-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
236 lines (187 loc) · 7.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 22 18:23:45 2019
@author: Deep
"""
from nltk.tokenize import TweetTokenizer
import collections
from keras.preprocessing.sequence import pad_sequences
import numpy as np
from preprocessing import clean_text
def data_reader(data_file):
q1 = []
q2 = []
labels = []
with open(data_file, "r", errors="ignore") as f:
# next(f)
for line in f:
line = line.strip().split("\t")
q1.append(clean_text(line[1]))
q2.append(clean_text(line[2]))
labels.append(int(line[0]))
return q1, q2, labels
def get_vocab(sentences_list):
tt = TweetTokenizer()
tokenized_sentences = []
for sent in sentences_list:
tokenized_sentences.append(tt.tokenize(sent))
wordcounts = collections.Counter()
for tokenized_sent in tokenized_sentences:
for word in tokenized_sent:
wordcounts[word] += 1
words = [wordcount[0] for wordcount in wordcounts.most_common()]
word2idx = {w: i+3 for i, w in enumerate(words)}
word2idx["_pad_"] = 0
word2idx["_mask_"] = 1
word2idx["_unk_"] = 2
idx2word = dict((k,v) for v,k in word2idx.items())
return word2idx, idx2word
def get_vectorized_sentences(sentences_list, word2idx, max_sent_len=25, is_test=False):
tt = TweetTokenizer()
tokenized_sentences = []
vectorized_sentences = []
for sent in sentences_list:
tokenized_sentences.append(tt.tokenize(sent))
if not is_test:
for tokenized_sent in tokenized_sentences:
# truncate the sentence to the max_sent_len
if len(tokenized_sent) > max_sent_len:
tokenized_sent = tokenized_sent[:max_sent_len]
vectorized_sentences.append([word2idx[word] for word in tokenized_sent])
else:
for tokenized_sent in tokenized_sentences:
# truncate the sentence to the max_sent_len
if len(tokenized_sent) > max_sent_len:
tokenized_sent = tokenized_sent[:max_sent_len]
ts = []
for word in tokenized_sent:
if word in word2idx:
ts.append(word2idx[word])
else:
ts.append(word2idx["_unk_"])
vectorized_sentences.append(ts)
# padding
vectorized_sentences = pad_sequences(vectorized_sentences, maxlen=max_sent_len, padding="post")
return vectorized_sentences
def get_char(sentences_list):
tt = TweetTokenizer()
tokenized_sentences = []
for sent in sentences_list:
tokenized_sentences.append(tt.tokenize(sent))
char_per_word = []
char_words = []
char_sents = []
for tokenized_sent in tokenized_sentences:
for word in tokenized_sent:
for char in word:
char_per_word.append(char)
# if len(char_per_word) > max_char_len:
# char_per_word = char_per_word[:max_char_len]
char_words.append(char_per_word)
char_per_word = []
char_sents.append(char_words)
char_words = []
charcounts = collections.Counter()
for sent in char_sents:
for word in sent:
for char in word:
charcounts[char] += 1
chars = [charcount[0] for charcount in charcounts.most_common()]
char2idx = {c: i+2 for i, c in enumerate(chars)}
char2idx["_pad_"] = 0
char2idx["_unk_"] = 1
idx2char = dict((k,v) for v,k in char2idx.items())
return char2idx, idx2char
def get_vectorized_char_sentences(sentences_list, char2idx, max_sent_len=25, max_char_len=15, is_test=False):
tt = TweetTokenizer()
tokenized_sentences = []
vectorized_char_sentences = []
for sent in sentences_list:
tokenized_sentences.append(tt.tokenize(sent))
char_per_word = []
char_words = []
char_sents = []
char_all_sents = []
if not is_test:
for tokenized_sent in tokenized_sentences:
# truncate the sentence to the max_sent_len
if len(tokenized_sent) > max_sent_len:
tokenized_sent = tokenized_sent[:max_sent_len]
for word in tokenized_sent:
for char in word:
char_per_word.append([char2idx[char]])
if len(char_per_word) > max_char_len:
char_per_word = char_per_word[:max_char_len]
char_words.append(char_per_word)
char_per_word = []
char_sents.append(char_words)
char_words = []
char_per_word = []
char_per_sent = []
for s in char_sents:
for w in s:
for c in w:
for e in c:
char_per_word.append(e)
char_per_sent.append(char_per_word)
char_per_word = []
char_all_sents.append(char_per_sent)
char_per_sent = []
else:
for tokenized_sent in tokenized_sentences:
# truncate the sentence to the max_sent_len
if len(tokenized_sent) > max_sent_len:
tokenized_sent = tokenized_sent[:max_sent_len]
for word in tokenized_sent:
for char in word:
if char in char2idx:
char_per_word.append(char2idx[char])
else:
char_per_word.append(char2idx["_unk_"])
if len(char_per_word) > max_char_len:
char_per_word = char_per_word[:max_char_len]
char_words.append(char_per_word)
char_per_word = []
char_all_sents.append(char_words)
char_words = []
# paddding
for sent in char_all_sents:
while len(sent) < max_sent_len:
# sent.insert(0, []) # 在句首插入
sent.append([]) # 在句末插入
pad_char_sent = pad_sequences(sent, maxlen=max_char_len, padding="post")
vectorized_char_sentences.append(pad_char_sent)
return vectorized_char_sentences
def load_glove(file):
"""Loads GloVe vectors in numpy array.
Args:
file (str): a path to a glove file.
Return:
dict: a dict of numpy arrays.
"""
model = {}
with open(file, encoding="utf8", errors='ignore') as f:
for line in f:
line = line.split(' ')
word = line[0]
vector = np.array([float(val) for val in line[1:]])
model[word] = vector
return model
def filter_embeddings(embeddings, vocab, dim):
"""Loads word vectors in numpy array.
Args:
embeddings (dict): a dictionary of numpy array.
vocab (dict): word_index lookup table.
Returns:
numpy array: an array of word embeddings.
"""
if not isinstance(embeddings, dict):
return
_embeddings = np.zeros([len(vocab), dim])
for word in vocab:
word_idx = vocab[word]
if word in embeddings:
_embeddings[word_idx] = embeddings[word]
else:
_embeddings[word_idx] = np.random.uniform(-1, 1, dim)
return _embeddings