-
Notifications
You must be signed in to change notification settings - Fork 5
/
index.html
1234 lines (860 loc) · 24.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>Data Analysis with R | Datapolitan Training</title>
<meta charset="utf-8">
<link rel="stylesheet" href="slide.css"/>
<link href="images/favicon.ico" rel="shortcut icon" type="image/x-icon">
</head>
<body>
<!-- <script src="https://datapolitan-training-files.s3.amazonaws.com/remark-latest.min.js"> -->
<script src="https://remarkjs.com/downloads/remark-latest.min.js">
</script>
<script>
var slideshow = remark.create(
{
sourceUrl: 'content.md',
countIncrementalSlides: false
// slideNumberFormat: ""
});
</script>
</body>
</html>
<!--
<!DOCTYPE html>
<html>
<head>
<title>Data Analysis With R</title>
<meta charset="utf-8">
<link rel="stylesheet" href="slide.css"/>
</head>
<body>
<textarea id="source">
layout:true
<div class="header" style="display:block; text-align: left; color:gray; font-size:1em; position: fixed; top: 0px; left: 0px; height: 30px;vertical-align:middle;margin:7px 0 0 0;width:100%;background: #fcfcfc;
background: -moz-linear-gradient(top, #fcfcfc 0%, #d1d1d1 100%);
background: -webkit-linear-gradient(top, #fcfcfc 0%,#d1d1d1 100%);
background: linear-gradient(to bottom, #fcfcfc 0%,#d1d1d1 100%);
filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#fcfcfc', endColorstr='#d1d1d1',GradientType=0 );">
<img src="images/datapolitan_transparent_small.png" style="position: fixed;top: 2px; left: 5px; width: 14%;">
<p style="display:block;text-align:left;color:gray;font-size:1em; position: fixed; top: 0px; left: 155px; height: 30px;vertical-align:middle;margin:7px 0 0 0; ">Data Analysis with R</p>
</div>
<div class="footer" style="display:block;color:gray;position:fixed;bottom: 0px;left:0px;height:30px;vertical-align:middle;margin:0 0 0 0;width:100%;background: #fcfcfc;background: -moz-linear-gradient(top, #fcfcfc 0%, #d1d1d1 100%);background: -webkit-linear-gradient(top, #fcfcfc 0%,#d1d1d1 100%);background: linear-gradient(to bottom, #fcfcfc 0%,#d1d1d1 100%);sfilter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#fcfcfc', endColorstr='#d1d1d1',GradientType=0 );">
<p class="footer">
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Data Analysis with R</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="http://www.tinypanther.com" property="cc:attributionName" rel="cc:attributionURL">Julia Marden</a> and <a xmlns:cc="http://creativecommons.org/ns#" href="http://www.datapolitan.com" property="cc:attributionName" rel="cc:attributionURL">Richard Dunks</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative-Commons-License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/80x15.png" /></a>
</p>
</div>
--
class:center, middle
# Data Analysis With R
- - -
## Instructors: Elizabeth DiLuzio and Mark Yarish
### Follow along at: http://bit.ly/data-analysis-r<br>See the code at: http://bit.ly/data-analysis-r-code
![img-center-50](images/datapolitan.png)
---
# A Few Ground Rules
???
+ Facilitators establish the intention we have for the culture of the classroom
--
+ Step up, step back
--
+ One mic
--
+ Be curious and ask questions
--
+ Assume noble regard and positive intent
--
+ Respect multiple perspectives
--
+ Listen to comprehend, not to respond
--
+ Be present (phone, email, social media, etc.)
---
# Introduce Yourself to Your Neighbor
+ Who you are
+ Where you work
+ What are you hoping to learn today?
+ What you've done with code (any code)
---
# What to Expect Today
--
+ Introduction to R
--
+ Using R in Data Analysis
--
+ Getting Familiar: R Syntax + R Studio
--
+ 311 Data Analysis
--
+ Presentations!
---
# Key Skills
--
+ R syntax and commands
--
+ [RStudio](https://www.rstudio.com/)
--
+ Load data
--
+ Explore data
--
+ Wrangle data
--
+ Visualize data
???
+ Students will review progress and give feedback on key takeaways
---
name:housekeeping
# Housekeeping
--
+ We’ll have one 15 minute break in the morning
--
+ We’ll have an hour for lunch
--
+ We’ll have a 15 minute break in the afternoon
--
+ Class will start promptly after breaks
--
+ Feel free to use the bathroom if you need during class
--
+ Please take any phone conversations into the hall to not disrupt the class
---
# What is Analysis?
--
>“Analysis is simply the pursuit of understanding, usually through detailed inspection or comparison”
## - [Carter Hewgley](https://www.linkedin.com/in/carterhewgley), Senior Advisor for Family & Homeless Services, Department of Human Services, District of Columbia
???
+ Orient students to key concept in analysis
+ Use R to uncover meaning in data
---
# The Analytical Process
![img-center-80](images/valuechain.png)
???
+ Establish frame for the analytics process to be followed in class
+ Familiarize students with terminology (esp "data wrangling/data cleaning")
+ Demystify the process
+ Empower students to do analysis
---
# Exercise: Old Faithful
![img-center-70](images/old_faithful.jpeg)
.caption[Image Credit: Astroval1, [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0) via [Wikimedia Commmons](https://commons.wikimedia.org/wiki/File%3ABig_Dipper_Ursa_Major_over_Old_Faithful_geyser_Yellowstone_National_Park_Wyoming_Astrophotography.jpg)]
???
+ Facilitator provides context for the exercise by describing Old Faithful
+ Students will download script with prepared code snippets to run
+ Students will learn the steps of running summary statistics in R
---
# Identify the Question
--
+ What's the minimum amount of time I should plan to spend at Old Faithful?
--
+ Is there a relationship between the amount of time I wait and the length of time it erupts?
--
???
+ Students will understand the problem we're seeking to solve in class
+ Students will learn by example the value of problem setting.
+ This will be done by writing out explicit problem statement for 311 Noise, possibly vision 0 db after we have exercise.
---
# Exercise: Old Faithful
![img-center-85](images/faithfulvis.png)
#### [Click to download the `faithful_a.R` code for this exercise (already loaded in RStudio)](code/faithful_a.R)
???
+ Students will open and load a simple dataset.
+ They will inspect the data in the viewer and confirm it loaded properly.
+ This will be done by live demo of code
+ Students will be writing code themselves
+ Introduce basic commands and tab completion
+ Describe comments and their purpose
+ Emphasize cooperation between participants
---
# [RStudio Introduction](https://www.rstudio.com/)
![img-center-80](images/rstudio_annotated.png)
### Find your student number and link in your workbook<br>.red[Username and Password: `rstudio`]
???
+ Introduce students to Console, Environment, and Help
+ Students will be familiar with the key features of the console for the exercises to come
+ This will be done by live demo and verbal discussion
+ Ctrl+L clear console
---
# What is Syntax?
--
![img-center-80](images/syntax.png)
.caption[Image Credit: AnonMoos, Public Domain via [Wikipedia](https://commons.wikimedia.org/wiki/File%3ABasic_constituent_structure_analysis_English_sentence.svg)]
???
+ Students will get vocabulary for accomplishing tasks in code
+ This will be done with an overview discussion
---
# R Syntax
```R
# basic command
command(dataset)
View(faithful)
```
???
+ Facilitator guides students through basic syntax in R for simple tasks
+ Instructor reinforces syntax idea and relation to regular sentence structure to convey meaning where appropriate
--
```R
# select a column
command(dataset$column)
mean(faithful$waiting)
```
--
```R
# get help
?help
?faithful
```
---
# Your Turn 1
--
+ Look through the code we just wrote
--
+ Make a change to one thing on the chart
--
+ If necessary, check out the help documentation
--
+ Be ready to describe what you did
---
![img-right-40](images/r_logo.png)
# What is R?
--
+ Statistical programming language
--
+ [Open-source](https://opensource.com/resources/what-open-source)
--
+ Made for and by people who work with data
--
+ Used for data analysis
--
+ For the history of R, [see this video](https://www.coursera.org/lecture/r-programming/overview-and-history-of-r-pAbaE)
???
+ Familiarize students with basics of R and set context
+ "Created for and by the people" - Julia Marden
---
# R vs. Excel
???
+ Facilitator compares R directly to Excel for context (assuming most participants are well-acquainted with Excel)
--
+ R is a _programming language_ while Excel is an _application_
--
+ R can work with much larger datasets than Excel
--
+ R can perform more complex operations than Excel
--
+ R commands can be easily saved, re-run, and automated
--
+ R doesn't have the icons, animations, and wizards of Excel
---
name:nola
# New Orleans Distributes Smoke Alarms
![img-center-40](images/neworleansfire.jpeg)
.caption[Image Credit: Michael Barnett [CC BY-SA 2.5](http://creativecommons.org/licenses/by-sa/2.5), via Wikimedia Commons]
???
+ Students will be inspired to use their knowledge in practical applications
---
# Targeted Outreach Saves Lives
![img-center-90](images/nolasmokealarm.png)
.caption[Image Credit: City of New Orleans, via [nola.gov](http://nola.gov/performance-and-accountability/nolalytics/files/full-report-on-analytics-informed-smoke-alarm-outr/)]
???
+ Students will be inspired to use their knowledge in practical applications
---
# Targeted Outreach Saves Lives
![img-center-90](images/nolaimpact.png)
.caption[Image Credit: City of New Orleans, via [nola.gov](http://nola.gov/performance-and-accountability/nolalytics/files/full-report-on-analytics-informed-smoke-alarm-outr/)]
???
+ Students will be inspired to use their knowledge in practical applications
---
# And Here's the R Code for It
[![img-center-85](images/smoke_signals_github_outline.png)](https://github.com/enigma-io/smoke-signals-model)
[Click here for the code](https://github.com/enigma-io/smoke-signals-model)
---
class:center,middle
# Wrap-Up
---
class:center, middle
# 15 Min Break
![img-center-100](images/real_programmers.png)
Source: https://xkcd.com/378/
---
# 5 Data Analytics Tasks
--
1. Sorting
--
2. Filtering
--
3. Aggregating (PivotTable)
--
4. Transforming
--
5. Visualizing
---
# 1. Sorting
--
+ Reorganize rows in a dataset based on the values in a column
--
+ Can sort on multiple columns
---
# Sorting in R
--
+ Use [`order()`](https://www.r-bloggers.com/r-sorting-a-data-frame-by-the-contents-of-a-column/)
--
+ Specify the column you want to sort by<br>(in our case `eruptions` or `waiting`)
--
```r
df[order(df$column_to_sort_by),]
```
--
## Your Turn 2
+ Sort the Old Faithful data to find the shortest waiting time
+ Sort the Old Faithful data to find the longest waiting time
???
+ Why the comma?
+ The syntax is `df[row specifier, column specifier]`.
+ If a specifier is absent, R returns all.
---
# 2. Filtering
--
+ Only show rows that contain some value
--
+ Can filter by multiple values
--
+ Can filter by values in multiple columns
---
# Filtering in R
--
+ Provide some logical test (`<`, `>`, `==`, etc.)
--
+ The format is
--
```r
df[df$column_to_filter_by <logical test>,]
```
--
## Your Turn 3
+ Filter the Old Faithful data for all eruptions longer than 4 minutes
---
# 3. Aggregating Data
--
+ Trends only become clear in aggregate
--
+ Often where you discover the "so what"
--
+ Aggregating data meaningfully can be tricky
--
+ We'll be showing how to do this with R later
---
# 4. Transforming Data
--
+ Sometimes available categories don't make sense
--
+ Values may not be in the format you need (or have mistakes)
--
+ You always want to have a clean copy of the data to go back to
--
+ Best to keep track of what you've done
--
+ We'll be showing how to do this with R later
---
# 5. Visualizing Data
--
+ Quickly communicate information
--
+ Tell a clearer story
--
+ A picture is worth a thousands words
--
+ We've already seen this with the Old Faithful data
```r
hist(faithful$waiting)
hist(faithful$eruptions)
plot(faithful, main="Eruptions of Old Faithful", xlab="Eruption Time in Minutes", ylab="Waiting Time to Next Eruption in Min")
abline(lm(faithful$waiting~faithful$eruptions), col="red")
```
---
# 5 Data Analytics Tasks
1. Sorting
2. Filtering
3. Aggregating (PivotTable)
4. Transforming
5. Visualizing
---
# Derelict Vehicles
![img-center-90](images/derelictvan.png)
.center[Derelict Vehicles Across NYC]
---
# The Analytical Process
![img-center-80](images/valuechain.png)
---
# Identify the Question
--
+ How many people complain about derelict vehicles?
--
+ Do people complain more at a particular time of day?
--
+ Do people complain more in a particular neighborhood or borough?
--
![img-center-55](images/datavis-r.png)
???
+ Students will understand the problem we're seeking to solve in class
+ Students will learn by example the value of problem setting.
+ This will be done by writing out explicit problem statement for 311 Noise, possibly vision 0 db after we have exercise.
---
# Exercise: 311 Service Requests
--
+ Open the `311_a.R` script (already loaded in RStudio)
--
+ Follow along the code as we load the dataset
--
+ You can [download the code here](code/311_a.R)
--
+ The [data dictionary](https://data.cityofnewyork.us/api/views/erm2-nwe9/files/68b25fbb-9d30-486a-a571-7115f54911cd?download=true&filename=311_SR_Data_Dictionary_2018.xlsx)
explains each column
???
+ Students will conduct the same commands from Faithful with 311 exercise
+ Students will hit the roadblocks
+ Can't run summary statistics
+ Exercise will be run through script showing comments (not on slide)
+ Script will mirror the Faithful with intention of not working
---
# R Data Types
+ [Numeric](http://www.r-tutor.com/r-introduction/basic-data-types/numeric) vs [Factor](https://www.stat.berkeley.edu/~s133/factors.html)
--
![img-center-80](images/ice_cream.jpeg)
???
+ Students will understand a few of the different data types in R
+ They will use the `str` and `summary` command
+ This will be done with a live demo of code
---
# R Data Structures
--
+ [Vectors](http://www.r-tutor.com/r-introduction/vector) and [matrices](http://www.r-tutor.com/r-introduction/matrix) (single data types)
--
+ [Lists](http://www.r-tutor.com/r-introduction/list) and [data frames](http://www.r-tutor.com/r-introduction/data-frame) (mixed data types)
--
![img-center-100](images/dataframe.png)
--
+ You often need to restructure your data to make it usable
???
+ Students will review work done in simple data load
+ They will learn key elements of data structures based on Faithful data
+ This will be done with live demo and discussion
+ They will use the `str` and `summary` command
---
class:center, middle
# Wrap-Up
???
+ Facilitator reviews the learning in the morning with participants
+ Facilitator answers any questions
+ If there is time, facilitator has participants switch and review someone else's code, then has them reflect on what they learned looking at someone else's code
---
class:center, middle
# Lunch
![img-center-60](images/automation.png)
Source: https://xkcd.com/1319/
---
class:center, middle
# Welcome Back!
---
# Data Wrangling (i.e. Cleaning)
--
+ Get data into right type or structure
--
+ Create subsets
--
+ Add packages to work with the data we have
???
+ start of section discussing manipulating data
+ picking up pieces from exercise where script failed
+ start of exercise 3
---
# Packages
--
+ Add-ons: extra functions, data viz, special features
--
+ Can help you load data, work with timestamps, create charts
--
+ If you need to do something, there's probably a package for it
--
+ To use: `install.packages()`
???
+ Students will understand the purpose and value of packages
+ This will be done with a discussion
---
# Exercise: 311 Service Requests
![img-center-80](images/datavis-r.png)
#### [Click to download the `311_b.R` code for this exercise (already loaded in RStudio)](code/311_b.R)
???
+ An example question of the 311 dataset
+ students will be walked through the exercise with a script
+ Prompts in the script with a more specific question
+ incidents per borough -> distribution of complaints
---
# Your Turn 4
--
+ Switch out derelict vehicles for another complaint type
--
+ Look at a different borough, ZIP, or community board
--
+ Look at day of the week instead of hour
--
+ Challenge yourself
--
+ We'll be around to help
---
class:center,middle
# It All Begins With a Question
???
+ Students will understand better the purpose of using code for analysis
+ Remind them we all have hypothesis -> need to be acknowledged
---
# Questions
--
+ How many?
--
+ Where?
--
+ When?
--
## What are some of your questions of this data?
???
+ Prompts for starting your investigation of the data
+ Students will have a way to start exploring data
+ Discussion leading into guided exercise
---
# Your Turn 5
--
+ Working in pairs or alone, start working on a question that interests you
--
+ Start with a new script and give it a name
--
+ Use the skills we've covered
--
+ Challenge yourself to do something new
--
+ Don't be afraid of not knowing
--
+ Use the documentation
--
+ Help each other out
--
+ We'll be around to help
---
class:center, middle
# 15 Min Break
![img-center-80](images/here_to_help.png)
Source: https://xkcd.com/1831/
---
# Debugging
--
+ Everyone gets errors all the time
--
+ It's just a matter of how complex they are<br>
--
_And fixing them_
--
+ **Syntax errors** -> using the wrong instructions
--
+ **Semantic errors** -> doing the wrong things
--
+ When in doubt, take a breath, try breaking things apart into smaller pieces, review the documentation, and search for help
???
+ Students will be introduced to key concepts in identifying and resolving errors
+ This will be done with a lecture/discussion leading into an exercise
+ Class exercise finding errors in code -> slide with code snippets in Markdown with errors
+ deal with issue of correctness
---
# Exercise
+ Debug your neighbor's R Script and verify results
???
+ Students will examine another student's code, run the code, and fix any errors
+ Students will have a better understanding of how to think in code
+ Goal is to get students talking to each other about their code
+ have documentation at end of slides
---
class:center,middle
# <a href="https://script.google.com/a/macros/datapolitan.com/s/AKfycbwMcE5pcJwZHdbSCN_2epwaXnRLSRPaLbHCAhxaZJ79UXaRpQ_l/exec" target="_blank">Click to submit your work</a>
---
class:middle,center
# Code Review
???
+ Students will review select code examples
+ Goal is to model a collaborative process for data analysis
+ Time buffer for end of class
---
class:center,middle
# Wrap Up
---
# Key Skills
--
+ R syntax and commands
--
+ [RStudio](https://www.rstudio.com/)
--
+ Load data
--
+ Explore data
--
+ Wrangle data
--
+ Visualize data
--
+ Anything else?
???
+ Students will review progress and give feedback on key takeaways
---
# Taking This Out of the Classroom
???
+ Facilitators reinforce key learning points with participants for integrating into their workflow
--
+ R is a powerful tool for cleaning, analyzing, and visualizing data
--
+ Integrating it into your workflow takes practice and a commitment to not giving up (Google is your friend)
--
+ [RStudio](https://www.rstudio.com/) makes it easy to get started
--
+ You should be able to [download R and RStudio on your work computer](https://ayeimanol-r.net/2014/01/16/getting-started-installation-of-rstudio-and-some-packages-using-ggplot-to-make-a-simple-plot/) (Use the zip/tarball option)
---
name:resources
# Key Links
--
+ [Download R](https://cloud.r-project.org/)
--
+ [Download RStudio](https://www.rstudio.com/products/rstudio/download/)
--
+ [Download exercise files from this class](http://bit.ly/data-analysis-r-code)
---
# Learning and Practicing More with R
--
+ [Hands-On Programming with R](https://rstudio-education.github.io/hopr/) - Free online book with code examples meant for non-programmers
--
+ [R for Data Science](https://r4ds.had.co.nz/)- Free online book covering basic topics in data science with R
--
+ [R Cookbook](http://www.cookbook-r.com) - Free online walkthrough of the basics
--
+ [R Programming Coursera Course](https://www.coursera.org/learn/r-programming) - Free course in R that runs regularly
--
+ [Swirl](http://swirlstats.com) - Interactive learning inside of R `install.packages(“swirl”)`
---
# Other Useful Resources
--
+ [NYC Open Statistical Programming Meetup](https://www.meetup.com/nyhackr) - Monthly talks about R and sponsor of the [NYC R Conference](http://www.rstats.nyc/)
--
+ [Tidyverse](https://www.tidyverse.org) - R packages for Data Science
--
+ [Stat Methods](http://statmethods.net) - Great documentation for doing data analysis in R
--
+ [UCLA Stats](https://stats.idre.ucla.edu/other/dae/) - Many examples of statistical analysis with comparisons between R, Stata, SPSS, etc.
--
+ [Stack Overflow](https://stackoverflow.com/questions) - One of the best Q&A sites for technology
--
+ [Class handout](workbook.pdf)
--
+ [Datapolitan training classes](https://www.datapolitan.com/) - The online home of our training materials
???
+ Students will have key resources for moving forward in their learning
---
## .center[Contact Information]
## Julia Marden
+ Email: julia[at]tinypanther[dot]com
+ Website: http://tinypanther.com
+ Twitter: [@juliaem](https://twitter.com/juliaem)
-->
<!-- ## Alfred Lee