-
Notifications
You must be signed in to change notification settings - Fork 20
/
abcd2bids.py
executable file
·782 lines (680 loc) · 30.6 KB
/
abcd2bids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
#! /usr/bin/env python3
"""
ABCD to BIDS CLI Wrapper
Greg Conan: [email protected]
Created 2019-05-29
Updated 2020-01-15
"""
##################################
#
# Wrapper for ABCD DICOM to BIDS pipeline that can be run from the command line
# 1. Imports data, QC's it, and exports abcd_fastqc01_reformatted.csv
# 2. Runs aws_downloader.py to download ABCD data using .csv table
# 3. Runs unpack_and_setup.sh to unpack/setup the downloaded ABCD data
# 4. Runs correct_jsons.py to conform data to official BIDS standards
# 5. Runs BIDS validator on unpacked/setup data using Docker
#
##################################
import argparse
import configparser
from cryptography.fernet import Fernet
import datetime
from getpass import getpass
import glob
import os
import pandas as pd
import shutil
import signal
import subprocess
import sys
# Constant: List of function names of steps 1-5 in the list above
STEP_NAMES = ["reformat_fastqc_spreadsheet", "download_nda_data",
"unpack_and_setup", "correct_jsons", "validate_bids"]
# Get path to directory containing abcd2bids.py
try:
PWD = os.path.dirname(os.path.abspath(__file__))
assert os.access(os.path.join(PWD, "abcd2bids.py"), os.R_OK)
except (OSError, AssertionError):
PWD = os.getcwd()
# Constants: Default paths to scripts to call from this wrapper, and default
# paths to folders in which to manipulate data
CONFIG_FILE = os.path.join(os.path.expanduser("~"), ".abcd2bids", "config.ini")
CORRECT_JSONS = os.path.join(PWD, "src", "correct_jsons.py")
DOWNLOAD_FOLDER = os.path.join(PWD, "raw")
#NDA_AWS_TOKEN_MAKER = os.path.join(PWD, "src", "nda_aws_token_maker.py")
NDA_AWS_TOKEN_MAKER = os.path.join(PWD, "src", "ndar_update_keys.py")
DOWNLOAD_CMD_PATH = os.path.join(os.path.expanduser("~"), ".local", "bin", "downloadcmd")
SERIES_TABLE_PARSER = os.path.join(PWD, "src", "aws_downloader.py")
SPREADSHEET_DOWNLOAD = os.path.join(PWD, "temp", "abcd_fastqc01_reformatted.csv")
SPREADSHEET_QC = os.path.join(PWD, "spreadsheets", "abcd_fastqc01.txt")
TEMP_FILES_DIR = os.path.join(PWD, "temp")
UNPACK_AND_SETUP = os.path.join(PWD, "src", "unpack_and_setup.sh")
UNPACKED_FOLDER = os.path.join(PWD, "data")
MODALITIES = ['anat', 'func', 'dwi']
SESSIONS = ['baseline_year_1_arm_1', '2_year_follow_up_y_arm_1']
def main():
"""
Run entire process of downloading ABCD data from NDA website, transforming
it to meet BIDS standards, and validating that it meets those standards.
:return: N/A
"""
cli_args = get_cli_args()
starting_timestamp = get_and_print_timestamp_when(sys.argv[0], "started")
# Set cleanup function to delete all temporary files if script crashes
if cli_args.remove:
set_to_cleanup_on_crash(cli_args.temp)
# Before running any different scripts, validate user's NDA credentials and
# use them to make NDA token
#make_nda_token(cli_args)
# Run all steps sequentially, starting at the one specified by the user
started = False
for step in STEP_NAMES:
if step == cli_args.start_at:
started = True
if started:
get_and_print_timestamp_when("The {} step".format(step),
"started")
globals()[step](cli_args)
get_and_print_timestamp_when("The {} step".format(step),
"finished")
print(starting_timestamp)
get_and_print_timestamp_when(sys.argv[0], "finished")
# Finally, delete temporary files and end script with success exit code
cleanup(cli_args.temp, 0)
def get_and_print_timestamp_when(script, did_what):
"""
Print and return a string showing the exact date and time when a script
reached a certain part of its process
:param script: String naming the script that started/finished
:param did_what: String which is a past tense verb describing what the
script did at the timestamp, like "started" or "finished"
:return: String with a human-readable message showing when script did_what
"""
timestamp = "\n{} {} at {}".format(
script, did_what,
datetime.datetime.now().strftime("%H:%M:%S on %b %d, %Y")
)
print(timestamp)
return timestamp
def get_cli_args():
"""
Get and validate all args from command line using argparse.
:return: Namespace containing all validated inputted command line arguments
"""
# Create arg parser
parser = argparse.ArgumentParser(
description="Wrapper to download, parse, and validate QC'd ABCD data."
)
# Required: Get path to FSL directory
parser.add_argument(
"fsl_dir",
type=str,
help=("Required: Path to FSL directory. This positional argument must "
"be a valid path to an existing folder.")
)
# Required: Get path to MRE / MCR root to run compiled MATLAB script
parser.add_argument(
"mre_dir",
type=str,
help=("Required: Path to directory containing MATLAB Runtime "
"Environment (MRE) version 9.1 or newer. This is used to run "
"a compiled MATLAB script. This positional argument must be a "
"valid path to an existing folder.")
)
# Optional: Get path to already-existing config file with NDA credentials
parser.add_argument(
"-c",
"--config",
default=CONFIG_FILE,
help=("Path to config file with NDA credentials. If no "
"config file exists at this path yet, then one will be created. "
"Unless this option or --username and --password is added, the "
"user will be prompted for their NDA username and password. "
"By default, the config file will be located at " + CONFIG_FILE)
)
# Optional: Get download folder path from user as CLI arg
parser.add_argument(
"-d",
"--download",
default=DOWNLOAD_FOLDER,
help=("Path to folder which NDA data will be downloaded "
"into. By default, data will be downloaded into the {} folder. "
"A folder will be created at the given path if one does not "
"already exist.".format(DOWNLOAD_FOLDER))
)
# Optional: Get folder to unpack NDA data into from download folder
parser.add_argument(
"-o",
"--output",
default=UNPACKED_FOLDER,
help=("Folder path into which NDA data will be unpacked and "
"setup once downloaded. By default, this script will put the "
"data into the {} folder. A folder will be created at the given "
"path if one does not already exist.".format(UNPACKED_FOLDER))
)
# Optional: Get QC spreadsheet
parser.add_argument(
"-q",
"--qc",
type=validate_readable_file,
default=SPREADSHEET_QC,
help=("Path to Quality Control (QC) spreadsheet file downloaded from "
"the NDA. By default, this script will use {} as the QC "
"spreadsheet.".format(SPREADSHEET_QC))
)
parser.add_argument(
"-p",
"--package_id",
required=True,
help=("ID of the data package that is created via the NDA")
)
parser.add_argument(
"--downloadcmd",
default=DOWNLOAD_CMD_PATH,
help=("Path to downloadcmd executable")
)
# Optional: Subject list
parser.add_argument(
"-l",
"--subject-list",
dest="subject_list",
type=validate_readable_file,
required=True,
help=("Path to a .txt file containing a list of subjects to download. "
"The default is to download all available subjects.")
)
# Optional: Sessions
parser.add_argument(
"-y",
"--sessions",
choices=SESSIONS,
nargs="+",
dest="sessions",
default=SESSIONS,
help=("List of sessions for each subject to download. The default is "
"to download all sessions for each subject. "
"The possible selections are {}".format(SESSIONS))
)
# Optional: Modalities
parser.add_argument(
"-m",
"--modalities",
choices=MODALITIES,
nargs="+",
dest="modalities",
default=MODALITIES,
help=("List of the imaging modalities that should be downloaded for "
"each subject. The default is to download all modalities. "
"The possible selections are {}".format(MODALITIES))
)
# Optional: During unpack_and_setup, remove unprocessed data
parser.add_argument(
"-r",
"--remove",
action="store_true",
help=("After each subject's data has finished conversion, "
"removed that subject's unprocessed data.")
)
# Optional: Pick a step to start at, ignore previous ones, and then run
# that function and all subsequent ones sequentially
parser.add_argument(
"-s",
"--start_at",
choices=STEP_NAMES,
default=STEP_NAMES[0],
help=("Give the name of the step in the wrapper to start "
"at, then run that step and every step after it. Here are the "
"names of all of the steps, in order from first to last: "
+ ", ".join(STEP_NAMES))
)
# Optional: Get folder to place temp data into during unpacking
parser.add_argument(
"-t",
"--temp",
default=TEMP_FILES_DIR,
help=("Path to the directory to be created and filled with "
"temporary files during unpacking and setup. By default, the "
"folder will be created at {} and deleted once the script "
"finishes. A folder will be created at the given path if one "
"doesn't already exist.".format(TEMP_FILES_DIR))
)
# Optional: Get NDA username and password
parser.add_argument(
"-u",
"--username",
type=str,
help=("NDA username. Adding this will create a new config "
"file or overwrite an old one. Unless this is added or a config "
"file exists with the user's NDA credentials, the user will be "
"prompted for them. If this is added and --password is not, "
"then the user will be prompted for their NDA password.")
)
parser.add_argument(
"-z",
"--docker-cmd",
type=str,
dest="docker_cmd",
default=None,
help=("A necessary docker command replacement on HPCs like "
"the one at OHSU, which has it's own special wrapper for"
"docker for security reasons. Example: '/opt/acc/sbin/exadocker'")
)
parser.add_argument(
"-x",
"--singularity",
type=str,
dest="sif_path",
default=None,
help=("Use singularity and path the .sif file")
)
# Parse, validate, and return all CLI args
return validate_cli_args(parser.parse_args(), parser)
def validate_cli_args(args, parser):
"""
Check that all command line arguments will allow this script to work.
:param args: argparse namespace with all command-line arguments
:param parser: argparse ArgumentParser to raise error if anything's invalid
:return: Validated command-line arguments argparse namespace
"""
# Validate FSL and MRE directories
validate_dir_path(args.fsl_dir, parser)
validate_dir_path(args.mre_dir, parser)
# Validate and create config file's parent directory
try:
os.makedirs(os.path.dirname(args.config), exist_ok=True)
except (OSError, TypeError):
parser.error("Could not create folder to contain config file.")
# Validate other dirs: check if they exist; if not, try to create them; and
# move important files in the default dir(s) to the new dir(s)
try:
for cli_arg in ("download", "output", "temp"):
setattr(args, cli_arg, os.path.abspath(getattr(args, cli_arg)))
except OSError:
parser.error("Failed to convert {} to absolute path.".format(cli_arg))
try_to_create_and_prep_directory_at(args.download, DOWNLOAD_FOLDER, parser)
try_to_create_and_prep_directory_at(args.output, UNPACKED_FOLDER, parser)
try_to_create_and_prep_directory_at(args.temp, TEMP_FILES_DIR, parser)
# Ensure that the output folder path is formatted correctly:
if args.output[-1] != "/":
args.output += "/"
return args
def validate_dir_path(dir_path, parser):
"""
Validate that a given path refers to an existing directory; if it doesn't,
then raise an argparse error
:param dir_path: Path to validate
:param parser: argparse ArgumentParser to raise error if path is invalid
:return: N/A
"""
if not os.path.isdir(dir_path):
parser.error(dir_path + " is not an existing directory.")
def validate_readable_file(param):
"""
Throw exception unless parameter is a valid readable filename string. This
is used instead of argparse.FileType("r") because the latter leaves an open
file handle, which has caused problems.
:param param: Parameter to check if it represents a valid filename
:return: A valid filename as a string
"""
if not os.access(param, os.R_OK):
raise argparse.ArgumentTypeError("Could not read file at " + param)
return os.path.abspath(param)
def try_to_create_and_prep_directory_at(folder_path, default_path, parser):
"""
Validate file path of folder, and if it doesn't exist, create it. If a
non-default path is given, then move the file(s) in the default folder(s)
to the new folder(s) without copying any subdirectories (which have data).
:param folder_path: Path of folder that either exists or should be created
:param default_path: The default value of folder_path. The folder here
has some files which will be copied to the new directory at folder_path.
:param parser: argparse ArgumentParser to raise error if path is invalid
:return: N/A
"""
try:
os.makedirs(folder_path, exist_ok=True)
except (OSError, TypeError):
parser.error("Could not create folder at " + folder_path)
# If user gave a different directory than the default, then copy the
# required files into that directory and nothing else
default = os.path.abspath(default_path)
if os.path.abspath(folder_path) != default:
for each_file in os.scandir(default):
if not each_file.is_dir():
#shutil.copy2(each_file.path, folder_path)
try:
shutil.copyfile(each_file.path, os.path.join(folder_path, each_file.name))
# If source and destination are same
except shutil.SameFileError:
print("Source and destination represents the same file.")
# If destination is a directory.
except IsADirectoryError:
print("Destination is a directory.")
# If there is any permission issue
except PermissionError:
print("Permission denied.")
# For other errors
except:
print("Error occurred while copying file.")
def set_to_cleanup_on_crash(temp_dir):
"""
Make it so that if the script crashes, all of the temporary files that it
generated are deleted. signal.signal() checks if the script has crashed,
and cleanup() deletes all of the temporary files.
:return: N/A
"""
# Use local function as an intermediate because the signal module does
# not allow the signal handler (the second parameter of signal.signal) to
# take the parameter (temp_dir) needed by the cleanup function. Run cleanup
# function and exit with exit code 1 (failure)
def call_cleanup_function(_signum, _frame):
cleanup(temp_dir, 1)
# If this wrapper crashes, delete all temporary files
signal.signal(signal.SIGINT, call_cleanup_function)
signal.signal(signal.SIGTERM, call_cleanup_function)
def cleanup(temp_dir, exit_code):
"""
Function to delete all temp files created while running this script. This
function will always run right before the wrapper terminates, whether or
not the wrapper ran successfully.
:param temp_dir: Path to folder containing temporary files to delete.
:param exit_code: Code for this wrapper to return on exit. If cleanup() is
called when wrapper finishes successfully, then 0; otherwise 1.
:return: N/A
"""
# Delete all temp folder subdirectories, but not the README in temp folder
for temp_dir_subdir in os.scandir(temp_dir):
if temp_dir_subdir.is_dir():
shutil.rmtree(temp_dir_subdir.path)
# Inform user that temporary files were deleted, then terminate wrapper
print("\nTemporary files in {} deleted. ABCD to BIDS wrapper "
"terminated.".format(temp_dir))
sys.exit(exit_code)
def make_nda_token(args):
"""
Create NDA token by getting credentials from config file. If no config file
exists yet, or user specified to make a new one by entering their NDA
credentials as CLI args, then create one to store NDA credentials.
:param args: argparse namespace containing all CLI arguments. The specific
arguments used by this function are --username, --password, and --config.
:return: N/A
"""
# If config file with NDA credentials exists, then get credentials from it,
# unless user entered other credentials to make a new config file
if not args.username and os.path.exists(args.config):
username, password = get_nda_credentials_from(args.config)
# Otherwise get NDA credentials from user & save them in a new config file,
# overwriting the existing config file if user gave credentials as cli args
else:
# If NDA username was a CLI arg, use it; otherwise prompt user for it
if args.username:
username = args.username
else:
username = input("\nEnter your NIMH Data Archives username: ")
# If NDA password was a CLI arg, use it; otherwise prompt user for it
password = getpass("Enter your NIMH Data Archives password: ")
make_config_file(args.config, username, password)
# Try to make NDA token
token_call_exit_code = subprocess.call((
"python3",
NDA_AWS_TOKEN_MAKER,
"--username", username,
"--password", password,
"--config-dir", args.temp
))
# If NDA credentials are invalid, tell user so without printing password.
# Manually catch error instead of using try-except to avoid trying to
# catch another file's exception.
if token_call_exit_code != 0:
print("Failed to create NDA token using the username and decrypted "
"password from {}.".format(os.path.abspath(args.config)))
sys.exit(1)
def get_nda_credentials_from(config_file_path):
"""
Given the path to a config file, returns user's NDA credentials.
:param config_file_path: Path to file containing user's NDA username,
encrypted form of user's NDA password, and key to that encryption.
:return: Two variables: user's NDA username and password.
"""
# Object to read/write config file containing NDA credentials
config = configparser.ConfigParser()
config.read(config_file_path)
# Get encrypted password and encryption key from config file
encryption_key = config["NDA"]["key"]
encrypted_password = config["NDA"]["encrypted_password"]
# Decrypt password to get user's NDA credentials
username = config["NDA"]["username"]
password = (
Fernet(encryption_key.encode("UTF-8"))
.decrypt(token=encrypted_password.encode("UTF-8"))
.decode("UTF-8")
)
return username, password
def make_config_file(config_filepath, username, password):
"""
Create a config file to save user's NDA credentials.
:param config_filepath: Name and path of config file to create.
:param username: User's NDA username to save in config file.
:param password: User's NDA password to encrypt then save in config file.
:return: N/A
"""
# Object to read/write config file containing NDA credentials
config = configparser.ConfigParser()
# Encrypt user's NDA password by making an encryption key
encryption_key = Fernet.generate_key()
encrypted_pass = Fernet(encryption_key).encrypt(password.encode("UTF-8"))
# Save the encryption key and encrypted password to a new config file
config["NDA"] = {
"username": username,
"encrypted_password": encrypted_pass.decode("UTF-8"),
"key": encryption_key.decode("UTF-8")
}
with open(config_filepath, "w") as configfile:
config.write(configfile)
# Change permissions of the config file to prevent other users accessing it
subprocess.check_call(("chmod", "700", config_filepath))
def reformat_fastqc_spreadsheet(cli_args):
"""
Create abcd_fastqc01_reformatted.csv by reformatting the original fastqc01.txt spreadsheet.
:param cli_args: argparse namespace containing all CLI arguments.
:return: N/A
"""
# Import QC data from .csv file
with open(cli_args.qc) as qc_file:
all_qc_data = pd.read_csv(
qc_file, encoding="utf-8-sig", sep=",|\t", engine="python",
index_col=False, header=0, skiprows=[1] # Skip row 2 (description)
)
# Remove quotes from values and convert int-strings to ints
all_qc_data = all_qc_data.applymap(lambda x: x.strip('"')).apply(
lambda x: x.apply(lambda y: int(y) if y.isnumeric() else y)
)
# Remove quotes from headers
new_headers = []
for header in all_qc_data.columns: # data.columns is your list of headers
header = header.strip('"') # Remove the quotes off each header
new_headers.append(header) # Save the new strings without the quotes
all_qc_data.columns = new_headers # Replace the old headers with the new list
print(all_qc_data.columns)
# Select QC data that is usable (ftq_usable==1) and complete (ftq_complete==1)
qc_data = fix_split_col(all_qc_data.loc[(all_qc_data['ftq_usable'] == 1) & (all_qc_data['ftq_complete'] == 1)])
def get_img_desc(row):
"""
:param row: pandas.Series with a column called "ftq_series_id"
:return: String with the image_description of that row
"""
return row.ftq_series_id.split("_")[2]
# Add extra column by splitting data from other column
image_desc_col = qc_data.apply(get_img_desc, axis=1)
qc_data = qc_data.assign(**{'image_description': image_desc_col.values})
def get_img_timestamp(row):
"""
:param row: pandas.Series with a column called "ftq_series_id"
:return: String with the image_description of that row
"""
return row.ftq_series_id.split("_")[3]
# Add extra column by splitting data from other column
image_timestamp_col = qc_data.apply(get_img_timestamp, axis=1)
qc_data = qc_data.assign(**{'image_timestamp': image_timestamp_col.values})
# remove "Replaced" rows from download list
qc_data = qc_data[qc_data['ftq_recall_reason'] != 'Replaced']
# Change column names for good_bad_series_parser to use; then save to .csv
qc_data.rename({
"ftq_usable": "QC", "subjectkey": "pGUID", "visit": "EventName",
"abcd_compliant": "ABCD_Compliant", "interview_age": "SeriesTime",
"comments_misc": "SeriesDescription", "file_source": "image_file"
}, axis="columns").sort_values([
'pGUID',
'EventName',
'image_description',
'image_timestamp'
]).to_csv(SPREADSHEET_DOWNLOAD, index=False)
def fix_split_col(qc_df):
"""
Because qc_df's ftq_notes column contains values with commas, it is split
into multiple columns on import. This function puts them back together.
:param qc_df: pandas.DataFrame with all QC data
:return: pandas.DataFrame which is qc_df, but with the last column(s) fixed
"""
def trim_end_columns(row):
"""
Local function to check for extra columns in a row, and fix them
:param row: pandas.Series which is one row in the QC DataFrame
:param columns: List of strings where each is the name of a column in
the QC DataFrame, in order
:return: N/A
"""
ix = int(row.name)
if not pd.isna(qc_df.at[ix, columns[-1]]):
qc_df.at[ix, columns[-3]] += " " + qc_df.at[ix, columns[-2]]
qc_df.at[ix, columns[-2]] = qc_df.at[ix, columns[-1]]
# Keep checking and dropping the last column of qc_df until it's valid
columns = qc_df.columns.values.tolist()
last_col = columns[-1]
while any(qc_df[last_col].isna()):
qc_df.apply(trim_end_columns, axis="columns")
print("Dropping '{}' column because it has NaNs".format(last_col))
qc_df = qc_df.drop(last_col, axis="columns")
columns = qc_df.columns.values.tolist()
last_col = columns[-1]
return qc_df
def download_nda_data(cli_args):
"""
Call Python script to download NDA data by making NDA token and parsing the
good_and_bad_series_table.csv spreadsheet.
:param cli_args: argparse namespace containing all CLI arguments. This
function only uses the --download argument, the path to the folder to fill
with downloaded NDA data.
:return: N/A
"""
subprocess.check_call(("python3", "--version"))
print(cli_args.modalities)
subprocess.check_call(("python3",
SERIES_TABLE_PARSER,
"--qc-csv", os.path.join(cli_args.temp, os.path.basename(SPREADSHEET_DOWNLOAD)),
"--download-dir", cli_args.download,
"--subject-list", cli_args.subject_list,
"--sessions", ','.join(cli_args.sessions),
"--modalities", ','.join(cli_args.modalities),
"--downloadcmd", cli_args.downloadcmd,
"--package-id", cli_args.package_id))
def unpack_and_setup(args):
"""
Run unpack_and_setup.sh script repeatedly to unpack and setup the newly
downloaded NDA data files (every .tgz file descendant of the NDA data dir)
:param args: All arguments entered by the user from the command line. The
specific arguments used by this function are fsl_dir, mre_dir, --output,
--download, --temp, and --remove.
:return: N/A
"""
# Create list of all subject directories for setup
subject_dir_paths = {}
if args.subject_list:
f = open(args.subject_list, 'r')
x = f.readlines()
f.close
subject_list = [sub.strip() for sub in x]
for subject in subject_list:
uid_start = "INV"
uid = subject.split(uid_start, 1)[1]
bids_pid = 'sub-NDARINV' + ''.join(uid)
subject_dir = os.path.join(args.download, bids_pid)
if os.path.isdir(subject_dir):
subject_dir_paths[bids_pid] = subject_dir
else:
for subject in os.scandir(args.download):
if subject.is_dir():
subject_dir_paths[subject.name] = subject.path
# Loop through each subject and setup all sessions for that subject
for subject, subject_dir in subject_dir_paths.items():
for session_dir in os.scandir(subject_dir):
if session_dir.is_dir():
tgz_dir = os.path.join(session_dir.path, 'image03')
for tgz in os.scandir(tgz_dir):
if tgz:
# Get session ID from some (arbitrary) .tgz file in
# session folder
session_name = tgz.name.split("_")[1]
print('Unpacking and setting up tgzs for {} {} located here: {}'.format(subject, session_name, tgz_dir))
print("Running: ", UNPACK_AND_SETUP, subject, "ses-" + session_name, session_dir.path, args.output, args.temp, args.fsl_dir, args.mre_dir)
# Unpack/setup the data for this subject/session
subprocess.check_call((
UNPACK_AND_SETUP,
subject,
"ses-" + session_name,
session_dir.path,
args.output,
args.temp,
args.fsl_dir,
args.mre_dir
))
# If user said to, delete all the raw downloaded
# files for each subject after that subject's data
# has been converted and copied
if args.remove:
shutil.rmtree(os.path.join(args.download,
subject))
break
def correct_jsons(cli_args):
"""
Correct ABCD BIDS input data to conform to official BIDS Validator.
:param cli_args: argparse namespace containing all CLI arguments. This
function only uses the --output argument, the path to the folder containing
corrected NDA data to validate.
:return: N/A
"""
subprocess.check_call((CORRECT_JSONS, cli_args.output))
# Remove the .json files added to each subject's output directory by
# sefm_eval_and_json_editor.py, and the vol*.nii.gz files
sub_dirs = os.path.join(cli_args.output, "sub*")
for json_path in glob.iglob(os.path.join(sub_dirs, "*.json")):
print("Removing .JSON file: {}".format(json_path))
os.remove(json_path)
for vol_file in glob.iglob(os.path.join(sub_dirs, "ses*",
"fmap", "vol*.nii.gz")):
print("Removing 'vol' file: {}".format(vol_file))
os.remove(vol_file)
def validate_bids(cli_args):
"""
Run the official BIDS validator on the corrected ABCD BIDS data.
:param cli_args: argparse namespace containing all CLI arguments. This
function only uses the --output argument, the path to the folder containing
corrected NDA data to validate.
:return: N/A
"""
try:
if cli_args.sif_path:
subprocess.check_call(("singularity", "run", "-B", cli_args.output + ":/data",
cli_args.sif_path, "/data"))
else:
if cli_args.docker_cmd:
subprocess.check_call(('sudo', cli_args.docker_cmd, "run", "-ti", "--rm", "-v",
cli_args.output + ":/data:ro", "bids/validator",
"/data"))
else:
subprocess.check_call(("docker", "run", "-ti", "--rm", "-v",
cli_args.output + ":/data:ro", "bids/validator",
"/data"))
except subprocess.CalledProcessError:
print("Error: BIDS validation failed.")
if __name__ == '__main__':
main()