-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
373 lines (312 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from math import e
import torch
from datasets import load_dataset
from argparse import ArgumentParser
from arch.config import Config
from arch.model import NanoFormerForCausalLM
from transformers import Trainer, TrainingArguments, AutoTokenizer
from trl import SFTTrainer
from torch.utils.data import DataLoader
from torch.optim import AdamW
from transformers import get_linear_schedule_with_warmup
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import wandb
from tqdm.auto import tqdm
import os, gc
import json
import shutil
def get_param_count(model):
total_count, grad_count = 0, 0
unique_params = set() # Track unique parameters by their `id`
for _, param in model.named_parameters():
# Check if this parameter is already counted
if id(param) not in unique_params:
unique_params.add(id(param)) # Mark this parameter as counted
total_count += param.numel()
if param.requires_grad:
grad_count += param.numel()
return total_count, grad_count
def tokenize_function(examples, tokenizer, max_length):
# Tokenize without padding first
tokenized = tokenizer(
examples["text"],
max_length=max_length,
truncation=True,
padding=False, # Don't pad yet
return_tensors=None # Return lists instead of tensors
)
return tokenized # Return without padding
def create_dataloaders(dataset, tokenizer, batch_size, max_length, num_workers=4):
tokenize = partial(tokenize_function, tokenizer=tokenizer, max_length=max_length)
train_dataset = dataset["train"].map(
tokenize,
batched=True,
num_proc=num_workers,
remove_columns=dataset["train"].column_names,
)
val_dataset = dataset["test"].map(
tokenize,
batched=True,
num_proc=num_workers,
remove_columns=dataset["test"].column_names
)
def collate_fn(batch):
# Find max length in batch
max_len = max(len(x['input_ids']) for x in batch)
# Round up to nearest multiple of 8
max_len = ((max_len + 7) // 8) * 8
max_len = min(max_len, max_length)
# Pad each sequence to max_len
padded_batch = tokenizer.pad(
{'input_ids': [x['input_ids'] for x in batch],
'attention_mask': [x['attention_mask'] for x in batch]},
padding='max_length',
max_length=max_len,
return_tensors='pt'
)
return padded_batch
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=num_workers,
prefetch_factor=2,
persistent_workers=True,
collate_fn=collate_fn
)
val_dataloader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
pin_memory=True,
num_workers=num_workers,
prefetch_factor=2,
persistent_workers=True,
collate_fn=collate_fn
)
return train_dataloader, val_dataloader
def custom_training_loop(
model,
train_dataloader,
val_dataloader,
args,
device="cuda:0",
):
# Initialize wandb
if args.run_name is None:
run_name = f'{args.attention_type}_ep{args.num_epochs}_bs{args.batch_size}x{args.gradient_accumulation_steps}_lr{args.lr}_norm{args.max_grad_norm}'
else:
run_name = args.run_name
output_dir = f'/home/datta0/models/nanoformer/{run_name}'
if not args.no_wandb:
wandb.init(
project="nanoformer",
name=run_name,
config=vars(args)
)
# Track best validation loss for saving best model
best_val_loss = float('inf')
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Initialize optimizer
optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# Calculate total training steps
num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
total_training_steps = num_update_steps_per_epoch * args.num_epochs
# Create scheduler
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=int(total_training_steps * args.warmup_ratio),
num_training_steps=total_training_steps,
)
if args.compile:
model = torch.compile(model)
# Training loop
model.train()
model.set_train()
global_step = 0
for epoch in range(args.num_epochs):
total_loss = 0
optimizer.zero_grad()
progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{args.num_epochs}")
for step, batch in enumerate(progress_bar):
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
# Forward pass with bfloat16 autocast
with torch.amp.autocast("cuda:0", enabled=True, dtype=torch.bfloat16):
outputs, loss = model(**batch)
# Divide loss by gradient accumulation steps
loss = loss / args.gradient_accumulation_steps
# Backward pass
loss.backward()
total_loss += loss.item() * args.gradient_accumulation_steps # Multiply back to get true loss
# Only update weights after accumulating gradients
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if args.attention_type=="ngpt":
model.normalize_weights()
# Logging
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), float('inf'))
if not args.no_wandb:
wandb.log({
"train/loss": total_loss / args.gradient_accumulation_steps, # Average loss over accumulation steps
"train/learning_rate": scheduler.get_last_lr()[0],
"train/gradient_norm": grad_norm.item(),
"train/epoch": epoch + (step / len(train_dataloader)),
"train/global_step": global_step,
}, step=global_step)
print(f"Epoch {epoch+1}/{args.num_epochs} | "
f"Step {step+1}/{len(train_dataloader)} | "
f"Loss: {total_loss / args.gradient_accumulation_steps:.4f}")
total_loss = 0
global_step += 1
# if args.tie_word_embeddings and not torch.allclose(model.lm_head.weight, model.model.embed_tokens.weight):
# print(f'Unequal tied embeddings at step {(epoch,step)}')
progress_bar.set_postfix(loss=f"{total_loss / args.gradient_accumulation_steps:.4f}")
# Save checkpoint every save_steps
if global_step % args.save_steps == 0:
checkpoint_dir = f"{output_dir}/checkpoint-{global_step}"
os.makedirs(checkpoint_dir, exist_ok=True)
# Save model
model.save_pretrained(checkpoint_dir)
# Keep only last 3 checkpoints
checkpoints = sorted([
d for d in os.listdir(output_dir)
if d.startswith('checkpoint-')
], key=lambda x: int(x.split('-')[1]))
if len(checkpoints) > 3:
shutil.rmtree(f"{output_dir}/{checkpoints[0]}")
# torch.cuda.empty_cache()
# Validation loop
val_progress = tqdm(val_dataloader, desc=f"Validation epoch {epoch+1}")
val_loss = 0
with torch.no_grad():
for batch in val_progress:
batch = {k: v.to(device) for k, v in batch.items()}
_, loss = model(**batch)
val_loss += loss.item()
val_loss /= len(val_dataloader)
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model_dir = f"{output_dir}/best_model"
os.makedirs(best_model_dir, exist_ok=True)
model.save_pretrained(best_model_dir)
if not args.no_wandb:
# Log validation metrics
wandb.log({
"val/loss": val_loss,
"val/epoch": epoch + 1,
}, step=global_step)
print(f"Epoch {epoch+1} validation loss: {val_loss:.4f}")
model.train()
# Close wandb run
wandb.finish()
def count_tokens_in_dataset(dataset, tokenizer, max_len=4096, batch_size=1000, num_proc=16):
# Tokenize the dataset in batches and parallelize the process
dataset = dataset.map(
lambda x: {
"len": [
tokenizer(txt, max_length=max_len, truncation=True, padding='max_length', return_tensors='pt')['input_ids'].shape[1]
for txt in x['text']
]
},
batched=True, batch_size=batch_size, num_proc=num_proc
)
if 'train' in dataset:
lens = dataset['train']["len"]
else:
lens = dataset["len"]
total_tokens = np.sum(lens)
avg_tokens = total_tokens / len(lens)
max_tokens = np.max(lens)
min_tokens = np.min(lens)
return total_tokens, avg_tokens, max_tokens, min_tokens, lens
def main(args):
dataset = load_dataset(args.dataset)
train_data, val_data = dataset["train"], dataset["test"]
print(train_data, val_data)
tokenizer = AutoTokenizer.from_pretrained("NeelNanda/gpt-neox-tokenizer-digits")
tokenizer.pad_token = tokenizer.eos_token
args.vocab_size = tokenizer.vocab_size
extra_args = json.loads(args.extra_args)
config = Config(**vars(args), **extra_args)
config.vocab_size = tokenizer.vocab_size
print(f'Setting vocab size to {tokenizer.vocab_size} from tokenizer')
model = NanoFormerForCausalLM(config)
print(f'model is {model}')
total_params, trainable_params = get_param_count(model)
print(f'Total params: {total_params} aka {total_params/1e6:.2f}M, Trainable params: {trainable_params}')
if args.resume_from_checkpoint:
model.load_from_checkpoint(f'/home/datta0/models/nanoformer/{args.run_name}')
if args.estimate:
total_tokens, avg_tokens, max_tokens, min_tokens, lens = count_tokens_in_dataset(dataset, tokenizer)
print(f'Total tokens: {total_tokens} aka {total_tokens/1e6:.2f}M, Average tokens: {avg_tokens}, Max tokens: {max_tokens}, Min tokens: {min_tokens}')
return
model = model.to(torch.bfloat16)
model.train()
model.to("cuda:0")
train_dataloader, val_dataloader = create_dataloaders(
dataset,
tokenizer,
args.batch_size,
args.max_position_embeddings,
)
custom_training_loop(
model,
train_dataloader,
val_dataloader,
args,
)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--dataset", type=str, default="JeanKaddour/minipile")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--gradient_accumulation_steps", type=int, default=512)
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--warmup_ratio", type=float, default=0.02)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--max_grad_norm", type=float, default=5.0)
parser.add_argument("--lr", type=float, default=5e-3)
# parser.add_argument("--optim", type=str, default="paged_adamw_32bit")
parser.add_argument("--save_steps", type=int, default=100)
parser.add_argument("--run_name", type=str, default=None)
parser.add_argument("--no_wandb", action='store_true')
parser.add_argument("--compile", action='store_true')
parser.add_argument("--estimate", action='store_true')
parser.add_argument("--resume_from_checkpoint",action='store_true')
# add everything in Config as argument
parser.add_argument("--hidden_size", type=int, default=1024)
parser.add_argument("--intermediate_size", type=int, default=2048)
parser.add_argument("--num_hidden_layers", type=int, default=16)
parser.add_argument("--num_attention_heads", type=int, default=8)
parser.add_argument("--num_key_value_heads", type=int, default=2)
parser.add_argument("--hidden_act", type=str, default="silu")
parser.add_argument("--max_position_embeddings", type=int, default=2048)
parser.add_argument("--initializer_range", type=float, default=0.02)
parser.add_argument("--rms_norm_eps", type=float, default=1e-6)
parser.add_argument("--input_layernorm", type=bool, default=True)
parser.add_argument("--post_attention_layernorm", type=bool, default=False)
parser.add_argument("--pre_ffnn_layernorm", type=bool, default=True)
parser.add_argument("--post_ffnn_layernorm", type=bool, default=False)
parser.add_argument("--use_cache", type=bool, default=True)
parser.add_argument("--tie_word_embeddings", action='store_true')
parser.add_argument("--rope_theta", type=float, default=None)
parser.add_argument("--rope_scaling", type=dict, default=None)
parser.add_argument("--attention_dropout", type=float, default=0.0)
parser.add_argument("--attention_scale", type=float, default=0)
parser.add_argument("--embedding_multiplier", type=float, default=1.0)
parser.add_argument("--logits_scaling", type=float, default=1.0)
parser.add_argument("--residual_multiplier", type=float, default=1.0)
parser.add_argument("--attention_multiplier", type=float, default=1.0)
parser.add_argument("--attention_cap", type=float, default=None)
parser.add_argument("--logit_cap", type=float, default=None)
parser.add_argument("--attention_type", type=str, default="gqa", choices=["gqa", "mla", "ngpt", "diff"])
parser.add_argument("--extra_args", type=str, default="{}") # default to empty dict
args = parser.parse_args()
main(args)