diff --git a/articles/smartid_Demo.html b/articles/smartid_Demo.html index 599cb7d..247dd0c 100644 --- a/articles/smartid_Demo.html +++ b/articles/smartid_Demo.html @@ -218,7 +218,7 @@

Score Samplesidf_iae_methods() to see available methods for IDF/IAE term. More details of each term can be seen in help page of -each function, e.g. ?smartid:::idf.

+each function, e.g. ?idf.

 ## show available methods
 idf_iae_methods()
@@ -235,18 +235,19 @@ 

Score Samples\(N_{i,j}\) is the counts of feature \(i\) in cell \(j\); \(\hat -N_{i,j}\) is \(max(0,N_{i,j}-threshold)\); \(n\) is the total number of -documents(cells); \(n_i\) is \(\sum_{j = 1}^{n} sign(N_{i,j} > -threshold)\).

+N_{i,j}\) is \(\max(0,N_{i,j}-threshold)\); \(n\) is the total number of +documents(cells); \(n_i\) is \(\sum_{j = 1}^{n} \mathrm{sign}(N_{i,j} > +\mathrm{threshold})\).

Here for labeled data, we can choose logTF * IDF_prob * IAE_prob for marker identification: \[\mathbf{score}=\log \mathbf{TF}*\mathbf{IDF}_{prob}*\mathbf{IAE}_{prob}\]

The probability version of IDF can be termed as: \[\mathbf{IDF_{i,j}} = \log(1+\frac{\frac{n_{i,j\in -D}}{n_{j\in D}}}{max(\frac{n_{i,j\in \hat D}}{n_{j\in \hat D}})+ +D}}{n_{j\in D}}}{\max(\frac{n_{i,j\in \hat D}}{n_{j\in \hat D}})+ e^{-8}}\frac{n_{i,j\in D}}{n_{j\in D}})\]

-

And the probability version of IAE can be termed as: \[\mathbf{IAE_{i,j}} = \log(1+\frac{mean(\hat -N_{i,j\in D})}{max(mean(\hat N_{i,j\in \hat D}))+ e^{-8}}*mean(\hat -N_{i,j\in D}))\]

+

And the probability version of IAE can be termed as: \[\mathbf{IAE_{i,j}} = +\log(1+\frac{\mathrm{mean}(\hat N_{i,j\in D})}{\max(\mathrm{mean}(\hat +N_{i,j\in \hat D}))+ e^{-8}}*\mathrm{mean}(\hat N_{i,j\in +D}))\]

Where \(D\) is the category of cell \(j\); \(\hat D\) is the category other than \(D\).

@@ -270,7 +271,7 @@

Score Samples) ) #> user system elapsed -#> 0.197 0.008 0.205 +#> 0.194 0.004 0.198 ## score and tf,idf,iae all saved assays(data_sim) @@ -470,8 +471,8 @@

Un-labeled Data\[\mathbf{score}=\log \mathbf{TF}*\mathbf{IDF}_{sd}*\mathbf{IAE}_{sd}\]

Where IDF and IAE can be termed as: \[\mathbf{IDF_i} = -\log(1+SD(\mathbf{TF}_{i})*\frac{n}{n_i+1})\] \[\mathbf{IAE_i} = -\log(1+SD(\mathbf{TF}_{i})*\frac{n}{\sum_{j=1}^{n}\hat +\log(1+\mathrm{SD}(\mathbf{TF}_{i})*\frac{n}{n_i+1})\] \[\mathbf{IAE_i} = +\log(1+\mathrm{SD}(\mathbf{TF}_{i})*\frac{n}{\sum_{j=1}^{n}\hat N_{i,j}+1})\]

Score Samples @@ -491,7 +492,7 @@

Score Samples ) ) #> user system elapsed -#> 0.178 0.020 0.198 +#> 0.189 0.008 0.197 ## new score is saved and tf,idf,iae all updated assays(data_sim) diff --git a/pkgdown.yml b/pkgdown.yml index 3e958b4..c1534ba 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -3,5 +3,5 @@ pkgdown: 2.0.7 pkgdown_sha: ~ articles: smartid_Demo: smartid_Demo.html -last_built: 2024-03-29T11:41Z +last_built: 2024-03-29T12:11Z