJH3WzJ42s4fMrH3xk8zsfjM7YGYHRs5k1r5KAEBdIjQhTpKSbpT05+5+g6Tzkj6++Enu/qC773P3fb2bEmtdIwCgThGaECfHJR139ydy7z+sbIgCACByhCbEhrufknTMzK7KPXSnpBciLAkAgAI2giNufkPS53N3zh2V9OGI6wEAQBKhCTHj7gcl7Yu6DgAAFmN5DgAAIAChCQAAIAChCQAAIAChCQAAIAChCQAAIAChCQAAIAChCQAAIABzmgAARXv05MGqfvyb775Q1Y8PlIJOEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQABCEwAAQIBk1AUAQJzcvfX6qn+OR08erPrnqLZqX6fDfqaqHx8oBZ0mAACAAIQmAACAAIQmAACAAIQmAACAAIQmAACAAIQmAACAAIQmAACAAIQmAACAAIQmxIqZ/baZPW9mz5nZX5lZS9Q1AQAgEZoQI2a2TdJvStrn7m+SlJD0gWirAgAgi9CEuElKajWzpKQ2SScjrgcAAEmEJsSIu5+Q9EeSXpP0uqQxd/9GtFUBAJBFaEJsmNkGSfdJ2i1pq6R2M/vgEs+738wOmNmBkTOZtS4TAFCnCE2Ik3dIetndR9w9LekRSW9e/CR3f9Dd97n7vt5NiTUvEgBQnwhNiJPXJN1iZm1mZpLulHQo4poAAJBEaEKMuPsTkh6W9JSkZ5X99/lgpEUBAJCTjLoAYCF3/z1Jvxd1HQAALEanCQAAIAChCQAAIAChCQAAIAChCQAAIAChCQAAIAChCQAAIAChCQAAIABzmgBUxN1br6/653j05MF18TnWg2pfp5vvvlDVjw+Ugk4TAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAEITAABAAHP3qGsASmZmI5JeLeJ/slnS6SqVs5bWw9exHr4GaX18HXH8Gi5z996oiwAWIjShrpjZAXffF3Ud5VoPX8d6+Bqk9fF1rIevAVgLLM8BAAAEIDQBAAAEIDSh3jwYdQEVsh6+jvXwNUjr4+tYD18DUHXsaQIAAAhApwkAACAAoQl1w8zuMbMfmdmgmX086npXJzd5AAAClklEQVSKZWY7zOxxM3vBzJ43sweirqkcZpYws6fN7KtR11IKM+sxs4fN7EUzO2Rmt0ZdUynM7Ldz/56eM7O/MrOWqGsC4orQhLpgZglJn5L0Lkl7Jf2cme2NtqqizUr6qLvvlXSLpI/U4New0AOSDkVdRBn+VNLX3f1qSdepBr8WM9sm6Tcl7XP3N0lKSPpAtFUB8UVoQr24WdKgux919xlJX5B0X8Q1FcXdX3f3p3JvTyj7Ir0t2qpKY2bbJb1H0kNR11IKM+uW9FZJn5Ykd59x99FoqypZUlKrmSUltUk6GXE9QGwRmlAvtkk6tuD946rRwCFJZrZL0g2Snoi2kpJ9UtLHJM1FXUiJdksakfTZ3BLjQ2bWHnVRxXL3E5L+SNJrkl6XNObu34i2KiC+CE1AjTGzDklfkvRb7j4edT3FMrN7JQ27+5NR11KGpKQbJf25u98g6bykWtwnt0HZjutuSVsltZvZB6OtCogvQhPqxQlJOxa8vz33WE0xs0ZlA9Pn3f2RqOsp0W2S3mtmryi7THqHmX0u2pKKdlzScXfPd/oeVjZE1Zp3SHrZ3UfcPS3pEUlvjrgmILYITagXP5B0pZntNrMmZTe7fiXimopiZqbsHppD7v7HUddTKnf/hLtvd/ddyv7/8C13r6nuhrufknTMzK7KPXSnpBciLKlUr0m6xczacv++7lQNbmgH1koy6gKAteDus2b265IeVfYOoc+4+/MRl1Ws2yT9oqRnzexg7rHfcfevRVhTPfsNSZ/PhfCjkj4ccT1Fc/cnzOxhSU8pe3fm02I6OLAsJoIDAAAEYHkOAAAgAKEJAAAgAKEJAAAgAKEJAAAgAKEJAAAgAKEJAAAgAKEJAAAgAKEJAAAgwP8HMMTsj0EpbcAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAMtCAYAAACSEJ4GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADA0UlEQVR4nOzdd3wcd50//tdsVZcsy7IlW45bYsdxidOdDgkJKZAECC3cBfhSzwECxx3kfkc5ODBwdxwQuIR2CUdJIJBCAmmkOL24xHFJnLjLlrusLm2b+f2x+5kZyburmd0pn1m9no+HH4/EVhl7V7vz/rybommaBiIiIiIiIkmF/L4AIiIiIiKiYhi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1CJef0NVVdHV1YX6+nooiuL1tyciIiIiIklomob+/n60t7cjFCqcT/E8aOnq6kJHR4fX35aIiIiIiCTV2dmJGTNmFPxzz4OW+vp6ANkLa2ho8PrbExERERGRJPr6+tDR0aHHCIV4HrSIkrCGhgYGLURERERENG7bCBvxiYiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIagxaiIiIiIhIahG/L4CIKp+mafi3+zdD0zR8/Z0nQVEUvy+JiIiIAoRBCxG5bs/RYdz+3E4AwHtO7cDiGY3+XhAREREFCsvDiMh1m7r69P/+y4Z9Pl4JERERBRGDFiJy3eauXv2//7KhC5qm+Xg1REREFDQMWojIdZv3GZmWzu5hbNzbV+SjiYiIiEZj0EJErhPlYdObqgEAD2zo8vNyiIiIKGAYtBCRq7oHk9jXOwIA+NxFxwMA/vLqPpaI+eiG363FNf/zLFIZ1e9LISIisoRBCxG5anMuyzJrcg2uXNqG6mgYe44OY8Pe3nE+k9ygaRr+umEf1u3uwY7Dg35fDhERkSUMWojIVZtyTfgntTeiJhbBW09sBZDNtpD3UhkNai7Jtbdn2N+LISIisohBCxG5SvSzLGxvAABcsbgNQHb0MUvEvDeSzuj/va9nxMcrISIiso5BCxG5SkwOE0HLW+a36iVir+5hiZjXRlKmoKWXmRYiIgoGBi1E5JrhZAbbDw0AAE5qywYt1bGwXiL2Vy6a9FwiZTTfdzHTQkREAcGghYhc8/r+Pqga0FIXR2tDlf77V+ZKxB7gFDHPMdNCRERBxKCFiFwj+llOypWGCRfmSsT29rBEzGsjpkyLGEVNREQkOwYtROSasU34QnUsjIvEFDGWiHlq2JRp6eoZZqaLiIgCgUELuSKZVvH537+C/370Db8vhXwkmvDHZloA0xQxloh5ylwelkirODqU8vFqiIiIrGHQQq7422sHcM+6vfjhY2+is3vI78shH6QzKl7Xg5bGY/78wvmtqIllS8TWs0TMM+agBchmW4iIiGTHoIVccffaPfp/37VmT5GPpEq1/fAgEmkVtbEwjmuuOebPq2NhvHUBp4h5bSStjvp/9rUQEVEQMGghxx0ZSODJLYf0///j6k5kVJb/TDSbc/0sJ7Y1IBRS8n7MlUtYIua1sZkWThAjIqIgYNBCjrt/fRfSqoYF0+rRUBVBV+8Intt22O/LIo9t6sqWfOXrZxHMJWKvdPZ4dGUTW+KY8jBmWojIGzzApHIwaCHH3b1uLwDgfad34KqTpwMA/rCaJWITTaHJYWZV0TAuOnEqAJaIecU88hhgpoWIvPEfD7+Ok7/xCF7YfsTvS6GAYtBCjtp6sB+v7ulFJKTgHUvb8d7TOgAAD2/aj15OKZowNE0zTQ47tgnf7IrF0wAAf92wnyViHhDlYfXxCAA24hORNx7cuB/9I2l87s51ODKQ8PtyKIAYtJCj7l6bzbJcOH8KWuriWDS9AQum1SOZVvHn9Xt9vjrySlfvCHqGUoiEFBw/ta7ox7JEzFsj6WzQMmdKLQCWh7nhl8/swOd//wqGkmm/L4VICsm0il1HspNED/Ql8MW71vOQimxj0EKOUVUN9+ZKw65ZNgMAoCiKnm1hidjEIZrw57XWIR4JF/1Yc4nYX15liZjbRHnY7JZs0HKgb4R15g5KZ1R876HX9ZHvRATs7h5ERtUQj4QQi4TwxJZD+OUzO/y+LAoYBi3kmBd2HEFX7wjqqyL6tnMAuHrZdETDCjbs7dVvZqmyGU34xUvDBLFo8q8bOEXMbaI8bGZzDUIKkFY1HGaphmPePDiARG6s9C+f3oHX9/M1j2jrwUEAwPxp9fjKlQsBAN996HVs4I4usoFBCzlGlIZduaQNVVHjdL25NoaLcyfpd63p9OXayFtWmvDNLpw/BbWxMLp6R7COJWKuEpmWmngEUxuqALCvxUkb9xo3YWlVw7/esxEqM1k0wW07NAAAmDelDh86cybeftI0pDIabrhjLfpH2O9K1jBoIUcMJzN4MDf96V2nzDjmz0WJ2L3r9iI5ZrkdVR6RUSs27ths1BQxloi5SvS0VEVCaGvMBi1cMOkcEbRcsbgNtbEwVu86ij+s5mGNX/7rkS24+ifPonsw6felTGgiaJnbWgdFUfDddy/B9KZq7DoyhH+9dyMz7GSJraAlk8ngK1/5CmbPno3q6mrMnTsX3/zmN/lkIzyyeT8Gkxl0NFfjtOMmHfPn5x3fgqkNcRwdSuGx1w74cIXj6x1KYTiZGf8DqaieoST25k7urWZaAOCKJUaJGE+m3SP2tFRFw2hrqgbATIuTNuSClrctnIrPv+0EAMDKB1/ntCQfPLftMG5+fCte6ezBPes4CMZP2w5ly8Pm5gaANNZE8aMPnIxwSMF9r3Thj2vY80rjsxW0fPe738Utt9yCH//4x3jttdfw3e9+F9/73vdw8803u3V9FBB/Wms04CvKsdvPI+EQ3p3LwMh46jiczOCC/3wC1/zPs35fSuCJLEtHczUaqqKWP++CE4wSsVf29Lh0dSTKw6qiYbQ7nGnpG0nhYN/EzdqkM6o+6nvR9EZ8+OxZOLGtAb3DKXzrr6/5fHUTSyKdwb/eu1H//4c2MoPrF03TsP1gLtMyxZgmeepxzfhCLrD/6n2bsDX3MUSF2ApannvuOVx11VW44oorMGvWLLznPe/BJZdcgpdeesmt66MAONg3gmfePAQAeNey6QU/7tpcidiqNw5hv2TlKPv7siN6X9/fz8xhmfT9LG3WmvCFqmgYFy/kFDG3jeiZlhDaGrOZFqcWTL7rf57Dhf/5ZGBq1H/yxFZ85o51SGWcKVnddmgQIykVtbEw5rTUIhIO4dvXLIKiZHv+ntt22JHvQ+P76art2H5oEJNqsgcnq3cdxYEJHFD76VB/Av2JNMIhBTMn14z6s09dMBfnzJuM4VQGn7ljnf76RJSPraDl7LPPxmOPPYY33ngDALB+/Xo888wzuOyyywp+TiKRQF9f36hfVFnue6ULqgacetwkzMqNUc1ndkstzpjVDFUD/rRWrlSweZ9Cgj03ZbHbhG92eW6K2IMsEXON6GmJR8NobxKN+OXfzB0dTGLrwQEMJTOB6JHRNA0/fnwr7l/fhZd3djvyNUU/y8L2BoRC2YzzspmTcN2ZMwEA/3rvRiTSvClz287Dg/jxE1sBAP921SIsm9kETcsuOSbviQzKzOaaY0bgh0MK/vu9J2NybQyv7evDSmYkqQhbQcuXv/xlvP/978eCBQsQjUaxbNky3HjjjbjuuusKfs7KlSvR2Nio/+ro6Cj7okkud+u7WQpnWYT3nJYtEbtrdadUGQ1zL8sQ+1rKYrcJ38xcIlapU8R+88IufOH3r+B/n9mBNbuOen6yqJeHRcKOZlp2HBnU/3sgIf9Sxd7hFIZz//Zrdx115GuKfpZF00dnGf/p0gVoqYtj+6FB/GzVdke+F+WnaRq+ct9GJNMqzju+Be9Y0obLFxn9cuQ9vQl/Sv5DzdaGKvzXe5cCAH71/C4Gl1SQraDlD3/4A37729/id7/7HdauXYtf/epX+M///E/86le/Kvg5N910E3p7e/VfnZ3y9TNQ6TZ39eG1fX2IhUO4MtdIXcwVi9tQEwtj55EhvLzTmRsFJ5gDlWGmp0s2kspga+4NyuqOFjNziVgl3mCkMyq+/udNuHvdXnzjgc149y3PYdHXHsY7bn4G/3rvBvxxzR5sPdjvapbJXB7WnmvEP9ifKLtEaschI2gZDEDQYs4GrXEoaBGZlsVjgpbG6ii+cuWJAICbn9iKnYcHj/lccsaf13fh6TcPIxYJ4ZtXLYKiKHj7omkAgJd2dHMnkQ+MJvy6gh9z4fxWfPL8OQCAf/7jq/owFyIzW0HLP/3TP+nZlsWLF+Pv/u7v8PnPfx4rV64s+DnxeBwNDQ2jflHluGddtszrrQta0VQTG/fja+MRPbi5S6KGfHOgwglipduyvx8ZVUNzbQxTG+IlfY1KXjTZP5JGOheQXLSgFZNrY0irGjbs7cVvXtiNL961Hhd//yks/bdHcN0vXsD3HnodrziccTI34k+ujSEWDkHTUHa9/w7TjfjAiPxBy37T33ft7p6yA8WMqumlkWODFgB459J2nDuvBcm0iq/cxxGvbugdTuGbD2TLiz7zlnl6uXJHcw2WzGiEqgGPbJJzemUlM487LuYfL5mPpTMa0Tucwo13rkPaoV4zqhy2gpahoSGEQqM/JRwOQ1X5xJqI0hkV977SBQB41ynjl4YJYmfLXzbsk6aMxByosBGwdHoTfntD3ilyVpx3/BQA2ZPwvgDc/NrRl2tQr42F8csPn47V/3oxnvnSW/DjDy7Dx8+bjdNnTUJVNIT+RBrPbj2C/3lyG9576/OO/pyYRx6HQgqmNTrT1zIqaJHk57oY8zCQ3uEUth8ub3LR9kMDGE5lUB0NY06eE2VFUfDNqxchFgnh6TcP4wEOm3Dcfzz8Og4PJDBnSi0+ccGcUX8msi0PcorYuAYS6VFLUsu1Lc/ksHxikRBu/sApqI9H8PLOo/jRY286dg1UGWwFLe94xzvwrW99C3/5y1+wc+dO3HPPPfj+97+Pa665xq3rI4k9u+0IDvUnMKkmigvnt1r+vFOPm4Q5LbUYSmakWSQ4xJ4WR2zqMhqRS1UdCyMazgY8QSgzsqNvOPv3aajOTjRSFAUzJtXgyiXt+P+uWIi7PnU2Nn79Uvzls+fi29csRjSsIJlRcdTBxXj6cslo9uXfWDBZXjnG9sPBLQ8Dyi8R22h67odD+QP22S21WHHhPADANx7YjN7hYExZK0U6o+LfH9iM9/70eUdvgAtZt/sofvvibgDAt65efEzD92W5vpbnth1x9OepEv3zH9fjypufwWoHBlQMJtLoyv2sFeppMZs5uQbfftdiANlSynW75SkjJ//ZClpuvvlmvOc978E//MM/4MQTT8QXv/hFfPKTn8Q3v/lNt66PJHZPbgLYO5a2Ixax/lRSFEUffyzLzhbz9DD2tJROnxzWVl4ZaG08AiAYN792iExLsf01kXAIJ7U34oNnzkR97uOcyv5lVA2pTLYsqSp3U9euL5gsPdOiqtqoPo3BAAT++3NBmgjeyg1aNuwpXBpm9qkL52BOSy0O9SfwX49sKet7yiqRzuCG363DL57ZgZd2dONd//Mcbn92h2slcemMin+5ZyM0DXj3KTOwfO7kYz5mdkstTmxrQEbV8KikC45lsePwEIBsgFf+18q+LrTUxSyVkAPZe4prlk2HpgE/fnxr2ddAlcNW0FJfX48f/OAH2LVrF4aHh7Ft2zb8+7//O2Ixa09EqhwDiTQeyk34eFduaaQd7z5lOsIhBat3HdXrXf00wp6WsmVUDa/v6wdQWhO+WW0sG7QEoczIjr7cyXpDdcTSx1dHs4GFU4G0+XlelfvaTmRaDvSPjLrGIDxuItPy1gXZLHHZmZYCk8PGikfC+PerFwEAfv3CLqyvsCl5g4k0/t/tq/HQpv2IhUM4a04zkhkVX79/Mz756zXoHXI+u3T7czvx2r4+NNVE8S+XLyj4cZeLErEKHPLhJHFYtMGBDJl4f89XMlnMZy86HooCPPb6Qby+n6syKMtW0EIkPLhhH0ZSKua01GLpDPs3qK0NVbjghGzvwl2r/d/ZMnp6mPw3XDLacXhQr+mfXWRfjxV1eqalsgJIkWlprC6caTETWQCnAmlz0BLPZUfbHMi0mCeHAQFpxM8FLaJsaNuhwZLLhlRV00sjx8u0AMDZ81r0k+R/uWdDxTQc9wwlcd0vXsQzWw+jJhbGbR85HXd8/Cx8/R0LEQuH8MjmA7j8R09jzS5n9uIAwN6eYXz/0ezuuJsuW4DJdYUHgFy2OBu0PLP1cEWX5pVLBC1OlPVttdjPMtbsllp9VPWtT24r+zqoMjBooZLck9vN8q5TppfccP3e3M6Wu9fu8f1Ne1TQkqyMGwiviZu2BW31BWv6raqNZ7MAQTixt0PcKBUrDzOrjjmcacktTo1FQvryw3YHMi3bx4zwDUJZnwhaTmxr0Gvt15ZYP7/98CAGkxlURUOW6vYB4F8uPxENVRFs6urD/z2/q6TvK5ODfSN4309fwCudPWiqieJ3Hz8L58xrgaIo+PA5s3H3P5yNWZNrsLdnGO/96Qv4nye3OjLa+9/+vAlDyQxOO24Srj21+B64ea31OL61DqmMhsdfZ4lYIeJ1d1/vSNkjosfb0VLMpy+cCwC4/9V96OweKus6qDIwaCHb9vYM4/nt2VrXqy0slCzkrQumork2hoP9CTz15iGnLq8kw9zTUjbz5LByVWxPy5hG/PGI8jCnelr0HS2mHjRjwWQZmZZc0FIbC0aw2T+SQn/uGqc1VuHU4yYBKL1ETATsJ7Y1IBK29rY6pT6OL1+W3d3yX49scaVsyiu7jwzhPbc+jy0H+tFaH8cfPrkcJ3c0jfqYRdMb8cBnz8NVJ7cjo2r43kNbcP1tL+FQf+k3xY9uPoBHNh9AJKTg2+9arAfixVymj1TnAsN80hkVibRxcFdutmXbwdyOlnHGHeezaHojzju+BRlVw8+e4lJWYtBCJbh33V5oGnDm7GbMmFRT8teJRUK4Jhf0/OFlf0vERu9pkfuGS1ab9Sb88vpZAFN5WIU9FkYjvrWeliqXelrE1wWA9qZspqV7MFlycCSCFtHLJPvjJnbS1FdFUBePlB20bNhjvTTM7P2nd6C9sQqDyQy2HOgv6Xv7bcv+frzn1uewu3sIM5tr8KdPn40Tptbn/di6eAQ/eN/J+N67l6Aqmh39fPmPnsazWw/b/r6DiTS+dt9GAMDHz59T8HuOdXmuRGzVG4ekD679MLYkt5ygJaNq+mvDPJvlYYLItvxhdWdZAS5VBgYtZIumaXpp2LtLaMAfS+xs+dtrB3DEx03FQ8y0lEXTND1ocTLTUmk3FUYjvr1Mi1Mli+bFkkJjdVT/PqVmW8SNyeJcf5vsPS3i7ymGEIigZf2eHqRKKFXdYLEJf6xQSNF7ioK4qX3t7qN470+fx8H+BBZMq8cfP7UcHc3FD7IURcF7T+/An284FydMrcOh/gQ+9MsX8V+PbLFVJvzDx95EV+8IZkyqxmfferzlz5s/tR6zW2qRTKt4/PWDlj9vohgYc+BQTjP+nqNDSGZUxCMhTM89z+1aPmcylnY0IZFWcftzO0q+Fpns7RnG71/eXdJrzURn7biPKGfD3l5sPTiAeCSkNzWWY/60eiyd0Yj1e3pxz7q9+Nh5c8b/JBeYm+/Z02Lfgb4EjgwmEQ4pmD/N2olnMXWVWh6Wu5m32tNS5XB5mLFY0jivUhQFbU1V2H5oEPt6hm0PUUhlVOzO1ZuLTIPTweatq7Zh28EBfPfdSyyVAI1HBC3TcqVxc1rq0FQTRc9QCq/t68OSGU2Wv1a2Cd/auON8Wuqy0zf9PLQBss8xczA7nmfePIxP/Ho1hpIZLJvZhNs+fLrlkbYAcMLUety34lx844FNuOOlTtz8+FY8sukAZrfUojYeQX1VBLXxMOriUdTFw6iriqA2FkFdVQSDiQx++Uz2BvabVy3Se7+sUBQFly2ahv95chse2rgP71zabvlzJ4Kxr7kb95Y+ucs8OazUn1tFUfAPF87FJ3+9Bv/3/C586oK5+ij4IOoZSuL9P3send3D2H5oEDddfqLflxQoDFrIlrvXZrMsl5w0zbEXjvec1oH1e3rxp7X+BS2cHlYeUdM/d0qtrRufQmpyNyEVNz3M75HH6WPLwwBgelM1th8a1JfA2dHZPYSMquU2wWcDHqcft5sfexODyQyuP3uW7WxGPqIJv60hm2kJhRScMnMSHn/9INbsOmoraNl5ZBADiTTikRCOL6FuvyU37erQgH8LD2+8cx3ufaULk2tj6GiuQUdzDWY2V2Om/t81aGus1gdsPLRxHz57xytIZlScd3wLfvp3p6ImZv92ojoWxsp3LcHyuS34l7s3YMuBfltlcpcvnoa3LLC+2Nj4vDb8z5Pb8MTrhzCUTJd07ZVKHDiIIH5vzzC6B5NorrW/2kLvZymhCd/sbSdOxbzWOmw9OIDfvrgbn7pgbllfzy8ZVcNn73wFnd3ZoSe/eGYH3rG03ZHXtImCP6lkWSqj4v71XQCyU8OccsHx2dHH233c1zKqEZ97WmwzSsOcefGt2Eb8EZvlYTGnG/Fz5WFjtoXru1p67E8QE6Vhs1tqXcmQZVRNX1a55+iwI2/wRqalSv+9U48zgpaPnDPb8tfamHvuL7DRhG8mRvT6VR6maRoe2ZydpHVkMIkjg0m8kmd3TCSkYPqkarQ3VuPFHUegatmg4b/fd/Ix2+fteufSdpwxqxnPbz+MgZE0BhIZDCRSGExk0D+SxmAijQHTr8FEGk01MXztHSeV9P1Oam9AR3M1OruHsWrLIb05n4yf3an1VZhUE8OOw4PYuLcX5+dWFNhhTA4rrZ9FCIUUfOqCufjiXevxy2d24MNnz3LkcMxr//3oG3jqjUOoioawrGMSnt9+BP/8x1dx3w3nIFrCa8dExKCFLNt+aBBHBpOoj0dw3rwWx76uGG+bSKvIqFrZ43JLMaoRnz0ttm1ysJ8FqNxGfLsjj/VGfIf3tMSjo98gxQSxUjItetAyxQhaBpJpaJpW8jh0M3N/zJ6jzow93Z8b79xmClpOmZnta1lrsxlfNCovnl7ac39KrjzssE9Nxof6ExhKZhBSgHtXnIOunmHs7h7K/RrGnu4h7Dk6jGRGxa4jQ9h1JPsYvO+0Dnz7XYsde72e1liFa5aV3ydpRbZErA0/e2o7/rpxP4MWExG01MbDOGFSPXYcHsSGEoMWfUdLCRnIsd65tB3ff2QLunpH8Ke1e3DdmceV/TW99PCm/fjxE1sBAN999xKcM68FF39/FTbv68Mvnt6hDxyg4hi0kGXihqulPl7SiWIh5tT8cCqj3/h4yVweNsRMi22b9mVv3Ba2ORO0GI34lfVYiJHHVpdLOl4elqcRHzAmiHWVkGkRO1rmtNSiLjcVTdOyP0e1Dvws9yeMUcB7jpa+S8YsX6ZlaUcjwiEFXb0j6OoZRrvFxuFSJ4cJojzsSImLLcslgs4Zk2qwZEZT3tK4jKrhQN8IOnPBzKSaGC46sdWRoNQvly2ahp89tR2Pv3bAdj9PJROvubXxCBZPb8D967tKniBWzo6WsWKRED523hx844HN+Omq7XjfaR2O3oe4aevBAfzjH9YDAD56zmxcdXK2UuUrVyzEP961Hj/42xt4+6JpZS9lngiC8YiTFPptjmu1qioagnjvG/LpZN18ku1UKc5E0Tuc0mt0FzqWaRE9LZWTaUmmVT34sL5cMvsS7ebIY8C8q6WE8rBDRnlYdTQMcfDu1GNnbup3LNPSd2zQUhOL6EG31dHHmqZhY1dpk8OElnp/y8NE5mRWkRumcEhBe1M1zpwzGdee1oGLF04NdMACACd3NOnjpp9+0/7I5Uolfm7r4hH9OV3KBLHuwSSO5nYPzWkpP9MCAO8/owOTaqLY3T2EBzcGY8/OQCKNT/56NQYSaZw5uxk3Xb5A/7N3nTId5x3fgkRaxZf/9Kojy1ateuqNQ/j9y7ux9WCwRq0zaCHL7NbjW6Uoimm0q/cBg6ZpLA8rw2u5pZLTm6ptTQ8qphJ7WkTQD0DPSIzH8eWSohE/MvqlX2Ra9vWUUR7WUgtFUVAbc3Zctbk8TATH5RhJZdCTu5lqaxidTbG7r2XXkSH0j6QRC4cs7wkZS2Ra/CoP23kk+/jNmlz6zq0gUhQFb1+ULQt7cMM+n69GHgN6eVhE71Hcc3QYPUP2MoEiyzK9qdrWdLdiamIRfPjsbL/Z/zy5DZrm3U1+KTRNwxf/sB7bDg1iWkMVfvzBU0b1riiKgm9fsxjV0TBe3NGN36/u9Oza7nx5N770pw14dusRz76nExi0kGWitKXe4UwLYEyL8qM0K5nJ9tIILA+zR18q6VCWBajMPS1i3HF9PGK5D8D5npb85WEi09KfSI8KrsYzlEzrWQtR2mAEnM5cc/+YTEu5Nypiclh1NHzMFLdTckHL2t3WghaRZVnQVl9yI+3kXE/LYDLjy6GNCFqOmzzxSlPE2P5HXzuAZJqj7oHRmZbG6iiOywWzdkcfb8v1s8xzoJ/F7Pqzj0NNLIzX9vVh1RuHbH/+/eu78OU/vYrObmeytsXcsmobHtq0H7FwCLd86BRMyWVVzTqaa/DFS+cDAL7919f0xbduE+X+VkuVZcGghSzrs9lEbEe1j0HL2BuFEQYttjjdhA9U5p4Wu4slAePnwqnsX749LUA20BBln3YWTO48nH3jb66N6Vk2kUUy96KUw5xpGUxm9JKTUpkXS44tcTotF7Rs6uqzVKpa6lJJs/p4BLFc5suPEjHxGM5umViZFgA4deYktNbH0T+SxrPbWCIGjA5aAJRcIubU5LCxmmpi+OAZMwEAtzy5zfLnDSbS+MIfXsFn7liHO1/uxFU/eRYv7eh29NrMnnrjEP7z4S0AgH+76iQsyw36yOfDZ8/C0o4m9I+k8dX7Nrp2TWa9Nsfvy4JBC1nmVnkYANREsz84fpw0jg2UWB5mj9jR4lQTPuD8ab0MSvn5MRrxnTkFLtTTAkBvPLfTjG8uDRMcz7SMjA4eyu1r2d+X/fuZ+1mE9qZqtDVWIaNqeHXP+DdpxuSw0oMWRVEwxaexx5qmTehMSyik4O2LstkWlohlmRvxAeO5bbcZf1uu121uq/PPq/933mxEwwpe3NFtqZRz495eXHnzM7h77V6EFGBmcw26B5O47hcv4Pcv73b8+jq7h/DZO9dB1YD3n96BD+SCrELCIQXfffdiREIKHt50wJPnot2hMLJg0EKW9evbvJ2PzI1Mi/cn62ODFJaHWZdIZ/Sxlic5uCCrLtcXkcyoFVO2YYw7tv7zI4KLhMvTwwDTrhYbmZYdh7OPvTlocXqIwsCYjE25E8TyTQ4zO8ViX4umaXrJTDlBCwC0iLHHHi+YPDRgjDvumDTxMi0AcFmur+WRzQeQylTGa005jExL9ud4UbtcmRYgW856zbLsBK5i2RZN0/C/z+zAu/7nOew4PIi2xirc8fGz8PCN5+OKJW1IZTR86U8b8G/3b0Laocd+OJnBJ3+9Bj1DKSztaMK/XWVtl9CCaQ362OOv/nkTesvMKI+H5WFU8VzNtDhcBmOHyO7EcjXpibTq6RSPIHvzwADSqoammijaC9wElqImbtxUV0qJmDjZsvPzU+X0yONcI348cuxLf1su02JnweT2fJkWFxvxAZRdi77fVB6Wz6kW97V0dg+jdzhVVhO+4NeCSVEaNn1StV6iNtGcMbsZk2tj6BlK4YXtwWpKdoPYjVWrl4dlM+i7u4cs30iPpDL6z6kbQQsAfPKCuVAU4G+vHcAbB46dgNU9mMTHfrUa33hgM5IZFW9bOBV//ex5OHPOZFTHwvjxB5bhC287AQBw27M78ZHbX9Zv5EulaRr+v3s2YPO+PkyujeGW606xtXj1hrfOw9wptTjUn8C3//paWddSjKpqrt7PuWlivkpRSSq1EV98z0m1xg+vuLmj4sylYU6OQI2GQ/pNVKUsmNTfJGz0hDk9Va9oeVjuJt7Ogskdph0tguhpcSpo6U+MLQ9zKtOSfw+LPkFs99GihxeiCX/+tPqyb/hbfFowaUwOm3ilYUI4pOCSk3IlYgEZo+sm8/QwINtD0tGc/VkRr/fj2XlkEKqWzSqL57bT5k6pw9tzj9utY7Itz287gst++BQee/0gYpEQvnHVSfjZ352KSbXGtSiKgs9edDxuue4UVEfDePrNw7jmJ89iey5DVIpfPbcTd6/bi3BIwY8/eIrlXU9CPBLGd969BADw+9WdeG6rO31W/Yk0xDwTN3qU3cSghSwr5abLqurc6aw/QUv2RXqSaVwvS8Ss2exCE75QV2F9LX0lND463Yg/XLQ8zP6uFr2nZYq5PMzZIQoi0yKmGHWW29MiMi0N+TMtC9sbUBUNoWcopWeS8jGa8Mt/7vu1YHIXgxYAwOW5KWIPb9w/apKkU9IZFUd82sNj19hGfMAof7RaIrbtoOhnqXN1n48op7pvfRf2HB1COqPi+49swQd/8QIO9CUwZ0ot7v2Hc/D3y2cVvI7LFrfhj59ejvbGKmw/PIirf/IsnrI5lWxf7zB+/cIu/PtfstmRmy5bgOVzJ5f0dzp9VjP+7qzjsl/nng2u9PmK96J4JBS4paoMWsiyUqYfWVWjnyh7f6ouTp/r4hF9qpIfAwGCyJgc5lw/i1CbKxGrlLHH5WRaHNvTUmB6GGA04lvd1XJ0MKnvOzHf9Do9rlr00p04LRscuN3TEg2H9K3wxUrENjowOUwQQcshn8rDjptgO1rGOmvOZDTVRHFkMOn4RKk3DvTjkv9+Csu/8zhe3unetCqniEOCWlPQYneCmJv9LGZLZjTh3HktyKgavvvQFnzg5y/gR49vhaYB7z1tBh74zLmWRvGf1N6I+244F6fMbELfSBofvu0l/O8zOwqOV+8fSeHRzQfw9T9vwkX/9SSWr3wcX7l3I9Kqhncubcf/O3d2WX+vf377fLQ1VmHXkSH84G9vlPW18glqPwvAoIVs6NMb8Str5LH4ntWxsOM3iZVMVTV9saSTO1oE0RtRaT0tdt4oxPMxldEcaRLWRx7nqbMWCya7eoct7UIRWYjpTdWjTuscz7Tkvs6CtmzfSDm7WpJpVe8bKdTTAoy/ZFLTNP0GrtwmfMDY1eJXeZi5J2kiioZDeNuJUwEAD250bnLTX17dh6t/8iy2Hx5EMq3i3//ymvQLEQfGNOIDRjO+1QliXgUtgJFtuX99F17eeRR18Qh++P6T8b33LEVNzHpWe0p9HHd84iy859QZUDXgGw9sxk13b0AyrSKVUfHyzm7896Nv4N23PIeTv/EoPv5/q3H7czux7dAgQgqwtKMJX3jbCfjee5aUnV2qr4ri369eBAD4+dPbscHCJEM7+gIctARrQDP5RtM0femcG3O9ZehpqY5mg5ajSLE8zILuoSQGc/9Obtz0VNqult4SMpVVMeNcaSSVKXmBofE1CpeHiczDSErF0aEUmmuL16LnG3cMALUxMT3M2eWS86fWQ1Gy13d4IJl3Udt4xOK2WDhU9O93mqmvJZ+9PcPoGUohGlYwf1p5TfgAfBl5rGkadh6euOOOx7p8cRvuWrMHD23cj6+/4ySELC6AzSedUfEfj2zBT1dtBwCcNacZ6zt7sb6zBw9t3I/LFrc5ddmO0jRNf02vzVMetvPIEPpGUuMeXIqgxenFkvmcPXcyTu5owiudPVg6oxE/+sCykp/P8UgY//GeJZg/tR4rH3wNd77ciRe2H8HhgeQxmeNZk2tw7vEtOHdeC5bPaUFjjbMBwEUnTsWVS9rwwKv78KU/vYr7bjin7Nd/IciZFgYtZMlISkUqkz0hciPTok8P83G5ZE0s7HgPQSUTpzV18YhjL6ZmTpcZ+c0oD7P+shsLhxBSAFXLPifry/zZEwMm8pWHxSNhtNTFcHggia6eYQtBy7HjjgGgLneNYxvoSzWQ+3ebVBvDtIYq7OsdwZ6jQyUFLfv7jNKwYqehYhHc1oMD6BlK6oszBXHifMLUelvTgQppqfe+p+XwQPbQIaRAb7SeyM6eNxn1VREc7E/gg794Af906QI942ZH92ASn7ljLZ7dmp1E9skL5uCfLpmPHz32Jn70+FZ87+EtuHjhVFdeM8uVSKt6T485aJlUG8P0pmrs7RnGpr19Rfs1VFUzelqmuB8MK4qC//3w6Xh5ZzfeMr+17KEYiqLg4+fPwbypdfjs79Zh55FsCeWkmijOnteC8+a14Jx5Lehodr+k8uvvPAnPbD2Mzfv68MimA7hiiTPBbpCDFvl+akhK4oYrHFL0AMNJeiO+HyOPU6I8LMKgxYY+F/f2AJWXaSmlJ0xRFKNkMVl+eVix6WGAuRl//L6WQpkW5/e0GI3BYpdIZ4l9LeP1swjNtTHMyd1wrdvdc8yf6034DvVyiZ6WnqGUZ7tCRGlYe1O1I4FX0MUjYfzL5SciFg7hhe3dePctz+Fjv3pZL4G1YsOeXrzj5mfw7NYjqImF8ZMPnoKbLjsRkXAIHz9/DibXxrDj8CB+/3Kni3+T0pkPiGrHlFZZXTK5v28Ew6kMomHFkxt7IPvzeulJ0xwd2/2W+a24/zPn4htXnYQHPnMu1vzr2/CTD56C958x07O/V0tdHG+Z3wrA3tLf8QR13DHAoIUsEjdc9VURV6aBGJkW729Qh8yZFodHzFYyNwczAEYj/mCFPBal9oQ5GUgb5WH5X/qNBZPjv0FuP3Ts5DDAOKF1KmjpN/27zZiUDar2lDhBbH/u71Wsn0UQ+1ry9bVsyC2VXDTDmaClqTqKcK4c6YhHCyZ3Fgg6J7IPnDETT/zThXjfaR0IKcDfXjuIy3/0ND535zr936uQu1Z34t23Poe9PcOY3VKLe1ecM+pkvL4qis+8dR4A4Ad/e1PKwxhxTdXRsP58FBbPsNaML0rDjptcK2U2yY5ZLbX4++WzsGh6Y1nlguUQ2ZCeYedeF5hpoYrn5rhjwN+eFhEoVUfDesaHQcv43D6tqbjysBJGHgPQT8GdGA4hvkahk3UxQaxrnAliqqrpJ/Vzxva0OPi4ZVRNf02oq4pgRu6Es7Pb3UwLYDTjr941euKTpmn6abMTTfgAEAopejmeV30t4vGb6JPDxpreVI3vvmcJHv3CBbhiSRs0DbjvlS5c9P1VuOnuDfrIbCGZVvGv927AP/3xVSTTKi4+sRX3rjgn78LRD555HGY21+DwQAL/+8wOr/5Klo3d0WImxtqPl2nZelA04TMYdkJTrlemx+JiTytK6a+UBYMWskQ/JXahCR8wpiT5Pz0sN/KY5WHj0je8uxTIVlJ52Egqg0Q6m+Ww+0bhVKZF0zT9GqoLlHhazbTs7xvBSEpFNKxg+pgFavUOBi2jylXiYQcyLcV3tJiJoGV9Z++okq19vSPoHkwiElKwwIEmfKHF42Z8Uas/0Xe0FDJ3Sh1+8sFT8MBnzsVb5k9BRtVwx0u7cf5/PIFv/WUzugeTONA3gvf/7Hn85oXdUBTgC287AT/7u9MKnmDHIiF88dL5AICfPrVdut0tYniGeXKYIAL07YcH9aE8+Xg5OWwiaNIzLU4GLfYnWcqCQQtZop8Su5Zp8S/DIW4GWR5mT5+L0+SAysq0iBKnkALU2RjDCRgBfblBiwhYgCI9LRZ3tYh+lpnNNYiMKQFxsjxMPPaxSAjxiDloKS3TYjTij994PndKHRqqIhhOZfD6vn7990V5zPFT6x1dzCY2hx/2qDyMiyWtWTS9Ebd95Azc9anlOGNWM5JpFT9/egfO++7juPyHT2Pt7h40VEXwv9efjs9edPy4ZURXLm7DoukNGEikcfPjWz36W1gzWCTTMrkujvbcoYZYKpyP0YTPoMUJYghIrxuZFpf6Ud3EoIUsEZmWepee5PqelpT3N6ijp4flgidmWsbldiArRucOOTQ610+9ek9Y1HZttNGIX96/g7m8rKpAw6q4KekaJ9OyXe+HOPbGRNzwpDIaEunyrlksuhPZG9GIv/foMNQSNpfvt1EeFgopOEXf12KUiOlLJR3eTeRlpiU77jiXaWlheZgVp89qxu8/eRZu/8jpOKm9AYPJDI4MJrFgWj3+fMO5eMuCVktfJxRS8OW3nwgA+O2Lu7D7SGlZQzcUKw8DrC2Z1DMtHow7ngjEKGUne1qCvKeFQQtZ4n6mxb8MhygPq4qGHTvVngi86mkZ9GE4g9PKyUpVOVQeJprwIyHlmOyIIDItB/pGigYFO3JN+HPy1K3XmkrPyt3VIspQ6nKHJW2NVQiHFCQzKg7aXMSYNn2OlUZ8wNSMb5ogpi+VdKgJX2jxcMHkkcHs3glFgWeTkCqBoii4cH4r7r/hXNz6oVPwT5fOx93/cDZm2RxmcO7xLTjv+BakMhr+85EtLl2tfYOmSX35LBpngljfSEr/Gcv32kD26eVhDmZaGLRQxXP7BtXX5ZJ6eVgE1bllfiwPG5/R08LysPGUE/Q71Wc13rhjAJhaH0dIyWZJip34F9rRAgCRcEgP/sstERO7XkSGNxIO6QGH3b6WwwNJZFQN4ZCiZzXGc+qsbNCyNjdBzNyEv8ihJnxBXJMXu1rEJKz2Ro47LkUopODti9qw4i3zbG1dN/vS2xcAAP68vsvypnm3jZdpWTxOpkVMFJzaEHftgHOicbM8zOmFmF5g0EKW9Jc4rtUqc7Oxptkv+yjHiKk8zM/emqBxO5CtpEb8UscdA3Csz6rYYkkhEg5haoMoESvc11JoR4sgbnrE60apRHmY+eS31L4WMVxgan38mHGuhSyd0YRwSMHenmHs6x3Ggb4EDg8kEQ4pWNgW3PIw0YTPccf+WTS9EVed3A4A+O5Dr/t8NVnFGvEBI1Dffngw7+vytoNswneayLT0J9KO7HDSNI0jj6nylTqu1SoRLGiaUcbiFdFHUx0L66fQLA8bn+s9LXrQEvzHopyfHxHQlzvyWPxcjXeyrk8QK7DMLJlW9eWOY8cdC/qCyTJL+4zFksZzTF8w2W0v02Knn0WojUdwYlt2QtjaXT1GE35rnaNN+ADQUp8NWg55UB4mMi0cd+yvL14yH9GwgqffPIyn3zzk9+XoP69jF0sKU+rjmNZQBU0DNudZusnJYc4zHwr2OTBBbCiZQTpX+hvEbBiDFrLEaMR3KdNiugEY8riHQZxgV7OnxRa3x2CLG9+KKA8rY8+RU4G0UR5W/GVf9LUUyrR0Hh1CRtVQGwtjSn3+MiunSvsG8gwAmZELWuxnWnLjji1MDjMTfS2rd3XrQctJ7c6WhgHA5Frvpoft5OQwKXQ01+BDZx0HAPjOg6+XNFzCSfohQZGSX70Zf8+xJWLc0eK8cEjRS7CdGHss3osiIUUvyw8SBi1kSZ/LI/LCIQXx3EQjr/tahkaVh3HksVW9nmVa0p6XDDqtr4y5+EZ5WHkZSCs9LYBpgliBTItowp/VUgtFyV9m5dTY4/48jcEdzdmgo9NmT4sx7th6pgWAPkFs7a6jpqWSzpaGAdADwO7BhOs3r3rQwvIw393wlnmoi0ewqasP97/a5eu1jNeIDwCLphdeMsnJYe4QfS1ONOObS8MKvX7LjEELWeJ2/wJgmiDmYZZD0zT9+7E8zB63J5CIG9+0qo3aMRJE5WwgFs/JkTLHB4vysPGCFpGJKLRgcrx+FsC0YLLMnhYxPczZTIu9oEUsmdzU1YdXOnsAOD85DACac5kWVQOODrmXbdE0DbvEuGOWh/lucl0cnzx/DgDgPx/ZgqSPr3XF9rQIhZrxUxkVu3K9UiwPc1ZTrmG+14Gxx6KhP4j9LACDFrLI7e3ngNHX4mWmJZFWIQ7xs9PDmGmxopwN71aZ66qD3oxvlIeV0NPi0J6WhIVGfABobxKZlvzlYWJHS6F+FsD58jBzuYrItHT1DCNjIyOxPxeE2c20TG+qxtSGONKqhu7BJEIKsLDN+aAlGg5hUu7mxM0Sse7BJPo57lgq/++82ZhSH0dn9zB+++Iu365jvOlhgBG0bDs0MKqUe3f3ENKqhppYGNMa7P2MUXGNDo491neGTYSgZdasWVAU5ZhfK1ascOv6SBL9Lm8/B+BLwGAOkKqjYV+yPUEkpkIpinGq7rRwSDGNzg3249FXTqbFsT0tuaBl3Eb88TItuXHHRerWnRqiIG6izM+x1voqRMMK0qqml3xZUWqmRVEUPdsCAPNa6/TXKqdN9mCCmCgNa2+sdnyYAJWmJhbBjRcfDwC4+fGt+vut18abHgYArQ1VaK2PQ9WA10zN+GJy2JwptbYX6FJxbpWHBZGtoOXll1/Gvn379F+PPvooAODaa6915eJIDl6cqgPm8jDvTtXFSVEsEhp1k8xMS3Eic1AXj7j6BlUpu1ocGXns0PSwccvDcpmWg/2JvCM2jfKwwiUgjk8PM2VawiEF7blhAXssThBTVQ0H9J4We434AHDqcc36fy9yoQlf0BdMuhm0iNKwFmZZZPLe0zowp6UW3YNJ/Pyp7b5cg14eNs7umXzN+NtyvW7zWBrmOH3BpCON+KX3V8rAVtAyZcoUTJs2Tf/1wAMPYO7cubjgggvcuj6SgPlUva7ERVpWiJszL8vDRlJGEz7g3KSmSuf2uGNB3Px6PVHOaf1lZFoc29OSe07HxykPa6mNIxpWoGnQb/SFwUQaB/qyN9Szi0yeEiOKyw02+/U9LaP/3fSxxxb7Wo4MJpHKaFAUoLXAxLNizJkWp5dKmhm7WtwrDxOZluM4OUwq0XAI//z2+QCAnz+9w5N9PWNZKQ8DTEHLXlOmheOOXSMCjF4Het2MTIt793JuKrmnJZlM4je/+Q0++tGPFp1AkEgk0NfXN+oXBYtXp+oicPAyaNEnh+VuDDk9zBpj3LG7QYvocwp+pqWcPS3Zl2mn9rSMl2kJhRS972PfmLHHIssyuTZWdJtyrRhX7UIjPmBeMGkt0yJ2tEypiyMatv+2t7CtQZ9u6EYTvuDFgkmxWJJN+PK59KRpmDulFsOpDNbuOur597cyPQww+lrME8Q4Ocw9ohHfkUzLRCoPM7v33nvR09ODD3/4w0U/buXKlWhsbNR/dXR0lPotySdenar7sY1eBC2ib0CcaiczKtIObJ+tVG6PwBbqKmDBpKZpZY08dmxPS9paTwtg9LWMHXtsZXIYYH7cnFouOfp5JhrIO7utZVpEf47dfhYhFgnh369ehE+eP0ff2+IGvTzMxQWTYrEkd7TIR1GM0sf+MgN+u1RVw2Du/XC8TIsIWt482I/hZAaappl2tDBocZobjfhBXCwJlBG0/PKXv8Rll12G9vb2oh930003obe3V//V2dlZ6rckn/R7dKpe7UOmZTg5ujzM3GA7EvAxu27yYgQ2YJzYB3l62EhKRTIXAPvb02Jtehhg7GoplGkZL2hxc7kkUEKmpcQdLWbXntaBmy4/0dVss8i0HBl0pzxM0zTuaJGceI3wuhnf3H82XqZlakMcLXW5Zvz9fTg0kED/SBohBTiOGTzH6Y34zLSgpGPSXbt24W9/+xvuvvvucT82Ho8jHrdfQ0zyKGdcqx1GaZZ3N6jiRrAmmv27xSMhKAqgadk+ivFevCcqL0ZgA5XRiC9+fsIlbiA2puqVu1zSWnkYAP20d1+hTMs4G69F43w5jfgZ08nv2J9Du7ta9uuTw+w34XvJ7fKw7sEk+key445nctyxlESA3udxpkVks0PK+AcbiqJg0fQGPLnlEDbu7UUi99rS0VzDiXQu0Pe0ONrTEsygpaRMy2233YbW1lZcccUVTl8PSUjcoNa7fIPqR6ZFfC/xvRVFMe3FYKalkHJ6NOxwqszIT+ZSulI2EOvPxzIzLQkbmZa2XNDSNSbTYmVHC2A8buX0tIw6+R1zYNIxyRjLnG/C2VgiaCkn0+KFltyQALfKw0Q/S1tDFW8uJSWy115nWsxN+FZepxabJoixCd9dTk4Pm3BBi6qquO2223D99dcjEuEp9ETg1Q2qPj3Mw8ldIqtTbXoDd6ocp5J51eekZ1oCPD2s3FK6KoeCFr2nxUqmRS8PMzIZmqZhR+7mpNi4Y8AYmTpQRi+SKEuNhUOIj+nDmVIfRzwSgqoZAUkxosxN9qV3k2vFyOMkNM364kyrdrE0THpiJ5HXPS1Wm/AFY4KYOWjh88oNYuhJ73AKqo2Fuvn0ljHJUga2g5a//e1v2L17Nz760Y+6cT0kIe8a8f1bLmku26nSRy8H90bZbV6d1tRWRKalvFI68XxMq5qlrEIhenmYjUb8fT1GQNA9mERfrrRovLp1JzJkhfpZgGxGdHou29JpYVeLEz0tXpiSy7QkMyr6XXjOiyZ8jjuWl3i++xW0jNeELxjN+APY3JWdCstMizvE+6ymlf+8mHCZlksuuQSapuGEE05w43pIQt414mdfLL0MFkQ2xdyAX+PQBvJK5tXIY31JYYCnh5WbqTRnAct5Tlrd0wIA7bkFk0cGk/rniX4WK5vUxQCF4VQGmRJPBgcSuVHrBXrprPa1aJpW9vQwr1RFw3rA50aJGMcdy0+UYff5WB5mRVtjFSbXxpBRNby8sxsAMI/jjl0Rj4T1+5Ke4dL7WrxaFO6mkqeH0cThWSO+D8slx04PA4wAptxynErm1cjjSmjEL/dkKxpWEM5NrBop42fDmB42fqalsTqqB0uitErvZ7FQAmIONEp97IzFkvmfY6KvpXOcCWK9wyk9yzRV8vIwwDT22IUFk5wcJj/fMi1J8fNmrddJURSclMu2iHMJZlrc0+TA2GNxL6coRhli0DBooXFNhPIw82l2lQ/BU9B4NfK4shrxS/u3Mg+HKC/TYn16mKIoaMtlW8QEMavjjoHsyWA0nA20Sn3sCu1oEaxmWkTQ1VwbC0TzuVsTxDRN0x9D7miRV71PI49F/5noR7Ni8fQG/b+ba2OYlOvJIuc1OjD22Pxe5ObodjcxaKFxGaVALjfi+zo9zPi7+RE8BY1nI49jYnRucB8LJ0rpnFgwaSyXtPay3944eoLYjkPWgxag/H6k/iI9LQDQ0Wytp2V/QJrwhcm5TMsRh4OWo0Mp/d+UuzTk5XdPi50x/6KvBWATvtuMTEvpGVijCT+YWRaAQQtZ4F2mJfuD5GUviSiZGVUe5tC0pkrm1US5mgpYLulEKV11LPtSXU4gnbCRaQGM/o9SMi2AeYJYiZkWPWjJ/7pjN9Miez+LIDIthxwuDxOlYW2NHHcsswafelrsNuIDxgQxgKVhbmsyTRArVdCb8AEGLWSBV6VANTHvp3aJ71WdJ2hheVh+I6kMkh4181VEeZgDPz/OlIdZ72kBRu9qUVUNO46IHS3Wbk7EiXGpQxT6xzn5FT0tB/pHkEgX/h77c034sk8OE9wqD9vJ0rBAEAdBIym1rGmBdtltxAeA6U3V+s00gxZ3GQsmyykPyz7GDFqoounTwyp5uWT02EZ8Tg/Lz9zMV2ej/rkUldCI70QpnRPZvxEbyyWB0btaunqHkUyriIaNUcPjMR670t5kRaal0PSw5toYqqNhaBrQ1VN4V0vgMi0uLZjUJ4e1sDRMZuYg3csSMaM8zHoWTlEUvHVBK0IKcNacyW5dGgForC6/p4WZFqp4qYyq39i7XgrkQy/JcJHyMAYt+Ymb8Pp4xPVmPnOmxY1le15wopQuLp6TyTL2tKRtloc1Gbtadpj2e4QtPuZG0FLaz5E+8rjAya+iKHpfy54iE8SMHS3Wgi2/teSamY8MOlseJhZLckeL3CLhkP5+5GUzvsiI2ulpAYBvX7MYT/3zW7B4RuP4H0wlE5mWcqaHMWihimc+6bH7YmZXTTT79dOqppcfuW1Yb8TPk2lheVheXpULAsaNr6oZ06+Cxok3inIzLamMqu9LsbJcEgCm56aHdfUO2+5nAcw7dsqbHlaoER8w+lo6uwv3tQQ208LysAnLj2b8UsrDgOwhiPg5JPeIRvzeMva09HrUn+wmBi1UlGgiro2FEQm7+3QxBw5eBQxD+p4W44WaQUtxXg1mAIzdPUBwS8Sc+PcqN/tnDnasLJcEgLZcZqJ/JI0Ne3oBAHNsBS3llfaNNz0MMPpaimZaxPSwoAQtdSwPm+j8WDBZyvQw8o6TmZagLpYEGLTQOLw8VY9FQojkSk+GUt7coIqbwFE9LSwPK0qM8PUixRwKKaiNBXeCmKZpjow8LnfhqchSKQoQtzjyuDYe0SeePbftCAB7mZZy+5GM5ZKF/930TEuBCWL9Iyn9+wdl5LFYLjmYzDh2cHJ0MKnfsBzXzEyL7IKUaSFvONHT0sfyMKp0XjXhC14344vpYXl7WphpyavP41nvQW7GH0pm9LKscn6Gqsp8TopgJx4JQVGs9yG15/pa9ubGHtsrDytv8tt4yyUBYMY4mRaRZWmoigTmZqwuHkEsF1g6VSImxh1Pa6galdEmOemZljJuUO0aTDJokRl7WrIYtFBRXt+getmMr6qafgKdt6eFmZa8vK6LDfLYY5GpjIYVy1O78ik3+ydGAtvdzzG2D2S2jQVy5QabA1bKw5qL97SIJvy2gDThA9kBA1McHnssghaWhgWDH5mWUhvxyRvGnpZkyUNpGLRQxRM3XYUWvDlN9JZ4kWkZMe124PQw67wsGQRMm9U93N/jFPO4YzsZjrH05ZJllodZbcIXxAQxIHszI26mraj1MNNyeCCRt3RuX8D6WQRRInbYoQWTOw/n+lnYhB8I4kDIn/IwZuJk1JQrD0tltJLvj/rY00KVzrjp8ub0xVjs6P6LtfkH33wzx0b84pzYO2JHrT6FKniPh1MBXrnTw4Zt7mgR2k03+7Nbam0FXvV60GL/mjOqZgQtRV57Gquj+vfZk6evZX/AJocJTi+YNDItDFqCoEHPtHhTHpbKqPrETmZa5FQVDello6X2tTDTQhXP61N1L8vDxPeoioZG7RupYXlYUU7sHbEjyOVhYntxuT8/TvW02C8PMzItdvpZACPT0l/C42bOqhUrD1MUY9llZ56+lqBmWiaLTItDE8T0yWGTWR4WBF6Xh5lfW9nTIidFUfSxxz1D9jOw6YyKwdz7B4MWqlhejrcFvG3ENxZLjn6RLvcGsdJ5/ZwQj08QG/H1AK/MTGW5fVaiPCxuN2hpGp1psaO2jD0top8lFg4hPk5Jm+hryZ9pyf5eUCaHCSLT4tSCSS6WDBZRjt2f8CbTIoKjWCSEqMurDah0el9LCc34faYA2KvKGTfw2UlF6dPDPG7EH/IgyyECo+oxN3KcHlacEyN87agto8zIb07VEIvyxeESF2zqmRaL446FdlOmZY6NJnygvAyZldIwQZ8g1l05mRYRtBxyoDysZyipTxw6jpmWQPA805LkjpYgaCpj7HGvhzv33BTcKydPGCfF3p6qD3vS05L9HmNHgOrXwPKwvPqHnckeWKVvVg9iI75DI8PL39NSWnnYtMbSMy3lLJc0drSM/xzrmFQk0xLA6WEA0FLv3IJJURo2tSF+TFaZ5GQsl/S2PIxN+HJrLGPscSX0swAAX8GoKNF07dX0ME/Lw5KiPCx/piWtakhlVKbLx/Brelggy8McGhlebiP+SK7J1m4jflU0jItPbMXu7iGcMLXe1ueaMy2aptlq4hcNyFaClhkFelqGkxn9zT1wmZZaMT3MgaDlcK4Jn6VhgaFnWjza0zKQy2LXMqiVmt7TMmy/bLQSJocBDFpoHF43Xdd4WJolMiljy8OqYqFRH8OgxaBpmjE9zKMXvyA34juVqSy3zypRYqYFAH7+96cBgO2RzSLYVLXsz5GdU34RoBZrwhcK9bSILEtNLBy4Gm6RaXGip0WfHMagJTDE897rTAvLw+RWTk9LpWRaeDdGRXnfdO1dpmWoQKYlFg4hnJsmxr6W0RJpFclM9tTeqxvBcvd9+KnXodOt8hvxRU+L/aBFUZSSdszUxMIQn2Y3S2ZlsaQgpod1DyZHPUf2iSb8xqqyduT4QfS09AylkMqU1sck6JkWjjsODGNPi1eZFlEexqBFZk01uZ4WBi1E+fV73HRd7eFySRGQjO1pURSFzfgFiCA2pHh3Khfs8rDsNZf7RlF2eViqtPKwciiKgrpYaUMUrCyWFBqqovq/rznbEtQdLUC2DEQcnBwpc8Ekxx0HjwhaEmljf4qbmGkJhsYyysOcOkDzG4MWKiijavqOBa9O1Y0dKd4tl6yOHvt308tx2Iw/irmfxavT67pKWC5Z7shjn/a0lKvULJneiG/x362jOTdBzNTXok8OawhWEz4AhEIKJjvU18Jxx8Fjft57kW1hI34wNJXRiN/HTAtVugFTPW1lNuJn/35jy8PMv+fFdQRJr8flgoDRHBrE8jCnhhaIPqvhVAaaptn+/JF09nlsd09LucRNkN3Rrcb0MGv/bjOaslmETtPY4yBnWgBgcq5ErJygpXcohaO5G5xZLcy0BEU4pKA2VtrPTin0RnxmWqQmRh73ljCgQbwXMWihiiWe5FXREGI29zuUystgwVgueeyNXLnlOJXKaML37s1NP60P4shj8e9V7sjj3PNR1aD3FNnhR3kYUPoQhYHcUj0rPS2AOdNilIcFdUeL0FInMi2ll4eJJvzWeo47Dhp9waQHQQvLw4KhnEwLe1qo4vlxqq6Xh3nYiJ+vZKbKw+sIEq/39gDmG99gPRaqqumlHeUGeebn6EiylKCl9Eb8cpQacNqZHgYAM3K7Wsxjj/f3ZQOYoGZapjiQadEnh7EJP3CMBZNelocxaJGZEz0tDFqoYnndhA8Y/SVDHpyqF9rTAhijl4eYaRnF62lyAFBjWi5ZSmmUXwaTaai5yy333ysaDiEiJtqV8JwUmZaxQyfcVuqCSTvLJYH8mZb9Qc+0OLBgcudhNuEHlTH22P2gxc7gC/KPyLSMpFTbVSC9Du0M8xuDFirIqSZiO/zItOQtDxMbyJlpGUXf8O7hC594I9W0YPUYiTeJWCTkSAN8OSWLibTIKvpTHjZgs8TF7k2UnmnJ9bQk06peVtXWGLxGfAB6I345u1qYaQkuUR7mxa4WkQll0CK3unhEnypot6+FmRaqeOJU3asmfMDU0+JBhkNfLpmn1rua08Py8iPTUh0NI/c6HahmfKfGHQtVZexq8b08zOXpYTNyu1r6RtLoHU7hQG6xZCwSwqSaYL5JtzhZHsbJYYEjKhzYiE+Coihoqi6tr8Xp9yO/MGihgvr8KA/zdHqYGHlcONMSpJN9Lzg1DcsORVH0CWJB2tXidKaynEDaaMT3J2gZsLunZcTeAIOaWETPTOw9Ooz9fcbksKAtlhREedihssrDxLhjlocFjT89LRx5LLtGvRnfegZWVTVf3rvdwKCFCjJO1b0sD8t+r2RaRUZ1t39hKFV45DEzLfkZ07C8PZGrDWAzfp/Dy7z08rASAmmRaYl7XB4mbrzsTw+zX64isi2dR4dMO1qC2c8ClD89bNS4Y2ZaAscIWjg9jAxGM771YLY/kYbmUH+l3xi0UEF+RObmAMLtZnx9uWSxnhYGLaP4dVojTgCDlWlxZtyxUFZ5WLrwpDw3iV0Tdh43VdWMoMVGcDyjOZtN2HN0GPt7gz05DDDKw7oHE1BLOMDZ1Z3Nskypj7PsJ4Aa9JHH3jXi83kiP1Ee1mujPEwcoMUd6q/0E4MWKqjf4ZsuK+KREEQ1h9vN+CPFGvHF9LAA7gZxk19bdUvd9+En5zMtxoJJu/TyMJ96WuwELebxyCVlWrpNmZaANuEDQHOu3E3VgKM2SkGEHbnSsNnMsgSSV5kWTdOYaQmQpprs64KdsceV0oQPMGihIvp8GJGnKIoxbtjloEU0+xfraRkuYSdGJfOjzwkI5oJJ13payigPC8JySRHgRMMK4jaW2nZMMmdaRHlY3PLnyyYaNoYIlFIitutIdpIa+1mCyaugZSSl6qPZmWmRX2MJjfh+HTa6gUELFSRuurycHgYY07xcD1qKlYeVMV62kvkxPQwo7cTeb71OZ1rKKFlM+NSIL8q77Dxu5h0tdproRaZlz9HKyLQA5U0QE034HHccTPVxMfLY3fIw889mTcBLhyYCsavFTk8LMy00IfjVdK3vakm5d4OaUTUk02ru+xUeeczyMIOmmSeQePucECf2Q4FqxHd45HGJwyEyqoZkxt/pYXYyZCJosXtY0mHqadlXAT0tADBZb8YvIWjhuONA8yrTok8Oi4URCgVz0t5EUkpPi9MHaH6yHbTs3bsXH/rQhzB58mRUV1dj8eLFWL16tRvXRj7zq+m6xoNxw+Ybv2LLJTk9zDCcyiCVydYReJ9pCWIjvrNZKT1osVmyKBZLZr+G/MslS93OPb2pWv/8A33Zm/ygBy1GpsVeeVg6o+KNAwMAgDlTGLQEkbGnxZtMC0vDgmGi97TYepYePXoU55xzDt7ylrfgwQcfxJQpU/Dmm29i0qRJbl0f+ciPRnzAmx0pIoOiKMhbN2+MPGZPiyAyB+GQkjfQc5PY0xLMRnx/97SMmJ7D/i2XtH7NAzYXSwpV0TBa6+M4mNtrEgkpmFwX3J4WoPTysFf39mIgkUZjdRTzp9a7cWnkMpFp6XM501LqIQH5Q+xp6Z2g5WG2nqXf/e530dHRgdtuu03/vdmzZzt+UeQ/VdX0Ex6vS4H08jA3My2mxZL56uaNRvzg3CS7zdxY7vXCvmA24jsb9JfaZyU+PhYOeV7+USf2LmVUJNMqYhYa6wcSuV66Em6iZkyq1oOWqQ1VCAe83GVKbsHkYZsLJp/behgAsHzOZJb8BJQoj0ymVSTSGcRdOnAYZKYlUJpKacSvkMWSgM3ysD//+c847bTTcO2116K1tRXLli3Dz3/+86Kfk0gk0NfXN+oXyW8wmdYninieaYm634g/VGTcMcDysHycHuFrR6mb1f3k+MjjEhvx/VosCYzesG01S9ZfYqYFMPpaAGBawEvDAGBybuzxkUF75WHPbTsCADhn3mTHr4m8Yc58uNnXYpSHsQk/CER5mL2eFn/6k91g611s+/btuOWWW3D88cfj4Ycfxqc//Wl89rOfxa9+9auCn7Ny5Uo0Njbqvzo6Osq+aHKfOCWOhUO2xo46wehpce+FWgQj+SaHAebxsiwPE5zu0bCjLveGGsjyMIfeKEptxB/xaXIYAETCIb2Pxmo/ktGIX1qmRaiEoKWU8rCRVAardx0FACyf2+LKdZH7wiFFD1zcDFpE6SbLw4JBZFr6E2mkMtbuTyqpPMzW3aiqqjjllFPw7W9/G8uWLcMnPvEJfPzjH8ett95a8HNuuukm9Pb26r86OzvLvmhyn7ke3+tSIK/Lw/Ixgpbg3CS7TZ8m53G5IBC8kccZVUN/wtmdNqXuaRlJ+7OjRaiz+dgZNfb2/91mTDIyLW0NFRC0lFAetnb3USTTKlrr45jLJvxA0/tabPQv2MXysGAxv59YfV5M2KClra0NCxcuHPV7J554Inbv3l3wc+LxOBoaGkb9Ivn5tY8DMDXiu1iaZexoyf9CXWMqD9M0zbXrCBI/My21JSwp9JN5WpZjPS2x7Mu1/UxLLmjxuAlfsPvYDZSRaemYVFnlYS36yOOk5deh57aK0rAWzw+cyFlejD3m9LBgCYcUPXtvdVdL/0QNWs455xxs2bJl1O+98cYbOO644xy9KPKfXqLhw5Pci0yLKD0rtEyrKncNqgZ9x8VE5+dW3VI2q/tJBHjV0bCl5nMrSm3E92uxpFB6pqW88rC2gC+WBIzysGRG1TN343luW64Jfy77WYJONOO7OfZ4kNPDAkcfe2yxr0XPtNRMsKDl85//PF544QV8+9vfxtatW/G73/0OP/vZz7BixQq3ro98Yp4U5TWx7NHNnhZx41ewEd90g+dm8BQk+jQsPxrxY8FqxO91eNwxUE5Pi7/lYXbHHovXnlJuotqbqiGSC5WQaamKhvV/ByslYgOJNNbv6QUAnM2gJfAaPMi0iImMtQWqDkg+TfrY4/EHdGiaZrwf+VAl4TRb72Knn3467rnnHtxxxx1YtGgRvvnNb+IHP/gBrrvuOreuj3zia3mYvo3e/fKwqgJBSzQcQjScvfvhBLEspxvL7QhqpsXJn5/ye1r8zrRYOxUUmZZSysNikRDOnN2M5toYTphaZ/vzZWQuERvPyzu6kVE1zGyuGdXfQ8EkMi19LmZaxEEQp4cFR6ONscdDyQzSuVGwlVAeZvtd4corr8SVV17pxrWQRIxTdT8yLV6Uh+UyLUVu5KqiYaQyaWZacvyc9S7eUIdTGWRUTfr9G8bQAuf+rar08jB75Yri493a8zAeu+OqS10uKfz2Y2chmVYLTgYMmpa6OHYeGbI0QezZ3H4WjjquDF70tLA8LHjslIeJLEvEh6XQbvCnXoCkJ0UjvgfTw4r9EHuR8QkS/Ubcx0Z8wN2yQae4kZUqdXeQ3+VhdrNkeqalhOlhQLZRtVICFsDoazliIWgR+1k46rgyGD0t7jfil3pIQN7TF0xaaMQXh42N1dGKGMzBoIXy6vexf0HvaXGxLMvY01L4hbqmxGV+lcqNPg2r4pEQIrnsitXeCD+5kZUqtRHfzz0tgP0dO+VmWirN5Fx52KFxysOODiaxeV92efPyOcy0VAIj08KRx2TQe1qGxi8ZFUsoK6E0DGDQQgX424jv/o6UoXH2tAClNz5XKj9HHiuKkdoOwq4WNyatmZ+PdsZw+51pETdDVqZfqaqGgSTLVcysLph8YXs2yzJ/aj2m5Pa7ULCJ9183e1pYHhY8jTYyLeKw0Y9JsG5g0EJ5iRfJ+ootD8uNPC5WHubBdQSJsXDUnxe/IDXj6z1hTjbi556PmgYk0tb7WvRGfJ96Wuw8boPJNEQ8VkojfiWyumDyWY46rjjelIflGvE5PSwwSulpYaaFKpqf28+9bMQvVvvO8jCDpmmu3IjbEaQFk31ujDw27Xux85z0e0+LncdNZNGiYQVxh/bbBN2UXHnYkcHipSCin4WjjiuHeP1gIz6Z2elpYdBCE4KfpUA1UbGnxf2eFiuN+Jweln0sMrmxiX4EsoB5ClUAghYXfn4i4RBi4exLtp2SRb/Lw+wsl9T7WeKRimgadcJkC+Vh+3tHsP3QIEIKcCb7WSqG28slM6qmv5Zw5HFw2OlpEYeNjT69bzuNQQvl5WcjvnlKkqpar923Y9hGTwvLw4yb8EhIKfpv5ia9zCgQ08Pc+fkRgYedQNoIWvwuDxv/mvs5yegYek9LkfKw53KlYYunN1bMiSq5P/LY/FrKRvzgEEGLpelhFbRYEmDQQnlomubrE92c/RD1+E6zUx7GRnzjJtzPsYniJNDqvg8/ubWBuJSxx/qeFp/Lw+xlWirjDdYJYrnkYDJTMFjlqOPK5HZPiygNi4RYjhkkjdXZ14Te4dS4B7ssD6OKN5wyNqj60QxrPsl3qzTLKA8r/PcrdcRsJfJzsaQQqJ6WEXfGQ1eV8JwUz/Uqn25KjGBz/MdN3JzV89RXVxeP6DeU+UrENE3D8+xnqUji/TeZUV15HzKPO2Y5ZnCIAETTxg9oGbRQxROn6mGfNqiGTKc+bpVmWVkuWeXBQICgcGNZol2Bmh7m0huF0WdlY3qYz+VhYkmktUZ8MbWQQYugKErRsce7u4ewt2cY0bCC02ZN8vryyEV1sQhELOFGtkVkrdmEHyyxSAi1ufuTnuHifS0MWqjimXe0+HX64nZpltiqXuxGTh8IwEyLZJkWuR+PdEbFYC7Qdbo8rJTdQSNpv6eHGb1hmXFKGfq5WDIvUSJ2OM+CyWe3ZrMsy2ZOKpo5puAJhRTUxdzb1WJkWtiEHzRWxx67dYDmFwYtdAy/93EARtmWa5kWK9PDYtkfjxFmWozGch+b+YKSaTGfiDqdMSilZDEhyXJJYPwhCgMcv5pXsUyLaMJnaVhlcrMZf8BUHkbBYnXBZK8E93NOYtBCx+j3eR8HYF7s6PwLdSqjIpXJnvhaGnnMTIsre0fsEunwAcmnh4kT0dpYGJGwsy+xpTXi+1seFo+EEAllM7bjBZwDzLTkVWiC2Oh+FjbhVyJxs+nG2GPziHEKFn2C2Dhjj1keRhXPrSZiO9xcMGm+4Ss2Paza5WxPkPi5t0eoCUimxa1xx0BpmRYxPawq4k/QoiiKHoSM99ixET+/lvr8CybfODCAI4NJVEfDOLmjyYcrI7e5mWkRmc9alhUGjr6rpUimZSSVQSJXHsxMC1Uscape7+PY0WoXd6SIQCikQF/WV+wamGmRI8UclPIwt8YdA6aeFjt7WtL+locBxk3ReOOqRblKfYXsFHDK5NpspuXQmPKwZ7dmS8NOn92MGEfWViQ3F0yyPCy4xNjjYj0t4rBRUSrnIIivcnSMPn2xZGVmWob0yWHFBw3oPS0MWkw9LT6Wh8Wt3fj6zc1MpXhOBqk8DDACzoFxTov72dOSV0t9/vKw5zjquOK5mmnRf97YiB80RnlYkaDFdIAWClXGSGsGLXQMGTaoGo34zr9Qi69ZrDQMAKqjLA8TZJgeJt5YZc+0uDmtxW72T9M003JJHzMtFne1DOSeZ+xpGc2YHmYELemMihe3M2ipdCJo6XMlaMm+jjDTEjxNeiN+4Z6WXgl6UZ3GoIWOYWRaJGjEdyHLMWJhcpj5GrinRY6elqAsl3Tz30rvabH4nBT1zIC/mRarj51eHsabqFGm5BrxzT0tm7r60J9Io6EqgpPaG/26NHKZKA/rG2dKVClYHhZcek9LkUxLpTXhAwxaKA/znha/eFEeVj3OTVwpTc+Vys3mcquMvgjJgxYX/63iNjMtiZQpaPGpER8wTovHG3nMPS35Tc4FLT1DKaQy2cf02dyo47PmTEa4Qko/6FjelIfx5y1o9J6WIsEsgxaaEPRGfClGHrsYtIyTaalx8RqCRgSyjT6mmcUbayKtIp2xvhHea24G/UZ5mLW/v2jCDylANOzfja3VgJMjWPNrqo7qgcmR3ILJ59nPMiGwEZ/ysTLyWBygMWihiiZDeViNi/0kw0lr5WHm7eOaVnyTdyXTNE2KPqfRSwrlDSTdnLRmt2TR3IRfbOiE22otNOKrqqbv4OH0sNFCIQWTa42+lkQ6g5d3dgMAzp7H/SyVrIGZFsrDyshjNydZ+oVBCx2jf1im8jDnX6hFac245WGmoMbcGzDRDCYzUHMxm5+BbCwS0kdUy9zX4maAJ56zibTVoCW3o8XHfhbA2rjqoVQG4mygnuVhx9AXTA4ksG53D0ZSKlrq4ji+tc7nKyM3ideR/oTzmRbRiM+gJXiaTCOPCx2qsjyMJgQZJkV5Ux5W/IXaHNRM5BIxcRMeC4cQ93kXRG0AJoi5OTLc7p4WPdPi8+MmelSKjasWWZhISPH9eSajyfoEseSoUcd+ZtDIfW72tBjlYRx5HDQiEEmrWsH7Exn2qzmN7wx0DCnKw2L2Go7tENmbmnFOn8MhRV/YNpEXTJr3jvh9g2TsapE4aPGiPMzi81GGHS2Atelh/aZxx34/z2Q0xZRpeT7XhM9+lspn9LS4UB6WZHlYUFVFQ/r9SaFmfGZaqOKNpDJI5kqhZCgP87MRHzA1Pk/oTItYLOn/C59o6B6UeMGkFyOPLQctabGjxe/ysPH3tHCxZHFiweTu7iGs290DADiH/SwVz8i0FC4DKtUgG/EDS1EUY1dLgWZ8N3eG+YVBC40ibrgUxbhB9EN1zMVG/JT1oMWJ0cvffeh1/OLp7SV/vt/0aXISvPBZXVLoJzcnttjd02JkWnwu67MwPUyUh7EJPz+xYPKRTQeQVjXMmFSNjuYan6+K3CaCllTGWBTrhEQ6g1QmGwQxaAmm8Xa1VGJ5GJ+pNIq44aqPRxDycfa/q434YnqYhdNnuyfbY+3rHcYtT25DOKTg+rNnIRoO3jlBrwSDGQTZF0wm06r+XHEl0xKzV65o9LT4nWkZ/3HjYsniJtca5WEAS8MmitpYBIoCaFo222LlsM0Kc7a61qGvSd5qGmdXCzMtVPFkaMIHjGDB7/KwqjKDFrFTIaNq6B4sPE9dZrI8JwDTza8LwawT+ky7FNxYkGj3+SiWSzp1o1Mq8W9RNGjhYsmiRHmYcPZcloZNBKGQor/u9TnY1yJ+FquiIUQCeJhGQKO+q4U9LTRBiWY/v/sXnCjLKmRI39My/s1RdZkZH3Ogcqg/UdLX8JtUPS2SN+LrpXTxiCtbykXQMpJSoarj17eL5ZK+l4dZeNzY01KcKA8TmGmZOBpcWDA5wJ+3wNN7WoaPPRBNZVR9nxmDFqpYxuQjf1/IREAx5MJixxG9p2X8p3+5U8yOmhrkDg0ENGgZkee0xkqZkZ/cnrxnHsNtZXeQbOVhA4l0wZ9n8/QwOpaYHgYA81rr0NpQ5ePVkJfcGHvMJvzgK9bTYn6uyFDa7RQGLTSKuEH1uxlWZDgyqoZkxtnFjkO5rEl1dPwfZGMvRmnXcLQiMi1yBLKAeU+LnNPD3Bx3DIweXWwlkBaNu35PDxM3RqqGgs3ERiO+/88zGU2qNTItzLJMLA0ujD3Wd7T4OHCHytNUYyyYHEuUhtXGwhVV/lc5fxNyhCylQDWmGnynS8SM8jDrjfhDpZaHmV5MAhu0uDjC1y7ZG/GNfyt3bgTMu4NGLAUtcpSH1UTDEKtXCpWIsRG/uGg4hOZc4MKgZWIxjz12ijj4YXlYcDUWKQ+rxH4WgEELjWFeJOinaDiEaDh7l+N0M744obYStIiPsXKDmI8503I4qOVhw+6WPNkhfSO+B/9WdibaiayG38slQyHFtGMn/2PHnpbxffL8Obj0pKm4cH6r35dCHnK3PIyTw4KqqUgjfiWOOwY48pjG6JfoVL06GkYqk3Y+aEla3xJe7vSw7qEKKA9zOXtgh7HvQ9LyMA9+fqqjYfQOpyxlIPVGfJ97WoDszdFAIl0406JPD/P/tUdWn7xgrt+XQD4Q5dp9LjTis6cluMTI4948I4+ZaaEJQaZTddGM73R52LCd8rBYeaOXeyopaJHgOSF7eVivB/0/1Tayf7KUhwHjTxDTG/F5E0U0ihuZFk4PC75imRa3+yv94v87GUnFaMT3/4WsJlZeP0k+mqZhKGV95HFNtLzysO5BU09L0MvDJDgBl3562LD7mRY72b+EJOVhgNGrUuixEzdRMmT0iGTiRqaF08OCjz0tNOF5cdNllZ7lKDFgyCeZUZHJ7bewsnCvusx9MaN6WgKYaVFVzSgZlGB6WE2u/lraPS0ujzwGgOpc1sRSeViAMi1cLkmUn3jtdWV6GIOWwBKZlpGUeszBah+DFuDrX/86FEUZ9WvBggVuXRv5wLjp8v+FzI0FkyOm0cXVNnpaSikP0zRtVE9L30i65IyNXwaTaYgdhjIEskHJtLj5RlFtY3eQsVzS/0zLuOVhLFchyqveheWSg/rPm/+vDVSaOtMS47F9LZWaabH97nDSSSfhb3/7m/EFInyDqSRyZVpyCyYdDFqGUtkX6ohpdGwx5SyXHEpmkMwtAAwp2R0VhwcSmDGpxvbX8osIYmORkFQ3vtLuafFgaIFoqrfW05Lb0yJBI36xgFPTNKPGnpkWolHc6WnJvn4w0xJciqKgqTqKI4NJ9AylMNW0cFampdBOsv1sjUQimDZtmhvXQhIQL4oyPNFr9MWOzr1QiwDISmkYYGRjSsmQHM1lWWKREFpqY+jqHcGh/mAFLWLTrgxBLADU5QLZZEZFMq1aCjy95EXzY5WNDKRc5WGitO/Y6x5MZqDlMnr1cTmea0SyaHBx5DEzm8HWWCOCltF9LV4MhfGD7XeyN998E+3t7ZgzZw6uu+467N69u+jHJxIJ9PX1jfpFckqmVT2jIMNNak2Zk7vysTM5DDBuEEu5hqO5Jvzmmhim5E5AgjZBTJa9PYJ5p4CMJWK9HgwtMPa05N8sb2YELTJkWrL/JvkeN9HPEg4pUgRYRDJxpTwsdxhYa2EgDcmrSW/GnxjlYbbeHc4880zcfvvteOihh3DLLbdgx44dOO+889Df31/wc1auXInGxkb9V0dHR9kXTe4wvyDKUKJR7rjhfERQZqWfBTBle0rItIh+lkm1MUypiwMADg8cO+VDZrI180XCIcRz2RUZm/G9CPLsZP9kWS4JGLXzeYOWhDG1UFEUT6+LSHaiPKxvJA1NpCTLxHLMytBUk9vVMsSg5RiXXXYZrr32WixZsgSXXnop/vrXv6Knpwd/+MMfCn7OTTfdhN7eXv1XZ2dn2RdN7hD9C+bmLj+V009SiFEeZu2FWt+JUVKmJRugNNdGMaU++8ISvEyLPOOOBVHO4PTS0XKNpIweJlenh9nY05JIy1QelitxyRO09I+wVIWoEJFpyaiaY++HLA+rDE0Fxh6LIKbSgpaynq1NTU044YQTsHXr1oIfE4/HEY/Hy/k25BGjCV+OFzGjEd+5E3XRH2O1PKy6nExLLmiZVGNkWg4NjNj+On6ScUFVbTyCI4NJ6TItIsuiKEbvjRvs7GnRMy0SNOIXWwzKRXdEhdXGwvowl/6RtKUdY+MZZCN+RWjMs2BSVTX9cEim924nlHX8NjAwgG3btqGtrc2p6yEf9XuwY8ION3pahmz2tJRToiYa4ybVxDClPhe0BC7TIlcgCxS/+fWTeQlnyMVMpR5I22rE9z9oKbZcUrz2yLDUlkg2iqI42teiaZrR08KRx4HWVJ2t4jD3tPQn0vpgE5mqJJxgK2j54he/iFWrVmHnzp147rnncM011yAcDuMDH/iAW9dHHjJuUOV4kruxp2XY5k2cuEFMpFWoqr1a4lE9LfVB7WmRK5AFivdG+MmroQX6cslxMi3pjIp07jkrU3lYvulhAywPIyrK3NdSriHTtD7+zAWbWDBp7mkRFRJxSVYVOMnWs3XPnj34wAc+gCNHjmDKlCk499xz8cILL2DKlCluXR95SDzRZTntrC5jsWMhdqeHmUcjj6QzttLyxvSwKFrqgp5pkSdoGW9JoV+82nFktadlJG1MF5Phjct43I49KRalDPUSPc+IZJL92Rh2ZOyxOPAJKdaH0pCcRNBi7mmp1CZ8wGbQcuedd7p1HSQB46RYjie6CBCczLTYLQ8z9wIMJe0FLXpPS+3o8jBN0wIzIalPwlnvYkSnbJmWXo+CFqs9LeagJi7BPpu6IotB9UyLJAcmRLIxFkyWXx4mDnxqY5zWF3QiMDH3tFRy0OL/OxlJw6jJl+PGQe9pSbmwXDJq7e8YMu2NsBs8HTX1tIhMy3Aqg0HJpl4VI2emJVceJtm/oz5pzeUAr8piT4sIWuKRkBQ3JiIgyZch00ces1SFKC/xvizep8vBJvzKIUYe9+QpD5PlANpJDFpIJ1umxY09LeJGrjpm/alvZy+GmQhammtjqI1HUJv7+xwOUImYjD0tE748zOJySZl2tADGRLVkWkUqM/raOT2MqDgnG/H1TAub8ANPjDzuHWamhSaYfsl2crjRiD+kjzy2fnNUo49etn4dmqbpPS2TarMnIS2iRGwgQEGLhNPD6mSdHuZR0G+5p0UfOiHHy7z5BmnsY9fH8jCioozyMOd6WnhIEHyip2UgkdYPgxi00IQgW/+CmyOP7TQfVlmc1mQ2mMwgmXsBac6lb6cEsBm/V8I0s7yZluz1uP1GYTXzJ9O4YwCIhEN6b83YG6+BETbiExXjZE+LMe5Yjvd6Kl19VRSi+le8XzNooQlBnBTLcuNQ7UIjvt3pYdnrsL9g8miuCb8qGtI/P2i7WlRV0wMDmV78pN3T4lFWynojvjyLJQU9SzZmYSzLw4iKa9DLw8p/3TPKw/jzFnThkKI/N0Rfi4yHjU5h0EI683I8GdTkbs6SGRXpTPH6fauG9Z4W6zdyNVH7wZO5CV8wdrUEI2gxL6iSZQw2YOxpcTID5wSvmh+rLZZNylYeBhjlX2MDzgEulyQqShwmOrGnheVhlUXf1ZIbe6wPhanA11N53s3Id14tx7PKHFgM2WyCL6Sk8rASemv0ccemoCVou1rETXhVNIS4RKf1YuSxfOVh3jbij7fwdCSdmx4mSXkYYH7sRv8sMdNCVJyzI4/F9DB5XhuodE3V+TMtMlVIOIVBC+lka8SPR0II5Wo1nSoRM8rDrN8cWd1AbmaeHCYErTxMxnHHgMyN+N5MWjMH3CIwyUe26WGA8dgNjIxtxM8+19iIT5SfG434LA+rDI25w1H2tNCEkc6o+mmnLHWQiqKUNLmrGLHzxVZ5WAm9Nd1jJocBpkb8gJSHyTjuGDD3tMhaHubujYB5UWSx56ReHibBYklB37FjCjg1zeid4p4WovyM8jAHMi1iWp+NwzuS19hMSx+DFqp05lIbmerKjV0tzpyqDyezp8/2pofZb8Tv0XtajBeN4GZa5Hk+AHJOD9M0zbPMVCik6IFLseekbNPDAKCuyhjPKQwlM6beqcp7kyVyQoODmZYBTg+rKKKnpWeYjfg0QYhT9epoGNGwPE8Lp3e1DOt7WmxMDyshaMnb02JqxNe0wr0IspB1q665PEyWf8eRlIpUJnstXpxuWdnVkkiL8jB5fp7r8mRaRAATDilSXSuRTOpNAX+5r3tsxK8s+oLJoWT2AI2ZFqp0sjXhCyJgcKI8TNM0vaHfTtBSSuCUr6elpS7736mMNmp7raz6JOtxEmpyN75pVdNvzP0mfn7CIcXWc6tUeiCdLPz3lzHTojfimzKn4uS4Lh6BIhYOENEoogIio2plvx+yp6WyiJ6WnuEUhpIZpFXvDtC8xqCFAMjbdO3kgslEWtXLUOz0tFgdMWumZ1pMQUs8EtZfRIJQIibbslGh1lSHLUszvjE5zJsbbyvZPymDljyN+GIaEk99iQqriYURzk2mKbdEjNPDKkujqadFHIhGPDpA8xqDFgIgb9O13gSfKv/m1Bx0uN3TcjTXiN9sKg8DgtXXImsgGw4p+uMnSzO+1zXE4jlZrDzMWC4pz8t8fZ49LXoTvmS9U0QyURTFsbHHg/yZqyh6I/5watTksErMXMvzbka+Ejeosr2IVTuYaRGlYbFwCBEbfTulZHtEeVhTzeib2CBNEJM1kAXka8b3OsDTs38WMi1S7WnRHzfjurlYksga8TNS7oJJlodVFn255FBS2l5UpzBoIQDeLcazy8lGfNGEb6c0DDCyMsVOtc00Tcvb0wIYzfhByrTIWBerN3Q7NFWuXEaA581NgJXn5Ehavj0ttXl27PSzKZjIkvp49rW43EyLOOyp5cjjimCeHlbJk8MABi2UYyzGk+tFzMmelqGk/SZ8wH552EAirU+SmjS2PCxAmZZeSQNZIP/Nr5+8zrToz0kre1okmsglgk1zhkzfGSHh84xIJk5kWtIZVR9gwoOCytBYbSyXFLtaZDxsdII872bkK1kzLdVR55ZLihs8O/0sgP0SNdHPUh0NH5PVCVRPi6SN+IB8Cya9HjFppzysKiJRpiWWJ9MywkwLkRVi7HE5mRbzaybLwyqDeN/RNGDP0aFRv1dpGLQQAOPGQbaUolEeVv6JuuhpsVseVmNhJ4bZ0TyLJYUp+q6WpK1r8EO/pCOPgdG7WmTQ5/HPT3V0/OWSiZR85WF1Vcf2Ig0k5OynI5KNEwsmxbjxWDiEmERDOqh0sUgItbn7lF3dImipzNdTPmMJgLyTopxsxB8usTys2kIpjln30LHjjgWxqyVYmRa5nhOAfI34vUPGyGMv6NPDipWHpWUsDysyPYynvkRFidfi8jItoglfnsMMKl9TrhR9dy5oke1ezinyvJuRr8QNqmynnfpySRvjhgsRgU+1zebDKn3BpbUb5KOD+ZvwgeCUh2VUTW+Q9upG3I58m9X9ZCxn9SrTEuw9LYPJDNTcAjS9PEzC5xmRTOqdyLRwclhFEuVgu4+wPIwmAK/LW6xydHqYKA+zefJslIdZ276uL5asKRy0dA8mkMndtMnIvPyvXsITm3yb1f3kWyO+lT0tEmZaAGPy2wCnhxFZ4kTQMsift4okJogdyd1/MGihimbe6C0TozzMieWS2a9RYzPTIk61kxkV6cz4gUuhcccAMLk2jpACqBpwZFDebIu4Ca+OhqWse66RrafF65HHejBf+Pmo72mRqBE/HgkhktvqLRqCuaeFyBpnGvGZaalEY3fCMWihitbvcXmLVSLAcCLTYpSHlTY9DLA29vhorr9h7IsIkN3mLoKZw/3yNuP3Sjw5DDCXh0kyPczr5ZKipyUdrPIwRVGO6UcypofJ9dpDJBsnRh6Lxa4MWiqLGHssyHYv5xQGLQR1VP+CXE90J/e06I34Nm/i4pEQFCX3NawELUV6WgCgJQC7WmQdzCDI1ojv+chjS4348pWHAcc24+vlYcy0EBUlMi3i9aYURnmYPIcZVD5mWmjCGEimoeXaK2Qr0XB0eliJI48VRTHdJI5fHlaspwUIRjO+Ue4k5wufTCOPk2lVP/n0qv+napw9LaqqIZmWb+QxYEwtMjItcg4BIZKNo434NsukSW5N1QxaaIIQpzaxSEi6Gxy7O1KKKbU8DDBPMRv/zaJYTwsQkKBlRO6tuvmWFPrliS0HkVE1tNbH9cfWbeNNDxMbr80fK4s6U5ZM0zSOPCayyNjTwp4WGm1spkXWA8dyMWgh41RdwlKgmmj2hdXP8jDA3PhsvaelYKalTiyYlDhokXQwg2Aeneu3e9buBQBcvWw6wrkmc7eNtzvIHOTLdhBRa8qSDacyEEP0WB5GVJx4jxYBfyk4PawymXtaFKVyD4EYtJBpx4R8T/JqUxmMWuaI4KESp4cB1vZiAICmaXpPy6Ta/EFgIDItEi+WBOQpD+sZSuLx1w8CAK5ZNt2z71sdy750F8pAigb9aFjxLJCyyvzYiTKXkCJfRohINqL8VNVKP7BhI35lMmda6uMRhCR73XcKgxbSbxykzLSYSrmKTUqyQgQcVaWUh1ksU+tPpJHOBVeB7mmR+DkBHNsX4ZcHXt2HZEbFgmn1OLGtwbPvK8YYFwqi9R0tEo07FsTNUr8paKmLR6AolfkmS+SUqqgxMrzUEjE24lcmc9DSmGdyaaVg0EJSn6qbT1/LLRErqzwsam0ggMiy1MTCBctypgRhepj0I4+N0/pSyySccM+6bGnYu07xLssCjF+uqO9okTB7YX7s9H4WSYNjIpkoilJ2M/4Ae1oqUpOpPEzWXlQnMGghvTxMxuk9oZCij2wtd1eLCDhqysi0jHcN400OA4xMi9Q9LQEZeaxqRlbBa7uODGLNrqMIKcBVJ3sctIhpdgX+7saOFvle4o2gJcPFkkQ2lTv2mEFLZRqVaWHQQpVM5kZ8wOhBKTfT4sT0sPHKw3pEE36BfhbA2NPSM5RCosySN7fIPvK4OhrWd+f4VSImsiznzGvB1IYqT7+3eD4mMyoyeXq99PIwCTMt5h07A4nszwubgomsKTfTwkb8ylQVDSMeyd7SM2ihiiZzIz5gLs0q7+Z0pMQ9LebPGS9wspJpaayOIhrO3nEfGUjavhYvyJ5pCYUUvczPj2Z8TdN8Kw0DRj+H8wXSov9LzkyL8biJ3ilODiOyRgQtfWX2tDDTUnlEtkXW920nyPeO5pFdRwbx/UffwM2Pven3pfiuX/Ib1Bob44aL0cvDou5NDxtvRwuQveEW2RZZm/Fl72kBRp/Ye23t7qPYdWQINbEwLj1pmuffX5yoAfmfkwlRHiZxI/5AIq2Xh/HUl8gaUR5Wbk8Lf+Yqj+hrYaalAu3vHcGPHnsTv31xt6/X8ef1XXh1T4+v1yB7KVCNxSxHMaqq6Td35ZSHjRe0WMm0APJPEJN9ehjg79jju3O7Wd6+aFpJI7TLpShK0V0tMpeH1Y0qD2MjPpEdDWUELZqm6aOSGbRUHjE1TNZ7OSdM2KBl0fRGhBRgf98IDvSN+HINbx7ox2fvWIdP/2atL99fMEqB5HwR00uzxgkYijGPSy6lEd9qtsdKpgUw+lpkbMZPZ1T9ZlLmFz9jwaS3QUsincEDr+4DALxr2QxPv7dZsTHcwWjENwctcr72EMnG6GmxXx6WSBs9cLUceVxxpuV6K1tzh6KVqKx3tO985ztQFAU33nijQ5fjndp4BMe31gMA1nf2+HINWw8OAAD29gzro3L9IHv/gjjJHi7j5tQcbJRy+lxlNWgZzDXijzMnfYrE5WHmcitZA1nAvKvF22EGT7x+EL3DKUxtiGP53Mmefm+zYtk/mUce15qmh/WzPIzIloYyGvHNr+21PmSIyV1feNsJ+JfLF+CKJW1+X4prSg5aXn75Zfz0pz/FkiVLnLweTy2Z0QgAeHVPry/ff8/RYf2/txzo9+UaAHN5mJwvYlab4IsRnxuPhEraEG65PCyXaZk0TqZFLw+TMNMing+1sTAiYflO6gVxozvkcXmYKA27+uTpvm6bLzYKfCQdgOWSIyn9tJhBC5E1Rk+L/UyLKKWtiYUrdmP6RDarpRafOH+uLyXLXinpjmRgYADXXXcdfv7zn2PSpElFPzaRSKCvr2/UL1ks7WgCAKz3qaek8+iQ/t9b9vsXtEjfiG9xsWMxItgopTTM/HnjZ1py5WEB7mkxpsnJ+XwQ/GjEPzqYxBNbDgIA3nWKf6VhgJExLJZpkbE8TJS3DCZNmRaJM3pEMjGmh5WeaeHkMAqqkt7RVqxYgSuuuAIXX3zxuB+7cuVKNDY26r86OjpK+ZauWDqjCUA20+LHVm0ZMi2aphlN15LepDoxPcxYLFnai3WxG0SzoxYzLTL3tOiTwyQNYgVzmZFXHtiwD6mMhoVtDZg/rd6z75tPsd1BMjfii8cto2o4Mph9/stchkgkk/IyLWzCp2CzHbTceeedWLt2LVauXGnp42+66Sb09vbqvzo7O21fpFvmT6tHLBxC73AKu44Mjf8JDtsjQaZlKJnRG/NkbYatdmC5pAh4Sj15tlIepmkajorlkgHOtPQGYNwxYGro9rAR/+61ewD4s5tlLFE2GbRMS40pkNrfm33+18XlDpCJZFHOckljR4t8hxlEVti6K+ns7MTnPvc5PProo6iqsrYBOh6PIx6Xc5JBLBLCwvYGvNLZg/V7ejCrpdaz761pGjq7jUzLG/v7oWkaFMXbOlNRChQJGSNUZaNnWlJlNOKnRC1vaTfixjCAwkFL30haDwCbxmvElzhokX0wgyAaSb0qD9txeBDrdvcgpADvXNruyfcsRs/+JdVj/iwhlktK2NMSCimojYUxmMzomRaWhxFZU07QopeHVXDPA1U2W8dwa9aswcGDB3HKKacgEokgEolg1apV+NGPfoRIJIJMxtspPk5YmmvGX9/pbTN+92ASw6kMFCUbMPQn0ujq9X708jNvHgaQHdHrdcBklRN7WsTnlrKjJft5uabnIpkW0c9SGwuPW5YjgpbBZAZDHo/sHY/se3uEWtNmdS/csy7bgH/e8VPQ2mDt0MZNxaeHyVseBhglYqIql+UqRNaI1+W+Mhrx+fNGQWXrmXvRRRdhw4YNo37vIx/5CBYsWIAvfelLCIflfIMsZsmMJgC7PF/w2JnrZ5laX4WG6gjeODCAN/b3Y3pTtWfXcKBvBN98YDMA4PqzZ3n2fe1ycnpYqY34VUUW+QlWJ4cBIrAJYSSl4nB/EjMny/MmIvveHsHL5ZKapuGedfKUhgHj9bTIWx4GZDMrB01ZRllLU4lkI35WBhJpqKpmawoYG/Ep6Gw9c+vr67Fo0aJRv1dbW4vJkycf8/tBISaIbezqRTqjejbiVfSzzJhUjbamarxxYACv7+/HWxa0evL9NU3DTXdvQN9IGktmNOKT58/x5PuWwolGfHETV2oJnJXyMH1ymIWgRVEUTKmPo7N7GIcGRjBzck1J1+UGvRFf8kxLjYfTw1bvOorO7mHUxsK4ZOE017+fFVaWS8q4pwU49qSXJ79E1oiyXU3L9vPV2yjjFY34DFooqOQ8hvPQnJZa1McjGEmpeDO37NELYnJYR3MN5k+tAwC84eEEsbvX7sXjrx9ELBzCf167VOp9HNVR0Yhf+s1p2eVhFhrxRRN+0zhN+IKsCyb1aXKS97TU6eVh7pelit0sly1uK/k55LRi2b9hPdMix7WOZa6pDymlZ0CJJpp4JIRoOJtdsdvXIoaW1LERnwKq7HD7ySefdOAy/BMKKVg0vRHPbz+C9Z09OLGtwZPv29ltZFrmT8t+z9c9miB2oG8E/3b/JgDA5y4+HidM9Xd063ic7Gkp9eZIBC1pVUMqoyKaJ8gzdrRYu9mXtRm/LyDTw8SNr9vlYSOpDP7yahcA4F3L5CgNAyz2tETkPIwwn/TWxSPS9tMRyUZRFNRXRdE9mETfSArtsF5SzvIwCjo539E8ZiyZ9K4ZX2RaZkyqxoLcvodtBweQzhw7CchJQSoLE2qKjHa1ajhZ3vQw8+l6oeDJTk8LYOxqkS5oyfW0NEpeHubVcsknXj+IvpE02hqrcNacya5+LzuKDYcYkTzTYu5hsVPeQkSlTxBjIz4FHYMWGBPEvGzGFz0tHZNqML2pGjWxMJIZFTuPDLr6fYNUFiY40YhfbrlMNKwgnGt4zNdDAJgzLRbLw0SmZSBZ0jW5RZ8eJvnNpHjjLed5YcWfcqVhV5083VbTq9uqijTiJ9KyTw8zros3UET2GEGLvQlig8y0UMDJf8fqgSW5TMvr+/sL3pA6SdM0U6alBqGQopdouVkiFrSyMMFKE/x4yi0PUxRjj02h6ziay7Q0Wcy0SFseNhKMRvxa03JJTczOdVj3YBJPbjkIQJ6pYUKxnhbZp4eNKg/j5DAiW+pzy1jtZlpYHkZBJ+c7msfaG6vQUhdHRtWwqavP9e93aCCBRFpFSAHamrL7HubnAog3XApaglgWJhg9LaXfnA6XGbQA42d8jg5mb/YtZ1pEediAZEHLcDCWS9aZdn24lW154NUupFUNi6Y3SBfkF+9pkbs8rC5mLg/jDRSRHaLfsM92eVj2dYGN+BRUDFqQPUX3skSsszubZWlrrNYbuudPczfTEsSyMEEEC6pmlL3YpU8PK+MmbrwJYkZPi71G/MMSZVrSGRWDuX8r2Rvxq6IhiGott5rxxdSwa5bNcOXrl8N4Ph77M2E04st5c2LOrrA8jMge0QdmtzxMz7SU2NtJ5Lfg3Lm6LLtkEljf2eP69xL9LNMnGVM/RNDixtjjoJaFCTWmQKPUEjERaJQzrrbYMj/A3p4WwNSIP5BwrbzJLhE0xyIh6RukFUVxtRl/26EBvNLZg3BIwTuXtjv+9cul72kZ8zOhaRpG0sEpD2OmhcieUhvxWR5GQSfnO5oPlnaITIv7E8T0HS2TjIWCImjZ1T1U1j6SsYJcFiZEwiHEcpmhoRJ7jtwuD1NVTe9psduIn0yrttP8brnvlWxm4W0nTtUHD8hMnNK7savl3nXZf4vzj2/RHyuZ6I346dF/92RGhYiBg7BckpkWIntKzbSIjDQPCiioGLTkiEzL9sOD6B2290Jgl8i0zDBlWlrq4phcG4OmAVsdXHIZ5LIwMxEwDJcY0IlAUCyqLOkaipSH9Y+koeZuFK0ul6yKhvU3Dxma8TOqhvteye4juVqifSTFuJVpyaga7skFLdecIl9pGICCgyFGTOViQci01MXlzugRyaYh974hJj1aoaqafuDGTAsFlZzvaD5oro2hozkbRGxwOdti3tFi5nRfS9DLwszKXTDpZKZlbDkOYPSz1MUjiNlY6CfTBLHnth3Gwf4EJtVEccEJU/y+HEtqc4+J0z0tf3vtAPYcHUZDVQRvO3Gqo1/bKdUF9hclcv+vKNAzlLIxNwLz1JfInlJGHg+aDvyY3aSgkvMdzSdLRV+Ly834enlYc82o3z/BwQlilVAWZlburhYne1ryle91D9prwhdEX8thCSaIiczClUvabQVefjKPPXbSz57aDgD40FnHlfWccVOhHitzE76sm+bN2RWOPCayxygPs/66J0powyEF8YC8vhONxWeuiQha3Jwgpqoa9hbItCzIZVq2ONCMXyllYUJNLH8pjFWOTA+LFZ7WZHexpCBLpmUomcZDG/cDCE5pGOBOediaXd1Ys+soYuEQPnz2LMe+rtNE6VcqoyGVMZ6TsjfhA6OXS9bz1JfIllIa8Y3JYfIeZhCNR953NR8syY09Xt/pXnnYwf4EkhkVkZCCaQ1Vo/5MlIdtKTPT0juUqpiyMKEmWvr284yq6aOSyyoPK9LToi+WtBu0SLKr5dHNBzCUzOC4yTU4ZWaTr9dih9GI71zQIrIsVy9rR+uYn1GZmHewmLMtsu9oAcY04jPTQmRLQwmN+OI1kqVhFGQMWkwWTW9ESAH2943gYN+IK99DNOG3NVUdk/04PhdcHOxP6Cf3pXjyjYPoG0ljTktt4MvChOpY4dKs8ZiDjJoy5tMXGwagTw6zOO5YkCXTIvaRXH3y9ECdwokTe6emh+04PIhHNh8AAHz8PLl/duKREMRDNTwqaMmVh0kctNRyehhRyUrJtAxy3DFVAAYtJrXxCI5vzQYO611qxu8Uk8Oaao75s7p4RB8GUE4z/lNvHAYAXLxwauDLwoSaAk3HVphLysqp5S2WaekezJ54TSox0+JnT8uh/gSefvMQgGCVhgGmnhaHMi2/fGY7NA1464JW/RBBVoqiGH0tSVN5WO75KXPdejQc0q+PjfhE9oieloFkGqpqbccXd7RQJZD3Xc0nRolYjytff0+3aMKvzvvn80Uzfol9LZqm6Teg5x8fjAlQVpTTiD9s6mcJlbF7xMi0FOlpsdmIL0Om5f71XVA1YNnMJsxuqfXtOkpRF3OuEf/IQAJ3rd4DAPhEQDKU+QLpIJSHAcDfLz8Ob5k/BbNb6vy+FKJAEYG+pgH9Fg9sxGskM5sUZAxaxljS0QTAvQlieqZl0rGZFqD8scev7+/Hwf4EqqIhnDZrUmkXKaFyRh4PpdKjvkapjBvEPNPDhsT0sOCVh+n7SAKWZQHMjfjll4f9+oVdSKRVLJnRiDNnN5f99bxQlS9oSYvyMLlf3v+/Kxbito+cEYglpkQyqYqG9XHmVvtaxGukeQgGUdDI/a7mg5P1CWK90DRraVc7Cu1oEU4oM9MisixnzZks/UmrHaIXpZTlkvrksHKDliITzHpE0FLi9LAjg0lkLKb5nbT1YD827O1FJKTgyiXtnn//cjnViD+czOD/nt8FIJtlCUpfj747KICZFiIqnd2+Fva0UCVg0DLG/Gn1iIVD6B1OYdeRIce/fqEdLcKCaQ0AsrtaSgmaRD9LJZWGAeYdKfZP1EccGHds/vz8PS2lBS2icT+janozv5fuXdcFALhw/hTbQwRk4NTI4z+t3YPuwSRmTKrG20+a5sSleSLfc1Isl6yKMGghqlSlBi0sD6MgY9AyRiwSwont2cDB6RKxjKqhq6d4pmV2Sy0iIQX9iTS6eu1NMBtOZvDSzm4AwPkntJR3sZIpZ0+LCHScKw/L09MylE3R273xj4ZD+ud43YyvqppeGha0BnzBmB5WetCSUTX84unsmOOPnTs7UMMrjEb8fNPDgvP3ICJ76m2OPWYjPlUCvqvlcXKuGf9VhyeI7e8bQVrVEA0raK3Pv/8hFglh7pRsY+qW/X22vv4LO44gmVbR3lilf41KUV5PizPlYTUFRh6rqmaUh9lsxAdMu1ps9rWkM+qopYJ2rd51FHt7hlEfj+DiE6eW/HX85MT0sEc3H8DOI0NorI7i2tM6nLo0T1TlmarH8jCiytdQzUwLTTwMWvJYkutrcXqC2J7ubLnZ9Kbqos2nJ+hLJgdsff2n3shNDTthSmBq8q2qzvW0DJU08lg04pf3Yp3vBhEA+kZSEO0odsvDgNKa8QcTaVz4n0/ish8+jd4h6wvGzO5Zl52UddniaYG9wa2Nld+I/7OntgEAPnTWzMCdQlblxgaPbsRn0EJU6erj9jItYpdVbZmHd0R+YtCSx9KObKZlY1cv0mWcZI/VqTfh5+9nERboQYu9TIs5aKk0hbIcVgw73dMyZuSx6Gepj0cQLaG0qKUuG+jYCVoeeLULe44OY+vBAXzpT6/a7n8aSWXwwKv7AAS3NAwovxF/za5urN3dg1g4hOvPnuXglXkj33AIUR4WZ3kYUcUSPS19FjMtLA+jSsB3tTzmtNShLh7BSErFmwftZTuK2ZMbd1xoR4sgdrVsOWD9e+/tGca2Q4MIKcA5cyurnwUob0+L2+VhR0scdyyITIudnpY7X+7U//uhTfvxmxd22fqeT245iP6RNNoaq3DW7Mm2PlcmoqdlOJUp6YDhp6uyvSzXLJtesGRTZnpPS77yMDbiE1Us0dPSZyHT0jOU1CeSis8jCiIGLXmEQgoWT3d+yWRnt7VMi9jVsu3ggOWehadzWZaTO5rQWFN5L0o10dIb8Ycdb8TPjMpsdA9m3zTKDVqsZlq27O/Hut09iIQUfPrCuQCAb/7lNWzqst6DdffabAP+VSdPL2vhpt/qq6J6ucOnfrPW0hu4sP3QAB597QAA4OPnz3bl+tyWd0+L3ojPoIWoUlmdHpZMq/jkr9dgX+8I2hursHxucA+piBi0FLAkVyK23sFm/D36YsnimZbpTdWojYWRzKjYeXjQ0td+Kref5bwKG3UsiH6UkjItDu1pET0tqgYkTcHk0Vx5WHOJwaIetFjMtNzx0m4AwMUnTsU/XzofFy1oRTKt4jN3rLNUJtUzlMQTWw4CCOZCSbNYJISV716CWCSEv712AFf/5FlstZgd/eUzO6BpwEULWjGvtd7lK3WHUR5mPB+Nnha+vBNVKitBi6Zp+PLdr+LFHd2oi0fwyw+fjsbqyjvUpImD72oFGEsmexz7mnss9rSEQgqO10vExl8ymc6oeObN3H6WCuxnAczlYSX0tKSc7WkBRmd8jpa4WFKYUpctS7KSaRlJZfQxxe8/owOKouA/rl2KaQ1V2H5oEF+9b9O4X+OBV/chldGwsK1Bz+oF2TuXtuOPn1qOtsbsv8HVP3kWj24+UPRzDg8k8Mc12UEEnzh/jheX6Yqie1qYaSGqWA0WRh7f/PhW3L12L8IhBT+57hSc2Nbg1eURuYJBSwFLOpoAAK/v7x9VL16qVEbFvt7cYslxMi2AuRl//KBl/Z5e9I2k0VAVwdLcuOZKU1NgcpcVTpWHRcMhRMPKMdfRXWZPS0u92NMy/nLJhzbuR+9wCtObqvWsWnNtDD/6wDKElOySxLvX7in6Ne7NBT1Bz7KYLZnRhD/fcC7OmNWMgUQaH/+/1fjB396AquYfUPDr53chkVaxdEYjzpjd7PHVOkcELYk85WHlBulEJK/xRh7fu24vvv/oGwCAb161CBdU6IEmTSwMWgpob6xCS10MGVXDpi57U7zy2d87AlXLlrO05PZyFHPCVOtBi5gadu7xLYFajGeHCDhSGc32bhKRnakuc+QxYOohMGdaRHlYqT0tuedD92By3L+bKA279rQZo8ZmnzG7GTdefAIA4F/v3Yhth/KXSO0+MoTVu44ipADvPLm9pOuV1ZT6OH778TNx/fLjAAA/+Nub+ORv1hxzEjmczOD/nt8JAPjE+XMDPR68+J6WynwtIKLiyyVf2tGNf/7jqwCAT54/Bx88c6an10bkFr6rFaAoCpY6WCLWaepnsdL4rGdaLJSHiX6W8yu0nwUY3Y9it69FfHyNAyfP+ZZc6o34JZaHTaqJ6QHIkSLZlu2HBvDijm6EFOC9eZYgrnjLPCyfMxlDyQxu+N26vBnCe1/JZlnOmdeCqQ3Bm5Y1nmg4hH+7ahG+954liIVDeHRzts/FHMT9ce0eHB1KoaO5GpeeFMylmkK+8jDR0xJnpoWoYhXqadl+aACf+PVqJDMqLls0DV96+wI/Lo/IFQxainByyeQei5PDBLFgcnf3UNE+jt6hlH59ldrPAgCxcEi/sbc7QWzEoZHHQP4Rs6Knpbm2tAbHUEixtKvl96uzY44vOGEK2puOLTEMhxT84P0nY3JtDK/t68O3//raqD/XNE0vDbv65MopDcvnvad14A+fWo5pDVXYdmgQV//4WTz22gFkVA2/eDo75vhj584JfGayOk/mT58expHHRBXLyLQY9wfdg0l89PaX0TOUwtKOJnz/vScHejok0VjBfsd2mZgg9qoDE8T0HS0W+lkAoKUujpa6GDQNeLPIvpZntx2GqgHzWuvy3shWCkVR9EyJ3WZ8p6aHAflHzIqgpanETAsAvWTw0MBI3j9PplX8Kdc4/v4zCqf6pzZU4b/euxQA8H/P78JDG/fpf/bqnl5sPzyI6mgYb180reRrDYqTO5rw58+cg9NnTUJ/Io2P/d9qfOo3a7DryBCaaqK49rQZfl9i2UQJWN49LSwPI6pYItMykEgjo2oYSWXwif9bjZ1HhjC9qRq/+PvTHHnPI5IJ39WKEOVh2w8PonfY+v6HfDotTg4zm2+hREz0s5x3fOUtlByr1AWTwy6Xh5Xb0wKYFkz25y8Pe+y1Azg8kMSU+jjeuqC16Ne6cH4rPpmbiPXPf3wVnd3ZgFlMHbvkpKkTZitya30Vfvuxs/Chs2ZC06BPFfu7s47Tx2gHWd7yMO5pIap4ImgBsn0t//zHV7F611HUV0Vw+0dO199TiCoJg5Yimmtj+vb6DWVmW6zuaDEbrxlf0zQ9aKnk0jChusQJYnpPiwM3qeIaxGl2RtXQM1xeTwtgNOMX2tVyx8vZ0rBrT52BqIWSpi9eOh8ndzShbySNz96Z7W+5f30XAODqCpoaZkUsEsK/X70Y33nXYsTCIdRXRfD3y2f5fVmOyNeIz5HHRJUvHgkjFsm+F3zjgc348/ouREIKbv3QqfrKBKJKw6BlHHpfS5nN+GJHS0ez9UyLaMZ/o0CmZduhAXT1jiAWCeGs2ZW/5bY6WmKmRe9pKf/pPraHoHc4BS03VbepxOWSgGnBZJ6els7uITydG7bwvtOPbcDPJxoO4eYPLEN9VQTrdvfg73/5Eo4MJtFSF8N58yo/K5fP+8+Yiae/9BY8dOP5FXMKaTwfuVySaKJpyGVb7l6bzaJ/+5rFOGeCvr7TxMB3tXE4sWQykc5gf1+2V6GUTMvrBTItq97ILpQ8Y1bzhKhd1Xe12OxpGdZ7WpzItGS/hgicRD9LfVXEUgakEL2nJU/QctfqTmgacPbcyThucq3lr9nRXIPvvXsJAOClnd0AgHcsbQ9883k5pjZUYXoF9X6NHQyRUTWkMtkomo34RJVNLJgEgBVvmYv3WjzUIgqqiXv3YtGS3LLG9Z2ll4ft6xmBpmVvMCbb6HsQQcuh/gS6B4/tdRCn7+efMDFOVmrGBAxWpDMqkrndJ070tFTnTq9F9saJfhbAlGkZUx6WUTX8YfX4DfiFXLa4DR86y/i8SlooSceWTJob8lkeRlTZWnLvG1cuacM/vm2+z1dD5D5bQcstt9yCJUuWoKGhAQ0NDVi+fDkefPBBt65NCoumNyKkAPv7RnCwL/9kp/Hs0Zvwq20tsquNR/SemrF9LSOpDF7YfgTAxOhnAUprxB8y3cS5MfJYBJPl9LMA5kb80UHLqjcOYn/fCCbVREveKfKvVyzE20+ahveeNgOLpzeWdZ0kFxGYZDMs6qigJR7hmRRRJfvqlQvxr1eciP+8dilHG9OEYOtdbcaMGfjOd76DNWvWYPXq1XjrW9+Kq666Cps2bXLr+nxXG49gXmsdAGB9ic34nSU04QvzpzYAALbs7xv1+6t3HsVISkVrfRzzJ0jTnVEeZj1oGcl9rKI4cxNXqDzMsUzLmKDljpeyDfjvOmUG4iWW+1RFw7j1707F996zNNDb3+lY1aZsynAqg5F0NqsYi4R4E0NU4RZNb8THzpvDrCpNGLbu4t7xjnfg8ssvx/HHH48TTjgB3/rWt1BXV4cXXnjBreuTwtIyl0zqO1psNOEL86dlA6YtY3a1PPWmGHU8ZcLciOYbNzyeIdO4Yyf+ncaOmO0eLH9yGGD0tPQn0vpp+cG+ETz++kEAwAfOYK0yHSsaVvSlqyPJjLGjhVkWIiKqMCW/s2UyGdx5550YHBzE8uXLC35cIpFAX1/fqF9Bs6SjCUDpE8TM5WF2zZ+WP9NijDqeGP0sAFAdzWU5UtYb8YccbMLPfp3cMr/c1+0ZEuVhpU8OA7JTYMT4SpFtuWvNHmRUDacdNwnzWidGNo3sURRlVCA9wnHHRERUoWwHLRs2bEBdXR3i8Tg+9alP4Z577sHChQsLfvzKlSvR2Nio/+roCN6J8bJc0LJ211Ek0vbG7QLQl/vZWSwpiNKvNw4MQMvN1j3QN4LX9/dDUbKZlomilPKw4VyAU+PQdLWx5WF6T0uZ5WGKooza1aKqGu58eTcA62OOaWKqMg2HYNBCRESVynbQMn/+fLzyyit48cUX8elPfxrXX389Nm/eXPDjb7rpJvT29uq/Ojs7y7pgPyxsa8C0hioMJjN4btsR25+v72gpIWiZM6UW0bCCgUQae3uyX0dkWRZPbyy7lyJISmnEF/srqh26iRtbHuZUTwswuq/l+e1H0Nk9jPp4BFcsaSv7a1PlqjLtDhpJqbnfY3kYERFVFtvvbLFYDPPmzcOpp56KlStXYunSpfjhD39Y8OPj8bg+bUz8CppQSMHbFmYnNz2y6YCtzx1JZXAwV+5TSnlYNBzC3CnZvhaxZPLpN7P7Wc6fQFkWoLRMy1Bup4tTe2yO7WlxZnoYMHpXyx0vZbMsVy1r10c9E+XD8jAiIpoIyj6OU1UVicSxC/EqjQhaHt18AKqqWf48kR2pjYVL3phuXjKpqhqe2ZoLWibIqGOhZsxOCivExzpVHjY2cOoZEo345fW0AEam5Y0D/Xpw/P7T7e9moYlFBOQjKVOmhYsliYiowtg6wr3ppptw2WWXYebMmejv78fvfvc7PPnkk3j44Yfduj5pnDVnMurjERweSGBdZw9OPW6Spc/TS8Oaa0qeXjV/Wj2wHnhjfz82dvWiezCJungEy2Y2lfT1gsroJ7HfiO9U0FI1NtPiQnnYXav3IJlRsXh6IxZxrwqNwygPM/a0xFkeRkREFcbWO9vBgwfx93//95g/fz4uuugivPzyy3j44Yfxtre9za3rk0YsEsJbFrQCAB7ZvN/y5xlN+PZLw4T5pkyL6GdZPncyouGJdWNSEy2hET/pbLlMtSnTks6o6B3OZVocDFpEQPR+jjkmC0aVh6VZHkZERJXJVqbll7/8pVvXEQiXnDQVf17fhUc2HcCX377AUubEGHdsvwlfmD8tG7RsOzSg7+2YaKVhQGl7WlwrD0tl0DucQm6gG5qqHSgPy/W0ANkb0XcubS/7a1LlE0HLSCqDRFo04jNoISKiyjKxjurLdMEJUxALh7Dj8CC2HRoY/xNgLJYsJ9MyvakatbEwUhkNa3f3ZK9lgjXhA6VNDxOlZE41s1ebsj1iclhjdRQRB7JeU+qNbM2VS9pQX1V+IESVb3RPC5dLEhFRZeI7mw31VVGcPW8yAOBhi1PEOh3ItIRCCk6YZiwXnDW5BjMnl/71gkoEHnYa8Y3lks73tHQPOteEDwBT6qr0/37/GWzAJ2vMI48TnB5GREQVikGLTZcsnAYAeGSztaBlby7T0tFceqYFMPpagIlZGgaYy8OsN+KLk2fH9rSYgp99vdmA1Il+FiCbjbtiSRvee9oMnDLBhixQ6Ub3tHBPCxERVSYugLDp4oWt+P/uBdZ39mB/7wimNVYV/NihZBqHB7IlROVkWgCjrwUAzpuApWGAuQxGhapqCIXG7ylyenqYOfgR46ybHdjRAmQzaj/54CmOfC2aOESAMpzKIJMbx85MCxERVRoex9nUWl+FZR1NAIBHXyuebdmbKw2rr4qgscxGbZFpiYQULJ87uayvFVTmwMNqiZjT5WHhkIJYrl+gq8fZTAtRKcyN+FwuSURElYpBSwkuOSlXIrap+OhjfUdLmVkWADh9djPeubQdX7x0PuriEzNBZl6YZ7UZf9jhTAtg3CTu6xkB4MyOFqJSmcdwi+WScTbiExFRheE7WwkuWTgVAPD8tiP6no58Oh2YHCZEwyH86APL8KkL5pb9tYIqFFJGTe+yYtjhnhbACIBEeViTQ434RKUwD4dgpoWIiCoVg5YSzJlSh3mtdUirGp7ccrDgx+mZluaJN+nLLXozfspaM75RHuZcdkoEQE73tBCVwmjEV02N+AxaiIiosjBoKZHIthSbIubEjhYaze6ulmF9T4tzN3HihrB/JPu12dNCftIHVCTNmRa+tBMRUWXhO1uJRF/Lk68fRCKd/wa6s7v8HS00Wk3MXnmYnmlxoTxMYE8L+UlvxE+b9rREmGkhIqLKwqClREumN2JqQxyDyQye23Yk78fscWhHCxlEmZflTEvK2elh+b6WU8sliUphXi4pGvFZHkZERJWGQUuJQiEFb8uViD2ap0RsIJHG0aFsk/70JgYtTqmJ2lsw6cb0sLE3hJPY00I+0qeHpTIYSbM8jIiIKhPf2cpwycJsidijmw9AzS11E0SWpakmivoqnsQ7xU55WDKtIp17XGqizjXimwMgRUHZO3iIyiECFO5pISKiSsagpQxnzZmM+ngEh/oTeGVPz6g/29Pt3I4WMthpxDcHNo6Wh5luCBuro4iE+WNE/qnOWx7G5yQREVUWvrOVIRYJ4S0LWgEAj2waXSLm5I4WMtSYSmHGs/3wAIDsFvtoWHHsGsyn2Bx3TH6rzrOnJc5GfCIiqjAMWsp0yUli9PH+Ub/PHS3uqNEb8Yv3tGzc24uP3v4yAODM2c1QFOeCFnN5GBdLkt+qcs9HVQMS3NNCREQVikFLmS44YQpi4RC2HxrE1oMD+u9zR4s7rJSHrdl1FB/4+Qs4OpTC0hmN+J/rTnH2GsyZFo47Jp/lG+fN8jAiIqo0fGcrU31VFMvnTgYwOtti7Ghh0OKkmmjxRvzntx3B3/3yRfSPpHH6rEn4zcfORJPDJVzm/hhODiO/RcMhREKjM4nMtBARUaVh0OIAvUTM1Nei72hhI76jimVaVr1xCB++7SUMJTM4Z95k/OqjZ7gyuc0ctDDTQjIwZ1uyPVx8aSciosrCdzYHvO3EbNDySmcPDvSNoHc4hb6RbM/FdGZaHFVTYLnkI5v24+O/Wo1EWsVbF7Til9efrn+s08w3iE5ncYhKUWUKpKsifFknIqLKw3c3B7Q2VGHZzCYA2Z0tIssyuTbm2o3zRGVMDzMa8e9f34VP/3YtkhkVly+ehls/dKqr5TGje1rYiE/+Mz8nWRpGRESViEGLQ8SiyUc2H9Anh83g5DDHjS0Pu2t1Jz535zpkVA3XLJuOH71/GWIunzSzp4Vkw6CFiIgqHYMWh4i+lue3HcZr+/oAsAnfDXqmJZnBr5/fiX/646tQNeADZ3Tgv65d6smiR04PI9mYp4XFOTmMiIgqEN/dHDJ3Sh3mTqlFKqPhjpd2A2DQ4gYRtGw9OICv3LcJAPCRc2bh29csRijk3C6WYkZlWhi0kATM2ZUqLpYkIqIKxKDFQZeclC0RO9CXAMDJYW6ojmZ7hNKqBgD4hwvn4qtXLnR0eeR4algeRpIxB9Lc0UJERJWI724OumTh1FH/z0yL8yaZGt+/eMkJ+Oe3L/A0YAGA6txwhZACNFazEZ/8x54WIiKqdBxt5aClM5rQWh/Hwf5cpoWN+I5ra6zGN686CZNqY7hySbsv19DeWIX3njYD0xqqEPaoJI2oGAYtRERU6Ri0OCgUUvC2hVPx2xezPS3Tm5hpccPfLZ/l6/dXFAXfe89SX6+ByMy8p6WaQQsREVUgloc57NJcX0t7YxVPPInIE+ZAhdPDiIioEjHT4rDzjm/B196xEMe31vt9KUQ0QbA8jIiIKh2DFocpioKPnDPb78sgoglk1PQwjjwmIqIKxDoCIqKAG7WnheVhRERUgfjuRkQUcOZAheVhRERUiRi0EBEFXDUzLUREVOH47kZEFHBsxCciokrHoIWIKOCq2IhPREQVjkELEVHAcU8LERFVOlvvbitXrsTpp5+O+vp6tLa24uqrr8aWLVvcujYiIrKA5WFERFTpbAUtq1atwooVK/DCCy/g0UcfRSqVwiWXXILBwUG3ro+IiMYxak8LgxYiIqpAtpZLPvTQQ6P+//bbb0drayvWrFmD888/P+/nJBIJJBIJ/f/7+vpKuEwiIipkVKYlwvIwIiKqPGW9u/X29gIAmpubC37MypUr0djYqP/q6Ogo51sSEdEYVSwPIyKiCldy0KKqKm688Uacc845WLRoUcGPu+mmm9Db26v/6uzsLPVbEhFRHiwPIyKiSmerPMxsxYoV2LhxI5555pmiHxePxxGPx0v9NkRENA5zSRiXSxIRUSUq6d3thhtuwAMPPIAnnngCM2bMcPqaiIjIhkg4hJa6OGLhECbVxvy+HCIiIsfZyrRomobPfOYzuOeee/Dkk09i9uzZbl0XERHZ8NuPnYmBRBoNVVG/L4WIiMhxtoKWFStW4He/+x3uu+8+1NfXY//+/QCAxsZGVFdXu3KBREQ0vvnT6v2+BCIiItcomqZplj9YUfL+/m233YYPf/jDlr5GX18fGhsb0dvbi4aGBqvfmoiIiIiIKozV2MB2eRgREREREZGXOGaGiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikxqCFiIiIiIikFvH6G2qaBgDo6+vz+lsTEREREZFEREwgYoRCPA9a+vv7AQAdHR1ef2siIiIiIpJQf38/GhsbC/65oo0X1jhMVVV0dXWhvr4eiqJ4+a2P0dfXh46ODnR2dqKhocHXayHr+LgFEx+3YOLjFkx83IKJj1sw8XErj6Zp6O/vR3t7O0Khwp0rnmdaQqEQZsyY4fW3LaqhoYFPsgDi4xZMfNyCiY9bMPFxCyY+bsHEx610xTIsAhvxiYiIiIhIagxaiIiIiIhIahM6aInH4/ja176GeDzu96WQDXzcgomPWzDxcQsmPm7BxMctmPi4ecPzRnwiIiIiIiI7JnSmhYiIiIiI5MeghYiIiIiIpMaghYiIiIiIpMaghYiIiIiIpMaghYiIiIiIpDZhg5af/OQnmDVrFqqqqnDmmWfipZde8vuSaIynnnoK73jHO9De3g5FUXDvvfeO+nNN0/DVr34VbW1tqK6uxsUXX4w333zTn4slAMDKlStx+umno76+Hq2trbj66quxZcuWUR8zMjKCFStWYPLkyairq8O73/1uHDhwwKcrJgC45ZZbsGTJEn2b8/Lly/Hggw/qf87HLBi+853vQFEU3Hjjjfrv8bGT09e//nUoijLq14IFC/Q/5+Mmr7179+JDH/oQJk+ejOrqaixevBirV6/W/5z3Ju6ZkEHL73//e3zhC1/A1772NaxduxZLly7FpZdeioMHD/p9aWQyODiIpUuX4ic/+UneP//e976HH/3oR7j11lvx4osvora2FpdeeilGRkY8vlISVq1ahRUrVuCFF17Ao48+ilQqhUsuuQSDg4P6x3z+85/H/fffj7vuugurVq1CV1cX3vWud/l41TRjxgx85zvfwZo1a7B69Wq89a1vxVVXXYVNmzYB4GMWBC+//DJ++tOfYsmSJaN+n4+dvE466STs27dP//XMM8/of8bHTU5Hjx7FOeecg2g0igcffBCbN2/Gf/3Xf2HSpEn6x/DexEXaBHTGGWdoK1as0P8/k8lo7e3t2sqVK328KioGgHbPPffo/6+qqjZt2jTtP/7jP/Tf6+np0eLxuHbHHXf4cIWUz8GDBzUA2qpVqzRNyz5G0WhUu+uuu/SPee211zQA2vPPP+/XZVIekyZN0n7xi1/wMQuA/v5+7fjjj9ceffRR7YILLtA+97nPaZrGnzeZfe1rX9OWLl2a98/4uMnrS1/6knbuuecW/HPem7hrwmVakskk1qxZg4svvlj/vVAohIsvvhjPP/+8j1dGduzYsQP79+8f9Tg2NjbizDPP5OMokd7eXgBAc3MzAGDNmjVIpVKjHrcFCxZg5syZfNwkkclkcOedd2JwcBDLly/nYxYAK1aswBVXXDHqMQL48ya7N998E+3t7ZgzZw6uu+467N69GwAfN5n9+c9/xmmnnYZrr70Wra2tWLZsGX7+85/rf857E3dNuKDl8OHDyGQymDp16qjfnzp1Kvbv3+/TVZFd4rHi4ygvVVVx44034pxzzsGiRYsAZB+3WCyGpqamUR/Lx81/GzZsQF1dHeLxOD71qU/hnnvuwcKFC/mYSe7OO+/E2rVrsXLlymP+jI+dvM4880zcfvvteOihh3DLLbdgx44dOO+889Df38/HTWLbt2/HLbfcguOPPx4PP/wwPv3pT+Ozn/0sfvWrXwHgvYnbIn5fABFVphUrVmDjxo2j6rRJXvPnz8crr7yC3t5e/PGPf8T111+PVatW+X1ZVERnZyc+97nP4dFHH0VVVZXfl0M2XHbZZfp/L1myBGeeeSaOO+44/OEPf0B1dbWPV0bFqKqK0047Dd/+9rcBAMuWLcPGjRtx66234vrrr/f56irfhMu0tLS0IBwOHzOF48CBA5g2bZpPV0V2iceKj6OcbrjhBjzwwAN44oknMGPGDP33p02bhmQyiZ6enlEfz8fNf7FYDPPmzcOpp56KlStXYunSpfjhD3/Ix0xia9aswcGDB3HKKacgEokgEolg1apV+NGPfoRIJIKpU6fysQuIpqYmnHDCCdi6dSt/5iTW1taGhQsXjvq9E088US/t472JuyZc0BKLxXDqqafiscce039PVVU89thjWL58uY9XRnbMnj0b06ZNG/U49vX14cUXX+Tj6CNN03DDDTfgnnvuweOPP47Zs2eP+vNTTz0V0Wh01OO2ZcsW7N69m4+bZFRVRSKR4GMmsYsuuggbNmzAK6+8ov867bTTcN111+n/zccuGAYGBrBt2za0tbXxZ05i55xzzjFj/N944w0cd9xxAHhv4jq/JwH44c4779Ti8bh2++23a5s3b9Y+8YlPaE1NTdr+/fv9vjQy6e/v19atW6etW7dOA6B9//vf19atW6ft2rVL0zRN+853vqM1NTVp9913n/bqq69qV111lTZ79mxteHjY5yufuD796U9rjY2N2pNPPqnt27dP/zU0NKR/zKc+9Slt5syZ2uOPP66tXr1aW758ubZ8+XIfr5q+/OUva6tWrdJ27Nihvfrqq9qXv/xlTVEU7ZFHHtE0jY9ZkJinh2kaHztZ/eM//qP25JNPajt27NCeffZZ7eKLL9ZaWlq0gwcPaprGx01WL730khaJRLRvfetb2ptvvqn99re/1WpqarTf/OY3+sfw3sQ9EzJo0TRNu/nmm7WZM2dqsVhMO+OMM7QXXnjB70uiMZ544gkNwDG/rr/+ek3TsqMFv/KVr2hTp07V4vG4dtFFF2lbtmzx96InuHyPFwDttttu0z9meHhY+4d/+Adt0qRJWk1NjXbNNddo+/bt8++iSfvoRz+qHXfccVosFtOmTJmiXXTRRXrAoml8zIJkbNDCx05O73vf+7S2tjYtFotp06dP1973vvdpW7du1f+cj5u87r//fm3RokVaPB7XFixYoP3sZz8b9ee8N3GPomma5k+Oh4iIiIiIaHwTrqeFiIiIiIiChUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJjUELERERERFJLeL3BRBR6VRVRVdXF+rr66Eoit+XQ0RU8TRNQ39/P9rb2xEK8eyXyCsMWogCrKurCx0dHX5fBhHRhNPZ2YkZM2b4fRlEEwaDFqIAq6+vBwCci8sRQdTnqyEics89b2zw+xIAAH0DKo47Zaf++ktE3mDQQhRgoiQsgigiCoMWIqpcDfVylWKxJJfIW3K9AhAREREREY3BoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIWIiIiIiKTGoIVIAj/5yU8wa9YsVFVV4cwzz8RLL73k9yURERERSYNBC5HPfv/73+MLX/gCvva1r2Ht2rVYunQpLr30Uhw8eNDvSyMiIiKSAoMWIp99//vfx8c//nF85CMfwcKFC3HrrbeipqYG//u//+v3pRERERFJgUELkY+SySTWrFmDiy++WP+9UCiEiy++GM8///wxH59IJNDX1zfqFxEREVGlY9BC5KPDhw8jk8lg6tSpo35/6tSp2L9//zEfv3LlSjQ2Nuq/Ojo6vLpUIiIiIt8waCEKkJtuugm9vb36r87OTr8viYiIiMh1Eb8vgGgia2lpQTgcxoEDB0b9/oEDBzBt2rRjPj4ejyMej3t1eURERERSYKaFyEexWAynnnoqHnvsMf33VFXFY489huXLl/t4ZURERETyYKaFyGdf+MIXcP311+O0007DGWecgR/84AcYHBzERz7yEb8vjYiIiEgKDFqIfPa+970Phw4dwle/+lXs378fJ598Mh566KFjmvOJiIiIJipF0zTN74sgotL09fWhsbERF+IqRJSo35dDROSah7te8fsSAAB9/SomnbAdvb29aGho8PtyiCYM9rQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUGLQQEREREZHUIn5fABGV7543NqChnmcQZpe2n+z3JRCRg2T5mU5rKQDb/b4MogmHdzlERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCQ1Bi1ERERERCS1iN8XQETlu+aExYgoUb8vQyoPd73i9yXoLm0/2e9LICIiCjRmWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoiIiIiISGoMWoh8tHLlSpx++umor69Ha2srrr76amzZssXvyyIiIiKSCoMWIh+tWrUKK1aswAsvvIBHH30UqVQKl1xyCQYHB/2+NCIiIiJpRPy+AKKJ7KGHHhr1/7fffjtaW1uxZs0anH/++T5dFREREZFcGLQQSaS3txcA0NzcnPfPE4kEEomE/v99fX2eXBcRERGRn1geRiQJVVVx44034pxzzsGiRYvyfszKlSvR2Nio/+ro6PD4KomIiIi8x6CFSBIrVqzAxo0bceeddxb8mJtuugm9vb36r87OTg+vkIiIiMgfLA8jksANN9yABx54AE899RRmzJhR8OPi8Tji8biHV0ZERETkPwYtRD7SNA2f+cxncM899+DJJ5/E7Nmz/b4kIiIiIukwaCHy0YoVK/C73/0O9913H+rr67F//34AQGNjI6qrq32+OiIiIiI5sKeFyEe33HILent7ceGFF6KtrU3/9fvf/97vSyMiIiKSBjMtRD7SNM3vSyAiIiKSHjMtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQkNQYtREREREQktYjfF0BE5IZL20/2+xKIiIjIIcy0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EBERERGR1Bi0EP3/7d1/aJZ138fhz5w5R0wxS2u0akRgqaU2kxxEkSShURBFMcEMImplJkQzsAjTZb8YtbKUCCGthJAiiAgjzVKcmlH0wyKoVdQKwlnBqm3PPw97GO1+7pvo9vvR6zjg+sOTU3lzsokvv7s2AABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmiBJB588MGoqqqKZcuWlZ4CAJCKaIEEurq64plnnolzzz239BQAgHRECxT2yy+/REtLS2zYsCEmTJhQeg4AQDqiBQprbW2NBQsWxLx58/7tvX19fdHb2zvsBQBwrBtdegBUshdffDH2798fXV1d/9H97e3tcf/99/+XVwEA5OKkBQrp7u6OO+64IzZt2hRjx479j37PihUr4tChQ0Ov7u7u//JKAIDynLRAIfv27Yuenp6YNWvW0LX+/v7YsWNHdHZ2Rl9fX1RXVw/7PTU1NVFTU3OkpwIAFCVaoJBLL700Pvzww2HXlixZElOmTIm77777L8ECAFCpRAsUUldXF9OmTRt27fjjj4+JEyf+5ToAQCXznhYAACA1Jy2QyNtvv116AgBAOk5aAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQ2ujSAwCAnN747kDpCUPm188oPQEoyEkLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSG116AACQ0/z6GaUnAESEkxYAACA50QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtUNi3334bixYtiokTJ0ZtbW1Mnz499u7dW3oWAEAao0sPgEr2888/R3Nzc1xyySXx+uuvx0knnRSff/55TJgwofQ0AIA0RAsUtHbt2mhoaIjnnntu6FpjY2PBRQAA+fjyMCjo1Vdfjaamprjmmmti0qRJMXPmzNiwYcO/vL+vry96e3uHvQAAjnWiBQr68ssvY926dXHWWWfFG2+8EbfcckssXbo0Nm7cOOL97e3tMX78+KFXQ0PDEV4MAHDkVQ0ODg6WHgGVasyYMdHU1BTvvffe0LWlS5dGV1dX7Nq16y/39/X1RV9f39Cve3t7o6GhIS6OK2N01XFHZDNAJftz8I94O16JQ4cOxbhx40rPgYrhpAUKOuWUU+Kcc84Zdu3ss8+Or7/+esT7a2pqYty4ccNeAADHOtECBTU3N8dnn3027NrBgwfj9NNPL7QIACAf0QIF3XnnnbF79+5Ys2ZNfPHFF7F58+ZYv359tLa2lp4GAJCGaIGCZs+eHVu3bo0XXnghpk2bFqtWrYqOjo5oaWkpPQ0AIA0/pwUKW7hwYSxcuLD0DACAtJy0AAAAqYkWAAAgNdECAACkJloAAIDURAsAAJCaaAEAAFITLQAAQGqiBQAASE20AAAAqYkWAAAgNdECAACkJloAAIDURAsAAJCaaAEAAFITLQAAQGqiBQAASE20AAAAqYkWAAAgNdECAACkJloAAIDURAsAAJCaaAEAAFITLQAAQGqiBQAASE20AAAAqYkWAAAgNdECAACkJloAAIDURAsAAJCaaAEAAFITLQAAQGqiBQAASE20AAAAqYkWAAAgNdECAACkJloAAIDURAsAAJCaaAEAAFITLQAAQGqiBQAASE20AAAAqYkWAAAgNdECAACkJloAAIDURAsAAJDa6NIDAKhMb3x3oPSEIfPrZ5SeAMD/w0kLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFgAAIDXRAgAApCZaAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtAAAAKmJFiiov78/Vq5cGY2NjVFbWxtnnnlmrFq1KgYHB0tPAwBIY3TpAVDJ1q5dG+vWrYuNGzfG1KlTY+/evbFkyZIYP358LF26tPQ8AIAURAsU9N5778WVV14ZCxYsiIiIM844I1544YXYs2dP4WUAAHn48jAoaO7cubFt27Y4ePBgRER88MEHsXPnzrj88stHvL+vry96e3uHvQAAjnVOWqCgtra26O3tjSlTpkR1dXX09/fH6tWro6WlZcT729vb4/777z/CKwEAynLSAgVt2bIlNm3aFJs3b479+/fHxo0b45FHHomNGzeOeP+KFSvi0KFDQ6/u7u4jvBgA4Mhz0gIF3XXXXdHW1hbXXXddRERMnz49vvrqq2hvb4/Fixf/5f6ampqoqak50jMBAIpy0gIF/fbbbzFq1PBPw+rq6hgYGCi0CAAgHyctUNAVV1wRq1evjtNOOy2mTp0a77//fjz22GNx4403lp4GAJCGaIGCnnjiiVi5cmXceuut0dPTE/X19XHzzTfHvffeW3oaAEAaogUKqquri46Ojujo6Cg9BQAgLe9pAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtAABAaqNLDwCgMs2vn1F6Av/GG98dKD1hiI8XqGxOWgAAgNRECwAAkJpoAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRGlx4A/H2Dg4MREfFn/BExWHgMcMzpPTxQesKQPwf/KD0hIv7379v4v79/gSOjatBnHRy1vvnmm2hoaCg9A6DidHd3x6mnnlp6BlQM0QJHsYGBgfjuu++irq4uqqqq/vaf09vbGw0NDdHd3R3jxo37Bxce3TyXkXkuI/NcRnasPZfBwcE4fPhw1NfXx6hRvsoejhRfHgZHsVGjRv2j/9M3bty4Y+IfFf80z2VknsvIPJeRHUvPZfz48aUnQMXxXwQAAEBqogUAAEhNtABRU1MT9913X9TU1JSekornMjLPZWSey8g8F+Cf4I34AABAak5aAACA1EQLAACQmmgBAABSEy0AAEBqogUAAEhNtECFe/LJJ+OMM86IsWPHxpw5c2LPnj2lJxXV3t4es2fPjrq6upg0aVJcddVV8dlnn5Welc6DDz4YVVVVsWzZstJTivv2229j0aJFMXHixKitrY3p06fH3r17S88qqr+/P1auXBmNjY1RW1sbZ555ZqxatSp8w1Lg7xItUMFeeumlWL58edx3332xf//+OO+882L+/PnR09NTelox27dvj9bW1ti9e3e8+eab8ccff8Rll10Wv/76a+lpaXR1dcUzzzwT5557bukpxf3888/R3Nwcxx13XLz++uvx8ccfx6OPPhoTJkwoPa2otWvXxrp166KzszM++eSTWLt2bTz00EPxxBNPlJ4GHKX8nBaoYHPmzInZs2dHZ2dnREQMDAxEQ0ND3H777dHW1lZ4XQ4//vhjTJo0KbZv3x4XXXRR6TnF/fLLLzFr1qx46qmn4oEHHogZM2ZER0dH6VnFtLW1xbvvvhvvvPNO6SmpLFy4MCZPnhzPPvvs0LWrr746amtr4/nnny+4DDhaOWmBCvX777/Hvn37Yt68eUPXRo0aFfPmzYtdu3YVXJbLoUOHIiLihBNOKLwkh9bW1liwYMGwj5tK9uqrr0ZTU1Ncc801MWnSpJg5c2Zs2LCh9Kzi5s6dG9u2bYuDBw9GRMQHH3wQO3fujMsvv7zwMuBoNbr0AKCMn376Kfr7+2Py5MnDrk+ePDk+/fTTQqtyGRgYiGXLlkVzc3NMmzat9JziXnzxxdi/f390dXWVnpLGl19+GevWrYvly5fHPffcE11dXbF06dIYM2ZMLF68uPS8Ytra2qK3tzemTJkS1dXV0d/fH6tXr46WlpbS04CjlGgB+BdaW1vjo48+ip07d5aeUlx3d3fccccd8eabb8bYsWNLz0ljYGAgmpqaYs2aNRERMXPmzPjoo4/i6aefruho2bJlS2zatCk2b94cU6dOjQMHDsSyZcuivr6+op8L8PeJFqhQJ554YlRXV8cPP/ww7PoPP/wQJ598cqFVedx2223x2muvxY4dO+LUU08tPae4ffv2RU9PT8yaNWvoWn9/f+zYsSM6Ozujr68vqqurCy4s45RTTolzzjln2LWzzz47Xn755UKLcrjrrruira0trrvuuoiImD59enz11VfR3t4uWoC/xXtaoEKNGTMmzj///Ni2bdvQtYGBgdi2bVtceOGFBZeVNTg4GLfddlts3bo13nrrrWhsbCw9KYVLL700Pvzwwzhw4MDQq6mpKVpaWuLAgQMVGSwREc3NzX/5ltgHDx6M008/vdCiHH777bcYNWr4PzGqq6tjYGCg0CLgaOekBSrY8uXLY/HixdHU1BQXXHBBdHR0xK+//hpLliwpPa2Y1tbW2Lx5c7zyyitRV1cX33//fUREjB8/PmprawuvK6euru4v7+s5/vjjY+LEiRX9fp8777wz5s6dG2vWrIlrr7029uzZE+vXr4/169eXnlbUFVdcEatXr47TTjstpk6dGu+//3489thjceONN5aeBhylfMtjqHCdnZ3x8MMPx/fffx8zZsyIxx9/PObMmVN6VjFVVVUjXn/uuefihhtuOLJjkrv44osr/lseR0S89tprsWLFivj888+jsbExli9fHjfddFPpWUUdPnw4Vq5cGVu3bo2enp6or6+P66+/Pu69994YM2ZM6XnAUUi0AAAAqXlPCwAAkJpoAQAAUhMtAABAaqIFAABITbQAAACpiRYAACA10QIAAKQmWgAAgNRECwAAkJpoAQAAUhMtAABAav8DgTSELs+hi4AAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -513,15 +493,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ - "import magent\n", + "import magent2\n", + "#from magent2.environments import battle_v4\n", "import math\n", "from scipy.spatial.distance import cityblock #A\n", "map_size = 30\n", - "env = magent.GridWorld(\"battle\", map_size=map_size) #B\n", + "env = magent2.GridWorld(\"battle\", map_size=map_size) #B\n", + "#env = battle_v4.env(render_mode='human')\n", "env.set_render_dir(\"MAgent/build/render\") #C\n", "team1, team2 = env.get_handles() #D" ] @@ -535,7 +517,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -572,29 +554,27 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 21, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACzVJREFUeJzt3V/I3YV9x/H3Zy5G6h9I5hayVGYn3pTC4nhIB5XRUdo5Gag3Ui9KCrL0ooJCLybuol7KqJZdCXGGZsNZCip6IWtdEKQ3YpRMo9mqk0jNYtKSC+1gGvW7i+cXeJolz3PynD+/J37fLzg85/zO7zy/rz9855zf+fOcVBWS+vmdsQeQNA7jl5oyfqkp45eaMn6pKeOXmjJ+qSnjl5oyfqmp353mxkluAv4BuAT4x6p6YLX1L83muozLp9mkpFX8L//DR/VhJlk36317b5JLgF8AXwfeBV4C7qiqN853m6uytb6cr61re5LW9mId4P06NVH80zzs3wW8VVVvV9VHwI+BW6b4fZIWaJr4dwC/XHH53WGZpIvAVMf8k0iyB9gDcBmfm/fmJE1omnv+Y8A1Ky5/flj2W6pqb1UtVdXSJjZPsTlJszRN/C8B1yf5QpJLgW8Cz8xmLEnztu6H/VX1cZK7gJ+y/FLfvqp6fWaTSZqrqY75q+pZ4NkZzSJpgXyHn9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTU31RZ1JjgIfAJ8AH1fV0iyGkjR/U8U/+Iuq+vUMfo+kBfJhv9TUtPEX8LMkLyfZc64VkuxJcjDJwdN8OOXmJM3KtA/7b6yqY0n+AHguyX9U1QsrV6iqvcBegKuytabcnqQZmeqev6qODT9PAk8Bu2YxlKT5W3f8SS5PcuWZ88A3gMOzGkzSfE3zsH8b8FSSM7/nX6rqX2cylaS5W3f8VfU28CcznEXSAvlSn9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/U1JrxJ9mX5GSSwyuWbU3yXJI3h59b5jumpFmb5J7/R8BNZy27FzhQVdcDB4bLki4ia8ZfVS8Ap85afAuwfzi/H7h1xnNJmrP1fkX3tqo6Ppx/D9h2vhWT7AH2AFzG59a5OUmzNvUTflVVQK1y/d6qWqqqpU1snnZzkmZkvfGfSLIdYPh5cnYjSVqE9cb/DLB7OL8beHo240halDWP+ZM8DnwVuDrJu8D3gQeAnyS5E3gHuH2eQ47lp/996LzX/eUf7pz57cba5nqtts21tjuP/855bfOzas34q+qO81z1tRnPImmBfIef1JTxS00Zv9SU8UtNGb/UVJbfoLcYV2VrfTm+SCDNy4t1gPfrVCZZ13t+qSnjl5oyfqkp45eaMn6pKeOXmlrvX/JpwU/1rc5P9V3cvOeXmjJ+qSnjl5oyfqkp45eaMn6pKeOXmvIjvdJniB/plbQm45eaMn6pKeOXmjJ+qSnjl5qa5Is69wF/DZysqi8Ny+4H/gb41bDafVX17LyGHIsf6V2dH+m9uE1yz/8j4KZzLP9hVe0cTp+58KXPujXjr6oXgFMLmEXSAk1zzH9XkleT7EuyZWYTSVqI9cb/MHAdsBM4Djx4vhWT7ElyMMnB03y4zs1JmrV1xV9VJ6rqk6r6FHgE2LXKunuraqmqljaxeb1zSpqxdcWfZPuKi7cBh2czjqRFWfNTfUkeB74KXA2cAL4/XN4JFHAU+E5VHV9rY36qT5qvC/lU35qv81fVHedY/OgFTyVpQ/EdflJTxi81ZfxSU8YvNWX8UlPGLzXlt/Suwo/0rs6P9F7cvOeXmjJ+qSnjl5oyfqkp45eaMn6pKb+oU/oM8Ys6Ja3J+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaMX2pqzfiTXJPk+SRvJHk9yd3D8q1Jnkvy5vBzy/zHlTQrk9zzfwx8r6q+CPwZ8N0kXwTuBQ5U1fXAgeGypIvEmvFX1fGqemU4/wFwBNgB3ALsH1bbD9w6ryElzd4FHfMnuRa4AXgR2FZVx4er3gO2zXQySXM1cfxJrgCeAO6pqvdXXlfLfw7onH8SKMmeJAeTHDzNh1MNK2l2Joo/ySaWw3+sqp4cFp9Isn24fjtw8ly3raq9VbVUVUub2DyLmSXNwCTP9gd4FDhSVQ+tuOoZYPdwfjfw9OzHkzQvk3xX31eAbwGvJTnzZWf3AQ8AP0lyJ/AOcPt8RpQ0D2vGX1U/B87310D9U7zSRcp3+ElNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1NQkX9F9TZLnk7yR5PUkdw/L709yLMmh4XTz/MeVNCuTfEX3x8D3quqVJFcCLyd5brjuh1X1g/mNJ2leJvmK7uPA8eH8B0mOADvmPZik+bqgY/4k1wI3AC8Oi+5K8mqSfUm2nOc2e5IcTHLwNB9ONayk2Zk4/iRXAE8A91TV+8DDwHXATpYfGTx4rttV1d6qWqqqpU1snsHIkmZhoviTbGI5/Meq6kmAqjpRVZ9U1afAI8Cu+Y0padYmebY/wKPAkap6aMXy7StWuw04PPvxJM3LJM/2fwX4FvBakkPDsvuAO5LsBAo4CnxnLhNKmotJnu3/OZBzXPXs7MeRtCi+w09qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfaipVtbiNJb8C3lmx6Grg1wsbYG3Os7qNNg9svJnGnuePqur3J1lxofH/v40nB6tqabQBzuI8q9to88DGm2mjzbMaH/ZLTRm/1NTY8e8deftnc57VbbR5YOPNtNHmOa9Rj/kljWfse35JIxkl/iQ3JfnPJG8luXeMGc6a52iS15IcSnJwpBn2JTmZ5PCKZVuTPJfkzeHnlpHnuT/JsWE/HUpy8wLnuSbJ80neSPJ6kruH5aPso1XmGW0fXaiFP+xPcgnwC+DrwLvAS8AdVfXGQgf57ZmOAktVNdrrs0n+HPgN8E9V9aVh2d8Dp6rqgeEfyS1V9bcjznM/8Juq+sEiZjhrnu3A9qp6JcmVwMvArcC3GWEfrTLP7Yy0jy7UGPf8u4C3qurtqvoI+DFwywhzbChV9QJw6qzFtwD7h/P7Wf6fa8x5RlNVx6vqleH8B8ARYAcj7aNV5rlojBH/DuCXKy6/y/g7rYCfJXk5yZ6RZ1lpW1UdH86/B2wbc5jBXUleHQ4LFnYYslKSa4EbgBfZAPvorHlgA+yjSfiE37Ibq+pPgb8Cvjs85N1Qavn4bOyXZh4GrgN2AseBBxc9QJIrgCeAe6rq/ZXXjbGPzjHP6PtoUmPEfwy4ZsXlzw/LRlNVx4afJ4GnWD402QhODMeWZ44xT445TFWdqKpPqupT4BEWvJ+SbGI5tMeq6slh8Wj76FzzjL2PLsQY8b8EXJ/kC0kuBb4JPDPCHAAkuXx4woYklwPfAA6vfquFeQbYPZzfDTw94ixn4jrjNha4n5IEeBQ4UlUPrbhqlH10vnnG3EcXrKoWfgJuZvkZ//8C/m6MGVbM8sfAvw+n18eaB3ic5YeJp1l+HuRO4PeAA8CbwL8BW0ee55+B14BXWY5u+wLnuZHlh/SvAoeG081j7aNV5hltH13oyXf4SU35hJ/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTf0f/B/laYNmmRcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZJ0lEQVR4nO3db0yV9/3/8ddR4FRbOAwRDmeiQ9vqVpVmThmxdTYSgSXGf0u07RJtjEaHzZR1bWhardsSFpt0TRunt6ZbUrUzqZKa71wsFkw3dNFqjNlKhLCJ4Y+tCecgVkT5/G7s17OeCrUHz+HNOTwfyZXIdX041/viMn32cA7occ45AQAwzMZYDwAAGJ0IEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMJFiPcBX9ff3q62tTenp6fJ4PNbjAACi5JxTd3e3AoGAxowZ/HnOiAtQW1ub8vPzrccAANyn1tZWTZo0adDjIy5A6enpkqQn9GOlKNV4GgBAtG6rTx/p/8L/PR9M3AK0a9cuvf766+ro6FBhYaHefvttzZs3756f98W33VKUqhQPAQKAhPP/f8PovV5GicubEN59911VVlZq+/bt+vjjj1VYWKjS0lJdvXo1HqcDACSguATojTfe0Pr16/Xcc8/pe9/7nvbs2aPx48frD3/4QzxOBwBIQDEP0K1bt3T27FmVlJT87yRjxqikpEQNDQ13re/t7VUoFIrYAADJL+YB+uyzz3Tnzh3l5uZG7M/NzVVHR8dd66urq+Xz+cIb74ADgNHB/AdRq6qqFAwGw1tra6v1SACAYRDzd8FlZ2dr7Nix6uzsjNjf2dkpv99/13qv1yuv1xvrMQAAI1zMnwGlpaVpzpw5qq2tDe/r7+9XbW2tiouLY306AECCisvPAVVWVmrNmjX6wQ9+oHnz5unNN99UT0+PnnvuuXicDgCQgOISoFWrVunTTz/Vtm3b1NHRoccff1zHjh27640JAIDRy+Occ9ZDfFkoFJLP59NCLeU3IQBAArrt+lSnGgWDQWVkZAy6zvxdcACA0YkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMxDxAr732mjweT8Q2Y8aMWJ8GAJDgUuLxoI899pg++OCD/50kJS6nAQAksLiUISUlRX6/Px4PDQBIEnF5DejSpUsKBAKaOnWqnn32WV2+fHnQtb29vQqFQhEbACD5xTxARUVF2rdvn44dO6bdu3erpaVFTz75pLq7uwdcX11dLZ/PF97y8/NjPRIAYATyOOdcPE/Q1dWlKVOm6I033tC6devuOt7b26ve3t7wx6FQSPn5+VqopUrxpMZzNABAHNx2fapTjYLBoDIyMgZdF/d3B2RmZurRRx9VU1PTgMe9Xq+8Xm+8xwAAjDBx/zmg69evq7m5WXl5efE+FQAggcQ8QC+88ILq6+v173//W3//+9+1fPlyjR07Vk8//XSsTwUASGAx/xbclStX9PTTT+vatWuaOHGinnjiCZ06dUoTJ06M9akAAAks5gE6ePBgrB8SAJCE+F1wAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMRB2gkydPasmSJQoEAvJ4PDpy5EjEceectm3bpry8PI0bN04lJSW6dOlSrOYFACSJqAPU09OjwsJC7dq1a8DjO3fu1FtvvaU9e/bo9OnTevDBB1VaWqqbN2/e97AAgOSREu0nlJeXq7y8fMBjzjm9+eabeuWVV7R06VJJ0p/+9Cfl5ubqyJEjWr169f1NCwBIGjF9DailpUUdHR0qKSkJ7/P5fCoqKlJDQ8OAn9Pb26tQKBSxAQCSX0wD1NHRIUnKzc2N2J+bmxs+9lXV1dXy+XzhLT8/P5YjAQBGKPN3wVVVVSkYDIa31tZW65EAAMMgpgHy+/2SpM7Ozoj9nZ2d4WNf5fV6lZGREbEBAJJfTANUUFAgv9+v2tra8L5QKKTTp0+ruLg4lqcCACS4qN8Fd/36dTU1NYU/bmlp0fnz55WVlaXJkydry5Yt+s1vfqNHHnlEBQUFevXVVxUIBLRs2bJYzg0ASHBRB+jMmTN66qmnwh9XVlZKktasWaN9+/bpxRdfVE9PjzZs2KCuri498cQTOnbsmB544IHYTQ0ASHge55yzHuLLQqGQfD6fFmqpUjyp1uOMaH9tOx/V+tLA4yPuHNE+/nCcYyhfp3hLlq9TMvx9wr3ddn2qU42CweDXvq5v/i44AMDoRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAS/Cw4AEFP8LjgAwIhGgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARIr1ABi6v7adj2p9aeDxEXeOaB9/OM4xlK9TvCXL1ykZ/j4hdngGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY8DjnnPUQXxYKheTz+bRQS5XiSbUeBwAQpduuT3WqUTAYVEZGxqDreAYEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARIr1ABi6v7adj2p9aeDxEXeOaB9/OM4xlK9TvCXL1ykZ/j4hdngGBAAwEXWATp48qSVLligQCMjj8ejIkSMRx9euXSuPxxOxlZWVxWpeAECSiDpAPT09Kiws1K5duwZdU1ZWpvb29vB24MCB+xoSAJB8on4NqLy8XOXl5V+7xuv1yu/3D3koAEDyi8trQHV1dcrJydH06dO1adMmXbt2LR6nAQAksJi/C66srEwrVqxQQUGBmpub9fLLL6u8vFwNDQ0aO3bsXet7e3vV29sb/jgUCsV6JADACBTzAK1evTr851mzZmn27NmaNm2a6urqtGjRorvWV1dXa8eOHbEeAwAwwsX9bdhTp05Vdna2mpqaBjxeVVWlYDAY3lpbW+M9EgBgBIj7D6JeuXJF165dU15e3oDHvV6vvF5vvMcAAIwwUQfo+vXrEc9mWlpadP78eWVlZSkrK0s7duzQypUr5ff71dzcrBdffFEPP/ywSktLYzo4ACCxRR2gM2fO6Kmnngp/XFlZKUlas2aNdu/erQsXLuiPf/yjurq6FAgEtHjxYv3617/mWQ4AIILHOeesh/iyUCgkn8+nhVqqFE+q9TgAgCjddn2qU42CwaAyMjIGXcfvggMAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATMT93wNC/Py17XxU60sDj4+4c0T7+MNxjqF8neItWb5OyfD3CbHDMyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmPM45Zz3El4VCIfl8Pi3UUqV4Uq3HAQBE6bbrU51qFAwGlZGRMeg6ngEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiagCVF1drblz5yo9PV05OTlatmyZGhsbI9bcvHlTFRUVmjBhgh566CGtXLlSnZ2dMR0aAJD4ogpQfX29KioqdOrUKR0/flx9fX1avHixenp6wmu2bt2q999/X4cOHVJ9fb3a2tq0YsWKmA8OAEhsHuecG+onf/rpp8rJyVF9fb0WLFigYDCoiRMnav/+/frJT34iSfrkk0/03e9+Vw0NDfrhD394z8cMhULy+XxaqKVK8aQOdTQAgJHbrk91qlEwGFRGRsag6+7rNaBgMChJysrKkiSdPXtWfX19KikpCa+ZMWOGJk+erIaGhgEfo7e3V6FQKGIDACS/IQeov79fW7Zs0fz58zVz5kxJUkdHh9LS0pSZmRmxNjc3Vx0dHQM+TnV1tXw+X3jLz88f6kgAgAQy5ABVVFTo4sWLOnjw4H0NUFVVpWAwGN5aW1vv6/EAAIkhZSiftHnzZh09elQnT57UpEmTwvv9fr9u3bqlrq6uiGdBnZ2d8vv9Az6W1+uV1+sdyhgAgAQW1TMg55w2b96sw4cP68SJEyooKIg4PmfOHKWmpqq2tja8r7GxUZcvX1ZxcXFsJgYAJIWongFVVFRo//79qqmpUXp6evh1HZ/Pp3Hjxsnn82ndunWqrKxUVlaWMjIy9Pzzz6u4uPgbvQMOADB6RBWg3bt3S5IWLlwYsX/v3r1au3atJOl3v/udxowZo5UrV6q3t1elpaX6/e9/H5NhAQDJ475+Dige+DkgAEhsw/JzQAAADBUBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABNRBai6ulpz585Venq6cnJytGzZMjU2NkasWbhwoTweT8S2cePGmA4NAEh8UQWovr5eFRUVOnXqlI4fP66+vj4tXrxYPT09EevWr1+v9vb28LZz586YDg0ASHwp0Sw+duxYxMf79u1TTk6Ozp49qwULFoT3jx8/Xn6/PzYTAgCS0n29BhQMBiVJWVlZEfvfeecdZWdna+bMmaqqqtKNGzcGfYze3l6FQqGIDQCQ/KJ6BvRl/f392rJli+bPn6+ZM2eG9z/zzDOaMmWKAoGALly4oJdeekmNjY167733Bnyc6upq7dixY6hjAAASlMc554byiZs2bdJf/vIXffTRR5o0adKg606cOKFFixapqalJ06ZNu+t4b2+vent7wx+HQiHl5+droZYqxZM6lNEAAIZuuz7VqUbBYFAZGRmDrhvSM6DNmzfr6NGjOnny5NfGR5KKiookadAAeb1eeb3eoYwBAEhgUQXIOafnn39ehw8fVl1dnQoKCu75OefPn5ck5eXlDWlAAEByiipAFRUV2r9/v2pqapSenq6Ojg5Jks/n07hx49Tc3Kz9+/frxz/+sSZMmKALFy5o69atWrBggWbPnh2XCwAAJKaoXgPyeDwD7t+7d6/Wrl2r1tZW/fSnP9XFixfV09Oj/Px8LV++XK+88srXfh/wy0KhkHw+H68BAUCCistrQPdqVX5+vurr66N5SADAKMXvggMAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJlKsB/gq55wk6bb6JGc8DAAgarfVJ+l//z0fzIgLUHd3tyTpI/2f8SQAgPvR3d0tn8836HGPu1eihll/f7/a2tqUnp4uj8cTcSwUCik/P1+tra3KyMgwmnB4jcZrlkbndY/Ga5a47mS8buecuru7FQgENGbM4K/0jLhnQGPGjNGkSZO+dk1GRkbS3bB7GY3XLI3O6x6N1yxx3cnm6575fIE3IQAATBAgAICJhAqQ1+vV9u3b5fV6rUcZNqPxmqXRed2j8Zolrnu0XfeXjbg3IQAARoeEegYEAEgeBAgAYIIAAQBMECAAgImECdCuXbv0ne98Rw888ICKior0j3/8w3qkuHrttdfk8XgithkzZliPFVMnT57UkiVLFAgE5PF4dOTIkYjjzjlt27ZNeXl5GjdunEpKSnTp0iWbYWPoXte9du3au+59WVmZzbAxUl1drblz5yo9PV05OTlatmyZGhsbI9bcvHlTFRUVmjBhgh566CGtXLlSnZ2dRhPHxje57oULF951vzdu3Gg08fBKiAC9++67qqys1Pbt2/Xxxx+rsLBQpaWlunr1qvVocfXYY4+pvb09vH300UfWI8VUT0+PCgsLtWvXrgGP79y5U2+99Zb27Nmj06dP68EHH1Rpaalu3rw5zJPG1r2uW5LKysoi7v2BAweGccLYq6+vV0VFhU6dOqXjx4+rr69PixcvVk9PT3jN1q1b9f777+vQoUOqr69XW1ubVqxYYTj1/fsm1y1J69evj7jfO3fuNJp4mLkEMG/ePFdRURH++M6dOy4QCLjq6mrDqeJr+/btrrCw0HqMYSPJHT58OPxxf3+/8/v97vXXXw/v6+rqcl6v1x04cMBgwvj46nU759yaNWvc0qVLTeYZLlevXnWSXH19vXPuv/c2NTXVHTp0KLzmX//6l5PkGhoarMaMua9et3PO/ehHP3I///nP7YYyNOKfAd26dUtnz55VSUlJeN+YMWNUUlKihoYGw8ni79KlSwoEApo6daqeffZZXb582XqkYdPS0qKOjo6I++7z+VRUVJT0912S6urqlJOTo+nTp2vTpk26du2a9UgxFQwGJUlZWVmSpLNnz6qvry/ifs+YMUOTJ09Oqvv91ev+wjvvvKPs7GzNnDlTVVVVunHjhsV4w27E/TLSr/rss890584d5ebmRuzPzc3VJ598YjRV/BUVFWnfvn2aPn262tvbtWPHDj355JO6ePGi0tPTrceLu46ODkka8L5/cSxZlZWVacWKFSooKFBzc7NefvlllZeXq6GhQWPHjrUe77719/dry5Ytmj9/vmbOnCnpv/c7LS1NmZmZEWuT6X4PdN2S9Mwzz2jKlCkKBAK6cOGCXnrpJTU2Nuq9994znHZ4jPgAjVbl5eXhP8+ePVtFRUWaMmWK/vznP2vdunWGkyHeVq9eHf7zrFmzNHv2bE2bNk11dXVatGiR4WSxUVFRoYsXLybda5r3Mth1b9iwIfznWbNmKS8vT4sWLVJzc7OmTZs23GMOqxH/Lbjs7GyNHTv2rnfDdHZ2yu/3G001/DIzM/Xoo4+qqanJepRh8cW9He33XZKmTp2q7OzspLj3mzdv1tGjR/Xhhx9G/LMrfr9ft27dUldXV8T6ZLnfg133QIqKiiQpKe73vYz4AKWlpWnOnDmqra0N7+vv71dtba2Ki4sNJxte169fV3Nzs/Ly8qxHGRYFBQXy+/0R9z0UCun06dOj6r5L0pUrV3Tt2rWEvvfOOW3evFmHDx/WiRMnVFBQEHF8zpw5Sk1NjbjfjY2Nunz5ckLf73td90DOnz8vSQl9v78x63dBfBMHDx50Xq/X7du3z/3zn/90GzZscJmZma6jo8N6tLj5xS9+4erq6lxLS4v729/+5kpKSlx2dra7evWq9Wgx093d7c6dO+fOnTvnJLk33njDnTt3zv3nP/9xzjn329/+1mVmZrqamhp34cIFt3TpUldQUOA+//xz48nvz9ddd3d3t3vhhRdcQ0ODa2lpcR988IH7/ve/7x555BF38+ZN69GHbNOmTc7n87m6ujrX3t4e3m7cuBFes3HjRjd58mR34sQJd+bMGVdcXOyKi4sNp75/97rupqYm96tf/cqdOXPGtbS0uJqaGjd16lS3YMEC48mHR0IEyDnn3n77bTd58mSXlpbm5s2b506dOmU9UlytWrXK5eXlubS0NPftb3/brVq1yjU1NVmPFVMffvihk3TXtmbNGufcf9+K/eqrr7rc3Fzn9XrdokWLXGNjo+3QMfB1133jxg23ePFiN3HiRJeamuqmTJni1q9fn/D/szXQ9Upye/fuDa/5/PPP3c9+9jP3rW99y40fP94tX77ctbe32w0dA/e67suXL7sFCxa4rKws5/V63cMPP+x++ctfumAwaDv4MOGfYwAAmBjxrwEBAJITAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGDi/wFxBIjJjq1QswAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -611,7 +591,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -629,7 +609,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -638,7 +618,7 @@ "[0, 1, 2, 4, 6, 7, 8, 9, 10, 13]" ] }, - "execution_count": 23, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -656,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -689,7 +669,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -726,7 +706,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -765,7 +745,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -800,7 +780,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -830,7 +810,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -897,7 +877,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -911,7 +891,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.10.12" } }, "nbformat": 4,