-
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathvertex.py
371 lines (331 loc) · 10.8 KB
/
vertex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#!/usr/bin/env python3
# Copyright 2023-2024 Nils Knieling
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import secrets
import time
import datetime
import uvicorn
# FastAPI
from typing import List, Optional
from fastapi import FastAPI, HTTPException, Request, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sse_starlette.sse import EventSourceResponse
# Google Vertex AI
import google.auth
from google.cloud import aiplatform
# LangChain
import langchain
from langchain_community.chat_models import ChatVertexAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
# Google authentication
credentials, project_id = google.auth.default()
# Get environment variable
host = os.environ.get("HOST", "0.0.0.0")
port = int(os.environ.get("PORT", 8000))
debug = os.environ.get("DEBUG", False)
print(f"Endpoint: http://{host}:{port}/")
# Google Cloud
project = os.environ.get("GOOGLE_CLOUD_PROJECT_ID", project_id)
location = os.environ.get("GOOGLE_CLOUD_LOCATION", "us-central1")
print(f"Google Cloud project identifier: {project}")
print(f"Google Cloud location: {location}")
# LLM chat model name to use
model_name = os.environ.get("MODEL_NAME", "chat-bison")
print(f"LLM chat model name: {model_name}")
# Token limit determines the maximum amount of text output from one prompt
default_max_output_tokens = os.environ.get("MAX_OUTPUT_TOKENS", "512")
# Sampling temperature,
# it controls the degree of randomness in token selection
default_temperature = os.environ.get("TEMPERATURE", "0.2")
# How the model selects tokens for output, the next token is selected from
default_top_k = os.environ.get("TOP_K", "40")
# Tokens are selected from most probable to least until the sum of their
default_top_p = os.environ.get("TOP_P", "0.8")
# API key
default_api_key = f"sk-{secrets.token_hex(21)}"
api_key = os.environ.get("OPENAI_API_KEY", default_api_key)
print(f"API key: {api_key}")
app = FastAPI(
title='OpenAI API',
description='APIs for sampling from and fine-tuning language models',
version='2.0.0',
servers=[{'url': 'https://api.openai.com/'}],
contact={
"name": "GitHub",
"url": "https://github.com/Cyclenerd/google-cloud-gcp-openai-api",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
docs_url=None,
redoc_url=None
)
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
aiplatform.init(
project=project,
location=location,
)
class Message(BaseModel):
role: str
content: str
class ChatBody(BaseModel):
messages: List[Message]
model: str
stream: Optional[bool] = False
max_tokens: Optional[int]
temperature: Optional[float]
top_p: Optional[float]
@app.get("/")
def read_root():
return {
"LangChain": langchain.__version__,
"Vertex AI": aiplatform.__version__
}
@app.get("/v1/models")
def get_models():
"""
Lists the currently available models,
and provides basic information about each one
such as the owner and availability.
https://platform.openai.com/docs/api-reference/models/list
"""
id = f"modelperm-{secrets.token_hex(12)}"
ts = int(time.time())
models = {"data": [], "object": "list"}
models['data'].append({
"id": "gpt-3.5-turbo",
"object": "model",
"created": ts,
"owned_by": "openai",
"permission": [
{
"id": id,
"created": ts,
"object": "model_permission",
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": "gpt-3.5-turbo",
"parent": None,
})
models['data'].append({
"id": "text-embedding-ada-002",
"object": "model",
"created": ts,
"owned_by": "openai-internal",
"permission": [
{
"id": id,
"created": ts,
"object": "model_permission",
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": True,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": "text-embedding-ada-002",
"parent": None
})
return models
def generate_stream_response_start():
ts = int(time.time())
id = f"cmpl-{secrets.token_hex(12)}"
return {
"id": id,
"created": ts,
"object": "chat.completion.chunk",
"model": "gpt-3.5-turbo",
"choices": [{
"delta": {"role": "assistant"},
"index": 0,
"finish_reason": None
}]
}
def generate_stream_response(content: str):
ts = int(time.time())
id = f"cmpl-{secrets.token_hex(12)}"
return {
"id": id,
"created": ts,
"object": "chat.completion.chunk",
"model": "gpt-3.5-turbo",
"choices": [{
"delta": {"content": content},
"index": 0,
"finish_reason": None
}]
}
def generate_stream_response_stop():
ts = int(time.time())
id = f"cmpl-{secrets.token_hex(12)}"
return {
"id": id,
"created": ts,
"object": "chat.completion.chunk",
"model": "gpt-3.5-turbo",
"choices": [{
"delta": {},
"index": 0,
"finish_reason": "stop"
}]
}
def generate_response(content: str):
ts = int(time.time())
id = f"cmpl-{secrets.token_hex(12)}"
return {
"id": id,
"created": ts,
"object": "chat.completion",
"model": "gpt-3.5-turbo",
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0,
},
"choices": [{
"message": {"role": "assistant", "content": content},
"finish_reason": "stop", "index": 0}
]
}
@app.post("/v1/chat/completions")
async def chat_completions(body: ChatBody, request: Request):
"""
Creates a model response for the given chat conversation.
https://platform.openai.com/docs/api-reference/chat/create
"""
# Authorization via OPENAI_API_KEY
if request.headers.get("Authorization").split(" ")[1] != api_key:
raise HTTPException(status.HTTP_401_UNAUTHORIZED, "API key is wrong!")
if debug:
print(f"body = {body}")
# Get user question
question = body.messages[-1]
if question.role == 'user' or question.role == 'assistant':
question = question.content
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "No Question Found")
# Overwrite defaults
temperature = float(body.temperature or default_temperature)
top_k = int(default_top_k)
top_p = float(body.top_p or default_top_p)
max_output_tokens = int(body.max_tokens or default_max_output_tokens)
# Note: Max output token:
# - gemini-pro: 8192
# https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini
# - chat-bison: 1024
# - codechat-bison: 2048
# - ..-32k: The total amount of input and output tokens adds up to 32k.
# For example, if you specify 16k of input tokens,
# then you can receive up to 16k of output tokens.
if model_name == 'codechat-bison':
if max_output_tokens > 2048:
max_output_tokens = 2048
elif model_name.find("gemini-pro"):
if max_output_tokens > 8192:
max_output_tokens = 8192
elif model_name.find("32k"):
if max_output_tokens > 16000:
max_output_tokens = 16000
elif max_output_tokens > 1024:
max_output_tokens = 1024
# Wrapper around Vertex AI large language models
llm = ChatVertexAI(
model_name=model_name,
temperature=temperature,
top_k=top_k,
top_p=top_p,
max_output_tokens=max_output_tokens
)
# Buffer for storing conversation memory
# Note: Max input token:
# - chat-bison: 4096
# - codechat-bison: 6144
memory = ConversationBufferMemory(
memory_key="history",
max_token_limit=2048,
return_messages=True
)
# Today
memory.chat_memory.add_user_message("What day is today?")
memory.chat_memory.add_ai_message(
datetime.date.today().strftime("Today is %A, %B %d, %Y")
)
# Add history
for message in body.messages:
# if message.role == 'system':
# system_prompt = message.content
if message.role == 'user':
memory.chat_memory.add_user_message(message.content)
elif message.role == 'assistant':
memory.chat_memory.add_ai_message(message.content)
# Get Vertex AI output
conversation = ConversationChain(
llm=llm,
memory=memory,
)
answer = conversation.predict(input=question)
if debug:
print(f"stream = {body.stream}")
print(f"model = {body.model}")
print(f"temperature = {temperature}")
print(f"top_k = {top_k}")
print(f"top_p = {top_p}")
print(f"max_output_tokens = {max_output_tokens}")
print(f"history = {memory.buffer}")
# Return output
if body.stream:
async def stream():
yield json.dumps(
generate_stream_response_start(),
ensure_ascii=False
)
yield json.dumps(
generate_stream_response(answer),
ensure_ascii=False
)
yield json.dumps(
generate_stream_response_stop(),
ensure_ascii=False
)
return EventSourceResponse(stream(), ping=10000)
else:
return JSONResponse(content=generate_response(answer))
if __name__ == "__main__":
uvicorn.run(app, host=host, port=port)