Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Percentile binning #15

Open
DamienIrving opened this issue Dec 6, 2020 · 0 comments
Open

Percentile binning #15

DamienIrving opened this issue Dec 6, 2020 · 0 comments

Comments

@DamienIrving
Copy link
Owner

The statsmodels library I'm using for percentile binning doesn't interpolate between points.

Taimoor is using this instead:

def weighted_quantile(values, quantiles, sample_weight=None, 
                      values_sorted=False, old_style=False):
    """ Very close to numpy.percentile, but supports weights.
    NOTE: quantiles should be in [0, 1]!
    :param values: numpy.array with data
    :param quantiles: array-like with many quantiles needed
    :param sample_weight: array-like of the same length as `array`
    :param values_sorted: bool, if True, then will avoid sorting of
        initial array
    :param old_style: if True, will correct output to be consistent
        with numpy.percentile.
    :return: numpy.array with computed quantiles.
    """
    values = np.array(values)
    quantiles = np.array(quantiles)
    if sample_weight is None:
        sample_weight = np.ones(len(values))
    sample_weight = np.array(sample_weight)
    assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \
        'quantiles should be in [0, 1]'
    if not values_sorted:
        sorter = np.argsort(values)
        values = values[sorter]
        sample_weight = sample_weight[sorter]
    weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
    if old_style:
        # To be convenient with numpy.percentile
        weighted_quantiles -= weighted_quantiles[0]
        weighted_quantiles /= weighted_quantiles[-1]
    else:
        weighted_quantiles /= np.sum(sample_weight)
    return np.interp(quantiles, weighted_quantiles, values)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant